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Abstract We study the capture and crossing probabilities in the 3:1 mean motion resonance
with Jupiter for a small asteroid that migrates from the inner to the middle Main Belt under
the action of the Yarkovsky effect. We use an algebraic mapping of the averaged planar
restricted three-body problem based on the symplectic mapping of Hadjidemetriou (Celest
Mech Dyn Astron 56:563–599, 1993), adding the secular variations of the orbit of Jupiter and
non-symplectic terms to simulate the migration. We found that, for fast migration rates, the
captures occur at discrete windows of initial eccentricities whose specific locations depend
on the initial resonant angles, indicating that the capture phenomenon is not probabilistic.
For slow migration rates, these windows become narrower and start to accumulate at low
eccentricities, generating a region of mutual overlap where the capture probability tends to
100 %, in agreement with the theoretical predictions for the adiabatic regime. Our simulations
allow us to predict the capture probabilities in both the adiabatic and non-adiabatic cases,
in good agreement with results of Gomes (Celest Mech Dyn Astron 61:97–113, 1995) and
Quillen (Mon Not RAS 365:1367–1382, 2006). We apply our model to the case of the Vesta
asteroid family in the same context as Roig et al. (Icarus 194:125–136, 2008), and found
results indicating that the high capture probability of Vesta family members into the 3:1 mean
motion resonance is basically governed by the eccentricity of Jupiter and its secular variations.
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2 H. A. Folonier et al.

1 Introduction

Asteroid taxonomy classify the asteroids in different types according to the characteristics of
their reflectance colors and/or spectra (e.g. Tholen 1984; Bus and Binzel 2002; DeMeo et al.
2009). V-type asteroids are a particular class whose reflectance spectra have been recognized
to be compatible with the spectra of the basaltic achondritic meteorites (e.g. Binzel and Xu
1993; Hiroi and Pieters 1998; Burbine et al. 2001). Currently, the only known source for
these asteroids is the Vesta family (e.g. Migliorini et al. 1997; Mothé-Diniz et al. 2005)
a group of asteroids in the inner Main Belt (2.1 < a < 2.5 AU) which constitute the
outcome of a collision that excavated the basaltic surface of asteroid (4) Vesta more than 1
Gyr ago (e.g. McCord et al. 1970; Thomas et al. 1997; Asphaug 1997). Although most of
the V-type asteroids, the so called vestoids, are found within the limits of the Vesta family
(2.22 < a < 2.47 AU), several V-type bodies are also found far away from the family
outskirts (e.g. Cruikshank et al. 1991; Lazzaro et al. 2000; Roig et al. 2008; Moskovitz
et al. 2008b; Duffard and Roig 2009), which raises the question of how these asteroids get
to their current locations. Among the suggested mechanisms, Roig et al. (2008) show that
some V-type asteroids initially in the Vesta family would be able to cross the 3:1 mean
motion resonance (MMR) with Jupiter (hereafter J3:1) at 2.5 AU to get to the middle Main
Belt (2.5 < a < 2.8 AU). The crossing would be driven by a slow migration of the orbital
semimajor axis induced by the thermal emission forces on the asteroid’s surface, the so called
Yarkovsky effect (e.g. Bottke et al. 2002). Inspired by this result, we address here the problem
of resonance crossing/capture in the case of the J3:1 MMR from a wider perspective, aiming
to investigate how this phenomenon happens and how the results of Roig et al. (2008) can
be interpreted in the light of the general resonance crossing/capture mechanism.

Different authors have proposed different dynamical mechanisms to explain, at least par-
tially, the presence of V-type asteroid in the inner Main Belt beyond the domains of the Vesta
family. Carruba et al. (2005) showed that some V-type asteroids could have migrated from
the Vesta family to their current orbits due to the interplay between the Yarkovsky effect and
non-linear secular resonances. Nesvorný et al. (2008) addressed a similar interplay, but with
two-body and three-body MMRs. Even the close encounter with massive asteroids has been
proposed as a mechanism (Carruba et al. 2007; Delisle and Laskar 2012). However, these
mechanisms are not sufficient to account for all the V-type asteroids found in the inner Main
Belt.

To add to the puzzle, several V-type candidates have been recently discovered in the
middle Main Belt (e.g. Roig and Gil-Hutton 2006; Moskovitz et al. 2008a), and although
most of them still lack spectroscopic confirmation, they are strong photometric candidates.
Some of these bodies have moderate sizes, with diameters between 2 and 5 km, and their
origin is still a matter of debate. For the time being, the only reliable source of these asteroids
should be the Vesta family. However, in order to reach their present locations, these asteroids
should have crossed the J3:1 MMR which, at first hand, appears a near impossible task due
to the strong chaotic behavior that a small asteroid temporarily trapped in this MMR would
experiment. Actually, it is well known that even in the simplest models, the J3:1 resonant
motion drives asteroids to high- and very high-eccentricity orbits in less than a few tens of
million years (Wisdom 1982; Ferraz-Mello and Klafke 1991; Ferraz-Mello et al. 1996). This
behavior allows the asteroids to cross the orbits of Mars and of the Earth, thus being removed
by close encounters with these planets. Roig et al. (2008), used full N-body simulations,
including the perturbations of all the planets from Venus to Neptune, to find that for asteroids
with diameter of the order of 0.1–1.0 km there is a small probability (∼3 %) of crossing this
resonance going from the inner to the middle Main Belt. For larger bodies, the probability
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Capture probability in the 3:1 mean motion resonance with Jupiter 3

would be even lower. In principle, the results of Roig et al. (2008) could only explain very
few cases of V-type candidates in the middle Main Belt.

The above scenario raises some questions like: Is the interaction with the J3:1 MMR
enough to explain other V-type candidates? How does the resulting evolution depend on
the asteroid’s size? What dynamical effects are relevant to the crossing/capture probability?
Would other planetary configurations lead to different results? These questions shift the
spotlight from the origin of the V-type asteroids to a more fundamental issue: What is the
capture/crossing probability in the J3:1 MMR? And how does this vary in different dynamical
models and migration regimes?

The problem of resonance trapping has been approached by many authors. Neishtadt
(1975) presented one of the first studies of passages through a resonance separatrix with a
slowly-varying parameter (i.e. adiabatic regime). Yoder (1979) calculated the capture prob-
ability in the case of a simple pendulum, while Henrard (1982) extended the study to the
second fundamental model for first-order resonances. The case of higher-order commensura-
bilities was undertaken by Lemâitre (1984) and by Borderies and Goldreich (1984). Finally,
Malhotra (1990) analyzed the capture in secondary resonances including mutual inclination
between the asteroid and the perturbing planet.

All these works, however, deal with the adiabatic case in which the migration timescale
towards the resonance is much longer than the libration period. For very small asteroids,
however, the Yarkovsky effect may lead to a non-adiabatic migration (e.g. Farinella et al. 1998;
Vokrouhlický and Farinella 2000), and many of the classical predictions by the above authors
may not be valid. The problem of resonance capture/crossing under a non-adiabatic regime
is still little understood. Gomes (1995) studied the evolution of small particles migrating
due to the Poynting-Robertson drag. He found that the capture probability decreases for
increasing migration rates, especially for almost circular orbits. A similar result was also
found by Quillen (2006), who addressed the case where the migrating body is the perturber.
In particular, this author introduces a simple semi-analytical model which allows her to study
the capture probability in a single MMR of any order and also in the occurrence of a secondary
resonance. Recently, Mustill and Wyatt (2011) used a Hamiltonian model to investigate the
capture probabilities in first and second order resonances considering different scenarios like
planet migration through a gas disk, through a debris disk, and also dust migration under the
Poynting-Robertson drag. These authors found that resonant capture fails for high migration
rates, and has decreasing probability for higher eccentricities, although for certain migration
rates, capture probability peaks at a finite eccentricity. They also found that more massive
planets can capture particles at higher eccentricities and migration rates.

In this work we focus on the behavior of convergent migration towards the J3:1 MMR due
to the Yarkovsky effect, both in the adiabatic and non-adiabatic regimes. We are particularly
interested in three key issues: (i) how the capture probability changes with the migration
rate, (ii) the effects of different dynamical models, and (iii) an application of these results
to the Vesta family. We are also interested in the behavior of the dynamical system for a
wide range of migration rates, and consequently will also discuss drifts that correspond to
meteoroid-size bodies. Since the orbital evolution of such small particles is also influenced by
other physical processes (e.g. YORP, spin reorientations, etc), our results for this high non-
adiabatic regime should not be considered as accurate predictions, but solely for theoretical
completeness.

The paper is organized as follows. In Sect. 2, we present our dynamical model and equa-
tions of motion. In Sect. 3, we introduce an algebraic mapping that allows us to follow the
evolution of a huge number of sets of initial conditions with less computational cost. The
probability of resonance capture in the adiabatic and non-adiabatic cases is discussed in Sect.
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4 H. A. Folonier et al.

4. Numerical simulations with our mapping in both adiabatic and non-adiabatic regimes are
presented in Sect. 5. An application of our results to the present-day distribution of V-type
asteroids is given in Sect. 6. Finally, conclusions close the paper in Sect. 7.

2 The dynamical model

Our analysis is based on a planar restricted three-body problem, consisting of a massless
particle (asteroid) orbiting a primary of mass m0 (Sun) and perturbed by an exterior mass m1

(Jupiter). We adopt the usual Delaunay canonical variables:

L = √
μa, λ = mean longitude,

L − G = √
μa(1 −

√
1 − e2), −� = longitude of pericenter, (1)

where μ = Gm0, G is the gravitational constant, a is the semimajor axis of the asteroid and
e its eccentricity. The orbital elements of the perturbing mass (Jupiter) will be denoted by a
subscript 1. The mean motions will be denoted by n and n1, respectively. Orbital elements
are assumed to be heliocentric.

In these variables, the Hamiltonian governing the orbital evolution of the asteroid is given
by the expression:

H = − μ2

2L2 + n1Λ − μ1

a1
R(L , L − G,Λ, λ,�, λ1), (2)

where R is the disturbing function, μ1 = Gm1 and Λ is the canonical momentum associated
to λ1 = n1t .

Restricting the phase space to a vicinity of the J3:1 MMR, we can expand R in a Fourier–
Poisson series (e.g. Laplace expansion) and average over the short-period terms. Performing
this averaging up to first order in the masses, and retaining only terms up to second order in
the eccentricities, we can write the resonant Hamiltonian as:

H = − μ2

2L2 + n1Λ − μ1

a1

[
e2 A1 + ee1 A3 cos(� − �1) + e2 A5 cos(3λ1 − λ − 2�)

+ ee1 A6 cos(3λ1 − λ − � − �1) + e2
1 A7 cos(3λ1 − λ − 2�1)

]
, (3)

where, for simplicity, we have kept the same notation used for the original Hamiltonian
functions. In this expression Ai are function of the Laplace coefficients b( j)

s (a/a1) and are
considered constant. According to Murray and Dermott (1999) their values at the J3:1 MMR
(a/a1 = 0.48075) are:

A1 = 0.142097, A3 = −0.165406, A5 = 0.598100,

A6 = −2.21124, A7 = 0.362954.

Since we are interested in the motion around the J3:1 commensurability, we may transform
our variables to their resonant counterparts (e.g. Henrard and Lemâitre 1983):

σ = 1

2
(3λ1 − λ) − �, S = (L − G),

−ν = 1

2
(3λ1 − λ) − �1, N = (L − G) − L − Λ,

Q = 1

2
(λ1 − λ), Λ̄ = −Λ − 3L . (4)
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Capture probability in the 3:1 mean motion resonance with Jupiter 5

As the averaged Hamiltonian does not depend explicitly on Q, its momentum Λ̄ is a constant
of motion. Without any loss in generality we can take its value equal to zero, from which we
can attain that Λ = −3L . In this manner, the system is reduced to 2 degrees of freedom and
the remaining canonical momenta acquire the form:

S = (L − G) = √
μa

(
1 −

√
1 − e2

)
,

N = (L − G) + 2L = √
μa

(
3 −

√
1 − e2

)
. (5)

Finally, since we are only retaining terms in R up to the second order in the eccentricities,
we can write e as a function of both S and N up to the same order as:

e ≈ 2

√
S

N
. (6)

Writing the resonant Hamiltonian Eq. (3) in terms of the resonant canonical variables, we
obtain, up to the second order in the eccentricities:

H = − 2μ2

(N − S)2 − 3

2
n1(N − S) − μ1

a1

[
4

S

N
(A1 + A5 cos(2σ))

+ 2e1

√
S

N
(A3 cos(σ + ν) + A6 cos(σ − ν)) + e2

1 A7 cos(2ν)

]

. (7)

The resulting equations of motion can be explicitly written as:

d S

dt
= −μ1

a1

8S

N
A5 sin(2σ) − μ1

a1
2e1

√
S

N
[A3 sin(σ + ν) + A6 sin(σ − ν)]

d N

dt
= −μ1

a1
2e2

1 A7 sin(2ν) − μ1

a1
2e1

√
S

N
[A3 sin(σ + ν) − A6 sin(σ − ν)]

dσ

dt
= − 4μ2

(N − S)3 + 3

2
n1 − μ1

a1

4

N
[A1 + A5 cos(2σ)]

−μ1

a1

e1√
S N

[A3 cos(σ + ν) + A6 cos(σ − ν)]

dν

dt
= 4μ2

(N − S)3 − 3

2
n1 + μ1

a1

4S

N 2 [A1 + A5 cos(2σ)]

+μ1

a1
e1

√
S

N 3 [A3 cos(σ + ν) + A6 cos(σ − ν)] . (8)

3 The algebraic mapping

To solve these variational equations, we implemented an algebraic mapping based on the
symplectic mapping introduced by Hadjidemetriou (1986, 1991, 1993) and by Ferraz-Mello
(1996), to which we added a non-symplectic term (e.g. Cordeiro et al. 1996) simulating the
migration due to the Yarkovsky effect.

The classical Hadjidemetriou’s mapping is a variation of the twist map, tailored to preserve
the fixed points of the original Hamiltonian as well as their stability indices. If we write the
averaged Hamiltonian Eq. (7) as:

H(I, θ) = H0(I) + μ1H1(I, θ), (9)
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6 H. A. Folonier et al.

where (I, θ) ≡ (S, N , σ, ν), H0 is the integrable part and H1 is the disturbing function, the
mapping at the i-th step is given by a canonical transformation (I i , θ i ) → (I i+1, θ i+1) with
a Jacobi-type generating function:

S(I i+1, θ i ) = I i+1 · θ i + τH(I i+1, θ i ). (10)

From this expression, the implicit form of the mapping is given by:

I i = ∂S
∂θ i

= I i+1 + τ
∂H(I i+1, θ i )

∂θ i
,

θ i+1 = ∂S
∂ I i+1

= θ i + τ
∂H(I i+1, θ i )

∂ I i+1
. (11)

The time-step τ of the mapping must be set to the period of the synodic angle Q over
which the Hamiltonian was averaged; see Hadjidemetriou (1993) for a detailed construction.
This is τ = 2π/n1 ≈ 11.86 years, that corresponds to Jupiter’s orbital period. Substituting
the partial derivatives by the left-hand part of Eq. (8), leads to the expression of the mapping
for the J3:1 MMR. It is worth noting that the two equations for the actions I ≡ (S, N ) are
given in implicit form and must be solved iteratively before solving the two equations for the
angles θ ≡ (σ, ν).

3.1 Adding the Yarkovsky effect

The next step is to add to the algebraic mapping a non-conservative term mimicking the
Yarkovsky effect acting on small asteroids. The main consequence of the Yarkovsky effect is
a secular drift of the semimajor axis of the asteroid, but no changes in either the eccentricity
or the angles. In other words, the total time variation of the semimajor axis can be expressed
as the sum of two components:

ȧ = ȧG + ȧY , (12)

where ȧG is due to the purely gravitational perturbations, while ȧY is the variation due to the
non-conservative term.

According to Vokrouhlický (1999), the rate of change of the semimajor axis due to the
diurnal version of the Yarkovsky effect can be given approximately by:

ȧY = κd
1 km

D
cos ε, (13)

where D is the diameter of the asteroid in km, ε is the obliquity of the spin axis with respect to
the orbital plane, and κd is a constant that depends on several physical and thermal parameters
of the asteroid, like the albedo, the surface thermal conductivity, the surface and bulk densities,
the surface emissivity, and the rotational period. Assuming values of these quantities typical
of the vestoids, we have κ = 2.5 × 10−10 AU/year (e.g. Nesvorný et al. 2008). We note that,
if cos ε > 0, the asteroid increases its semimajor axis and pulls away from the Sun, while if
cos ε < 0, it suffers an orbital decay. Since we wish to study convergent migration towards
the J3:1 MMR from smaller values of the semimajor axis, we assume cos ε = 1 in order to
maximize the effect.1 For the rest of this paper, we will apply Eq. (13) as an approximate link

1 There is also a seasonal version of the effect which produces a drift of the form:

−κs
1 km

D
sin2 ε,
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Capture probability in the 3:1 mean motion resonance with Jupiter 7

between a given migration rate and the corresponding asteroid diameter. Since the value of
κd has been estimated from large vestoids, it is not clear that its value will remain invariant
for smaller asteroids and meteoroids. However, our aim is not to give quantitatively accurate
values of the body diameters, but to present illustrative quantities.

From Eq. (5), we can see that both canonical momenta depend on the semimajor axis, so
both will be affected by the Yarkovsky effect, that is:

İ = ∂ I
∂a

ȧ + ∂ I
∂e

ė =
(

∂ I
∂a

ȧG + ∂ I
∂e

ė

)
+ ∂ I

∂a
ȧY , (14)

and taking into account that I = √
μa �(e), we have:

İ = İ G + 2μI
(N − S)2 ȧY , (15)

where İ G is given by the first two Eq. (8).
Introducing this expression into the mapping, we obtain:

I i+1 = I i − τμ1
∂H1(I i+1, θ i )

∂θ i
+ τ ȧY

2μI i+1

(Ni+1 − Si+1)2 ,

θ i+1 = θ i + τ
∂H0(I i+1)

∂ I i+1
. + τμ1

∂H1(I i+1, θ i )

∂ I i+1
. (16)

It is worth noting that the addition of the Yarkovsky term breaks the symplectic structure of
the original mapping at I i+1 or at I i . This is not a problem since the Yarkovsky effect acts
as a dissipation, thus we should not expect the conservation of the Hamiltonian H. Note also
that, if ȧY > μ1, the non-conservative term may become as important as the gravitational
perturbation itself. In our simulations, we always consider drift values such that ȧY < μ1.

3.2 Adding long period terms of the Perturber’s orbit

Following Ferraz-Mello (1996) and Roig and Ferraz-Mello (1999), the mapping can be fur-
ther improved by adding the secular perturbations on the orbit of Jupiter. From the classical
planetary theory, we have that the secular change of the eccentricity e1 and perihelion longi-
tude �1 is given by a sum of harmonic terms:

e1 exp i�1 =
∑

k

Gk exp[i(γk t + φk)] i = √−1. (17)

The values for the amplitudes Gk , frequencies γk , and initial phases φk of the harmonics are
listed in Table 1, and they were adopted from the synthetic secular theory LONGSTOP 1B
(Nobili et al. 1989). In particular, we considered only the principal harmonics, i.e. those with
amplitude Gk ≥ 10−4. The only exceptions are the harmonics g8 and 2g5 − g6, which are
not excluded because g8 is one of the fundamental frequencies of the planetary theory, and
2g5 − g6 is the retrograde frequency of Jupiter’s perihelion with the longest period. Equation
(17) is directly introduced at each time step of the mapping, t = iτ , through e1 and ν in the
right-hand part of Eqs. (8) and (16).

but for the problem in hand, the constant κs � κd , thus the seasonal effect can be disregarded.
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8 H. A. Folonier et al.

Table 1 Frequencies γk , initial phases φk and amplitudes Gk for the secular variation of Jupiter’s orbit

Harmonic term γk (/year) φk (◦) Gk Period (years)

g5 4.25749319 27.0005 4.41872 × 10−2 3.0440 × 105

g6 28.24552984 124.1994 −1.57002 × 10−2 4.5883 × 104

g7 3.08675577 117.0516 1.8139 × 10−3 4.1986 × 105

g8 0.67255084 70.7508 5.80 × 10−5 1.9270 × 106

g5 + g6 − g7 −1.936 × 10−4 4.4057 × 104

−g5 + g6 + g7 1.982 × 10−4 4.7867 × 104

−g5 + 2g6 −5.735 × 10−4 2.4812 × 104

2g5 − g6 1.42 × 10−5 −6.5685 × 104

g5 − s6 + s7 1.104 × 10−4 4.6940 × 104

−g5 + 2g6 + s6 − s7 −1.226 × 10−4 4.4873 × 104

Initial phases are given at JD 2440400.5. As usual, gi , si represent the fundamental frequencies of the perihelia
and nodes, respectively, of the planets (5 for Jupiter, 6 for Saturn, and so on)

3.3 Comparison of the mapping with the full Hamiltonian equations

In order to verify the validity of our mapping model, we performed a series of numerical
simulations with the mapping and compared the results to those obtained from a direct N-body
integration of the full Hamiltonian (Eq. 2), using a Bulirsch–Stoer integrator.

We chose 500 initial conditions in the a–e plane over a line segment parallel to the left
branch separatrix of the J3:1 MMR in the circular problem (e1 = 0). Taking the initial angular
variables as θ = 2σ = π and �� = σ + ν = π , this line of initial conditions follows the
equation a = 2.49 − e/10, with 0.01 ≤ e ≤ 0.4. The orbital elements of Jupiter were fixed
to a1 = 5.202545 AU, e1 = 0 or 0.048, �1 = 0, and λ1 = 0.

We adopted three different values for the Yarkovsky drift rate ȧY , corresponding to a
very fast migration (ȧY = 5 × 10−5 AU/year; D = 0.5 cm), an intermediate migration
(ȧY = 5 × 10−6 AU/year; D = 5 cm), and a slow migration (ȧY = 5 × 10−7 AU/year;
D = 50 cm). The total integration time span was T = 2.0 × 103, 2.0 × 104, and 2.0 × 105

years, respectively for each drift rate. The time step of the N-body code was automatically
adjusted to match a tolerance of 10−11 in the precision of the solution.

In Fig. 1, we show the results of this comparison for the circular case. The black
V-shaped lines in the upper row panels are the separatrix of the circular problem, and the
green line is the set of initial conditions. The red dots are the final conditions (at t = T )
of the simulations obtained with the mapping, while the blue dots were obtained with the
N-body integration. In the lower row panels, we show the final semimajor axes as a function
of the initial eccentricity. The leftmost panels correspond to the fastest migration rate, while
the rightmost ones correspond to the slowest rate.

We found a very good agreement between the mapping results and the N-body integra-
tions, both showing the same structures of crossings and captures. For the fastest migration
rates, the resonance captures appear to occur in certain discrete “windows” of initial eccen-
tricities (lower left plot in Fig. 1). In other words, there exists certain intervals of the initial
eccentricities for which capture always occurs, and other values for which a resonance cross-
ing is guaranteed. Thus, the outcome of the resonance passage is not probabilistic, but well
defined and deterministic.
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Fig. 1 Comparison between the algebraic mapping (red dots) and the integration of the full N-body equations
(blue dots) in the circular case (e1 = 0). The initial angles are set to θ = �� = π . The migration rate
decreases from left to right. Top panels final values of the semimajor axes and eccentricities. The green line
represents the initial conditions, which are the same for both simulations. The separatrix of the resonance are
shown for reference (black lines). Bottom panels final semimajor axes versus initial eccentricities, where the
structure of captures and crossing windows is appreciable (see also Fig. 2)

This can be seen more clearly along a more detailed range of fast migration rates, as shown
in Fig. 2. As the migration rate decreases, the number of capture windows increases and the
windows become narrower. New windows start to appear at high eccentricities, while those
already present shift to the lower values of e. It is worth noting that in Fig. 2 the initial angles
were fixed to θ = 2σ = 0 and �� = σ + ν = 0. By comparing the panels in Figs. 1 and
2 corresponding to the same migration rate (5 × 10−5 AU/year), it becomes evident that the
precise location of the capture windows strongly depends on the initial angles θ and �� .

As we approach the adiabatic regime (Fig. 1, bottom middle and right), the capture win-
dows tend to accumulate and overlap in the region 0 ≤ e < ec ≈ 0.04, leading to certain
capture for all initial conditions in this eccentricity range. However, for e > ec the windows
do not overlap but continue to reduce in width while their mutual separation decreases, tend-
ing to zero in the adiabatic limit and leading to a probabilistic treatment of the outcome of
any initial condition. As we will show later, this behavior is in agreement with the resonance
capture analytical model in the adiabatic regime.

Although these results assumed that the perturber is in a circular orbit, both the cap-
ture/crossing windows and their main characteristics are also observed in more complete
dynamical models, such as the elliptic case and models including secular perturbations in the
perturbing planet. Finally, it is worth noting that the computation time could be about 1,000
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Fig. 2 Final semimajor axis versus initial eccentricity obtained with the mapping equations for the circular
problem (e1 = 0), showing the structure of capture and crossing windows at fast migration rates. The initial
angles are set to θ = �� = 0. The migration rate decreases from left to right and from top to bottom.
The separatrix (black curves) and center (red dashed) of the J3:1 MMR are indicated. This behavior is also
observed in the elliptic case, and also with the numerical integration of the full Hamiltonian

123



Capture probability in the 3:1 mean motion resonance with Jupiter 11

times faster with the mapping compared to an N-body integration. This allows to perform a
huge amount of simulations with the mapping to obtain a statistically significant result.

3.4 Capture dependence on the initial angles

In this section, we investigate how the capture process depends on the initial angles, aiming
to provide an explanation for the capture windows observed in Figs. 1 and 2. We considered
a grid of test orbits with a = 2.45 AU and e = 0.2, and initial angles θ and �� varying
between 0◦ and 360◦. These test orbits were integrated until either a > 2.56 AU (crossing)
or e > 0.5 (capture).

The results are shown in Fig. 3, for three different Yarkovsky drift rates (the same shown
in Fig. 1) and two different models: the circular problem (left panels) and the secular elliptic
problem where the eccentricity of Jupiter varies with time (right panels). The final fate of the
orbits is identified by a blue color for crossings and white for captures. It is worth noting that

Fig. 3 Capture regions (in white) depending on the initial angles θ = 2σ and �� = σ + ν for a test orbit
with initial a = 2.45 AU and e = 0.2. The left panels correspond to the circular model (e1 = 0), while the
right panels correspond to the secular elliptic model (see Sect. 3.2). The considered drift rates are indicated
above the panels. Angles are in degrees
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12 H. A. Folonier et al.

the results for the pure elliptic model (e1 �= 0 fixed) are very similar to those of the secular
elliptic model, being actually indistinguishable for the fastest drift rates.

Looking at the results for the circular model, which does not depend on �� , it is clear
that the occurrences of captures are strongly dependent on the initial values of the resonant
angle. This behavior can be explained by assuming that the capture takes place only if the
orbit reaches the separatrix at, or very close to, the unstable (saddle) equilibrium point, which
correspond to θ = 0 in the J3:1 MMR. Since e remains almost constant before reaching the
resonance region, the rate of circulation θ̇ depends primarily on the initial semimajor axis
and all the test orbits reach the separatrix at approximately the same time τ . Therefore, for
an initial angle θ0, the evolution of θ upon reaching the separatrix is approximately given by
θ − θ0 = ∫ τ

0 θ̇ (ȧY t) dt. Since the right-hand member is almost equal for all the orbits, only
a limited range of θ0 values could lead to θ ∼ 0 at the separatrix.

For the fast migration rates, τ ∼ 300 years is smaller than the circulation period (θ̇ � 1,000
years), and the orbits reach the separatrix before they can complete a full circulation of the
resonant angle. Thus, we should expect a limited number of capture windows. On the other
hand, for the slowest migration rates, the orbits are able to make several circulations before
reaching the separatrix (τ ∼ 30,000 years), providing a larger number of capture windows.
This produces the structure shown in the left panels of Fig. 3.

In the case of the elliptic models, the captures are still expected to occur through the saddle
point θ = 0, but the evolution is coupled with �� , which produces the complex patterns
observed in the right panels of Fig. 3.

4 The resonance capture probability

4.1 Adiabatic case

Figure 4 (left) presents a schematic view of the phase space of a pendulum-type one degree
of freedom dynamical system. We can define three domains: an inner circulation domain D1

(in red), a libration domain D2 (in blue), and an outer circulation domain D3 (in white). We
are interested in assessing the probability Pi j for an initial condition in region Di to pass
onto region D j . Let Ji be the area of region Di , such that J3 = J1 + J2. In the absence of
migration, these areas remain constant and only depend on the value of the momentum N ,
i.e. Ji = Ji (N ).

Following Henrard (1982), when a very slow migration is considered (adiabatic regime),
the probability P3i is given in a first approximation by:

P3i = ∂ Ji/∂ N

∂ J3/∂ N
. (18)

This equation states that the capture probability is directly proportional to that ratio of the
speed at which the areas Di and D3 change due to the migration. It is straightforward to show
that P31 = 1 − P32, since:

P31 + P32 = ∂ J1/∂ N

∂ J3/∂ N
+ ∂ J2/∂ N

∂ J3/∂ N
= ∂(J1 + J2)/∂ N

∂ J3/∂ N
= 1, (19)

To apply the above equation to the J3:1 MMR, we consider the Hamiltonian of the restricted
circular three-body problem (Eq. (7); e1 = 0) and, for each value of N , we numerically
compute the values of J1 and J3, as well as their derivatives. A condition passing from region
D3 to D2 constitutes a capture, while a condition passing from region D3 to D1 constitutes
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Fig. 4 Left schematic representation in the plane x = √
S cos(θ), y = √

S sin(θ) of a resonant, one degree
of freedom, system with action-angle variables (S, θ). Region D1 corresponds to a regime of inner circulation
of θ ; region D2 corresponds to a libration around θ = π ; and region D3 corresponds to an outer circulation.
Right capture probability as a function of the eccentricity in the adiabatic case (black curve) and in three
non adiabatic cases (blue, red and green curves). The green curve corresponds to the fastest migration rate.
For slower migration rates, the location of the maximum shifts to smaller eccentricities, and the maximum
probability grows until reaching the adiabatic case

a crossing. Therefore, the capture probability is:

Pcap = P32, (20)

while the crossing probability is:

Pcross = P31 = 1 − Pcap. (21)

To find Pcap as a function of N , we need to compute the ratio between the derivatives
in Eq. (18). Since the Yarkovsky drift included in our model do not modify the eccentricity,
we can replace N by the value of e that the orbit has when it reaches the separatrix of the
resonance. This allows us to study the capture probability directly as a function of e, as shown
in the black curve of Fig. 4 (right).

These calculations indicate that, for eccentricities 0 ≤ e < ec ≈ 0.05, the capture
probability is 100 %, while for e > ec it decays exponentially. In other words, for an adiabatic
migration, any asteroid that enters the J3:1 MMR with e < ec will be captured. The capture
probability reduces to less than 15 % for eccentricities larger than 0.4.

4.2 Non-adiabatic case

The capture probability in the non-adiabatic case is much more complex and little is known
about its behavior. Probably the first general study was performed by Gomes (1995), who
focused on the dynamics of small particles entering a MMR domain induced by the Poynting-
Robertson effect. Using N-body numerical simulations, he found that, independently of the
initial eccentricity, the capture probability decreased for faster migration rates. He also found
that, in the non-adiabatic regime, the capture probability is zero for circular orbits, then
increases up to certain maximum value at a given emax , and then decreases again asymptoti-
cally to zero for higher eccentricities. The values of emax and the corresponding maximum of
Pcap depend on the migration rate: the faster the migration, the higher the emax and the smaller
the Pcap . This behavior is shown in Fig. 4 (right), which reproduces the curves estimated by
Gomes (1995).
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14 H. A. Folonier et al.

More recently, the non-adiabatic case has also been studied by Quillen (2006). A detailed
discussion of her results in comparison with ours will be treated in Sect. 5.2.

5 Mapping simulations

5.1 Capture probability

In order to estimate the theoretical capture probability (in both the adiabatic and non-adiabatic
regimes) with our mapping simulations, we considered three different models, depending on
Jupiter’s orbit: the circular model (e1 = 0, hereafter CM), the elliptic model (e1 �= 0 fixed,
hereafter EM), and the secular elliptic model (hereafter SEM) in which Jupiter’s orbit feels
the secular perturbations of the other major planets according to Eq. (17).

For the CM, we chose 1000 equispaced initial conditions over the line a = 2.49 − e

10
,

with 0.01 ≤ e ≤ 0.4, parallel to the left branch of the separatrix of the (circular) J3:1 MMR
in the a–e plane. For each of these initial conditions, we considered 36 equispaced values of
θ = 2σ between 0 and 2π . For the EM and SEM, we chose 100 initial values of (a, e) along
the same lines, and for each of these we took 18×18 equispaced values of θ and �� = σ +ν,
both between 0 and 2π . It is worth noting that the proximity of these initial conditions to the
resonance separatrix implies that the values of e upon reaching the separatrix are almost the
same as their initial values. Therefore, from now on, we will analyze the capture probability
directly as a function of the initial eccentricity of the orbits.

The initial conditions of Jupiter’s orbit were a1 = 5.202545 AU, e1 = 0 for the CM,
e1 = 0.048 for the EM and SEM, λ1 = 0 and �1 = 0. Each set of initial conditions
was integrated with the mapping using 12 different migration rates ȧY . In Table 2, we list
these values together with the corresponding diameters according to Eq. (13). The table also
shows the total integration time span in each case, in units of mapping iterations, where each
iteration has period τ .

In Figs. 5 and 6, we show the final semimajor axes as a function of the initial eccentricities
for models CM and EM, respectively. The results of the secular elliptic model (SEM) shows
no significant differences with those adopting a fixed orbit for the perturber, and are not
shown. Each frame corresponds to a different migration rate, starting from the fastest (upper
left) to the slowest (bottom right). We assume that an asteroid has crossed the resonance if
its final semimajor axis is larger than a critical value, which varies from case to case but was
always of the order of ac ≈ 2.55 AU. The capture conditions are represented in red, while
the crossings are shown in blue. Since we have now considered an ensemble of initial angles
(θ,��), the windows associated to captures/crossing become blurred and there is no longer
a predetermined outcome, even for fast migration rates.

The capture probability was computed by counting the number of captures that occur
for each initial eccentricity and dividing it by the total number of initial conditions at that
eccentricity. Rigorously speaking, the capture probability depends on the migration rate ȧY ,
the initial value of e, and the initial angles θ and �� , as shown in Sect. 3.3. Since, for each
eccentricity, the initial angles are varied between 0 and 2π , our counting method is equivalent
to estimate an integrated probability:

〈Pcap〉θ,�� = Pcap(e, ȧY ) = 1

(2π)2

2π∫

0

2π∫

0

Pcap(e, ȧY , θ,��) dθd��. (22)
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Table 2 Assumed migration rates ȧY and their associated diameters D

ȧY (AU/year) D (m) CM EM SEM

5.0 × 10−4 5.0 × 10−4 35 90 90

2.5 × 10−4 1.0 × 10−3 90 100 100

1.0 × 10−4 2.5 × 10−3 150 150 150

5.0 × 10−5 5.0 × 10−3 200 250 250

2.5 × 10−5 0.01 350 500 500

1.0 × 10−5 0.025 700 1,000 1,000

5.0 × 10−6 0.05 1,300 3,500 3,500

2.5 × 10−6 0.1 2,500 10,000 15,000

1.0 × 10−6 0.25 6,000 25,000 30,000

5.0 × 10−7 0.5 12,500 60,000 75,000

2.5 × 10−7 1.0 25,000 100,000 125,000

1.0 × 10−7 2.5 60,000 300,000 300,000

The last three columns give the number of iteration steps used in the simulations of the different models. Each
step corresponds to a period of ≈11.8 years

The values of Pcap(e, ȧY ) are shown in Fig. 7 for the CM (black curve), the EM (red curve),
and the SEM (green curve).

At the fastest migration rate, all the initial conditions were able to cross the resonance in
the CM, but in the EM and SEM a few captures were registered for large initial eccentricities
(e > 0.3). Captures in the CM start to happen at migration rates slower than ȧY = 2.5×10−4

AU/year (D = 0.1 cm); however, in the EM and SEM captures already occur at lower
eccentricities (e > 0.2) at the same migration rates. As expected, the capture windows
appear initially at high eccentricities and move toward smaller e as the migration rate slows
down (cf. Sect. 3.3).

At a migration rate of ȧY = 1.0 × 10−5 AU/year (D = 2.5 cm), the capture probability
in the CM resembles the curve of a non-adiabatic capture (see Fig. 4), but with a lot of
overlapped noise. This noise is introduced by the discretization of the capture windows, and
it is not observed in Gomes (1995) since this author performed a smoothing of his capture
curves. The capture probability starts with a maximum at large eccentricities, and drifts
towards smaller eccentricities taking higher values as the migration rate becomes slower. In
the EM and SEM, and for migration rates slower than ȧY = 5.0 × 10−6 AU/year (D = 5
cm), we observe a tail of final conditions that cross the resonance at low initial eccentricities
(blue dots) This tail is formed by orbits that spent much more time inside the resonance
than the remaining orbits before jumping it. This delay is probably due to the interaction
of the orbits with secular and secondary resonances inside the MMR; that is why the same
effect is not observed in the CM. At slower migration rates, this delay effect is observed for
0.05 < e < 0.25.

For both the EM and SEM, the adiabatic regime starts for migration rates slower than
ȧY = 1.0 × 10−5 AU/year (D = 2.5 cm), where the calculated probability resembles the
theoretical curve predicted by Henrard’s approach (see Fig. 4). For the CM, the adiabatic
regime starts at even slower migration drifts, ȧY = 2.5 × 10−7 AU/year (D = 1 m). This
means that in spite of the model, for real km-size asteroids the Yarkovsky drift should be
considered as an adiabatic regime.
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16 H. A. Folonier et al.

Fig. 5 Final semimajor axes versus initial eccentricity obtained from the numerical simulations with the
mapping assuming Jupiter in a circular orbit (model CM). Red dots represent captures while blue dots represent
crossings. The migration rate ȧY decreases from left to right and from top to bottom

Finally, we observe that in the SEM, and for migration rates of ȧY = 5.0 × 10−7

AU/year (D = 0.5 m) and ȧY = 2.5 × 10−7 AU/year (D = 1 m), besides the tail
of delayed orbits, there is a group of orbits whose final semimajor axes cluster around
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Fig. 6 Same as Fig. 5 but for Jupiter in a fixed elliptic orbit (EM). Note the tail of “delayed” crossings that
appears between 0.1 < e < 0.2 for the slowest migration rates (last six panels)
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18 H. A. Folonier et al.

a value of a = 2.82 AU. This corresponds to the 5:2 MMR with Jupiter, which means
that even if these orbits were able to dodge the J3:1 MMR, they did not circumvent
the weaker J5:2 resonance.

5.2 Integrated capture probability

In the previous section, we have estimated the capture probability Pcap(e, ȧY ) averaged over
the angular variables θ and �� . To get an idea of the total capture probability as a function of
the migration rate, we have to integrate the above estimate over an interval of eccentricity, i.e.:

〈Pcap〉e = Pcap(ȧY ) = 1

(0.4)

0.4∫

0

Pcap(e, ȧY ) de. (23)

This is carried out by numerically integrating the curves shown in Fig. 7. The resulting prob-
ability Pcap(ȧY ) is shown in Fig. 8 for the CM (black curve), the EM (green curve), and the
SEM (red curve).

This result indicates that the total capture probability for asteroids with 0 ≤ e ≤ 0.4 and
slow migration rates is of the order of 40 % in the CM, and 30 % in the EM and SEM. However,
as shown in Fig. 7, the adiabatic limit occurs for faster migrations in the EM and SEM rather
than in the CM, and should lead to a 100 % capture probability for e < ec ≈ 0.04. If we
divide the integral Eq. (23) in two sets, one in the interval [0, ec] and the other in the interval
[ec, 0.4], we obtain the result shown in Fig. 9. As expected, at very low eccentricities, the
capture probability tend to 100 % for faster migrations (ȧY = 5.0 × 10−6 AU/year; D = 5
cm) in the more realistic models than in the circular model (ȧY = 5.0 × 10−7 AU/year;
D = 50 cm). On the other hand, for intermediate/large eccentricities, the capture probability
is independent of the model adopted, and tends to 30 % in the adiabatic limit.

Before applying these results to the real case of the Vesta family and the vestoids, it is
interesting to discuss our results with respect to those obtained by Quillen (2006). The main
difference between Quillen’s approach and ours is that she considers a fixed test particle with
a migrating planet (and a migrating resonance), while we leave the planet fixed and migrate
the test particle. In principle, both approaches should lead to the same result. However,
Quillen did not report in her simulations the existence of the “capture windows” that we
observe in our simulations. This is not surprising, since these structures appear when the
initial angles of the orbits are fixed to the same value, as we showed in Sect. 3.4. Since
Quillen (2006) chose initial random angles, the windows became hidden in her simulations.
It is worth noting, however, that Quillen’s procedure should not affect the computed capture
probabilities, because she also averages the probabilities over the angular variables. Indeed,
the curves shown in Fig. 9 resemble the behavior presented by Quillen (2006) in her figure 3.
On the other hand, Mustill and Wyatt (2011) did detect the capture windows, but they did
not provide a clear explanation for them.

This is a particularly important result, because Quillen’s model is significantly different
from ours. Although the basic Hamiltonian is the same in both models (i.e., an Andoyer-
like Hamiltonian), she includes the non-conservative term directly as a variation of the mean
motion of the planet n1 = n1(t), that only affects the term of the unperturbed Hamiltonian that
is linear in the actions. On the other hand, in our model, we include the non-conservative term
as a repeated “kick” in the actions, so it does not only affect the linear term of the unperturbed
Hamiltonian but also the quadratic term, as well as the amplitudes of the harmonics of the
disturbing function. The fact that two models so different can lead to almost the same result
demonstrates the robustness of the capture process.
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Fig. 7 Capture probability as a function of the initial eccentricity computed from the simulations shown in
Figs. 5 (CM) and 6 (EM), plus results from the secular elliptic model (SEM). The black curve corresponds to
the CM, red to the EM, and green to the SEM. The migration rate decreases from left to right and from top to
bottom. For each initial eccentricity, the computed probability is “averaged” over the resonant angles θ,��
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Fig. 8 Capture probability
integrated over the angles and e,
as a function of the migration
rate. The black curve corresponds
to the CM, red to the EM and
green to the SEM
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Fig. 9 Same as Fig. 8, but for
two different intervals of e. Left
very low eccentricities. Right
intermediate to high
eccentricities
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6 Comparison with the distribution of real asteroids

As a final task, we wish to find the integrated capture probability for V-type asteroids coming
from the Vesta family (vestoids) as a function of the migration rate. Roig et al. (2008)
determine that the probability of a vestoid to cross the J3:1 MMR is of the order of 3 %. This
result is based on numerical simulations of a full Solar System model (Venus to Neptune),
including real Vesta family members close to the J3:1 resonance border as massless particles,
and assigning to these asteroids two different drift rates: ȧY = 1.0×10−10 AU/year (D = 2.5
km) and ȧY = 1.0 × 10−9 AU/year (D = 250 m).

In principle, the Yarkovsky effect should only change the orbital semimajor axis of a Vesta
family member, and thus it is expected that the Vesta family preserves more or less its original
distribution in eccentricity. The interplay of the Yarkovsky effect with the many non-linear
secular resonances and weak MMRs in inner Main Belt can produce significant variations of
the Vesta family members’ eccentricities (and inclinations) over Gyr time scales (e.g. Carruba
et al. 2005; Nesvorný et al. 2008). However, these variations only affect a small fraction of the
family members and will be disregarded in our analysis. Figure 10 shows the location on the
proper elements plane of the known Vesta family members. Assuming that over the interval
of eccentricities of the Vesta family, that is approximately 0.07 ≤ ep ≤ 0.14, the proper
eccentricity differs very little from the mean (i.e. averaged over the synodic perturbations)
eccentricity, the integrated capture probability for the family becomes:
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Fig. 10 The distribution of Vesta
family asteroids on the plane of
proper elements ap–ep (black
dots). The red triangle indicates
the current location of 4 Vesta.
The resonance separatrix (black
lines) and center (blue dashed)
are also shown. We are
particularly interested on the
evolution of family members
close to the resonance border
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Fig. 11 Same as Fig. 8, but with
the probability integrated
between the eccentricity limits of
the Vesta family (0.07–0.14). At
the adiabatic limit (ȧY < 10−9)
both the EM and the SEM
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Figure 11 shows the resulting probability for the different models. In the CM, the prob-
ability remains constant around 50 % for migration rates slower than ȧY = 5.0 × 10−6

AU/year (D = 5 cm). In the EM, the capture probability reaches 87 % for a migration rate
of ȧY = 1.0 × 10−9 AU/year (D = 250 m), but the curve shows a growing tendency for
smaller rates, and we may expect to get above 90 % for drift rates and order of magnitude
slower. The behavior in the SEM is very similar to the EM, but with higher probabilities that
may reach 95–96 % for the slowest rates simulated. These results are compatible with those
obtained by Roig et al. (2008), and imply that the very low probability that the vestoids have
to cross the J3:1 MMR is basically due to the non-zero eccentricity of Jupiter. Therefore, it is
not necessary to rely on the use of complex models or time consuming N-body simulations
to efficiently reproduce this behavior.
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7 Conclusions

In this work, we have studied the capture versus crossing probability into the 3:1 mean motion
resonance with Jupiter for an asteroid that migrates from the inner to the middle Main Belt
under the action of a force that produces a secular change on its orbital semimajor axis. We
were specially interested in the behavior of asteroids belonging to the Vesta family, that can
migrate due to the thermal emission forces producing the so called Yarkovsky effect.

In order to perform a statistically significant analysis, we developed an algebraic mapping
of the restricted three body problem, averaged over the synodic angle. The mapping is based
on the symplectic approach developed by Hadjidemetriou (1993), but we add the secular
variations on the orbit of the perturber, as well as non-symplectic terms to simulate the
migration. The mapping has the advantage of being much faster than a full three-body high-
order integration, but keeping the basic features of the behavior of the full model. This allowed
us to perform a huge set of simulations with less computational cost. Moreover, the mapping
model has the advantage that different parts of the model (eccentricity of Jupiter, secular
variations, etc.) can be switched on and off, thus allowing us to analyze the relevance of these
parts on the actual dynamics.

To simplify our study, we concentrated on three planar models (although the mapping could
be easily extended to take into account the orbital inclinations of the bodies), according to
the behavior of Jupiter’s eccentricity: (i) circular model, (ii) elliptic model, and (iii) elliptic
model with secular variations due to the other Jovian planets. The mapping results have been
compared to numerical simulations of the full equations of motion for the circular and elliptic
models, obtaining a very good agreement.

At very fast migration rates, most of the asteroids cross the resonance, while the few that
are captured have initial eccentricities within a given range or “window”. As the migration
rate slows down, this window shifts to smaller eccentricities and becomes narrower, while
new, even narrower, windows start to appear at higher eccentricities. At very slow migration
rates, the shift of the windows to smaller eccentricities produces and accumulation of them,
and their mutual overlap generates a region of very low e where the capture probability is
100 %, in agreement with the theoretical predictions.

Using the mapping, we have performed simulations of initial conditions distributed over
a line in the a–e plane close to the left branch of the resonance separatrix. For each initial
condition, the initial angles θ = 2σ and �� were distributed between 0 and 2π . Testing
different values of the migration rate, we arrive to the following results:

– For the fastest migration rates (i.e. highly non-adiabatic regime) almost all the asteroids
are able to cross the resonance without being captured. The first captured orbits appear in
the elliptic and secular elliptic models for values of ȧY = 5.0×10−4 AU/year (D = 0.05
cm) and slower ones. For the circular model, captures start at ȧY = 2.5 × 10−4 AU/year
(D = 0.1 cm).

– For the non-adiabatic case, we obtained similar results to those of Gomes (1995). The
capture probability increases for increasing eccentricity until it reaches a maximum value
(always less than 1) at an eccentricity emax . From this value on, the probability decreases
for increasing eccentricity, tending asymptotically to zero. Nevertheless, we observe
several fluctuations along the probability curve due to the presence of the above mentioned
capture windows. These fluctuation tend to disappear as we approach the adiabatic case.

– The limit between the non-adiabatic and adiabatic regimes occurs for ȧY = 2.5 × 10−7

AU/year (D = 1 m) in the circular model, and for ȧY = 5.0 × 10−6 AU/year (D = 5
cm) in the elliptic and secular elliptic models.
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– For both the adiabatic and non-adiabatic regimes, our capture probabilities show a behav-
ior similar to that described by Quillen (2006), even though her model significantly differs
from ours.

We computed the total capture probability as a function of the migration rate, by integrating
over a range of eccentricities. Along the range 0 ≤ e ≤ 0.4, we obtained that, in the adiabatic
limit, the probability tends to 40 % in the circular model and to 30 % in the other models.
Restricting the integral to the range 0 ≤ e ≤ 0.04, we found that the total capture probability
is 100 % for a migration rate of ȧY = 5.0 × 10−7 AU/year (D = 50 cm) in the circular
model, and for ȧY = 5.0 × 10−6 AU/year (D = 5 cm) in the elliptic models. It is worth
noting that these rates are compatible with the rates at which the transition between the non-
adiabatic and adiabatic regimes actually occur. On the other hand, integrating over the interval
0.04 ≤ e ≤ 0.4, the capture probability tend to 30 % in the adiabatic limit, independently of
the model. All these percentages are approximate, and have been estimated from the outcome
of a series of simulations for each system. A complete error estimation is beyond the scope
of this paper, and not necessary for the current discussion.

Finally, integrating over the range of eccentricities typical of the Vesta family, 0.07 ≤
e ≤ 0.14, we found that in the circular model the capture probability tend to 50 % for
ȧY ≤ 5.0×10−6 AU/year (i.e., D > 5 cm). However, in the elliptic models the probability is
at least 87 and 96 %, respectively, for ȧY ≤ 1.0 × 10−9 AU/year (corresponding to D > 250
m). This result is in agreement with those of Roig et al. (2008), who found that the capture
probability of real asteroids under the perturbation of a full Solar System model is about
97 %. We conclude that the high capture probability of Vesta family members into the J3:1
MMR is basically governed by the eccentricity of Jupiter and its secular variations. The direct
perturbations of other planets over the asteroids can be disregarded in the description of this
phenomenon.
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