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Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse
percolation of straight rigid rods on triangular lattices. In the case of standard percolation, the lattice is initially
empty. Then, linear k-mers (particles occupying k consecutive sites along one of the lattice directions) are
randomly and sequentially deposited on the lattice. In the case of inverse percolation, the process starts with
an initial configuration where all lattice sites are occupied by single monomers (each monomer occupies one
lattice site) and, consequently, the opposite sides of the lattice are connected by nearest-neighbor occupied sites.
Then the system is diluted by randomly removing sets of k consecutive monomers (linear k-mers) from the
lattice. Two schemes are used for the depositing/removing process: an isotropic scheme, where the deposition
(removal) of the linear objects occurs with the same probability in any lattice direction, and an anisotropic
(perfectly oriented) scheme, where one lattice direction is privileged for depositing (removing) the particles.
The study is conducted by following the behavior of four critical concentrations with size k: (i) [(ii)] standard
isotropic[oriented] percolation threshold θc,k[ϑc,k], which represents the minimum concentration of occupied
sites at which an infinite cluster of occupied nearest-neighbor sites extends from one side of the system to
the other. θc,k[ϑc,k] is reached by isotropic[oriented] deposition of straight rigid k-mers on an initially empty
lattice; and (iii) [(iv)] inverse isotropic[oriented] percolation threshold θ i

c,k[ϑ i
c,k], which corresponds to the

maximum concentration of occupied sites for which connectivity disappears. θ i
c,k[ϑ i

c,k] is reached after removing
isotropic [completely aligned] straight rigid k-mers from an initially fully occupied lattice. θc,k , ϑc,k , θ i

c,k , and
ϑ i

c,k are determined for a wide range of k (2 � k � 512). The obtained results indicate that (1) θc,k[θ i
c,k] exhibits

a nonmonotonous dependence on the size k. It decreases[increases] for small particle sizes, goes through a
minimum[maximum] at around k = 11, and finally increases and asymptotically converges towards a definite
value for large segments θc,k→∞ = 0.500(2) [θ i

c,k→∞ = 0.500(1)]; (2) ϑc,k[ϑ i
c,k] depicts a monotonous behavior

in terms of k. It rapidly increases[decreases] for small particle sizes and asymptotically converges towards a
definite value for infinitely long k-mers ϑc,k→∞ = 0.5334(6) [ϑ i

c,k→∞ = 0.4666(6)]; (3) for both isotropic and
perfectly oriented models, the curves of standard and inverse percolation thresholds are symmetric to each other
with respect to the line θ (ϑ ) = 0.5. Thus a complementary property is found θc,k + θ i

c,k = 1 (and ϑc,k + ϑ i
c,k = 1)

which has not been observed in other regular lattices. This condition is analytically validated by using exact
enumeration of configurations for small systems, and (4) in all cases, the critical concentration curves divide the
θ space in a percolating region and a nonpercolating region. These phases extend to infinity in the space of the
parameter k so that the model presents percolation transition for the whole range of k.

DOI: 10.1103/PhysRevE.104.014101

I. INTRODUCTION

Since its introduction in the 1950s by Hammersley and
Broadbent [1,2], the percolation problem has been a focal
point of statistical mechanics, and it has been applied to a
wide range of phenomena in physics, chemistry, biology, and
materials science, where connectivity and clustering play an
important role [3–16]. Percolation theory has also provided
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insight into the behavior of more complicated models exhibit-
ing phase transitions and critical phenomena [3,4,17–19].

Usually, the percolation model in a lattice is classified into
two categories, namely, the site model and bond model [3]. In
the site [bond] model, sites [bonds] of a lattice are randomly
occupied with a probability θ or empty (unoccupied) with a
probability 1 − θ . Nearest-neighboring occupied sites (bonds)
form structures called clusters. In the limit of an infinite lat-
tice, there is a well-defined value of θ , known as percolation
threshold θc, at which an infinite cluster extends from one side
of the system to the other. The percolation transition is then a
geometrical phase transition where the critical concentration
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separates a phase of finite clusters from a phase where a
macroscopic, spanning, or infinite cluster is present. The exact
determination of θc is an unsolved problem except for a few
cases.

An interesting phenomenon occurs when the lattice is oc-
cupied by extended objects (objects occupying more than one
lattice site). Under these conditions, the final state generated
by irreversible adsorption is a disordered state (known as
jamming state) in which no more objects can be deposited
due to the absence of free space of appropriate size and shape
[20,21]. The corresponding limiting or jamming coverage, θ j ,
is less than that corresponding to close packing (θ j < 1). Thus
the jamming coverage has an important role in the determina-
tion of the percolation threshold, and the interplay between
jamming and percolation is relevant for the description of
various deposition processes.

One of the simplest processes that produces a jamming
state is the random sequential adsorption (RSA) of straight
rigid k-mers (objects occupying k consecutive sites along one
of the lattice directions) on infinite two-dimensional (2D) lat-
tices. In RSA processes, particles are randomly, sequentially,
and irreversibly deposited onto a substrate without overlap-
ping each other [20–23].

In the case of straight rigid k-mers on triangular lattices,
which is the focus of this article, Budinski-Petković and
Kozmidis-Luburić [24] examined the kinetics of the RSA
for values of k between 1 and 11 and lattice size L = 128.
The coverage of the surface and the jamming limits was
calculated by Monte Carlo simulations. The authors found
that the jamming coverage decreases monotonically as the
k-mer size increases. Later, Budinski-Petković et al. [25] in-
vestigated percolation and jamming thresholds for RSA of
extended objects on triangular lattices. Numerical simulations
were performed for lattices with linear size up to L = 1000,
and objects of different sizes and shapes (linear segments;
angled objects; triangles and hexagons). It was found that
for elongated shapes the percolation threshold monotonically
decreases, while for more compact shapes it monotonically
increases with the object size. In the case of linear segments
with values of k up to 20, the obtained results revealed that (1)
the jamming coverage monotonically decreases with k, and
tends to 0.56(1) as the length of the rods increases; (2) the
percolation threshold decreases for shorter k-mers, reaches a
value θc ≈ 0.40 for k = 12, and, it seems that θc does not sig-
nificantly depend on k for larger k-mers; and (3) consequently,
the ratio θc/θ j increases with k. The effects of anisotropy [26]
and the presence of defects [27] on the jamming behavior were
also studied by the group of Budinski-Petković et al.

In the line of Refs. [24–27], three previous articles from
our group [28–30] were devoted to the study of jamming
and percolation of straight rigid k-mers on triangular lat-
tices. These papers will be referred to as Papers I, II, and
III, respectively. In Paper I, the results in Refs. [24,25]
were extended to larger lattices and longer objects: L/k =
100, 150, 200, 300 and 2 � k � 128 for jamming calcula-
tions, and L/k = 32, 40, 50, 75, 100 and 2 � k � 256 for
percolation analysis. The obtained results showed that the
jamming coverage decreases monotonically approaching
the asymptotic value of 0.5976(5) for large values of k. On the
other hand, a nonmonotonic k size dependence was found for

the percolation threshold, in accordance with previous data for
square lattices [31–34]. A similar behavior has also been re-
ported for the thermalized case in isotropic dispersions, where
a maximum in the percolation threshold as a function of aspect
ratio has been found [35]. In addition, the complete analysis
of critical exponents performed in Paper I revealed that the
percolation phase transition involved in the system has the
same universality class of the ordinary random percolation,
regardless of the value of k considered.

In Paper II, the problem of inverse percolation by re-
moving straight rigid k-mers from 2D triangular lattices was
investigated by using numerical simulations and finite-size
scaling analysis. The study of inverse percolation problem
starts with an initial configuration, where all lattice sites
are occupied by single monomers (each monomer occupies
one lattice site) and, consequently, the opposite sides of the
lattice are connected by nearest-neighbor occupied sites. Then
the system is diluted by randomly removing straight rigid rods
k-mers from the surface. The main objective is to obtain the
maximum concentration of occupied sites (minimum concen-
tration of empty sites) at which the connectivity disappears.
This particular value of the concentration is named the in-
verse percolation threshold θ i

c and determines a well-defined
geometrical (second-order) phase transition in the system.

The results in Paper II, obtained for k ranging from 2 to
256, revealed that (i) the inverse percolation threshold exhibits
a nonmonotonic behavior as a function of the k-mer size: it
grows from k = 1 to k = 10, goes through a maximum at
k = 11, and finally decreases again and asymptotically con-
verges towards a definite value for large values of k; (ii) the
percolating and nonpercolating phases extend to infinity in
the space of the parameter k and, consequently, the model
presents percolation transition in all the ranges of k; and
(iii) the phase transition occurring in the system belongs to
the standard random percolation universality class regardless
of the value of k considered.

More recently, in Paper III numerical simulations were
used to study the percolation behavior of aligned rigid rods
of length k on 2D triangular lattices. The linear k-mers were
irreversibly deposited along one of the directions of the lattice.
The results, obtained for k ranging from 2 to 80, showed that
the percolation threshold exhibits a increasing function when
it is plotted as a function of the k-mer size. This behavior is
completely different from that observed for square lattices,
where the percolation threshold decreases with k [36]. In addi-
tion, an exhaustive study of critical exponents and universality
was carried out, showing that the phase transition occurring
in the system belongs to the standard random percolation
universality class.

In this work the problem of standard and inverse perco-
lation of straight rigid k-mers isotropically deposited on 2D
triangular lattices is revisited. The most important simulation
results obtained in previous papers are used as a starting
point. Then, the calculations are extended to longer k-mers
(up to k = 512) and values of k in the range [10,14], where
the percolation threshold curves (standard and inverse) show
a change in slope. The new calculations represent not only
quantitative expansion but also a qualitative advance in the
description of the percolation problem of isotropic straight
rigid rods on triangular lattices. The results and conclusions
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obtained here are backed by several features. First, the po-
sition of the minimum (maximum) observed in the curve of
the percolation threshold (inverse percolation threshold) as a
function of k is precisely determined: kmin(max) = 11. The ac-
curate determination of this minimum had not been reported in
the previous paper, Paper I. Second, the functionalities of the
standard and inverse percolation thresholds for large values of
k are established here. The obtained limit value (as k → ∞) of
the inverse percolation threshold improves previous estimate
in Paper II. In the case of standard percolation, the results
of the present study change drastically our understanding of
the problem. In fact, the predictions in Paper I indicated that
the percolation threshold exhibits a monotonous increasing
tendency for large k’s and, consequently, that there exists a
limit value k ≈ 104 from which all jammed configurations are
nonpercolating states (the percolation phase transition disap-
pears). Based on more extensive numerical simulations, the
new data show that the standard percolation threshold asymp-
totically converges towards a definite value for large segments,
revealing that, in both standard and inverse problems, the
percolating and nonpercolating phases extend to infinity in the
space of the parameter k. This finding is a central result of our
work. Third, the present study shows that the sum of standard
and inverse percolation thresholds is equal to 1 for all value
of k. This complementarity property has not been observed
so far in other regular lattices. Fourth, simulation results are
validated by exact enumeration of states for the case of dimers
deposited on small cells.

The problem of aligned straight rigid k-mers deposited on
(removed from) triangular lattices is also studied. The main
results are listed below. First, the extension of the simulations
to larger values of k (from k = 80 in Paper III to k = 512
in the present work) substantially improves the determination
of the percolation threshold in the limit of k → ∞. Thus
the value obtained here [0.5334(6)] corrects the previously
reported value in Paper III [0.582(9)]. Second, in the case
of inverse percolation, the results of percolation threshold
versus k are presented. Third, as in the isotropic case, the
sum of standard and inverse percolation thresholds equals 1,
confirming the generality of this behavior in triangular lat-
tices. Fourth, the observed complementarity between standard
and inverse percolation thresholds contributes to justify the
striking increasing trend of the percolation threshold with
k found in Paper III.

The rest of the paper is organized as follows. In Sec. II,
standard and inverse percolation of straight rigid k-mers on
2D triangular lattices is revisited. Calculations are extended
to longer objects. In addition, numerical results are supple-
mented by exact results for small lattices coming from a
complete enumeration of configurations. The problem of per-
colation of aligned rigid rods is addressed in Sec. III. Finally,
the conclusions are drawn in Sec. IV.

II. PERCOLATION OF STRAIGHT RIGID RODS
ISOTROPICALLY DEPOSITED ON TRIANGULAR

LATTICES

In this section we will revisit the percolation problem of
straight rigid rods isotropically deposited on triangular lat-
tices, this time focusing on the complementarity property of

FIG. 1. (a) Schematic representation of a typical configuration
obtained by isotropically depositing 3-mers (k = 3) on a L × L
lattice with L = 12. Solid spheres joined by lines represent the
deposited k-mers, and gray circles correspond to empty sites.
(b) Schematic representation of a typical configuration obtained by
removing 3-mers from an initially fully occupied L × L lattice with
L = 12. In the full occupation state, all lattice sites are occupied by
single monomers (each monomer occupies one lattice site). Solid
spheres represent occupied sites (monomers), and gray circles in-
dicate the empty sites resulting from the removal of the k-mers.
Periodic boundary conditions are considered in parts (a) and (b).

the standard and inverse percolation thresholds: θc + θ i
c = 1.

For this purpose, new numerical simulations are presented in
Sec. II A, and an analytical approach is introduced in Sec. II B.

A. Simulation results: Dependence of the standard and inverse
percolation thresholds on the k-mer size

The percolation problem is defined on a 2D triangular
lattice. In the computer simulations, a rhombus-shaped system
of M = L × L sites (L rows and L columns) is used (see
Fig. 1). Each site can be empty (hole) or occupied. Occupied
and empty sites are distributed with a concentration θ and
θ∗(= 1 − θ ), respectively. Nearest-neighbor occupied sites
form structures called clusters, and the distribution of these
sites determines the probability of the existence of a large
cluster (also called an “infinite” cluster, inspired by the ther-
modynamic limit) that connects from one side of the lattice to
the other.

Two procedures have been considered. In the first one,
straight rigid k-mers (with k � 2) are deposited randomly,
sequentially, and irreversibly on an initially empty lattice.
This scheme, known as random sequential adsorption [21],
is as follows: (i) one of the three (x1, x2, x3) possible lattice
directions and a starting site are randomly chosen; (ii) if,
beginning at the chosen site, there are k consecutive empty
sites along the direction selected in (i), then a k-mer is de-
posited on those sites (the k sites are marked as occupied);
otherwise, the attempt is rejected. When N rods are deposited,
the concentration of occupied and empty sites is θ = kN/M
and θ∗ = (M − kN )/M, respectively.

In the second procedure, the process starts with a fully
occupied lattice (θ = 1 and θ∗ = 0). In the full occupation
state, all lattice sites are occupied by single monomers (each
monomer occupies one lattice site). Then the system is diluted
by randomly removing groups of particles from the lattice.
The mechanism of dilution is as follows: (i) a linear k-uple
of k consecutive sites is chosen at random; (ii) if the k sites
selected in step (i) are occupied by k particles, then a k-mer is
removed from those sites. Otherwise, the attempt is rejected.
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When N rods are removed, the concentration of particles
(holes) is θ = (M − kN )/M (θ∗ = kN/M).

In both the first process (deposition) and second process
(removal), periodic boundary conditions are considered. By
using the first procedure (standard RSA), the lattice coverage
is increased until finding a concentration at which a cluster of
nearest-neighbor sites extends from one side to the opposite
one of the system. This constitutes the so-called standard per-
colation problem, and the critical concentration rate is named
standard percolation threshold.

On the other hand, when the k-mers are removed from an
initially fully occupied lattice (second procedure), the fraction
of occupied sites decreases until reaching a concentration
at which the connectivity disappears. The model of such a
process can be thought of as an inverse percolation problem.
The corresponding critical concentration is then named the
inverse percolation threshold. The term inverse is simply used
to indicate that the size of the conductive phase diminishes
during the removing process and the percolation transition
occurs between a percolating and a nonpercolating state.

In the case of the jamming problem, it can be considered
a mapping L → L∗ from the original lattice L to the com-
plementary lattice L∗ where each empty (occupied) site of
L transforms into an occupied (empty) one of L∗. Under these
conditions, the filling process in the complementary lattice
(dilution process in the original lattice) is equivalent to a RSA
process of straight rigid k-mers. Under these conditions, stan-
dard (θ j,k) and inverse (θ i

j,k) jamming concentrations satisfy
the simple expression θ i

j,k = 1 − θ j,k (the supraindex i refers
to the inverse problem).

The situation is more complex for the percolation prob-
lem. As discussed above, the cluster analysis for standard
percolation is carried out in a phase of deposited rods. On
the other hand, for inverse percolation, the cluster analysis
is carried out in a phase of monomers, which remain in the
lattice after the removal of a given number of straight rigid
k-mers. For k = 1, and as a consequence of the particle-hole
symmetry characterizing the usual single-particle statistics
(depositing elements that occupy one single node and re-
moving single elements), standard and inverse percolation are
simply related: θ i

c,k=1 = 1 − θc,k=1. However, if some sort of
correlation between the occupation probabilities of adjacent
sites is introduced, no equivalence exists between particles
and vacancies, and the mapping between standard and inverse
percolation is nontrivial. To illustrate these concepts, two ex-
amples will be presented in the next paragraphs.

First, let us consider the standard percolation problem of
straight rigid k-mers on square lattices. As it was shown
in Ref. [34], the percolation threshold decreases for small
particle sizes, goes through a minimum at around k = 13,
and finally tends to a constant value for large k’s, θc,k→∞ ≈
0.615(1). This behavior contrasts with the complementary
case of removing straight rigid rods from square lattices [37],
where the inverse percolation threshold rapidly decreases for
small particle sizes (1 � k � 3). Then, it grows for k = 4,
5, and 6, goes through a maximum at k = 7, and finally de-
creases again and asymptotically converges towards a definite
value for large values of k [θ i

c,k→∞ ≈ 0.454(4)].
Second, let us review the classical problem of percolation

of k × k square tiles deposited on square lattices. The re-

sults in Refs. [38–40] showed that the percolation threshold
is an increasing function of k in the range 1 � k � 3. For
k � 4, all jammed configurations are nonpercolating states
and, consequently, the percolation phase transition disappears.
The inverse problem was recently investigated [41], showing
that the inverse percolation threshold is a decreasing func-
tion of k in the range 1 � k � 4 and the percolation phase
transition disappears for k � 5. The marked differences be-
tween standard and inverse problems were discussed in detail
in Ref. [41].

Clearly, there is no simple relationship linking standard and
inverse percolation thresholds in the previous examples. These
findings (and others not reviewed here) indicate that, even
though the jamming properties of the standard and inverse
models are trivially symmetric, the inverse percolation prob-
lem cannot be derived straightforwardly from the standard
percolation problem and it deserves a detailed treatment as
presented here.

Typical configurations obtained from deposition and re-
moval procedures are shown in Figs. 1(a) and 1(b). A system
with L = 12 and k = 3 is depicted in the figure. In part (a),
solid spheres joined by lines represent the deposited k-mers
and gray circles correspond to empty sites. In part (b), solid
spheres represent occupied sites and gray circles indicate the
empty sites resulting from the removal of the k-mers.

Standard and inverse percolation thresholds can be cal-
culated by using an extrapolation method based on scaling
laws [3]:

θc,k (L) = θc,k + AkL−1/ν (1)

and

θ i
c,k (L) = θ i

c,k + Ai
kL−1/ν, (2)

where θc,k[θ i
c,k] is the standard[inverse] percolation threshold

in the thermodynamic limit (L → ∞) for an object of size
k, Ak and Ai

k are nonuniversal constants, and ν is the critical
exponent of the correlation length, which in two dimensions
is ν = 4/3 [3]. The quantities θc,k (L)[θ i

c,k (L)] represent the
percolation thresholds for finite lattices.

A standard method to obtain θc,k (L)[θ i
c,k (L)] consists of

the following steps: (a) the construction of a triangular lattice
of linear size L and coverage θ , and (b) the cluster analysis
using the Hoshen and Kopelman algorithm [42]. A total of r
independent runs of such a two-step procedure are carried out
for each lattice size L and size k. From these runs, a number
r∗ of them present a percolating cluster. Then a percolation
probability can be defined as RL,k (θ ) = r∗/r. In the present
study, open boundary conditions are used to determine the
percolation quantities.

In the case of a standard[inverse] percolation problem,
RL,k (θ ) is an increasing[decreasing] sigmoid function of the
coverage, and θc,k (L)[θ i

c,k (L)] can be obtained from the posi-
tion of the inflection point of the function RL,k (θ ). Interested
readers are referred to Papers I–III for a more complete
description of the technique to determine the percolation
threshold from the percolation probability functions.

By following the procedure in Eqs. (1) and (2), standard
and inverse percolation thresholds were calculated for differ-
ent values of k. Since one of the main objectives of this paper
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FIG. 2. (a) Standard (solid circles and solid diamonds) and
inverse (solid squares and solid stars) percolation thresholds for
straight rigid k-mers with k ranging between 1 and 512 on triangular
lattices (k axis is presented in log scale). The figure also includes
the jamming data corresponding to standard (open circles) and in-
verse (open squares) problems. Red (dark gray in grayscale) symbols
and black symbols represent standard and inverse data. The curves
were obtained by following the isotropic deposition-removal scheme.
Solid diamonds and solid stars denote results from Papers I and II,
respectively. Solid circles and solid squares indicate values obtained
in the present work. (b) Standard and inverse percolation curves with
k between 1 and 24 and with the vertical axis scaled from 0.4 to
0.6. (c) Standard and inverse percolation thresholds for values of k
varying between 16 and 512. The dashed lines corresponds to the
fitting curve for each system, from which we get θc,k→∞ = 0.500(2)
and θ i

c,k→∞ = 0.500(1).

is to explore the relationship between the standard and inverse
percolation processes in a triangular geometry, we calculated
the corresponding percolation thresholds for a broad range of
k. The new values, that reach k = 512, also give the possibility
to better establish the minimum[maximum] of the θc,k[θ i

c,k]
dependence with k and to calculate the limit for k = ∞.

In the case of k � 24, the values of the standard and in-
verse percolation thresholds were obtained for lattice sizes
L/k = 32, 40, 50, 75, and 100. In the case of k = 340 and
512, two relatively small values of L/k were used to calculate
θc,k and θ i

c,k (L/k = 40 and L/k = 50), with an effort reaching
almost the limits of our computational capabilities. In all
cases, r = 105 computational runs were performed for each
concentration θ , on each lattice size L, and for each k-mer
size k. The results are collected in Fig. 2: solid red (dark
gray in grayscale) circles and solid black squares represent
standard and inverse percolation thresholds for straight rigid
k-mers on triangular lattices, respectively.

For comparison, Fig. 2 includes the values of θc,k and
θ i

c,k previously reported in Papers I and II, respectively: solid
red (dark gray in grayscale) diamonds indicate standard per-

FIG. 3. The figure shows the sum of the standard and inverse
percolation thresholds for the complete range of considered k sizes
(note the logarithmic scale on the k axis). The values correspond to
the isotropic deposition or removal problem. As it can be observed,
θc,k + θ i

c,k = 1.

colation thresholds and solid black stars represent inverse
percolation thresholds. The figure also shows the jamming
curves corresponding to standard (θ j,k vs k, open circles) and
inverse (θ i

j,k vs k, open squares) problems [28,29].
For clarity, Fig. 2 is divided into three data groups: (a)

jamming and percolation thresholds are shown in the range
1 � k � 512 (k axis is presented in log scale). In addition
to the standard and inverse percolating regions, the jamming
curves in Fig. 2(a) allow one to visualize the limits of the
forbidden regions of θ space; (b) percolation curves are now
plotted with k between 1 and 24 and with the vertical axis
scaled from 0.4 to 0.6. This vertical scale allows for a better
visualization of the minimum (maximum) in the standard (in-
verse) percolation curve; and (c) percolation curves are shown
with k ranging from k = 16 to k = 512.

As it can be observed from Fig. 2(a), the consistency be-
tween the results obtained in the present paper (solid circles
and solid squares) and those previously reported in Papers I
and II (solid diamonds and solid stars) is very strong. These
new results complement the previous data and allow a deeper
characterization of the percolation transition occurring in tri-
angular lattices. Thus several important conclusions can be
drawn from the data in Fig. 2.

First, a complementarity property between the percola-
tion thresholds for standard and inverse percolation is found:
θc,k + θ i

c,k = 1. This property is exact for the case k = 1 [3,43]
and, as shown in Fig. 3, it holds for the entire range of k, even
in the limit of large values of k (note the logarithmic scale on
the k axis). In the figure, both simulation percolation thresh-
olds were summed for each k. In every case, θc,k + θ i

c,k = 1
within the numerical error.

The complementarity property is a nontrivial property and
seems to be strongly dependent on the topology of the lattice.
As mentioned above, it is not observed for other systems, such
as square [34,36–40] or honeycomb lattices [44,45]. What
is more, this property was not found in square bond lattices
either [46], even when triangular site lattices and square bond
lattices share the same coordination number.

Secondly, the standard percolation threshold exhibits a
nonmonotonous dependence on the size k [see Fig. 2(b)].
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θc,k decreases for small particles sizes, goes through a min-
imum at around k = 11 [being θc,k=11 = 0.4091(3)], and
finally increases and asymptotically converges towards a def-
inite value for large segments. The precise determination
of this minimum is reported here. In the case of inverse
percolation, a maximum at k = 11 had been found in Pa-
per II. This finding confirms the complementarity property
discussed above.

Finally, the behavior of the percolation thresholds for
large values of k [see Fig. 2(c)] indicates that both θc,k

and θ i
c,k tend to 0.5 for infinitely long k-mers. In fact, the

simulation data can be very well fitted with the functions
a1 exp(−k/b1) + a2 exp(−k/b2) + a3 and ai

1 exp(−k/bi
1) +

ai
2 exp(−k/bi

2) + ai
3 for standard and inverse percolation, re-

spectively. In this case, the adjustment was performed for k �
14. The obtained results show that a3 = θc,k→∞ = 0.500(2)
and ai

3 = θ i
c,k→∞ = 0.500(1). In addition, a1 = −0.040(6),

a2 = −0.073(7), b1 = 30(5), and b2 = 120(10) for the stan-
dard case, and ai

1 = 0.043(9), ai
2 = 0.070(9), bi

1 = 34(9), and
bi

2 = 127(10) for the inverse percolation problem. As ex-
pected, the fitting curves fulfill the complementary condition
θc,k + θ i

c,k = 1.
The limit value obtained here θ i

c,k→∞ = 0.500(1) improves
previous estimate in Paper II, where the value obtained of
θ i

c,k→∞ was 0.506(2). Due to the lattice sizes used in this
contribution, our present determination of θ i

c,k→∞ is expected
to be more accurate than that previously reported.

As in the case of square lattices [33,34], the nonmonotonic
behavior observed in the percolation curves of Fig. 2 can be
interpreted as a consequence of the local alignment effects
occurring for larger k (long needles) and their influence on
the structure of the critical clusters. For long k-mers, the for-
mation of k × k blocks of parallel k-mers reverses the initial
decrease in θc,k , leading to the appearance of a minimum in
the curve of percolation threshold as a function of the size k.
Even though the problem of percolation of ideal k × k blocks
on triangular lattices has not yet been studied, it is expected
that the percolation concentration increases with k [37–39].

To gain some understanding on the two regimes observed
in θc,k and θ i

c,k (below and above k = 11), the connectivity
properties of the percolating phases were analyzed for stan-
dard and inverse percolation. Namely, for each percolation
model (standard and inverse) and each value of k, the average
number of occupied nearest-neighbor sites of each occupied
site (normalized to the lattice size M) was measured as a
function of the lattice coverage θ . We denote these functions
as ξ s

k (θ ) and ξ i
k (θ ) for standard and inverse percolation, re-

spectively.
As an example, let us consider the case of monomers dis-

tributed at random on the lattice. The function ξ s
k=1(θ ) can

be written as ξ s
k=1(θ ) = 6θ , where 6 is the triangular lattice

connectivity and θ is the occupation probability of each site.
For k > 1, the statistical problem becomes more complex and
it is difficult to obtain the functions ξ

s(i)
k (θ ) analytically.

We focus now on the behavior of the connectivity of
the deposited phase (clusters of occupied sites) at per-
colation threshold ξ s

k (θc,k ) (standard percolation problem)
and ξ i

k (θ i
c,k ) (inverse percolation problem). In the case k =

1, ξ s
k=1(θc,k=1 = 0.5) = 3.0 and ξ i

k=1(θ i
c,k=1 = 0.5) = 3.0.

FIG. 4. Connectivity of the deposited phase at percolation
threshold as a function of k. The curves were obtained by following
the isotropic deposition and removal scheme. Solid circles represent
results obtained for standard percolation [ξ s

k (θc,k )]. Solid squares
correspond to inverse percolation [ξ i

k (θ i
c,k )]. The dashed lines are

simply a guide for the eye. In all cases, L/k = 340.

ξ s
k (θc,k ) (solid circles) and ξ i

k (θ i
c,k ) (solid squares) as functions

of k are shown in Fig. 4 for lattices with L/k = 340 and
different values of k ranging from k = 2 to k = 512.

Let us start analyzing the behavior of ξ s
k (θc,k ) versus k

(solid circles in Fig. 4). The two regimes mentioned above can
be clearly visualized in the curve of connectivity, which shows
an inflection point at around k = 11. The steepest increase
observed in ξ s

k around k = 11 is consistent with the formation
of blocks of parallel k-mers, reinforcing the hypothesis that
(i) the minimum in the curve of θc,k versus k is a consequence
of local alignment effects, and (ii) these blocks dominate
the structure of the adsorbed phase for long k-mers. In
the problem of inverse percolation (solid squares in Fig. 4), the
transition between the two percolation regimes is also marked
by the change in the slope of ξ i

k around k = 11.
To conclude with the analysis of the connectivity, the re-

sults shown in Fig. 4 indicate that, in terms of connectivity,
the structure of the percolating phase at the critical condition
tends to be similar for standard and inverse percolation as
k → ∞. Note that ξ s

k→∞ ≈ ξ i
k→∞ ≈ 4.86. It is interesting

to compare this result with that obtained for monomers. In
both cases (k = 1 and k → ∞), the percolation thresholds
are similar: θc,k=1[θ i

c,k=1] = 0.5 and θc,k→∞[θ i
c,k→∞] ≈ 0.5.

However, the corresponding connectivities are very different:
ξ s

k=1 = ξ i
k=1 = 3.0 and ξ s

k→∞ = ξ i
k→∞ ≈ 4.86. These values

indicate that the percolating phase for k → ∞ is more com-
pact than that corresponding to k = 1, which is expected
given the formation of domains of parallel k-mers in the
case of k → ∞.

In the case of standard percolation, the present results
reveal a similar behavior to that reported for square lattices,
where the percolation threshold tends asymptotically to a def-
inite value for infinitely long k-mers [34]. This contrasts with
the predictions in Paper I, which indicated (1) an increasing
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trend for θc,k at large values of k, and (2) the existence of a
limit value k � 104 from which all jammed configurations are
nonpercolating states and, consequently, percolation would no
longer occur.

The new findings in this study (especially the complemen-
tarity property discussed above) provide a more complete and
precise characterization of the standard percolation problem
of straight rigid rods on triangular lattices. Namely, the θc,k

curve divides the space of allowed values of θ in a percolating
region and a nonpercolating region. These phases extend to
infinity in the space of the parameter k so that the model
presents percolation transition in all the range of k. The ex-
istence of the percolation transition for the whole range of
k is consistent with the behavior observed in square lattices,
in which jammed configurations reached by the deposition of
needles always percolate [47].

B. Exact counting of configurations on finite cells

An exact counting of configurations on finite cells was
performed in order to back up the simulation predictions. This
type of approach has been successfully applied to a variety of
percolation problems [48–50]. Specifically, we will explore
the relationship between standard and inverse thresholds from
an analytical approach. The system chosen for the study was
a RSA of dimers (objects occupying two consecutive lattice
sites) on triangular lattices. The dimer is the simplest case of
a straight rigid k-mer and contains all the properties of the
multisite-occupancy deposition.

We assume that the deposition or removal of dimers takes
place on a small lattice of m = l × l sites. Once deposited
the dimer remains “frozen” on the substrate without dissoci-
ations or migrations. As n dimers are deposited, the coverage
is θ = 2n/m. On the other hand, in the inverse case, as n
dimers are removed from an initially fully occupied lattice,
the coverage is θ = 1 − 2n/m. Thus, for any given θ , different
combinations of the n dimers are possible, each one of which
called a configuration.

It is useful now to define the probability rD[I]
l (n) that a

lattice composed of l × l sites percolates at a given value
of n. The index D[I] in the definition of rl indicates that n
is the number of deposited[removed] dimers. Then, for each
value of n, rD[I]

l can be obtained as the ratio between the
configurations that present a percolation cluster CD[I]

l , and the
total number of ways of distributing (depositing or removing)
n dimers on the l×l lattice Tl : rD[I]

l = CD[I]
l /Tl .

Tl , CD
l , and CI

l for different values of n are compiled in
Tables I (case l = 4), II (case l = 5), and III (case l = 6).
A C++ code was developed to exactly calculate the values
in Tables I–III. The computer algorithm consists of a finite
number of nested cycles through which all the possible ways
of arranging n dimers on a l × l finite cell are visited and,
consequently, the quantities of interest are obtained. A sim-
plified description of the algorithm for the deposition case is
presented in the next paragraph:

(1) Define and initialize the variables of the system: num-
ber of dimers n and cell size l .

(2) Generate m cycles to go through all possible ways of
arranging n dimers on a l × l cell; open boundary conditions

TABLE I. Values of the quantities Tl , CD
l , and CI

l for 4 × 4 lattices.

2n Tl CD
l CI

l

0 1 0 1
2 33 0 33
4 412 20 392
6 2485 585 1900
8 7664 4416 3248
10 11747 10321 1426
12 7973 7901 72
14 1802 1802 0
16 56 56 0

are used to deposit the n dimers. Two typical configurations
for n = 2 and l = 4 are shown in Fig. 5.

(3) Once a new configuration is obtained, the Hoshen and
Kopelman algorithm (with open boundary conditions) [42] is
used to determine the existence or not of a percolating cluster.
The percolating cluster is defined as a sequence of nearest-
neighbor occupied sites, starting from an occupied site in the
first column (i = 1) and ending in an occupied site in the last
column (i = 4). Examples of nonpercolating and percolating
configurations are presented in Fig. 5.

(4) At the end of the cycles, the total number of different
configurations Tl and the number of percolating configura-
tions CD

l are recorded in a file.
A similar protocol is performed for the inverse problem.

In this case, n dimers are removed from an initially fully
occupied l × l cell, and the cluster analysis is carried out on
the remaining l2 − 2n occupied sites. In the full occupation
state, all cell sites are occupied by single monomers (each
monomer occupies one cell site).

By observing Tables I–III, it is clear that Tl (n) = CD
l (n) +

CI
l (n) and, consequently, rD

l (n) + rI
l (n) = 1. This finding is

further proof that θc + θ i
c = 1, as found in the previous

section. This property is observed only for triangular lat-
tices. In the case of square and honeycomb lattices, Tl (n) �=
CD

l (n) + CI
l (n) and θc + θ i

c �= 1 (data not shown here for
brevity).

TABLE II. Values of the quantities Tl , CD
l , and CI

l for 5 × 5 lattices.

2n Tl CD
l CI

l

0 1 0 1
2 56 0 56
4 1325 0 1325
6 17384 386 16998
8 139581 14180 125401
10 714510 192618 521892
12 2357344 1211811 1145533
14 4957616 3755572 1202044
16 6429895 5898574 531321
18 4834116 4759098 75018
20 1889380 1887961 1419
22 313128 313128 0
24 13872 13872 0
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TABLE III. Values of the quantities Tl , CD
l , and CI

l for 6 × 6
lattices.

2n Tl CD
l CI

l

0 1 0 1
2 85 0 85
4 3226 0 3226
6 72367 112 72255
8 1070675 11697 1058978
10 11040975 445881 10595094
12 81784784 8733484 73051300
14 442056227 99382990 342673237
16 1753845586 691161330 1062684256
18 5097923676 3000151582 2097772094
20 10757573387 8227928526 2529644861
22 16203594367 14427516941 1776077426
24 16968630295 16294784319 673845976
26 11881028004 11760742642 120285362
28 5248329234 5240762986 7566248
30 1337245213 1337175475 69738
32 169111110 169111110 0
34 7902376 7902376 0
36 56568 56568 0

III. PERCOLATION OF PERFECTLY ORIENTED
STRAIGHT RIGID RODS ON TRIANGULAR LATTICES

To have a more complete insight of the percolation pro-
cesses in the triangular lattice, in this section, the oriented
percolation is studied with a focus in the complementary
property observed in the isotropically case. For standard per-
colation, we reproduced and extended the results in Paper III.
The results for inverse oriented percolation are reported here.

Model and basic definitions

To study the effect of k-mer alignment on percolation,
straight rigid rods are deposited randomly, sequentially, and
irreversibly on a M = L × L sites rhombus-shaped triangular
lattice. The deposition process is performed as in Sec. II A but,
now, the following restriction is considered: the k-mers are
deposited along only one of the directions of the lattice. This
leads to the formation of an oriented structure as depicted in
Fig. 6(a). Periodic boundary conditions are considered in the
deposition procedure.

FIG. 5. Typical configurations obtained for n = 2 and l = 4. De-
posited dimers and empty sites are represented by spheres joined
by thick lines and open circles, respectively. i = 1(i = 4) denotes
the first(last) column in the cell. (a) Nonpercolating configuration.
(b) Percolating configuration. The sites belonging to the percolating
cluster are highlighted by large open circles.

FIG. 6. (a) Schematic representation of a typical configuration
obtained by perfectly oriented deposition of 3-mers (k = 3) on a
L × L lattice with L = 12. Solid spheres joined by lines represent
the deposited k-mers and gray circles correspond to empty sites.
(b) Schematic representation of a typical configuration obtained by
removing aligned 3-mers from an initially fully occupied L × L
lattice with L = 12. In the full occupation state, all lattice sites
are occupied by single monomers (each monomer occupies one
lattice site). Solid spheres represent occupied sites (monomers),
and gray circles indicate the empty sites resulting from the re-
moval of the k-mers. Periodic boundary conditions are considered in
parts (a) and (b).

In order to distinguish between an isotropic and oriented
problem, for the rest of the paper we will use the variable
ϑ to denote the concentration of occupied sites for the case
of perfectly oriented deposition. It is important to note that
in the present paper we treat with completely aligned states
generated by irreversible adsorption of straight rigid rods.
This phenomenon should not be confused with the classical
nematic condition occurring in thermodynamic equilibrium.
Interesting examples of percolation in equilibrium nematic
states of hard rods can be found in Refs. [51,52].

The inverse percolation problem is also considered for
the perfectly oriented case. We start from an initially fully
occupied lattice, where all lattice sites are occupied by single
monomers (each monomer occupies one lattice site). The full
occupation state is diluted as follows: (1) one lattice direction
xi ≡ {x1, x2, x3} is chosen for the whole removal process; (2)
a set of k consecutive nearest-neighbor sites (aligned along
the selected xi direction) is randomly chosen; and (3) if the k
sites selected in step (2) are occupied, then a k-mer is removed
from those sites. Otherwise, the attempt is rejected. Steps (2)
and (3) are repeated until the desired number of k-mers N is
removed from the lattice and the concentration of occupied
particles is ϑ i = (M − kN )/M. The removal process leads
to configurations as depicted in Fig. 6(b). Periodic boundary
conditions are considered.

The standard and inverse percolation thresholds are ob-
tained thorough the extrapolation given by Eqs. (1) and (2).
In this case, the equations can be written as

ϑc,k (L) = ϑc,k + ÃkL−1/ν (3)

and

ϑ i
c,k (L) = ϑ i

c,k + Ãi
kL−1/ν, (4)

where Ãk and Ãi
k are the scaling constants for the standard

and inverse perfectly oriented problem, respectively. Once the
positions ϑc,k (L) and ϑ i

c,k (L) are determined from the percola-
tion probability functions RL,k (ϑ ), the percolation thresholds
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FIG. 7. (a) Standard (solid circles and solid diamonds) and in-
verse (solid squares) percolation thresholds for straight rigid k-mers,
with k ranging between 1 and 512 on triangular lattices (k axis is
presented in log scale). The figure also includes the jamming data
corresponding to standard (open circles) and inverse (open squares)
problems. Red (dark gray in grayscale) symbols and black symbols
represent standard and inverse data. The curves were obtained by
following the perfectly oriented deposition and removal scheme.
Solid diamonds denote results from Paper III, respectively. Solid
circles and solid squares indicate values obtained in the present
work. (b) Standard and inverse percolation thresholds for values of
k varying between 1 and 64 and with the vertical axis scaled from
0.4 to 0.6. (c) Standard and inverse percolation thresholds for values
of k varying between 64 and 512. The dashed lines correspond to
the fitting curve for each system, from which we get that θc,k→∞ =
0.5334(6) and θ i

c,k→∞ = 0.4666(6).

ϑc,k and ϑ i
c,k can be obtained using the extrapolation scheme

in Eqs. (3) and (4).
The obtained curves for ϑc,k and ϑ i

c,k as functions of size
k are shown in Fig. 7. As in the case of Fig. 2, the data
are divided into three groups: (a) Percolation thresholds are
shown in the range 1 � k � 512. The k axis is presented in log
scale, and the vertical axis ranges from 0 to 1. (b) Percolation
curves are now plotted with k between 1 and 64 and with
the vertical axis scaled from 0.4 to 0.6. (c) Percolation curves
are shown with k ranging from k = 64 to k = 512. Solid red
(dark gray in grayscale) symbols and solid black symbols
represent standard and inverse percolation thresholds, respec-
tively. Figure 7(a) includes the jamming curves corresponding
to standard (ϑ j,k vs k, open circles) and inverse (ϑ i

j,k vs k, open
squares) problems.

For k between 2 and 32 lattices sizes L/k =
128, 256, 384, 512, and 640 were considered; for k between
64 and 90 L/k = 32, 64, 128, 200, and 256; and for higher
values of k, k = 128, 256, 300, 400, 512, L/k = 50 up to
L/k = 150. For ϑc,k , the values obtained in the present work
(solid circles) are consistent with those reported in Paper III

FIG. 8. Sum of the standard and inverse percolation thresholds
for all the range of considered k sizes (note the logarithmic scale on
the k axis). The values correspond to the perfectly oriented deposi-
tion problem. As it can be observed, θc,k + θ i

c,k = 1.

[53] (solid diamonds). On the other hand, in the case of the
inverse percolation problem, the behavior of ϑ i

c,k in terms of
k is reported here (solid squares in Fig. 7).

The curves of standard and inverse percolation thresholds
are symmetric to each other with respect to the line ϑ =
0.5. As in the isotropic percolation problem, ϑc,k + ϑ i

c,k =
1 within the numerical error and, accordingly, the comple-
mentarity property is also valid for the perfectly oriented
percolation problem. The sum θc,k + θ i

c,k is shown in Fig. 8 for
the whole range of k values studied here (note the logarithmic
scale on the k axis).

The standard and inverse percolation thresholds show a
monotonous dependence on the size k. ϑc,k[ϑ i

c,k] rapidly in-
creases[decreases] for small particles sizes and asymptotically
converges towards a definite value for large segments [see
Fig. 7(b)]. The behavior of the inverse percolation threshold
ϑ i

c,k as a function of k is reported here.
The numerical data can be very well fitted with the

functions ã1 exp(−k/b̃1) + ã2 and ãi
1 exp(−k/b̃i

1) + ãi
2 for

standard and inverse percolation, respectively. The ob-
tained results show that ã2 = ϑc,k→∞ = 0.5334(6) and ãi

2 =
ϑ i

c,k→∞ = 0.4666(6) [see Fig. 7(c)]. In addition, ã1 =
−0.049(4), and b̃1 = 2.8(4) for the standard case and ãi

1 =
0.043(3), and b̃i

1 = 3.0(5) for the inverse percolation prob-
lem. These findings indicate that the RSA model of aligned
k-mers on triangular lattices presents standard and inverse
percolation transition in the whole range of k. As ex-
pected, the fitting curves satisfy the complementary condition
ϑc,k + ϑ i

c,k = 1.
The limit value obtained here ϑc,k→∞ = 0.5334(6) im-

proves the previous estimate in Paper III [ϑc,k→∞ =
0.582(9)], where the standard perfectly oriented percolation
threshold was calculated in the range 2 � k � 80. The exten-
sion of the calculations to larger particles (in this case, up
to k = 512) led to a new and more accurate determination
of ϑc,k→∞.

The study of connectivity in Fig. 4 was repeated for the
case of perfectly oriented percolation. The results are shown
in Fig. 9. Solid circles represent results obtained for standard
percolation [ξ s

k (ϑc,k )], and solid squares correspond to inverse
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FIG. 9. Connectivity of the deposited phase at percolation
threshold as a function of k. The curves were obtained by following
the perfectly oriented deposition and removal scheme. Solid circles
represent results obtained for standard percolation [ξ s

k (ϑc,k )]. Solid
squares correspond to inverse percolation [ξ i

k (ϑ i
c,k )]. The dashed lines

are simply a guide for the eye. In all cases, L/k = 340.

percolation [ξ i
k (ϑ i

c,k )]. In this case, the connectivity curves
increase monotonously with increasing size k, asymptotically
tending to a constant value as k → ∞: ξ s

k→∞ ≈ 4.13 and
ξ i

k→∞ ≈ 3.86. Thus, for long k-mers, the connectivity at the
critical condition for standard percolation is greater than the
one corresponding to inverse percolation (ξ s

k→∞ > ξ i
k→∞),

following the tendency observed for the percolation thresh-
olds (ϑc,k→∞ > ϑ i

c,k→∞). In addition, the smooth behavior

FIG. 10. (a) Comparison between isotropic (circles) and oriented
(squares) percolation thresholds for the inverse percolation problem
of straight rigid k-mers on triangular lattices. (b) Same as part (a) but
for the standard percolation problem.

shown in Fig. 9 contrasts with the two regimes observed
in the isotropic case and is consistent with the monotonous
behavior of the percolation curves in Fig. 7 (perfectly oriented
percolation).

Returning to the percolation threshold curves, it is impor-
tant to note that, for all k, the inverse percolation threshold of
isotropic rods is higher than the corresponding one to aligned
k-mers [see Fig. 10(a)]. This is of interest since it means that is
easier to disconnect the system when the needles are isotrop-
ically removed. In other words, the system is more robust
when the removed needles are aligned in only one direction.
This finding is consistent with the behavior observed for the
standard percolation problem, in which the curve for perfectly
oriented percolation is considerably above than the isotropic
one in the whole range of k [see Fig. 10(b)]. Theoretical and
experimental work support these predictions [54–57].

IV. CONCLUSIONS

In this paper, standard and inverse percolation properties
of straight rigid k-mers on triangular lattices were studied by
numerical simulations and finite-size scaling analysis. Two
models have been addressed: an isotropic model, where the
deposition (removal) of the linear objects occurs with the
same probability in any lattice direction; and a perfectly
oriented model, where one lattice direction is privileged for
depositing (removing) the particles.

For the isotropic deposition-removal problem, the previ-
ously reported results in Papers I and II were extended to
longer k-mers (up to k = 512). The standard and inverse per-
colation thresholds exhibit a nonmonotonous dependence on
the size k. θc,k[θ i

c,k] decreases[increases] for small particles
sizes, goes through a minimum[maximum] at around k = 11,
and finally increases and asymptotically converges towards a
definite value for large segments.

The nonmonotonic behavior observed in the percolation
curves was discussed in terms of the local alignment effects
occurring in the deposited layer for large k. Based on calcula-
tions of the connectivity of the deposited phase at percolation
threshold, the influence of these alignment effects on the
structure of the critical clusters was analyzed. The obtained
results are consistent with previous findings in square lattices
[37–39], showing that, for long k-mers, the formation of k × k
blocks of parallel k-mers reverses the initial decrease in θc,k ,
leading to the appearance of a minimum in the curve of
the standard percolation threshold as a function of size k.
However, further research is necessary to confirm or discard
this hypothesis for the case of triangular lattices. Along this
line, the problem of jamming and percolation for deposition
of k × k blocks on triangular lattices will be the object of
future work.

For large values of k (after the minimum or maximum),
the numerical data can be well fitted by the following
functions: θc,k = a1 exp(−k/b1) + a2 exp(−k/b2) + a3 and
θ i

c,k = ai
1 exp(−k/bi

1) + ai
2 exp(−k/bi

2) + ai
3 (k � 14), being

a1 = −0.040(6), a2 = −0.073(7), a3 = θc,k→∞ = 0.500(2),
b1 = 30(5), b2 = 120(10), and ai

3 = θ i
c,k→∞ = 0.500(1).

The results obtained here allow us (1) to precisely deter-
mine the position of the minimum (maximum) observed in
the curve of θc (θ i

c), located in k = 11; (2) to establish the
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limit values θc,k→∞ = 0.500(2) and θ i
c,k→∞ = 0.500(1), and

in the case of an inverse problem, the present result corrects
the previously reported value of θ i

c,k→∞ = 0.506(2) [29]; and
(3) to conclude that θc + θ i

c = 1 for all value of k, even for
infinitely long k-mers. This complementarity property was
also validated by exact counting of configurations of dimers
on finite cells.

The new findings provide a more complete and precise
characterization of the percolation problem of straight rigid
rods on triangular lattices. As occurs in the case of square
lattices [34,47], the θc,k curve divides the space of allowed val-
ues of θ in a percolating region and a nonpercolating region.
These phases extend to infinity in the space of the parameter
k so that the model presents a percolation transition in the
entire range of k. This contrasts with the predictions in Paper
I, which indicated the existence of a limit value k � 104 from
which all jammed configurations are nonpercolating states
and, consequently, the percolation transition is missed.

Regarding the perfectly oriented case, the problem of
aligned straight rigid k-mers deposited on triangular lat-
tices was also revisited and extended. A increasing behavior
was observed for ϑc,k , with a finite value of saturation in
the limit of infinitely long k-mers: ϑc,k = ã1 exp(−k/b̃1) +
ã2, being ã1 = −0.049(4), b̃1 = 2.8(4), and ã2 = ϑc,k→∞ =
0.5334(6). This limit value improves the previous estimate in
Paper III [ϑc,k→∞ = 0.582(9)], where the standard perfectly
oriented percolation threshold was calculated in the range
2 � k � 80.

In the case of inverse percolation by removing aligned k-
mers from triangular lattices, the results of ϑ i

c,k in terms of
size k are presented: ϑ i

c,k = ãi
1 exp(−k/b̃i

1) + ãi
2, with ãi

1 =
0.043(3), b̃i

1 = 3.0(5), and ãi
2 = ϑ i

c,k→∞ = 0.4666(6).
In both standard and inverse perfectly oriented problems,

the connectivity curves vary smoothly with increasing size
k, which is consistent with the monotonic behavior observed
in the percolation curves. The obtained results indicate the

existence of percolation phase transition in the whole range of
k. In addition, and as in the isotropic case, the sum of standard
and inverse percolation thresholds equals 1 (ϑc,k + ϑ i

c,k = 1)
for all values of k, confirming the generality of this behavior
in triangular lattices. Thus the simple complementarity rela-
tionship between standard and inverse percolation thresholds
seems to be a property typical for the triangular lattice, re-
gardless of isotropic or oriented deposition or removal. The
complementarity property has not been observed in other
regular lattices, showing that the lattice structure plays a fun-
damental role in determining the statistics and percolation
properties of extended objects.

Finally, it was found that, for all k, the inverse percolation
threshold of isotropic rods is higher than the corresponding
one to aligned k-mers. This means that the phase of occupied
sites is more robust when the removed sets of sites are aligned
in only one lattice direction. A contrary behavior has been
theoretically and experimentally observed for the standard
percolation problem, where the curve for oriented percolation
is above the isotropic one in the whole range of k [53–56].

Future efforts will be dedicated to developing an analytical
framework for evaluating the percolation properties of aligned
rigid rods. In this case, the depositions along the director axis
are fully independent, and the RSA of straight rigid rods on
a one-dimensional line has been exactly solved analytically
[58–61].

ACKNOWLEDGMENTS

This work was supported in part by CONICET (Argentina)
under Project No. PIP 112-201701-00673CO and Univer-
sidad Nacional de San Luis (Argentina) under Project No.
03-0816. W.L. is thankful for support from Dirección de In-
vestigación Universidad de La Frontera (Chile) under Project
DIUFRO, Grant No. DI20-0007. L.S.R. acknowledges the
support through the Maria de Maeztu Program for units of
Excellence in R&D (MDM-2017-0711).

[1] J. M. Hammersley and K. W. Morton, J. R. Stat. Soc. 16, 23
(1954).

[2] S. R. Broadbent and J. M. Hammersley, Proc. Cambridge
Philos. Soc. 53, 629 (1957).

[3] D. Stauffer and A. Aharony, Introduction to Percolation Theory
(Taylor & Francis, London, 1994).

[4] M. Sahimi, Applications of Percolation (Theory Taylor &
Francis, London, 1994).

[5] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Net-
works: From Biological Nets to the Internet and WWW (Oxford
University Press, Oxford, UK, 2003).

[6] M. E. J. Newman, A.-L. Barabási, and D. J. Watts, The Structure
and Dynamics of Networks (Princeton University Press, New
Jersey, 2006).

[7] M. E. J. Newman, Networks: An Introduction (Oxford
University Press, Oxford, UK, 2010).

[8] R. Cohen and S. Havlin, Complex Networks, Structure, Robust-
ness and Function (Cambridge University Press, Cambridge,
2010).

[9] Y. Kornbluth, S. Lowinger, G. A. Cwilich, and S. V. Buldyrev,
Phys. Rev. E 89, 032808 (2014).

[10] S. Lowinger, G. A. Cwilich, and S. V. Buldyrev, Phys. Rev. E
94, 052306 (2016).

[11] Z. Gao and Z. R. Yang, Physica A 255, 242 (1998).
[12] A. Coniglio, J. Phys.: Condens. Matter 13, 9039 (2001).
[13] E. Kenah and J. M. Robins, Phys. Rev. E 76, 036113 (2007).
[14] A. Yazdi, H. Hamzehpour, and M. Sahimi, Phys. Rev. E 84,

046317 (2011).
[15] A. P. Chatterjee, J. Chem. Phys. 140, 204911 (2014).
[16] Y. Y. Tarasevich, N. I. Lebovka, I. V. Vodolazskaya, A. V.

Eserkepov, V. A. Goltseva, and V. V. Chirkova, Phys. Rev. E
98, 012105 (2018).

[17] G. Grimmett, Percolation (Springer-Verlag, Berlin, 1999).
[18] K. Christensen and N. R. Moloney, Complexity and Criticality

(Imperial College Press, London, 2005).
[19] B. Bollobás and O. Riordan, Percolation (Cambridge University

Press, New York, 2006).
[20] J. Feder, J. Theor. Biol. 87, 237 (1980).

014101-11

https://doi.org/10.1017/S0305004100032680
https://doi.org/10.1103/PhysRevE.89.032808
https://doi.org/10.1103/PhysRevE.94.052306
https://doi.org/10.1016/S0378-4371(98)00079-X
https://doi.org/10.1088/0953-8984/13/41/301
https://doi.org/10.1103/PhysRevE.76.036113
https://doi.org/10.1103/PhysRevE.84.046317
https://doi.org/10.1063/1.4879217
https://doi.org/10.1103/PhysRevE.98.012105
https://doi.org/10.1016/0022-5193(80)90358-6


L. S. RAMIREZ et al. PHYSICAL REVIEW E 104, 014101 (2021)

[21] J. W. Evans, Rev. Mod. Phys. 65, 1281 (1993).
[22] A. Cadilhe, N. A. M. Araújo, and V. Privman, J. Phys.:

Condens. Matter 19, 065124 (2007).
[23] N. A. M. Araújo and A. Cadilhe, J. Stat. Mech. (2010) P02019.
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and S. B. Vrhovac, Phys. Rev. E 85, 061117 (2012).
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Vrhovac, and N. M. Švrakić, Phys. Rev. E 84, 051601 (2011).
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