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Abstract. In the present paper, we study frames for finite-
dimensional vector spaces over an arbitrary field. We develop a
theory of dual frames in order to obtain and study the different
representations of the elements of the vector space provided by a
frame. We relate the introduced theory with the classical one of
dual frames for Hilbert spaces and apply it to study dual frames
for three types of vector spaces: for vector spaces over conju-
gate closed subfields of the complex numbers (in particular, for
cyclotomic fields), for metric vector spaces, and for ultramet-
ric normed vector spaces over complete non-archimedean valued
fields. Finally, we consider the matrix representation of operators
using dual frames and its application to the solution of operators
equations in a Petrov-Galerkin scheme.
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Introduction

Frames were introduced by Duffin and Schaeffer in 1952 for some Hilbert
function spaces [20]. Their importance in data processing was established
by Daubechies, Grossman and Meyer in [18] (see also [19]). Since then, the
theory and applications of frames have been developed considerably. Today,
the theory of frames in Hilbert spaces is well established. Some extensions to
other vector spaces, such as Banach spaces, are also considered. Frames have
various advantages over bases, which have made them very useful in several
areas of sciences and engineering. Applications of frames include, e.g., signal
and image processing, communication theory, coding theory, information
theory and sampling theory, among others. For more details we refer the
reader to [9, 11, 14, 28, 31] and references therein.
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The applications principally require a finite-dimensional setting. There-
fore, to avoid the approximation problems related to the truncation needed
in the infinite-dimensional case, it is important to work directly with finite
frames. In this case, a frame is simply a spanning set. With a frame, each
vector in the space has infinitely many representations. This redundancy is
the key to their advantages over bases in applications. For example, when
the independence requirement is removed, we have more flexibility to con-
struct a frame suitable for the particular problem at hand. Moreover, frames
provided resilience to, e.g., losses, additive noises and quantization errors.

The classical theory of finite frames had developed in finite-dimensional
vector spaces V over the fields R and C (see [11, 28, 31, 35]). The vector
spaces, mainly considered in the literature, are Rd and Cd. Other considered
vector spaces are: the complex vector space CZp of complex finite sequences
over the field Zp of the integers modulo p [22], the complex vector space CG

of complex finite sequences over a finite cyclic group G [24] and the complex
vector space CF of complex finite sequences over a finite field F [23].

In this paper, we consider frames for finite-dimensional vector spaces
V over an arbitrary field F. In order to study the representations of the
elements in V provided by a frame, we introduce a concept of dual frame
and analyze its properties. These dual frames are families of elements in
a dual vector space S ′, where S is a vector space that contains V . If F is
a basis, there is a unique dual of F , which coincide with the classical dual
basis.

The definition of dual frame introduced in the present paper can be
viewed as an extension of one the presented in [36] (see also [13, 35]), where
S = V and only such fields F that F ⊆ C and F = F are considered. With
these restrictions on F, an inner product on V and a canonical dual can be
defined. This canonical dual is the object of study in these works. In our
case, the field F is arbitrary, we do not deal with any inner product in V ,
and we consider all possible duals of F . Moreover, in our case S ⊇ V , and it
results that oblique dual frames [15, 21] in Hilbert spaces are in the setting
of our dual frames.

Working in a vector space over an arbitrary field provides a context of
great generality. On the one hand, the theory of dual frames developed here
gives the possibility to apply the representations provided by frames even
in those areas where there is no other structure defined on the vector space.
On the other hand, it allows considering dual frames for different vector
spaces with additional structures. Here, we apply this theory to study dual
frames for three particular vector spaces. We first look at the vector spaces
considered in [13, 36, 35]. In particular, we analyze the existence of dual
frames for cyclotomic fields with some of the properties of the canonical dual.
These properties are useful for computational purposes. Then we analyze
dual frames for metric vector spaces, which are a natural generalization of
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real inner product spaces. We apply our results to have a theory of dual
frames for these vector spaces and compare it with the classical theory in
Hilbert spaces. Note that frames and Parseval frames for the metric vector
space Zd2 were considered first in [7] and studied later in, e.g., [8, 27, 29].
Other related articles are [26, 25], where frames over finite fields in unitary
and orthogonal geometries are considered. Finally, we study frames and
dual frames for ultrametric normed vector spaces focusing principally on
perturbations results. As another application of the developed theory, the
frame representation of operators and the solution of operator equations in
a Petrov-Galerkin scheme are considered. These operator equations can be
of different types, such as differential equations or integral equations.

The organization of the paper is as follows. In Section 1, we introduce
some notations. In section 2, we discuss the concept of frame for finite-
dimensional vector spaces over an arbitrary field. We also consider frames
for dual spaces. Some fundamental properties are established. In section 3,
we introduce and study the concept of dual frame. We give several char-
acterizations. Section 4 is devoted to the construction of all dual frames
of a given frame, whereas Section 5 deals with the construction of specific
dual frames. In these sections, the general theory is related to the classical
theory of dual frames for Hilbert spaces. In Section 6, the obtained results
are used to investigate the dual frames of perturbed frames in the classical
setting. Different types of perturbations are considered: close frames, near
frames and Paley-Wiener perturbations. In Section 7, we apply the devel-
oped theory to analyze frames and dual frames for three particular vector
spaces: vector spaces over F where F ⊆ C and F = F, metric vector spaces
and ultrametric normed vector spaces over complete non-archimedean valued
fields. We also consider the representation of operators using dual frames
and their application to the solution of operator equations.

1 Preliminares

In this paper, we will use well-known notions from advanced linear algebra.
We refer the reader to, e.g., [33] for more details.

Let F be an arbitrary field. Let R and S be vector spaces over F, W be
a finite-dimensional subspace of R and V be a finite-dimensional subspace
of S.

We denote the space of linear transformations from R to S by L(R,S).
We write L(S) for L(S,S). Given T ∈ L(R,S), we write im(T ) and ker(T )
to denote the image and the null space of T , respectively.

Given any (algebraic) complement Vc of V in S, we denote the (oblique)
projection onto V along Vc with PV,Vc . Recall that a linear operator T ∈ L(S)
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is idempotent, i.e., T 2 = T , if and only if

S = im(T )⊕ ker(T ) and T = Pim(T ),ker(T ).

Let T ∈ L(R,S) with im(T ) = V and ker(T ) = W . Let Wc be any
complement of W in R and Vc be any complement of V in S. We denote
the oblique pseudoinverse of T on Wc along Vc by T ]Wc,Vc . Recall that

T ]Wc,Vc ∈ L(S,R) is given by

(T ]Wc,Vc)|V = (T|Wc)−1 and ker(T ]Wc,Vc) = Vc.

The oblique pseudoinverse T ]Wc,Vc is characterized by the following condi-
tions:

T ]Wc,VcT = PWc,W , TT ]Wc,Vc = PV,Vc and im(T ]Wc,Vc) =Wc.

The (algebraic) dual space of S will be denoted by S ′. For f ∈ V , f̂ ∈ V ′′
is given by f̂(φ) = φ(f) for each φ ∈ V ′. Recall that V ≈ V ′′.

Let I and J be any finite sets. The standard basis of FI will be denoteb
by {δi}i∈I . If x ∈ FI , x(k) denotes its k-th component. For each i ∈ I,
we denote the i-th canonical functional on FI by pi, i.e., pix = x(i) for
each x ∈ FI .

2 Frames for finite-dimensional vector spaces

In what follows, we assume that S is a vector space over F and that V is
a subspace of S of finite dimension. Let F = {fi}i∈I ⊆ V . The synthesis
operator of F is

TF : FI → V , TFx =
∑
i∈I

x(i)fi.

Recall the definition of frame in a finite-dimensional vector space:

Definition 1 Let F = {fi}i∈I ⊆ V. We say that F is a frame for V if
spanF = V.

Observe that F ⊆ V is a frame for V if and only if im(TF) = V . Frames
have some advantages over bases. Since we are not considering, as for bases,
the linear independence condition, we have more freedom to design frames
to fit the requirements of an application at hand. Moreover, a basis ceases to
be a basis if one element is added or removed, but a frame remains a frame
if some elements are added and can still be a frame if some elements are
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removed. Another advantage is the following. Assume that f =
∑

i∈I c(i)fi
and that the coefficients are perturbed by w ∈ FI in such a way that we get∑

i∈I

(c(i) + w(i))fi = f +
∑
i∈I

w(i)fi.

If the perturbation contribution
∑

i∈I w(i)fi is zero we can even recover f .
Now, if {fi}i∈I is overcomplete, we can obtain f =

∑
i∈I(c(i) + w(i))fi if w

falls into the nontrivial kernel of the synthesis operator TF . If {fi}i∈I is a
basis, this never happen.

Now we consider frames for dual spaces. Let Φ = {φj}j∈J ⊆ S ′. The
analysis operator of Φ is

T ∗Φ : S → FJ , T ∗Φf = (φj(f))j∈J .

We denote {(φj)|V}j∈J by Φ|V . The next theorem characterizes frames for
dual spaces.

Theorem 1 Let Φ = {φj}j∈J ⊆ S ′. Then Φ|V is a frame for V ′ if and only
if V ∩ ker(T ∗Φ) = {0} or, equivalently, T ∗Φ|V is injective.

Proof. Suppose that Φ|V is a frame for V ′ and f ∈ V is such that T ∗Φ(f) = 0,
i.e.,

φj(f) = 0 for each j ∈ J.
Since {(φj)|V}j∈J spans V ′,

λ(f) = 0 for each λ ∈ V ′.

Then f = 0. This shows that V ∩ ker(T ∗Φ) = {0}.
Conversely, assume that V ∩ ker(T ∗Φ) = {0} or, equivalently, T ∗Φ|V is in-

jective. Let A be a linear left inverse of T ∗Φ|V . If f ∈ V , we have

f = AT ∗Φ(f) =
∑
j∈J

φj(f)A(δj).

Therefore, if λ ∈ V ′, then

λ =
∑
j∈J

λ(A(δj))(φj)|V .

This proves that {(φj)|V}j∈J spans V ′, i.e., Φ|V is a frame for V ′. �

Example 1 Let S be a finite-dimensional real or complex inner product
vector space. Let F = {fi}i∈I ⊂ S. Then F is a frame for V if and only if
the frame operator

SF := TFT
∗
F
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is invertible. Here T ∗F : S → FI given by

T ∗Ff = (〈f, fi〉)i∈I for each f ∈ S,

is the adjoint of TF , where TF is considered as an element of L(FI ,S).
If S is a finite-dimensional real or complex inner product vector space,

then each φ ∈ S ′ has a Riesz representation φ(f) = 〈f, g〉 for some g ∈ S.
Let Φ = {φj}j∈J ⊂ S ′ and let gj ∈ S correspond to φj ∈ S ′ for each j ∈ J .
Let

W := span{gj}j∈J .
By Theorem 1, Φ|V is a frame for V ′ if and only if V ∩W⊥ = {0}.

For F = {fi}i∈I ⊆ V , we define the linear transformations

TF̂ : FI → V ′′, TF̂x =
∑
i∈I

x(i)f̂i

and
T ∗F̂ : V ′ → FI , T ∗F̂λ = (f̂i(λ))i∈I = (λ(fi))i∈I .

Proposition 1 Let F = {fi}i∈I ⊆ V. The following assertions are equiva-
lent:

(i) F is a frame for V.

(ii) F̂ is a frame for V ′′.

(iii) TF̂ is onto.

(iv) T ∗F̂ is injective.

Proof. (i) ⇒ (ii). Suppose that F is a frame for V . Let λ ∈ V ′′ and f ∈ V
be such that λ = f̂ . Since F is a frame for V , there exists x ∈ FI such that
f =

∑
i∈I x(i)fi. For each φ ∈ V ′, we have

λ(φ) = f̂(φ) = φ(f) =
∑
i∈I

x(i)φ(fi) =
∑
i∈I

x(i)f̂i(φ).

This shows that F̂ is a frame for V ′′.
(ii) ⇒ (i). Suppose that F̂ is a frame for V ′′. Let f ∈ V . Then there

exists x ∈ FI such that f̂ =
∑

i∈I x(i)f̂i. Thus,

λ(f) =
∑
i∈I

x(i)λ(fi) for all λ ∈ V ′.

Then f =
∑

i∈I x(i)fi. From this, F is a frame for V .
(ii) ⇔ (iii). It is immediate.
(ii) ⇔ (iv). It is similar to the proof of Theorem 1. �
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For future references, we enunciate the following basic lemma.

Lemma 1 Let F = {fi}i∈I ⊆ V and Φ = {φj}j∈J ⊆ S ′. The following
assertions hold:

(i) If im(TF) = V, then im(T ∗ΦTF) = im(T ∗Φ|V ).

(ii) If T ∗Φ|V is injective, then ker(T ∗ΦTF) = ker(TF).

2.1 Linear dependencies

Given F = {fi}i∈I ⊆ V we call ker(TF) the set of linear dependencies of F
and we denote it with dep(F). This nomenclature is used in the particular
context of [36].

Proposition 2 Let F = {fi}i∈I ⊆ V. Then dep(F) = dep(F̂).

Proof. Let c ∈ FI . Then

TFc =
∑
i∈I

c(i)fi = 0

if and only if ∑
i∈I

c(i)f̂i(λ) =
∑
i∈I

c(i)λ(fi) = 0 for all λ ∈ V ′.

This last condition is equivalent to

TF̂c =
∑
i∈I

c(i)f̂i = 0.

Hence, dep(F) = dep(F̂). �

Now we consider the concept of similarity for frames.

Definition 2 Let F = {fi}i∈I ⊆ V, G = {gi}i∈I ⊆ W and dim(V) =
dim(W). We say that F and G are similar if there exists an invertible
transformation Q ∈ L(V ,W) such that Qfi = gi for each i ∈ I.

Example 2 Let S be a finite-dimensional real or complex inner product
vector space. Let F = {fi}i∈I and G = {gi}i∈I be frames for V . Then F
and G are similar if and only if TFT

∗
G is invertible. See [35, Proposition 3.2]

for other conditions equivalent to similarity in this context.

The following lemma relates similarity with linear dependencies.
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Lemma 2 Let F = {fi}i∈I be a frame for V, G = {gi}i∈I be a frame for W
and dim(V) = dim(W). Then the following are equivalent:

(i) F and G are similar.

(ii) dep(F) = dep(G).

(iii) There is a common complement C of dep(F) and dep(G) in FI such
that PC,dep(F) = PC,dep(G).

Proof. (i) ⇒ (ii). Suppose that F and G are similar, i.e., there exists an
invertible linear transformation Q : V → W such that

Qfi = gi for each i ∈ I.

Then TG = QTF and dep(G) = dep(F).
(ii) ⇒ (i). Suppose now that dep(F) = dep(G). Let C be a complement

of dep(F) = dep(G) in FI . Since TF |C : C → V and TG|C = TG|C : C → W
are bijections,

Q = TG(TF |C)−1 : V → W

is an invertible linear transformation. For each i ∈ I we have

Qfi = TG(TF |C)−1fi = TG(TF |C)−1TFPC,dep(F)δi = TGPC,dep(G)δi = TGδi = gi.

This shows that F and G are similar.
(ii) ⇔ (iii). It is immediate. �

Remark 1 (i) Let F = {fi}i∈I be a frame for V . Let R be a vector space
over F and L ∈ L(V ,R). Then dep(F) = dep(LF) if and only if L is
injective.

(ii) Let F = {fi}i∈I ⊆ V and G = {gi}i∈I ⊆ V . Let A and B be
complements of dep(F) and dep(G) in FI , respectively. Then dep(F) ⊆
dep(G) if and only if PB,dep(G)Pdep(F),A = 0. This last equality is equivalent
to PB,dep(G)PA,dep(F) = PB,dep(G).

By a proof similar to that of Lemma 2, we can see that dep(F) ⊆ dep(G)
if and only if there exists a surjective transformation Q ∈ L(V ,W) such
that Qfi = gi, for each i ∈ I. In this case, for the “only if” part we consider
Q = TG(TF |dep(F)c)

−1 where dep(F)c is any complement of dep(F).

(iii) If F ⊆ C, F = F and C = dep(F)⊥, then Lemma 2 reduced to [36,
Lemma 3.3].

Remark 2 Let dep(F)c be a subspace of FI such that FI = dep(F) ⊕
dep(F)c. Then

{Pdep(F)c,dep(F)δi}i∈I
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is a frame for dep(F)c with synthesis operator Pdep(F)c,dep(F). As a conse-
quence of Lemma 2, this frame is similar to F . If F is a basis for V , then
dep(F) = {0}, dep(F)c = FI and Pdep(F)c,dep(F)δi = δi for each i ∈ I.

If we consider any two complements C1 and C2 of dep(F) in FI , then the
frames {PC1,dep(F)δi}i∈I and {PC2,dep(F)δi}i∈I are similar and we can take any
of them as a representative in the class of frames similar to F .

Example 3 Let S be a finite-dimensional real or complex inner product
vector space. Let F = {fi}i∈I be a frame for V . Then Pdep(F)⊥,dep(F) =
T ∗FS

−1
F TF [35, Example 4.3] and {T ∗FS−1

F TFδi}i∈I = {(〈S−1
F fi, fj〉)j∈I}i∈I =

{(〈S−1/2
F fi, S

−1/2
F fj〉)j∈I}i∈I is the canonical representative in the class of

frames similar to F .

3 Dual frames

In this section, we introduce the concept of dual frame which allows us to
obtain representations of the elements of a vector space given by a frame.
This concept enables the study and the application of these representations.

Definition 3 Let F = {fi}i∈I ⊆ V and Φ = {φi}i∈I ⊆ S ′. We say that F
and Φ are dual in V if f = TFT

∗
Φf for all f ∈ V.

In the above definition, the family Φ gives the coefficients needed to
represent each element in V using the frame F (see also Theorem 2(ii) below).
In what follows, we analyze different properties of these families in order to
study and apply the representations provided by a frame.

Example 4 Let S be a finite-dimensional real or complex inner product
vector space. Using the identification of S ′ with S, Definition 3 becomes:
Let F = {fi}i∈I ⊂ V and G = {gi}i∈I ⊂ S. We say that F and G are dual
in V if

f = TFT
∗
Gf =

∑
i∈I

〈f, gi〉fi for each f ∈ V .

Here T ∗G : S → FI given by

T ∗Gf = (〈f, gi〉)i∈I for each f ∈ S,

is the adjoint of TF , where TF is considered as an element of L(FI ,S).

The following theorem characterizes dual frames.

Theorem 2 Let F = {fi}i∈I ⊆ V and Φ = {φi}i∈I ⊆ S ′. Then the following
statements are equivalent:
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(i) F and Φ are dual in V.

(ii) f =
∑

i∈I φi(f)fi for all f ∈ V.

(iii) Φ and F̂ are dual in V ′, i.e., λ = TΦT
∗
F̂λ for all λ ∈ V ′.

(iv) λ =
∑

i∈I λ(fi)φi for all λ ∈ V ′.

(v) f̂(λ) =
∑

i∈I λ(fi)f̂(φi) for all f ∈ V and all λ ∈ V ′.

(vi) im(TF) = V, T ∗Φ|V is injective and (T ∗ΦTF)2 = T ∗ΦTF .

(vii) im(TF) = V and TF(T ∗ΦTF) = TF .

(viii) T ∗Φ|V is injective and (T ∗ΦTF)T ∗Φ|V = T ∗Φ|V .

(ix) im(TF) = V, FI = im(T ∗Φ|V )⊕ dep(F) and T ∗ΦTF = Pim(T ∗Φ|V
),dep(F).

(x) im(TF) = V, T ∗Φ|V is injective and the matrix (φj(fi))j,i∈I has eigen-

vector (φj(fi))j∈I with eigenvalue 1 for all i ∈ I such that fi 6= 0.

Proof. The equivalence of (i)-(v) is immediate.
(i) ⇒ (vi),(vii),(viii). Suppose that (i) holds. If f ∈ V , then

f = TFT
∗
Φf.

Thus, im(TF) = V . If f ∈ V ∩ ker(T ∗Φ), then

f = TFT
∗
Φf = 0.

Hence, T ∗Φ|V is injective. Now let x ∈ FI and f ∈ V . We have

(T ∗ΦTF)2x = T ∗Φ(TFT
∗
Φ)TFx = T ∗ΦTFx,

TF(T ∗ΦTF)x = (TFT
∗
Φ)TFx = TFx

and
(T ∗ΦTF)T ∗Φf = T ∗Φ(TFT

∗
Φ)f = T ∗Φf.

Thus, (vi),(vii) and (viii) are satisfied.
(vi)⇒ (i). Suppose that (vi) holds. Let f ∈ V . Since im(TF) = V , there

exists x ∈ FI such that f = TFx. Thus,

TFT
∗
Φf = TFT

∗
ΦTFx.

From here,
T ∗ΦTFT

∗
Φf = T ∗ΦTFT

∗
ΦTFx = T ∗ΦTFx = T ∗Φf.

Since T ∗Φ|V is injective, TFT
∗
Φf = f . This shows that (i) holds.
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(vii) ⇒ (i). Let f ∈ V . If (vii) holds, there exists x ∈ FI such that

f = TFx = TF(T ∗ΦTF)x = (TFT
∗
Φ)TFx = TFT

∗
Φf.

Thus, (i) holds.
(viii) ⇒ (i). Let f ∈ V . If (viii) holds, then

(T ∗ΦTF)T ∗Φf = T ∗Φf,

and the injectivity of T ∗Φ|V assure that

TFT
∗
Φf = f,

and (i) holds.
(vi) ⇒ (ix). If (vi) is satisfied, then im(TF) = V and, by Lemma 1,

FI = im(T ∗Φ|V )⊕ dep(F) and T ∗ΦTF = Pim(T ∗Φ|V
),dep(F).

This shows (ix).
(ix) ⇒ (vii) is immediate.
(vi) ⇔ (x). The matrices of T ∗ΦTF and (T ∗ΦTF)2 in the standard basis

of FI have entry (j, i) equal to φj(fi) and
∑

k∈I φj(fk)φk(fi), respectively.
From here, the equivalence of (vi) and (x) follows. �

Remark 3 Definition 3 is a generalization of the one considered in [36]
where V = S, F ⊆ C, F = F, F = {fi}i∈I is a frame for S and Φ = {φi}i∈I is
a frame for S ′. Some of the items of Theorem 2 generalize [36, Proposition
2.2].

As a consequence of Theorem 2 and Theorem 1, we obtain:

Corollary 1 If F = {fi}i∈I ⊆ V and Φ = {φi}i∈I ⊆ S ′ are dual frames in
V, then:

(i) F is a frame for V and Φ|V is a frame for V ′.

(ii) V ∩ ker(T ∗Φ) = {0}.

(iii) (TF)|im(T ∗Φ|V
) : im(T ∗Φ|V )→ V and T ∗Φ|V : V → im(T ∗Φ|V ) are bijective and

((TF)|im(T ∗Φ|V
))
−1 = T ∗Φ|V .

Example 5 Let S be a finite-dimensional real or complex inner product
vector space. Continuing Example 4, let F = {fi}i∈I ⊂ V and G = {gi}i∈I ⊂
S. Let W := span{gj}j∈J . From Example 1 and Corollary 1, it follows that
if F and G are duals in V , then V ∩W⊥ = {0}, whereas if G and F are duals
in W , then W ∩ V⊥ = {0}.
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The condition V ∩W⊥ =W ∩V⊥ = {0} is equivalent to S = V ⊕W⊥ =
W ⊕V⊥, and in this case dim(W) = dim(V) [35].

Suppose that S = V⊕W⊥ =W⊕V⊥ and consider the oblique projections
PV,W⊥ and PW,V⊥ . By Theorem 2, F and G are duals in V if and only if
PV,W⊥ = TFT

∗
G , whereas G and F are duals in W if and only if PW,V⊥ =

TGT
∗
F . Since P ∗V,W⊥ = PW,V⊥ , F and G are duals in V if and only if G and

F are duals in W . We see that in this case our definition of dual frames
coincide with the concept of oblique dual frames (see [15] for the definition
of oblique dual frame).

By Corollary 1, if F = {fi}i∈I ⊆ V and Φ = {φi}i∈I ⊆ S ′ are dual frames
in V , then V ⊕ ker(T ∗Φ) ⊆ S. In Remark 5, we will see that there exist pairs
of dual frames such that S 6= V ⊕ ker(T ∗Φ).

Theorem 3 Let F = {fi}i∈I ⊆ V and Φ = {φi}i∈I ⊆ S ′. If S = V ⊕
ker(T ∗Φ), then the following conditions are equivalent:

(i) F and Φ are dual in V.

(ii) im(TF) = V, FI = im(T ∗Φ)⊕ dep(F) and T ∗ΦTF = Pim(T ∗Φ),dep(F).

(iii) TFT
∗
Φ = PV,ker(T ∗Φ).

Proof. If S = V ⊕ ker(T ∗Φ), then im(T ∗Φ|V ) = im(T ∗Φ). Thus, the equivalence

of (i) and (ii) follows from Theorem 2.
(ii) ⇒ (iii). Suppose that (ii) holds. Then im(TFT

∗
Φ) = V . If f ∈

ker(TFT
∗
Φ), then

T ∗Φf ∈ dep(F) ∩ im(T ∗Φ)

and, consequently, T ∗Φf = 0. Hence, ker(TFT
∗
Φ) = ker(T ∗Φ). Now

(TFT
∗
Φ)2 = TFT

∗
ΦTFT

∗
Φ = TFPim(T ∗Φ),dep(F)T

∗
Φ = TFT

∗
Φ.

Therefore, TFT
∗
Φ = PV,ker(T ∗Φ).

(iii) ⇒ (i). It is straightforward. �

Let F and G be finite subset of vectors in V such that dep(F) = dep(G).
Clearly, if (TF)|dep(F)c = (TG)|dep(F)c , where dep(F)c is a complement of
dep(F), then F = G. Thus, by Theorem 3, we have:

Corollary 2 Let F = {fi}i∈I and G = {gi}i∈I be frames for V. If S =
V ⊕ ker(T ∗Φ) and there exists Φ = {φi}i∈I ⊆ S ′ such that Φ is a dual of F
and G in V, then F = G.

As another consequence of Theorem 2 we obtain:
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Corollary 3 Let F = {fi}i∈I ⊆ V and Φ = {φi}i∈I ⊆ S ′. Then the follow-
ing statements are equivalent:

(i) F and Φ are dual in V.

(ii) im(TΦ) = V ′, (T ∗F̂)|V ′ is injective and (T ∗F̂TΦ)2 = T ∗F̂TΦ.

(iii) im(TΦ) = V ′ and TΦ(T ∗F̂TΦ) = TΦ.

(iv) (T ∗F̂)|V ′ is injective and (T ∗F̂TΦ)(T ∗F̂)|V ′ = (T ∗F̂)|V ′.

(v) im(TΦ) = V ′, FI = im((T ∗F̂)|V ′)⊕ker(TΦ) and T ∗F̂TΦ = Pim((T ∗
F̂

)|V′ ),ker(TΦ).

(vi) im(TΦ) = V ′, (T ∗F̂)|V ′ is injective and the matrix (φj(fi))i,j∈I has eigen-
vector (φj(fi))i∈I with eigenvalue 1 for each j ∈ I such that φj 6= 0.

Remark 4 The matrix of T ∗F̂TΦ with respect to the standard basis of FI
is (φj(fi))i∈I,j∈I , the transpose of the matrix (φj(fi))j∈I,i∈I corresponding to
T ∗ΦTF .

The following theorem characterizes dual frames in terms of dual inde-
pendent sets. It can be viewed as analogous to [14, Theorems 8.3.2 and
8.3.3] about R-duals in Hilbert spaces.

Theorem 4 Let {vk}dk=1 be a basis for V and {v′k}dk=1 be the basis for V ′
dual to {vk}dk=1. Let R be any vector space over F such that dim(R) >
|I|. Let {ei}i∈I ⊆ R be linearly independent and {e′i}i∈I ⊆ R′ be such that
e′i(ej) = δi,j. Let F = {fi}i∈I ⊆ V, Φ = {φi}i∈I ⊆ S ′, ωk =

∑
i∈I v

′
k(fi)ei

and γk =
∑

i∈I φi(vk)e
′
i for each k = 1, . . . , d. Then:

(i) F is a frame for V if and only if {ωk}dk=1 is linearly independent.

(ii) (Φ)|V is a frame for V ′ if and only if {γk}dk=1 is linearly independent.

(iii) F and Φ are dual frames in V if and only if γl(ωk) = δk,l for each
k, l = 1, . . . , d.

Proof. (i). Let c ∈ Fd. We have

d∑
k=1

c(k)ωk =
∑
i∈I

[
d∑

k=1

c(k)v′k(fi)

]
ei. (1)

Since {ei}i∈I is linearly independent,
∑d

k=1 c(k)ωk = 0 if and only if

d∑
k=1

c(k)v′k(fi) = 0 for each i ∈ I.
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If F is a frame for V , this implies that
∑d

k=1 c(k)v′k = 0. Now using that
{v′k}dk=1 is linearly independent, we obtain

c(k) = 0 for each k = 1, . . . , d.

This shows that {ωk}dk=1 is linearly independent.
Conversely, assume that {ωk}dk=1 is linearly independent. Let λ ∈ V ′ and

suppose that

f̂i(λ) = 0 for each i ∈ I.

Since {v′k}dk=1 is a basis for V ′, there exists c ∈ Fd such that λ =
∑d

k=1 c(k)v′k.
Then

d∑
k=1

c(k)v′k(fi) = 0 for each i ∈ I,

and, by (1),
d∑

k=1

c(k)ωk = 0.

Since {ωk}dk=1 is linearly independent, c(k) = 0 for each k = 1, . . . , d.
Therefore, λ = 0. This shows that T ∗F̂ is injective. By Proposition 1, F is a
frame for V .

(ii). The proof is analogous to the proof of (i).
(iii). If F and Φ are dual in V , then

γl(ωk) =
∑
i∈I

v′k(fi)φi(vl) = v′k(
∑
i∈I

φi(vl)fi) = v′k(vl) = δk,l

for each k, l = 1, . . . , d. Conversely, suppose that γl(ωk) = δk,l for each
k, l = 1, . . . , d. Then

v′k(
∑
i∈I

φi(vl)fi) = γl(ωk) = v′k(vl) for each k, l = 1, . . . , d.

Since {v′k}dk=1 is a basis for V ′,∑
i∈I

φi(vl)fi = vl for each l = 1, . . . , d.

Now using that {vk}dk=1 is a basis for V , we obtain∑
i∈I

φi(f)fi = f for each f ∈ V .

Therefore, F and Φ are dual in V . �
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In the following proposition, we present the conditions under which the
application of a linear transformation to a pair of dual frames results in a
pair of dual frames.

Proposition 3 Let R be a vector space over F, W be a subspace of R,
A ∈ L(V ,W) and B ∈ L(R,S) with B(W) ⊆ V. Let F = {fi}i∈I ⊆ V and
Φ = {φi}i∈I ⊆ S ′ be dual frames in V. Then AF = {Afi}i∈I ⊆ W and
ΦB = {φiB}i∈I ⊆ R′ are dual frames in W if and only if AB|W = IW .

Proof. It is sufficient to note that TAFT
∗
ΦB = ATFT

∗
ΦB. �

The next two results show that if we apply a linear transformation B ∈
L(S,S) with B(V) ⊆ V to a dual frame, we always obtain the same dual.

Proposition 4 Let B ∈ L(S,S) with B(V) ⊆ V. Let Φ, Φ̃ ⊆ S ′ be dual

frames of F ⊆ V in V. Then Φ̃ = ΦB if and only if B|V = IV .

Proof. Suppose that Φ̃ = ΦB. Then

(TFT
∗
Φ)|V = IV = (TFT

∗
Φ̃

)|V = (TFT
∗
ΦB)|V .

Since B(V) ⊆ V , it results that B|V = IV . �

The following proposition can be obtained with a similar proof:

Proposition 5 Let B ∈ L(S,S) with B(V) ⊆ V. Let F , F̃ ⊆ V be dual

frames of Φ ⊆ S ′ in V. Then F̃ = BF if and only if B|V = IV .

Next we show that every pair of families in V and S ′ can be extended to
a pair of dual frames using an existing pair of dual frames. Concretely, in
our settings, we have the following version of [14, Theorem 6.4.1.]:

Theorem 5 Let F = {fi}i∈I ⊆ V and Φ = {φi}i∈I ⊆ S ′. If {f̃i}j∈J ⊆ V
and {φ̃i}i∈I ⊆ S ′ is any pair of dual frames in V, then {fi}i∈I ∪{f̃i}j∈J ⊆ V
and {φi}i∈I ∪ {φ̃j −

∑
i∈I φ̃j(fi)φi}j∈J ⊆ S ′ are dual frames in V.

Proof. The composition of the synthesis operator of {fi}i∈I ∪ {f̃i}j∈J with
the analysis operator of

{φi}i∈I ∪ {φ̃j −
∑
i∈I

φ̃j(fi)φi}j∈J

at f ∈ V is
TFT

∗
Φf + TF̃T

∗
Φ̃

(IV − TFT ∗Φ)f = f.

From here, the conclusion follows. �

We note that a result analogous to the previous theorem can be obtained
for any pair of families in V ′ and S ′′.
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4 The construction of all dual frames of a

given frame

In this section, we prove that any frame has duals. Moreover, we show how
we can obtain all duals of a given frame.

Theorem 6 Let F = {fi}i∈I be a frame for V. The duals Φ = {φi}i∈I ⊆ S ′
of F in V are the families Φ = {piB}i∈I where B ∈ L(S,FI) and B|V is a
right inverse of TF . In this case, B = T ∗Φ.

Proof. Let B ∈ L(S,FI) be any extension of a linear right inverse of TF .
Set φi := piB ∈ S ′ for each i ∈ I and Φ = {φi}i∈I . Then T ∗Φ = B is injective
and Φ|V is a frame for V ′. Since

TFT
∗
Φf = TFBf = f for each f ∈ V ,

F and Φ are dual frames in V .
Conversely, let Φ = {φi}i∈I ⊆ S ′ be a dual of F . Then T ∗Φ|V is a linear

right inverse of TF and φi = piT
∗
Φ for each i ∈ I. �

Remark 5 In the previous theorem, T ∗Φ is any extension of a linear right
inverse of TF ; therefore we can have T ∗Φ such that S 6= V ⊕ ker(T ∗Φ).

Example 6 We continue Example 4. The frame operator of F = {fi}i∈I ⊂ V
is

SF := TFT
∗
F ∈ L(S).

If F is a frame for V , the family

(SF)]V,V⊥F = {(SF)]V,V⊥fi}i∈I

is called the canonical dual frame of F in V . If f̃i = (SF)]V,V⊥fi for each
i ∈ I, then

TF̃ = (SF)]V,V⊥TF and TFT
∗
F̃ = PV,V⊥ .

Thus, T ∗F̃ ∈ L(S,FI) is such that (T ∗F̃)|V is a right inverse of TF . In this case

ker(T ∗F̃) = V⊥.

The following two corollaries give explicit expressions of all duals of a
given frame starting from a given dual.

Corollary 4 Let F = {fi}i∈I be a frame for V and Φ = {φi}i∈I ⊆ S ′ be
a dual of F in V. Then the duals of F in V are the families {φi − λi +∑

j∈I φi(fj)λj}i∈I where {λi}i∈I ⊆ S ′.
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Proof. Let B = T ∗Φ ∈ L(S,FI). Then B|V is a right inverse of TF and

φi = piB for each i ∈ I. Any B̃ ∈ L(S,FI) such that B̃|V is a right inverse
of TF is of the form

B̃ = B + (BTF − IFI )Λ

where Λ ∈ L(S,FI). Then

{piB̃}i∈I = {φi − λi +
∑
j∈I

φi(fj)λj}i∈I ,

where λi = piΛ ∈ S ′ for each i ∈ I. Now the conclusion follows from
Theorem 6. �

Corollary 5 Let F = {fi}i∈I be a frame for V and Φ = {φi}i∈I ⊆ S ′ be a
dual of F in V. Then the duals of F in V are the families {φi+λi}i∈I where
{λi}i∈I ⊆ S ′ is such that

∑
i∈I λi(fj)fi = 0 for each j ∈ I.

Proof. Let B be as in the previous proof. Any B̃ ∈ L(S,FI) such that B̃|V
is a right inverse of TF is of the form

B̃ = B + Λ,

where Λ ∈ L(S,FI) is such that TFΛ|V = 0. Applying Theorem 6, we obtain
the conclusion. �

Taking into account the proof of Corollary 5, we conclude that if V = S
and dim(V) = d, then the affine space of the duals of a frame F for V has
dimension

d(|I| − d) = dim(L(V , dep(F))).

This affine space reduces to a single point if and only if |I| = d.

Example 7 We continue Example 6. Let F = {fi}i∈I be a frame for V and

let F̃ = {f̃i}i∈I be the canonical dual frame of F in V . By Corollary 4, any
dual frame of F in V is of the form

{f̃i − hi +
∑
j∈I

〈fj, f̃i〉hj}i∈I

where {hi}i∈I ⊂ S. From Corollary 5, any dual frame of F in V is of the
form

{f̃i + hi}i∈I ,

where {hi}i∈I ⊂ S is such that
∑

i∈I〈fj, hi〉fi = 0 for each j ∈ I. Thus,
we recover well known expressions for the duals in classical frame theory for
Hilbert spaces.
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In the rest of this section, we consider similar results for the duals F =
{fi}i∈I ⊆ V of Φ = {φi}i∈I ⊆ S ′ in V .

Theorem 7 Let Φ = {φi}i∈I ⊆ S ′ be such that Φ|V is a frame for V ′.
The duals of Φ in V are precisely the families F = {Aδi}i∈I ⊆ V, where
A ∈ L(FI ,V) is a left inverse of (T ∗Φ)|V . In this case, A = TF .

Proof. Let A ∈ L(FI ,V) be a left inverse of (T ∗Φ)|V . Set fi := Aδi for each
i ∈ I and F = {fi}i∈I . Then TF = A is surjective, consequently, {fi}i∈I is a
frame for V . Since

TF(T ∗Φ)|V = A(T ∗Φ)|V = IV ,

F and Φ are dual frames in V .
Conversely, let F = {fi}i∈I be a dual of Φ in V . Then TF ∈ L(FI ,V) is

a left inverse of (T ∗Φ)|V and fi = TFδi for each i ∈ I. �

If A ∈ L(FI ,V) is a left inverse of (T ∗Φ)|V , then any left inverse Ã ∈
L(FI ,V) of (T ∗Φ)|V is of the form

Ã = A+ Λ(IFI − T ∗ΦA)

where Λ ∈ L(FI ,V), or

Ã = A+ Λ,

Λ ∈ L(FI ,V) is such that Λ(T ∗Φ)|V = 0. Thus, analogous to Corollary 4
and Corollary 5, we obtain the following corollaries as a consequence of
Theorem 7:

Corollary 6 Let Φ = {φi}i∈I ⊆ S ′ be such that Φ|V is a frame for V ′, and
F = {fi}i∈I ⊆ V be a dual of Φ in V. Then the duals of Φ in V are the
families {fi + hi −

∑
j∈I φj(fi)hj}i∈I ⊆ V, where {hi}i∈I ⊆ V.

Corollary 7 Let Φ = {φi}i∈I ⊆ S ′ be such that Φ|V is a frame for V ′, and
F = {fi}i∈I ⊆ V be a dual of Φ in V. Then the duals of Φ in V are the
families {fi + hi}i∈I ⊆ V, where {hi}i∈I ⊆ V is such that

∑
i∈I φi(fj)hi = 0

for each j ∈ I.

5 The construction of specific dual frames

Now we are going to show that if any frame F for V , any complement
dep(F)c of dep(F) in FI and any complement Vc of V in S are given, there
exists a unique dual Φ ⊆ S ′ of F in V such that

ker(T ∗Φ) = Vc and im(T ∗Φ) = dep(F)c.

The construction of this dual depends on a suitable selection of B ∈ L(S,FI)
in Theorem 6 such that B|V is a right inverse of TF .
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Theorem 8 Let F = {fi}i∈I be a frame for V, dep(F)c be any complement
of dep(F) in FI and Vc be any complement of V in S. Then there exists a
unique dual Φ ⊆ S ′ of F in V such that im(T ∗Φ) = dep(F)c and ker(T ∗Φ) = Vc.
The dual Φ is such that T ∗Φ = (TF)]dep(F)c,Vc, where TF is considered as an

element of L(FI ,S).

Proof. By definition of Φ and (TF)]dep(F)c,Vc ,

im(T ∗Φ) = dep(F)c and ker(T ∗Φ) = Vc.

Let f ∈ V . Then

TFT
∗
Φf = TF(TF)]dep(F)c,Vcf = PV,Vcf = f.

This shows that Φ is a dual of F in V .
By Theorem 3, if Φ ⊆ S ′ is a dual of F such that im(T ∗Φ) = dep(F)c and

ker(T ∗Φ) = Vc, then

T ∗ΦTF = Pdep(F)c,dep(F) and TFT
∗
Φ = PV,Vc .

Therefore, T ∗Φ = (TF)]dep(F)c,Vc . This shows the uniqueness of Φ. �

Example 8 Let S be a finite-dimensional real or complex inner product
vector space. Let F = (fi)i be a frame for V . If F̃ is the canonical dual

frame of F in V given by F̃ = {(SF)]V,V⊥fi}i∈I , then

TFT
∗
F̃ = PV,V⊥ and ker(T ∗F̃) = V⊥

(see Example 6).
Let x ∈ dep(F)⊥ = im(T ∗F). If y = T ∗F̃TFx = TFx, then

TFy = TFT
∗
F̃TFx = PV,V⊥TFx = TFx.

Thus, x− y ∈ dep(F) ∩ im(T ∗F) = {0}. Therefore,

T ∗F̃TFx = x, T ∗F̃TF = Pdep(F)⊥,dep(F)

and
dep(F)⊥ ⊂ im(T ∗F̃).

Let x ∈ im(T ∗F̃). Since F is a frame for V , there exists y ∈ dep(F)⊥ such
that x = T ∗F̃TFy. But

T ∗F̃TFy = Pdep(F)⊥,dep(F)y = y.

Hence, x = y ∈ dep(F)⊥. This shows that dep(F)⊥ = im(T ∗F̃).
From the previous considerations it follows that

T ∗F̃ = (TF)]
dep(F)⊥,V⊥ ,

where TF is considered as an element of L(FI ,S). By Theorem 8, F̃ is the
unique dual of F in V such that im(T ∗F̃) = dep(F)⊥ and ker(T ∗F̃) = V⊥.
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The following theorem gives an expression of the dual frames Φ of F in
V such that im(T ∗Φ) = dep(F)c.

Theorem 9 Let F = {fi}i∈I be a frame for V and let dep(F)c be any
complement of dep(F) in FI . If Ψ = {ψj}j∈J ⊆ S ′ is such that Ψ|V =
{(ψj)|V}j∈J is a frame for V ′ and im(T ∗Ψ|V )c is any complement of im(T ∗Ψ|V )

in FJ , then Φ ⊆ S ′ such that

T ∗Φ = (T ∗ΨTF)]dep(F)c,im(T ∗Ψ|V
)cT
∗
Ψ (2)

is a dual of F in V with im(T ∗Φ) = dep(F)c. Moreover, if Φ1 ⊆ S is any
dual of F in V such that im(T ∗Φ1

) = dep(F)c, then (Φ1)|V = Φ|V .

Proof. From (2), im(T ∗Φ) ⊆ dep(F)c. If c ∈ FI ,

T ∗ΦTFc = (T ∗ΨTF)]dep(F)c,im(T ∗Ψ|V
)cT
∗
ΨTFc = Pdep(F)c,dep(F)c.

In particular, if c ∈ dep(F)c, then T ∗ΦTFc = c. This shows that dep(F)c =
im(T ∗Φ).

Let f ∈ V . Then there exists a ∈ FI such that f = TFa. Therefore,

TFT
∗
Φf = TF(T ∗ΨTF)]dep(F)c,im(T ∗Ψ|V

)cT
∗
ΨTFa = TFPdep(F)c,dep(F)a = TFa = f.

This proves that Φ is a dual of F in V .
Let Φ1 ⊆ S be any dual of F in V such that im(T ∗Φ1

) = dep(F)c. If
f ∈ V then

f = TFT
∗
Φf = TFT

∗
Φ1
f.

Since TF is injective on dep(F)c, we get T ∗Φf = T ∗Φ1
f . Thus, (Φ1)|V = Φ|V .

�

In view of the proof of Theorem 9, we have the following important result:

Theorem 10 Let F = {fi}i∈I be a frame for V and let dep(F)c be any
complement of dep(F) in FI . If Φ ⊆ S ′ is a dual frame of F in V such that
im(T ∗Φ) = dep(F)c and f ∈ V, then T ∗Φ(f) = Pdep(F)c,dep(F)a, where a is any
element in FI such that f = TFa.

Remark 6 Let C1 and C2 be two complements of dep(F) in FI . Let Φ,Ψ ⊆
S ′ be dual frames of F in V such that im(T ∗Φ) = C1 and im(T ∗Ψ) = C2. Note
that C1 and C2 are isomorphic and

T ∗Ψ = PC2,dep(F)cT
∗
Φ.

If F is a basis for V , then FI is the unique complement of dep(F) = {0}.
Thus, there is a unique dual frame of F in V which coincides with the
classical dual basis.
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Example 9 We continue Example 8. By Theorem 10, for f ∈ V ,

T ∗F̃(f) = Pdep(F)⊥,dep(F)a,

where TFa = f . Therefore, for each f ∈ V , the coefficients {〈f, f̃i〉}i∈I have
minimal `2-norm among all coefficients {ai}i∈I ⊂ F such that

∑
i∈I aifi = f

(see also [14, Theorem 1.1.5]).

Remark 7 Using the previous results we can see the relation between duals
of similar frames. LetR be a vector space over F,W be a subspace ofR such
that dim(W) = dim(V) and let L ∈ L(V ,W) be invertible. Let F = {fi}i∈I
be a frame for V and let dep(F)c be any complement of dep(F) in FI . By
Lemma 2 and Theorem 8 (or Theorem 9), there exist a dual frame Φ ⊆ S ′
of F in V and a dual frame Ψ ⊆ R′ of LF in W such that

im(T ∗Φ) = im(T ∗Ψ) = dep(F)c.

As a consequence of Theorem 10,

T ∗Ψ(Lf) = T ∗Φ(f) for each f ∈ V .

Remark 8 We can generalize Remark 7 by consideringW as a subspace of
R such that dim(W) ≤ dim(V) and L ∈ L(V ,W) surjective. Let F = {fi}i∈I
be a frame for V . Let dep(F)c be any complement of dep(F) in FI and
let dep(LF)c be any complement of dep(LF) in FI . From Lemma 2 and
Theorem 8 (or Theorem 9), there exist a dual frame Φ ⊆ S ′ of F in V and
a dual frame Ψ ⊆ R′ of LF in W such that

im(T ∗Φ) = dep(F)c and im(T ∗Ψ) = dep(LF)c.

By Theorem 10 and Remark 1,

T ∗Ψ(Lf) = Pdep(LF)c,dep(LF)T
∗
Φ(f) for each f ∈ V .

We present now analogous to Theorems 8 and 9 results for the duals
F = {fi}i∈I ⊆ V of Φ = {φi}i∈I ⊆ S ′ in V .

Theorem 11 Let Φ = {φi}i∈I ⊆ S ′, ker(T ∗Φ)c be a complement of ker(T ∗Φ) in
S and im(T ∗Φ)c be a complement of im(T ∗Φ)c in FI . Then there exists a unique
dual F ⊆ S of Φ such that im(TF) = ker(T ∗Φ)c and dep(F) = im(T ∗Φ)c. The
dual F is given by TF = (T ∗Φ)]ker(T ∗Φ)c,im(T ∗Φ)c.

Theorem 12 Let Φ = {φi}i∈I ⊆ S ′ be such that Φ|V is a frame for V ′ and
im(T ∗Φ|V )c be a complement of im(T ∗Φ|V ) in FI . If G = (gj}j∈J is any frame

for V and dep(G)c is any complement of dep(G) in FJ , then F = (fj)j∈J ⊆ V
given by

TF = TG(T
∗
ΦTG)

]
dep(G)c,im(T ∗Φ|V

)c

is the unique dual of Φ such that dep(F) = im(T ∗Φ|V )c.
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6 Perturbation and dual frames

The study of perturbation of frames is an important topic in classical frame
theory. In this section, using obtained results, we will investigate the dual
frames of the perturbed frames.

Let S be a finite-dimensional real or complex inner product vector space.
We will consider different types of perturbations: close frames, near frames
and Paley-Wiener perturbations.

6.1 Close and near frames

Let F and G be frames for V . Following [2], we have the next two definitions.
The frame G is close to F if there exists λ ≥ 0 such that

||TFc− TGc|| ≤ λ||TFc|| for each c ∈ FI .

We say that F and G are near if F is close to G and G is close to F .
If G is close to F , then dep(F) ⊆ dep(G). Therefore, there exists a

surjective Q ∈ L(V ,W) such that Qfi = gi for each i ∈ I (Remark 1). The
relation between the dual frames of F and G is described in Remark 8.

If G is close to F with a constant λ < 1, then they have the same linear
dependencies and, consequently, they are similar (Lemma 2). Finally, frames
F and G are near if and only if they are similar (see [35, Section 3.8] for
more details). In these two cases, the relation between the dual frames of F
and G is given in Remark 7.

6.2 Paley-Wiener perturbations

Now we consider generalizations of Paley-Wiener perturbations. They are
also valid in the case that S is a separable Hilbert space and I is a countable
set. The following theorem generalizes [14, Theorem 22.1.1].

Theorem 13 Let F = {fi}i∈I be a frame for S and let F̃ = {f̃i}i∈I be a
dual frame of F . Let G = {gi}i∈I ⊂ S, and assume that there exist constants
λ, µ ≥ 0 such that λ+ µ||TF̃ || < 1 and

||TFc− TGc|| ≤ λ||TFc||+ µ||c|| for each c ∈ FI .

Then G is a frame for S with

||S−1
G ||

−1 ≥ 1

||TF̃ ||2
(1−λ−µ||TF̃ ||)

2 and ||SG|| ≤ ||TF ||2
(

1 + λ+
µ

||TF ||

)2

.

Taking into account that ||T ∗F − T ∗G || = ||TF − TG||, from Theorem 13
with λ = 0, we have the following generalization of [14, Corollary 22.1.5]:
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Corollary 8 Let F = {fi}i∈I be a frame for S and let F̃ = {f̃i}i∈I be a dual
frame of F . Let G = {gi}i∈I ⊂ S, and assume that there exists a constant
µ ≥ 0 such that µ||TF̃ || < 1 and

||T ∗Ff − T ∗Gf || ≤ µ||f || for each f ∈ S.

Then G is a frame for S with

||S−1
G ||

−1 ≥ 1

||TF̃ ||2
(1− µ||TF̃ ||)

2 and ||SG|| ≤ ||TF ||2
(

1 +
µ

||TF ||

)2

.

Another perturbation result, that generalizes [10, Theorem 2], is the
following:

Theorem 14 Let F = {fi}i∈I be a frame for S and let F̃ = {f̃i}i∈I be a
dual frame of F . Let G = {gi}i∈I ⊂ S, and assume that there exist constants
λ1, λ2, µ ≥ 0 such that max{λ1 + µ||TF̃ ||, λ2} < 1 and

||TFc− TGc|| ≤ λ1||TFc||+ λ2||TGc||+ µ||c|| for each c ∈ FI .

Then G is a frame for S with

||S−1
G ||

−1 ≥ 1

||TF̃ ||2

(
1−

λ1 + λ2 + µ||TF̃ ||
1 + λ2

)2

and

||SG|| ≤ ||TF ||2
(

1 +
λ1 + λ2 + µ

||TF ||

1− λ2

)2

.

The proofs of the previous results use the same arguments that appear
in the proofs of the original ones, where F̃ = SF−1F = {SF−1fi}i∈I is the
canonical dual frame of F . Furthermore, it can be seen that TF̃T

∗
G is invert-

ible.
We next enunciate [12, Theorem 2.1.], in which the operator TF̃T

∗
G is also

invertible:

Theorem 15 Let F = {fi}i∈I be a frame for S and let F̃ = {f̃i}i∈I be a
dual frame of F . Assume that G = {gi}i∈I ⊂ S satisfies

λ :=
∑
i∈I

||fi − gi||2 <∞ and µ :=
∑
i∈I

||fi − gi||||f̃i|| < 1.

Then G is a frame for S with

||S−1
G ||

−1 ≥ 1

||TF̃ ||2
(1− µ)2 and ||SG|| ≤ ||TF ||2

(
1 +

√
λ

||TF ||

)2

.
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In the previous results TF̃T
∗
G is invertible. Thus,

TGT
∗
F̃(TGT

∗
F̃)−1f = f for each f ∈ V .

Consequently, G̃ = {(T ∗F̃(TGT
∗
F̃)−1)∗δi}i∈I = {(TF̃T ∗G)−1f̃i}i∈I is a dual frame

of G. We have im(T ∗G̃) = im(T ∗F̃) and dep(G̃) = dep(F̃). Therefore, by The-

orem 3, dep(G) is a complement of im(T ∗F̃) whereas im(T ∗G) is a complement

of dep(F̃). We note that if µ = 0 in Theorem 14, then dep(F) = dep(G),
and hence F and G are similar, and the relation between their dual frames
is given in Remark 7.

7 Applications

In the previous sections, the developed theory of dual frames was related to
the classical frame theory in Hilbert spaces. Now we apply the general theory
to study some questions about dual frames in different finite-dimensional
vector spaces. We consider dual frames for vector spaces over conjugate
closed subfields of the complex numbers, for metric vector spaces and for
ultrametric normed vector spaces over complete non-archimedean valued
fields. Finally, the representation of operators using dual frames and the
application to the solution of operator equations are considered.

7.1 The case F ⊆ C and F = F
In [36], frames for finite-dimensional vector spaces S over fields F such that
F ⊆ C and F = F were considered. In this case,

V = S dep(F)c = dep(F)⊥ and im(T ∗Ψ)c = im(T ∗Ψ)⊥,

the operator (T ∗ΨTF)]dep(F)c,im(T ∗Ψ|V
)c is the Moore-Penrose pseudoinverse of

T ∗ΨTF , and Theorem 9 coincides with [36, Lemma 4.2].
The matrix Pdep(F)⊥,dep(F) is called the canonical Gramian of F . Linear

functionals Φ = {φi}i∈I ⊆ S ′ given by

T ∗Φ(f) = Pdep(F)⊥,dep(F)a

where TFa = f for each f ∈ V , are called the canonical coordinates for
F (see Theorem 10). As in Example 9, for each f ∈ V , the coefficients
T ∗Φ(f) have minimal `2-norm among all coefficients {ai}i∈I ⊂ F such that∑

i∈I aifi = f . There is a unique inner product on S, defined by

〈f, g〉F := 〈T ∗Φ(f), T ∗Φ(g)〉,
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for which F is a Parseval frame, i.e.,

f =
∑
i∈I

〈f, fi〉Ffi for each f ∈ S.

See [13, 35, 36] for more details. In particular, these works consider cyclo-
tomic fields.

Let ω := ei
2π
n be a primitive n-th root of unity. The cyclotomic field

Q(ω) is a Q-vector space of dimension d = ϕ(n), where ϕ is the Euler phi
(totient) function. A natural frame (spanning sequence) for Q(ω) is given
by the n-th roots F = {ωk}k∈Zn .

Let Z∗n be the group of units of Zn (equivalent classes corresponding to
the elements of {0, 1, . . . , n− 1} which are coprime with n). Let

χj = (1, ωj, ω2j, . . . , ω(n−1)j) for each j ∈ Zn.

Let µ be the Möbius function

µ(n) :=


1, n = 1;
(−1)n, n is square free;
0, otherwise.

From [35] (see also [13, 36]),

Pdep(F)⊥,dep(F) =
∑
j∈Z∗n

χjχ
∗
j ,

and the canonical dual Φ of F satisfies

φk(ω
j) = (Pdep(F)⊥,dep(F))(k, j) =

1

n
ϕ(n)µ

(
n

gcd(k − j, n)

)
.

Let C be the shift operator on Qn given by (a1, . . . , an) 7→ (a2, . . . , an, a1).
We have that Pdep(F)⊥,dep(TF ) is circulant, i.e.,

CPdep(TF )⊥,dep(F) = Pdep(TF )⊥,dep(F)C.

Thus, im(T ∗Φ) = dep(F)⊥ is invariant under the shift operator C. Therefore,
dep(F) is shift invariant too.

Let now Ψ = {ψk}k∈Zn ⊆ Q(ω)′ be any dual of F . By Theorem 2,
Qn = im(T ∗Ψ)⊕ dep(TF). Therefore, since dep(F) is shift invariant, im(T ∗Ψ)
is shift invariant. Let im(T ∗Ψ) = dep(F)c, where dep(TF)c is a complement
of dep(TF) in Qn. If Pdep(TF )c,dep(F) is circulant, then Ψ as the canonical dual
Φ satisfies:

� Cyclic shift property : T ∗Ψ(ωf) = CT ∗Ψ(f) for each f ∈ Q(ω).
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� Conjugate property : T ∗Ψ(f) = CnT ∗Ψ(f) for each f ∈ Q(ω).

� Convolutional property : T ∗Ψ(fg) = T ∗Ψ(f) ∗ T ∗Ψ(g) for each f, g ∈ Q(ω),
where [T ∗Ψ(f) ∗ T ∗Ψ(g)]k =

∑n−1
j=1 [ψ(f)]j[ψ(g)]k−j for each k ∈ Zn.

Conversely, if Ψ satisfies the cyclic shift property, then Pdep(F)c,dep(F) is
circulant. These properties are very useful for the computation of Ψ.

By Corollary 5,

T ∗Ψ = T ∗Φ + T ∗Λ

for some Λ = {λk}k∈Zn ⊆ Q(ω)′ such that im(T ∗Λ) ⊆ dep(F). Note that
Ψ satisfies the cyclic shift property (conjugate property) if and only if Λ
satisfies the cyclic shift property (conjugate property). We also have that
if Λ satisfies the cyclic shift property, then Ψ satisfies the convolutional
property. Consider the power integral basis B = {ωk}ϕ(n)−1

k=0 of Q(ω) and the
matrix MΛ ∈ Qn×n such that MΛ(k, l) := λk(ω

l). Then Λ satisfies the cyclic
shift property if and only if MΛ is circulant.

7.2 Metric vector spaces

Let S be a finite-dimensional vector space over F and let (., .) be a bilinear
form (bilinear functional) on S which is either symmetric, skew-symmetric
(or antisymmetric), or alternate. The pair (S, (., .)) is called a metric vector
space. If the bilinear form is symmetric, then (S, (., .)) is called an orthogonal
geometry over F, and if the bilinear form is alternate, (S, (., .)) is called a
symplectic geometry over F. For the theory of metric vector spaces see, e.g.,
[33].

We consider in FI the bilinear form defined by (x, y) :=
∑

i∈I x(i)y(i)
for each x, y ∈ FI . This bilinear form is symmetric but not alternate, and
it is skew-symmetric if and only if char(F) = 2. The pair (FI , (·, ·)) is a
non-singular metric vector space.

Assume from now on that S is non-singular. Given φ ∈ S ′, there exists
a unique g ∈ S such that φ(f) = (f, g) for each f ∈ S [33, Theorem
11.5]. Thus, we have a theory of dual frames for non-singular metric vector
spaces as it was described in Example 1, Example 4 and Example 5 for
real or complex inner product vector spaces. We note that in Example 5
the equivalence between the conditions V ∩ W⊥ = W ∩ V⊥ = {0} and
S = V ⊕W⊥ = W ⊕ V⊥ can be proved as in [35] taking into account that
dim(S) = dim(V) + dim(V⊥) (see [33, Theorem 11.8]).

Now we analyze the existence of the canonical dual defined as in Ex-
ample 6. First we recall some facts. Let V be a subspace of S and F =
{fi}i∈I ⊆ V . Then

im(TF∗) ⊥ ker(TF), dim(ker(TF)) + dim(im(TF)) = |I|
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and
FI/ker(TF) ∼= im(TF).

If im(T ∗F) ∩ ker(TF) = {0}, then

FI/ker(TF) ∼= im(TF∗) and FI = ker(TF)⊕ im(TF∗).

Let F = {fi}i∈I be a frame for V . The canonical dual of F (defined as
in Example 6) exists if and only if (SF)]V,V⊥ exists, i.e.,

S = V ⊕ V⊥, im(SF) = V and ker(SF) = V⊥.

By [33, Theorem 11.8], S = V ⊕ V⊥ if and only if V is non-singular. Since
im(TF) = V and ker(T ∗F) = V⊥, we always have im(SF) ⊆ V and V⊥ ⊆
ker(SF).

Theorem 16 Let F = {fi}i∈I be a frame for V. The canonical dual of F
exists if and only if V is non-singular and im(T ∗F) ∩ ker(TF) = {0}.

Proof. If im(T ∗F) ∩ ker(TF) = {0} then

ker(SF) ⊆ V⊥ and FI = ker(TF)⊕ im(T ∗F).

Consequently, V ⊆ im(SF). Thus, if V is non-singular and im(T ∗F)∩ker(TF) =
{0}, the canonical dual of F exists.

Suppose now that the canonical dual of F exists. Then V is non-singular,
im(SF) = V and ker(SF) = V⊥. Let c = (ci)i∈I ∈ im(T ∗F) ∩ ker(TF). Then
there exists f ∈ S such that

ci = (f, fi) for each i ∈ I

and
SFf =

∑
i∈I

(f, fi)fi = 0.

Therefore,
f ∈ ker(SF) = V⊥ = ker(T ∗F).

Hence, c = 0. This shows that im(T ∗F) ∩ ker(TF) = {0}. �

Note that, if the canonical dual exists, the properties described in Ex-
ample 6, Example 8, as well as the description of all duals in Example 7 are
valid in this new context. When the canonical dual does not exist, other
duals are needed.

In the following example the canonical dual does not exist. The frame
F is a basis for V which has a unique dual frame.
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Example 10 Let S = Z3
2 and F = {(1, 0, 1), (0, 1, 0)}. We have

ker(TF) = {(0, 0)}, V = span(F) = {(0, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1, 1)}

and

V⊥ = {(0, 0, 0), (1, 0, 1)}.

Since V is singular, the canonical dual of F (defined as in Example 6) does
not exist. Using Theorem 8 with Vc = {(0, 0, 0), (1, 0, 0)}, we obtain the
dual

G = {(0, 0, 1), (0, 1, 0)}

of F in V . In this case,

ker(TG∗) = Vc and im(TG∗) = Z2
2 = ker(TF)c.

Since F is a basis for V , G is its unique dual frame.

Analogous to the Hilbert space case, we define Parseval frames.

Definition 4 Let F = {fi}i∈I ⊆ V. We say that F is a Parseval frame for
V if SFf = f for each f ∈ V.

For frames and Parseval frames in the case of the metric vector space Zd2,
see, e. g., [7, 8, 27, 29]. Frames over finite fields in unitary and orthogonal
geometries are considered in [26, 25].

The canonical dual frame of a Parseval frame always exists:

Theorem 17 If F = {fi}i∈I is a Parseval frame for V, then the canonical

dual F̃ of F exists and F̃ = F .

Proof. Let F = {fi}i∈I be a Parseval frame for V . If f ∈ V ∩ V⊥ =
im(TF) ∩ ker(T ∗F), then

f = SFf = TFT
∗
Ff = TF0 = 0.

This shows that V is non-singular. Also, we have SF = PV,V⊥ . Thus, the

canonical dual F̃ = {f̃i}i∈I of F exists and

f̃i = (SF)]V,V⊥fi = PV,V⊥fi = fi

for each i ∈ I. �
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7.3 Ultrametric normed vector spaces

Let S be a finite-dimensional vector space over a complete non-archimedean
valued field F. Let ||.|| be an ultrametric norm on S. In what follows, we
show some particularities of frames and dual frames in these type of normed
vector spaces. We consider in Fn the ultrametric norm

||(xk)nk=1|| = max
1≤k≤n

|xk|,

where |.| is the non-archimedean valuation on F. We use the operator norm
for the different operators. For details about ultrametric analysis, we refer
the reader to [32].

We begin with the following result, which is similar to [14, Proposition
1.1.2].

Proposition 6 Let Φ = {φk}nk=1 ⊆ S ′. Then Φ is a frame for S ′ if and
only if there exists a real α > 0 such that α||f || ≤ ||T ∗Φ(f)|| for each f ∈ S.

Proof. Assume that Φ is a frame for S ′. By Theorem 1, T ∗Φ is injective.
Thus, there exists A ∈ L(Fn,S) such that AT ∗Φ = IS . If f ∈ S, then

||A||−1||f || ≤ ||T ∗Φ(f)||.

We can take α = ||A||−1.
If there exists α > 0 such that α||f || ≤ ||T ∗Φ(f)|| for each f ∈ S, then T ∗Φ

is injective. By Theorem 1, Φ is a frame for S ′. �

The constant α, mentioned in the previous proposition, is called a (lower)
frame bound for Φ. As a consequence of Proposition 6, we obtain:

Corollary 9 Let Φ = {φk}nk=1 be a frame for S ′ with frame bound α and
let β < α. Let Ψ = {ψk}nk=1 ⊆ S ′ be such that ||T ∗Ψ(f)− T ∗Φ(f)|| ≤ β||f || for
each f ∈ S. Then Ψ is a frame for S ′ with frame bound α− β.

Another perturbation result is the following:

Corollary 10 Let Φ = {φk}nk=1 be a frame for S ′ with frame bound α. Let
Ψ = {ψk}nk=1 ⊆ S ′ be such that ||T ∗Ψ(f)−T ∗Φ(f)|| < ||T ∗Φ(f)|| for each f ∈ S.
Then Ψ is a frame for S ′ with frame bound α.

Proof. Since ||.|| is an ultrametric norm, for each f ∈ S, if

||T ∗Ψ(f)− T ∗Φ(f)|| < ||T ∗Φ(f)||,

then
||T ∗Ψ(f)|| = ||T ∗Φ(f)||.

It remains to apply Proposition 6. �
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Let F = (fk}nk=1 ⊆ S and Φ = {φk}nk=1 ⊆ S ′. We have

||TF || = max
1≤k≤n

||fk|| and ||T ∗Φ|| = max
1≤k≤n

||φk||.

From these equalities and Theorem 2 we get:

Proposition 7 Let F = {fk}nk=1 be a frame for S and Φ = {φk}nk=1 ⊆ S ′
be a dual frame of F . Then

(i) ||T ∗Φ(f)|| ≥ ||f || ||TF ||−1 for each f ∈ S.

(ii) 1 ≤ ||T ∗ΦTF || ≤ max
1≤k≤n

||fk||max
1≤k≤n

||φk||.

The following results are about the perturbation of a dual frame.

Theorem 18 Let F = {fk}nk=1 ⊆ S and Φ = {φk}nk=1 ⊆ S ′ be dual frames

and G = {gk}nk=1 ⊆ S. If max
1≤k≤n

||gk − fk|| <
1

max
1≤k≤n

||φk||
, then:

(i) G is a frame for S.

(ii) The family Ψ such that T ∗Ψ = T ∗Φ(TGT
∗
Φ)−1 is a dual frame of G.

(iii) im(T ∗Ψ) = im(T ∗Φ) and dep(G) = dep(F).

(iv) max
1≤k≤n

||ψk − φk|| < max
1≤k≤n

||φk||.

Proof. We have,

||IS − TGT ∗Φ|| = ||TFT ∗Φ − TGT ∗Φ|| ≤ max
1≤k≤n

||gk − fk||max
1≤k≤n

||φk|| < 1.

By Neumann’s theorem, TGT
∗
Φ is invertible and

(TGT
∗
Φ)−1 =

∞∑
j=1

(IS − TGT ∗Φ)j.

Since S is an ultrametric normed vector space, from the last equality we
obtain ||(TGT ∗Φ)−1|| < 1.

Since
f = (TGT

∗
Φ)(TGT

∗
Φ)−1f for each f ∈ S,

one has (i) and (ii). Part (iii) is a consequence of (ii) and Theorem 2. Finally,

max
1≤k≤n

||ψk − φk|| = ||T ∗Ψ − T ∗Φ|| = ||T ∗Φ((TGT
∗
Φ)−1 − IS)||

≤ max
1≤k≤n

||φk|| ||(TGT ∗Φ)−1 − IS ||

≤ max
1≤k≤n

||φk|| ||(TGT ∗Φ)−1|| ||IS − TGT ∗Φ||

< max
1≤k≤n

||φk||,

which proves (iv). �
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Note that by Theorem 8 (or Theorem 9), Ψ in Theorem 18 is the unique
dual of G such that im(T ∗Ψ) = im(T ∗Φ).

With a similar proof we get:

Theorem 19 Let F = {fk}nk=1 be a frame for S, Φ = {φk}nk=1 ⊆ S ′ be a

dual frame of F and Ψ = {ψk}nk=1 ⊆ S ′. If max
1≤k≤n

||ψk − φk|| <
1

max
1≤k≤n

||fk||
,

then:

(i) Ψ is a frame for S ′.

(ii) The family G such that TG = (TFT
∗
Ψ)−1TF is a dual frame of Ψ.

(iii) dep(G) = dep(F) and im(T ∗Ψ) = im(T ∗Φ).

(iv) max
1≤k≤n

||gk − fk|| < max
1≤k≤n

||fk||.

By Theorem 11 (or Theorem 12) and Theorem 2, G in Theorem 19 is the
unique dual of Ψ such that dep(G) = dep(F).

7.4 Frame representation of operators and the solu-
tion of operator equations

The representation of operators using bases and frames and its application
to the solution of operator equations were considered in, e.g., [1, 3, 4, 6,
16, 17, 30]. Here we consider them using the present general theory of dual
frames.

Let R be a vector space over F, W be a finite-dimensional subspace
of R. Let F = {fi}i∈I ⊆ V , Φ = {φi}i∈I ⊆ S ′, G = {gi}i∈J ⊆ W , and
Ψ = {ψi}i∈J ⊆ R′.

Let TF ,Ψ ∈ L(L(V ,W), L(FI ,FJ)) be defined by

TF ,Ψ(L) = T ∗ΨLTF for each L ∈ L(V ,W),

and let T G,Φ ∈ L(L(FI ,FJ), L(V ,W)) be defined by

T G,Φ(A) = TGA(T ∗Φ)|V for each A ∈ L(FI ,FJ).

Given L ∈ L(V ,W), we say that TF ,Ψ(L) is the linear transformation in
L(FI ,FJ) representing L with respect to F and Ψ. The matrix of TF ,Ψ(L)
with respect to the standard bases of FI and FJ is (ψjLfi)j,i.

If A ∈ L(FI ,FJ), we say that T G,Φ(A) is the linear transformation in
L(V ,W) representing A with respect to G and Φ.

We have the following result (see also [3], where V = S and W = R are
Hilbert spaces):
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Theorem 20 Assume that F and Φ are dual frames in V, while G and Ψ
are dual frames in W. Then:

1. T G,ΦTF ,Ψ = IL(V,W) and Lf =
∑

j∈J
∑

i∈I φi(f)ψj(Lfi)gj for each L ∈
L(V ,W) and f ∈ V.

2. T G,Φ is surjective and TF ,Ψ is injective.

3. T G,ΨIFJ = IW .

4. Let L ∈ L(V ,W), f ∈ V and g ∈ W. Then Lf = g if and only if
TF ,Ψ(L)T ∗Φf = T ∗Ψg.

5. TF ,Ψ(L)(im((T ∗Φ)|V)) ⊆ im((T ∗Ψ)|W). If L is surjective, then

TF ,Ψ(L)(im((T ∗Φ)|V)) = im((T ∗Ψ)|W).

If L is injective, then TF ,Ψ(L)|im((T ∗Φ)|V ) is injective.

Given L ∈ L(S,R) and g ∈ R, consider the operator equation

Lf = g. (3)

A solution of (3) can be obtained using dual frames and the Petrov-Galerkin
method in the finite dimensional subspaces V ⊆ S and W ⊆ R such that
L(V) ⊆ W . For this, we solve the finite matrix equation

TF ,Ψ(L|V)c = T ∗Ψg̃, (4)

where

� F and Φ are dual frames in V such that S = V ⊕ ker(T ∗Φ),

� G and Ψ are dual frames in W such that R =W ⊕ ker(T ∗Ψ),

� g̃ = PW,ker(T ∗Ψ)g.

Recall that by Theorem 3, TFT
∗
Φ = PV,ker(T ∗Φ) and TGT

∗
Ψ = PW,ker(T ∗Ψ). Also,

by Theorem 2, T ∗ΦTF = Pim(T ∗Φ|V
),dep(F) and T ∗ΨTF = Pim(T ∗Ψ|W

),dep(G). Hence,

T ∗Ψg̃ = Pim(T ∗Ψ|W
),dep(G)T

∗
Ψg.

Let c ∈ FI be a (possibly approximate) solution of (4) and

c̃ = T ∗ΦTFc = Pim(T ∗Φ|V
),dep(F)c.

Since dep(F) ⊆ ker(TF ,Ψ(L|V)), we have

TF ,Ψ(L|V)c̃ = TF ,Ψ(L|V)c.
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We take f̃ = TF c̃ = TFc as a solution of (3). Assume now that c ∈ FI is a

true solution of (4), i.e., TF ,Ψ(L|V)c = T ∗Ψg̃. By Theorem 20, Lf̃ = g̃.
We can work with different types of operator equations such as differen-

tial equations or integral equations. Depending on the operator equation,
we can use suitable strategies to construct the subspaces V and W , and the
dual frames F and Φ, G and Ψ. For example, if W is such that g ∈ W we
obtain g̃ = g.
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