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Abstract
In this work, we re-examine the Thomas–Fermi formalism as an approach to
the calculation of atomic binding energies. We focus on the concept of elec-
tron density as the central magnitude, and the way in which the different
contributions to the total energy can be evaluated from it. Total energies of
simple atoms (Z = 2 to 10) are calculated using three different analytical
approximations for the electronic density, and the results are compared with
those obtained within the Hartree–Fock model.

Keywords: Thomas–Fermi, density functional theory, atoms, molecules

(Some figures may appear in colour only in the online journal)

1. Introduction

From introductory quantum mechanics courses, it is generally assumed that the calculation of
energy in quantum systems is indissolubly linked to the notion of wavefunctions [1, 2].
Courses based on more advanced textbooks tend to reinforce this concept [3, 4]. It should not
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be disregarded, however, that from the standpoint of atomic and molecular physics, the only
exactly solvable system is the hydrogen atom, with nuclear charge Z and a single electron, in
both the non-relativistic and relativistic approaches. Helium-like atoms, instead, are neces-
sarily treated in an approximated way by means of the perturbation theory and/or the var-
iational method [5]. In order to understand the difficulties involved in the study of the second
simplest atom in the periodic table, a solved example can be found in [1]. For more complex
atoms, the canonical method is based on the model of independent particles moving in a
central field, generally known as the Hartree–Fock (HF) model, or, in the relativistic case, the
Dirac–Fock (DF) model [6]. Some quantum mechanics textbooks give a brief summary of
this subject but, for a thorough understanding, a more specific bibliography is necessary
[7, 8]. For molecules, the problem turns out to be much more difficult since the central
symmetry disappears, and the implementation of the HF model becomes more complex [8]. It
should be noted that in the general case of N electrons, the wavefunction has 3N degrees of
freedom (6N when considering the spin), which makes difficult to treat with ‘chemical
accuracy’ systems containing more than 10 active electrons. An estimation of this number is
made in [9].

On the other hand, in 1927, Thomas and Fermi developed an alternative method,
modified later by Dirac and Weizsacker, to deal with many-electron systems. A few classical
textbooks discuss this topic [3], usually emphasizing the inadequacy of this method for the
calculation of atomic binding energies. The important fact that the Thomas–Fermi (TF)
method forms the conceptual basis for the powerful density functional theory (DFT) is, in our
understanding, not sufficiently stressed in modern textbooks. The foundational papers of
DFT, due to Walter Kohn and co-workers, appeared in 1964–65 [10, 11]. The main idea
behind this theory is, basically, that all the information about a given quantum mechanical
system can be obtained from the knowledge of its electronic density r ( )r (a function with
only three degrees of freedom, instead of the 3N degrees of freedom of the wavefunction).
Regarding this formalism, we can mention the didactical exposition in the book by Levine
[8], and an excellent paper, also with a didactical approach, due to Capelle [12]. Another
excellent text, that relates the DFT method with TF, is due to Parr and Yang [13]. The method
of Kohn and co-workers has its roots in the method developed by Thomas and Fermi, and
modified later by Dirac and Weizsaker. It is necessary to mention at this point that, in the
lapse between 1927 and 1964, a very important contribution was a work by Slater in 1951
[14], where an approximated method to calculate the so-called exchange interaction was
proposed.

The fundamental hypothesis underlying the DFT method is that the knowledge of the
electronic density r ( )r in the ground state of any electronic system (with or without inter-
actions) univocally determines the system. The interested reader can resort to the above
mentioned [8] and [12] for further details, particularly concerning with the way in which the
DFT method is employed in practice to calculate several physical observables. The DFT
method is, in principle, exact, since it takes into account the terms of ‘exchange’ and ‘cor-
relation’ (whose meanings will be explained below). Also in principle, the DFT method do
not need the concept of wavefunction, although Kohn and Sham introduced the so-called KS
orbitals in order to have an initial estimation of the density.

It should be emphasized that the electron density, r ( )r , is all that it is necessary to
determine the exact energy of many electron systems. So, DFT has become an ab initio pillar
of molecular and condensed matter physics. It is curious that, despite the formidable relevance
of these theories, only a few papers on the subject have been published in journals devoted to
didactical aspects of physics. As an example, Neal considered a system of two coupled
harmonic oscillators in one dimension [15]. Later, the same author studied single-particle
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systems in one spatial dimension [16]. Although theoretically interesting, no comparison with
experiments was presented.

On the other hand, low Z neutral atoms provide both relatively simple systems (due to
their spherical symmetry) and a lot of experimental data to compare the theoretical results, in
particular, the total binding energies. More over, in low Z atoms, relativistic corrections can
be neglected, to a great extent. The main aim of this work is to show how, by performing a
reasonable choice for the analytical form of the electron density r ( )r and avoiding the use of
wavefunctions, it is possible to obtain the different contributions to the total energy of simple
atomic systems. From the didactical point of view, it is important to stress that, whereas the
canonical TF method needs a self-consistent procedure, our approach only needs the search of
a minimum, with a few adjustable parameters. We consider that the implementation of this
procedure is easier than a self-consistent method and, therefore, adequate for both graduate
and undergraduate students of quantum mechanics, taking specialist courses.

It is very important to stress that DFT makes two kinds of contribution to the science of
many-body quantum systems, including the electronic structure of molecules, solids and
plasma. The first is in the fundamental understanding. Theoretical chemists and physicists, by
solving the Schrödinger equation, think in terms of a truncated Hilbert space of single-particle
orbitals. In high accuracy calculations many Slater determinants are required; in some cal-
culations of the order of 109 or so. DFT provides a complementary perspective, because it
focuses on quantities in the real, three-dimensional coordinate space, principally on the
electron density r ( )r . These quantities are physical, independent of representation, and easily
to visualize even for very large systems. The second contribution is practical. HF methods,
when applied to many particle systems, encounter an exponential wall when the number of
atoms N exceeds a critical value of » –N 10 200 for a system without symmetries [9].
Therefore, when N N 1,0 such as large organic molecules, DNA, etc, HF methods are
impractical. On the other hand, DFT can handle systems with a number of atoms of the order
of –10 10 .2 3 It is expected that wavefunction-based and density-based theories, in com-
plementary ways, give us more accurate results but also a better understanding of the elec-
tronic structure of the matter. We think that the present paper could be considered as a starting
point to subsequent reading on the subject.

2. Theory

2.1. Outline of the Thomas–Fermi theory

In an atom or molecule, each electron has three degrees of freedom (without counting the
spin); for an N electron system, N3 spatial variables are necessary. In atoms, assuming the
independent particle model and a central force field, we can avoid the use of angular variables
for the determination of physical observables (matrix elements such as the transition prob-
abilities, etc), and calculate them in terms of the radial variable r. The angular variables can be
treated by means of Racah algebra within the theory of angular momentum [7]. In molecules
and solids, such separation of variables is not possible. In consequence, from the works by
Thomas, Fermi and Dirac, later by Slater, and then by Hohenberg and Kohn, and Kohn and
Sham, the electron density (r ( )r ) was used instead of the many-body wavefunctions as the
central concept of the theory [9, 12].

In this work we will employ the TF theory in the way it was understood and generalized
throughout the years. This theory is described in several quantum mechanics books, for
instance [3, 6, 17, 18]. The main idea is that the N electrons in an atom are described by an
electron density r ( )r inside a sphere of radius r0 (which may be infinite) [6]. The kinetic
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energy density at a distance r of the nucleus is, as for a free electron gas, proportional to
r[ ( )]r 5 3, whereas the potential energy is classically computed from a continuous charge
distribution r ( )r . The density r ( )r is varied in order to minimize the total energy

r r r r r= + + +[ ] [ ] [ ] [ ] [ ] ( )E E E E E 1k Wne ee

where

(1) r[ ]Ek is the electronic kinetic energy

òr p r=
¥

[ ] ( )E C r r4 d 2k K
0

2 5 3

with =C 2.8712,K

(2) r[ ]Ene is the interaction between the nucleus of charge Z and the N electrons

òr p r= -
¥

[ ] ( ) ( )E Z r r r4 d , 3ne
0

(3) r[ ]Eee is the repulsion between the electrons, and is often written as the sum of two
terms: a direct or Coulombian term r[ ]J and an exchange term r[ ]K , due to the Pauli
exclusion principle (see the appendix)

r r r= +[ ] [ ] [ ] ( )E J K 4ee

with
(a) r[ ]J , the Coulombian integral, given by

òr p r=
¥

[ ] ( ) ( )J r V r r
1

2
4 d , 5

0

2
e

where ( )V re is the potential experienced by each electron due to the remaining
-N 1 electrons, and is determined by the Poisson equation

pr=( ) ( ) ( )
r

rV r
d

d
4 6

2

2 e

(b) r rº[ ] [ ]K Ex the exchange integral, given by

òr r p rº = -
¥

[ ] [ ] ( )K E C r r4 d 7x X
0

2 4 3

where =C 0.7386,X

(4) r[ ]EW is the Weizsacker correction to the kinetic energy

òr p
r
r

=
¥

[ ] ∣ ∣ ( )E c r r
1

8
4 d . 8W

0

2
2

(The constant factor c is often taken as 1/5 or 1/9 [13].)

With these definitions, we can write the total energy as

r r r r r r= + + + +[ ] [ ] [ ] [ ] [ ] [ ] ( )E E E J K E . 9k ne W

It should be noted that, within this approach, the correlation energy is not taken into
account. This represents a small contribution to the total binding energy but is nonetheless
necessary to obtain atomic and molecular energies with chemical accuracy, and also to find
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the equilibrium geometry of the molecules. A general description of this term is given in
[8] and [12].

The minimization of the expression (9) subject to the normalization condition

ò r= ( ) ( )N r rd 10

result in an Euler type equation, that must be solved self-consistently, as we see en the
section 3.1.

2.2. Calculation of the electron density

Several problems in atomic physics can be solved in terms of the so-called atomic screening
function c ( )r . This function is the quotient between the electrostatic potential ( )U r due to all
the charges (the nucleus and the remaining -N 1 electrons, spherically averaged in such a
way that the electronic density is r ( )r ), and the potential due to the bare nucleus -Z r

c =
-

( ) ( ) ( )r
U r

Z r
. 11

In terms of c ( )r , equation (6) takes the form

r
p

c= ( ) ( ) ( )r
Z

r
r

4
12

and, correspondingly

ò òc
p

r= ⎡
⎣⎢

⎤
⎦⎥( ) ( )r

Z
r r r r

4
d d .

With the replacements = -b Z0.885 ,1 3 =x r b, the TF equation takes the universal form

c
c

 =( )
[ ( )]

( )x
x

x
, 13TF

TF
3 2

1 2

which should be solved numerically (see [19] and references therein). It was the numerical
character of the solution that suggested the inadequacy of the TF method for the calculation of
binding energies. Instead, if appropriate analytical expressions are used for r ( )r , the TF
method gives very good results, as will be shown below.

2.2.1. Moliere’s approach. In order to avoid the use of the numerical resolution of
equation (13), Moliere [20] proposed an analytical representation for the screening function
with the form

åc b= -
=

( ) ( ) ( )r B r bexp 14
i

i iMol
1

3

with constant coefficients b b b= = = = = =B B B0.1, 0.55, 0.35, 6.0, 1.2, 0.31 2 3 1 2 3

and = -b Z0.885 .1 3 The function (14) differs from the exact numerical solution by less
than 0.002 in the range < <x0 6 [20]. Besides, by forcing the exponential behavior, the
results are more accurate than those obtained using c ( )xTF . The electron density is obtained
by means of equation (12), resulting in

år
p

b b= -( ) ( )r
Z

b r
B r b

4
exp .i i i2

2
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Inserting this expression in equations (2)–(9), and integrating numerically, the different
contributions to the binding energy are obtained.

2.2.2. Moseley’s law and Slater’s screenings. By 1927, the time by which the TF theory was
developed, it was already known that the electrons in an atom accommodate in different (sub)
shells; the main evidence for this fact was the experiments carried out by Moseley [21, 22].
After plotting the transition frequencies ν for the p series, Moseley found an empirical law of
the form

n s= -( ) ( )C Z 15P P
1 2

where the constants CP and sP are different for different series [21, 23]. As noted by Whitaker
[21], s-Z P is not an effective charge, since this notion should be assigned to each of the
levels of the transition. In the non-relativistic approximation (which will be used here for
simplicity), the difference between the ionization potential and the energy for a level
=i n l, ;i i =f n l,f f is given by

=
-

=
-( ) ( ) ( )T

Ry

Z s

n

T

Ry

Z s

n
, . 16i i

2

i
2

f f
2

f
2

Comparing equations (15) and (16) it can be inferred that the Moseley constant sP is in
some way related to the screenings si and sf of the initial and final states, respectively. In
practice, sP, si and sf are often determined by fitting experimental data with the above
expressions, or by using Sommerfeldʼs generalization of Bohrʼs model of the atom [22, 23].
For instance, we can assign effective charges to the different subshells from the experimental
x-ray and photoelectric levels. The most well-known rules to determine the screenings are
those due to Slater. Based on the experimental energy levels known at his time, Slater
proposed a set of rules such as: (1) for an electron in a fully occupied 1s subshell, =s 0.30;s1

(2) for electrons in subshells ns or np ( >n 1), the screenings are given by
= + +s x y z0.35 0.85 1.00i , where x is the number of remaining electrons in the same

shell ni, y is the occupation of the shell with principal quantum number -n 1i , and z is the
occupation of the shell -n 2i [5]. Although there are also rules for d3 electrons, the given (1)
and (2) are sufficient for our comparative purposes.

With the screenings si as obtained from Slaterʼs rules, it is possible to calculate the
effective charges = -Z Z si

eff
i corresponding to each subshell =i n l,i i. Taking into account

for a moment the exact wavefunction of hydrogenic atoms (y µ -e Zr n
hyd i), and the concept

of screened charges within the framework of the screened hydrogenic model (where the
effective charge seen by an electron at subshell i differs from the nuclear charge by the
correponding screening due to the remaining electrons, = -Z Z s ,i

eff
i see below

equations (18)–(19)), we can identify the parameters kiwith the effective charges and
screenings:

= º -( )k Z n Z s n2 2i i
eff

i i i

(the factor 2 appears because r yµ( ) ∣ ∣r 2). The parameters Ai seen below in equations (18)–
(19) are again obtained from the normalization conditions (see equation (20), below). With
these values it is possible to evaluate the different contributions to the total atomic energy.

2.2.3. Our alternative approach. A function directly related with the electronic density r ( )r
is the so-called radial distribution function, ( )D r
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p r=( ) ( )D r r r4 2

This function satisfies the normalization condition

ò =
¥

( ) ( )D r r Nd 17
0

with N the total number of electrons. Plotting ( )D r versus r provides us information about the
electron distribution in the different shells.

As an alternative to Moliereʼs approach, and basing our choice in the analytical solutions
for hydrogenic atoms and the concept of effective charge for each subshell, the following
simple analytical expression for the radial distribution function is proposed

= -( ) ( ) ( )D r A r k rexp 181
2

1

for atoms with one shell (He), and

= - + -( ) ( ) ( ) ( )D r A r k r A r k rexp exp 191
2

1 2
4

2

for atoms with two shells (Li to Ne). The generalization to atoms with three or more shells is
straightforward. This shell partitioning is similar to the idea of Kohn and Sham to express the
density in terms of the auxiliary Kohn–Sham orbitals [11]. But, whereas the Kohn and Sham
equations must be solved self-consistenly, in our approach we search for a minimum of the
total energy jointly with a fulfillment of the virial theorem (see section 3.2).

In contrast to Moliereʼs model, the parameters Ai, ki are not constants, but depend on the
system under consideration. For a given system, their values were determined by a variational
procedure, minimizing the total energy (9). It should be noted that these parameters are not
independent, since the normalization condition (17) should be satisfied. Furthermore, for
atoms with n=2 (Z=3 to 10), we imposed two separate conditions

ò ò- = - = -
¥ ¥

( ) ( ) ( )A r k r r A r k r r Nexp d 2, and exp d 2. 20
0

1
2

1
3

0
2

4
2

3

This double normalization condition is restrictive and could be removed, but we keep it
in order to reduce the number of unknowns.

3. Comparison between the different methods

In Moliereʼs approach the coefficients Bi are fixed and only depend on Z through the para-
meter = -b Z0.885 .1 3 This makes Moliereʼs approach the less appropriate one, because is an
analytical approximation to the numerical solution of the original TF method. It is well known
that the pure TF method is not very appropriate from the quantitative point of view, although
improves for higher Z [3, 17].

With regard to the use of Slaterʼs rules, its coefficients were estimated from the available
experimental data in about 1930. Although better results can be achieved, this is not
immediate, because the new, improved rules, arise only after comparison with experimental
data. The interested reader may consult [5].

In the next two subsections we indicate briefly how to perform the procedures using both:
(1) the Thomas–Fermi–Dirac self-consistent approach according to the classic text by Parr
and Yang [13], and (2) our search for the minimum of the total energy and, together, the
fulfillment of the virial theorem.
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Table 1. Different contributions to the binding energy, as obtained using the universal TF function in the form presented by Moliere [20].

Element Ek
Mol

-En e
Mol

-Ee e
Mol Ex

Mol EW
Mol ETOT

Mol ETOT
exp E ETOT

Mol
TOT
exp Virial

He 2.95 −7.77 2.60 −0.93 1.12 −2.03 −2.90 0.70 −1.49
Li 7.60 −20.01 6.69 −1.82 2.13 −5.42 −7.48 0.725 −1.56
Be 14.85 −39.16 13.09 −2.17 3.36 −10.03 −14.20 0.71 −1.55
B 24.99 −65.91 22.04 −3.15 4.78 −17.25 −24.23 0.71 −1.58
C 38.24 −100.86 33.72 −5.78 6.37 −28.31 −37.86 0.75 −1.63
N 54.79 −144.52 48.32 −5.52 8.12 −38.80 −54.42 0.71 −1.62
O 74.82 −197.35 65.98 −6.89 10.01 −53.42 −75.00 0.71 −1.63
F 98.49 −259.77 86.85 −8.38 12.05 −70.76 −99.50 0.71 −1.64
Ne 125.94 −332.17 111.05 −13.53 14.22 −94.49 −129.05 0.73 −1.67
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3.1. The Thomas–Fermi–Dirac self-consistent approach

As we have seen above, the minimization of equation (9) with condition (10) requires the
introduction of the Lagrange multiplier m ,TFD with the physical significance of the chemical
potential [13]

m r r f= - -( ) ( ) ( ) ( )C Cr r r
5

3

4

3
21K xTFD

2 3 1 3

with

òf
r

= -
¢

- ¢
¢( ) ( )

∣ ∣
Z

r
r

r
r r

rd .

For neutral atoms, m = 0TFD [13] and, therefore

f r r= -( ) ( ) ( )C Cr r r
5

3

4

3
.K x

2 3 1 3

The self-consistent procedure consists in the following steps [13]: (1) make an initial
guess of the density r ( )r ,0 (2) compute the electrostatic potential f ( )r0 from this guessed
r ( )r ,0 (3) use this r ( )r0 in (21) to solve for a new density r ( )r1 whose normalization
determines the value of m ,TFD (4) insert r ( )r1 in step (1) and repeat until self-consistency is
reached.

The design and implementation of a self-consistent method is not a trivial task, therefore
we turn to the alternative point of view.

3.2. Our approach

Given the equations (18) and (19), then: (1) for each possible value of k1 and k :2 (2) we
calculate A1 and A2 according to equation (20) and made a table of r ( )r between r=0 and
=r r ,max (3) Integrals (2) to (8) are calculated, (4) The total energy ( )E k k,tot 1 2 (9) and the

virial are calculated and stored. Then, we search for both, the minimal value of Etot and the
virial, where we expect a value close to 2.00.

The implementation of this cycle is easier than a self-consistent method and, therefore,
more adequate for undergraduate students of quantum mechanics.

4. Results

Tables 1 to 4 contain the different contributions to the total binding energies of simple neutral
atoms as obtained with four different procedures. In all the cases, the last column indicates the
value assumed by the virial

= =
+ +

+
E

E

E E E

E E
virial ;x

k

POT

KIN

ne ee

W

with EPOT the total potential energy, calculated as the sum of the nucleus–electron, electron–
electron, and exchange contributions, and the total kinetic energy EKIN being the sum of the
classical TF kinetic energy and the Weizsacker correction.

In table 1 we present the different contributions to the energy using the universal
screening function proposed by Moliere (section 2.2.1). The values obtained applying Slaterʼs
rules (section 2.2.2) for the calculation of the subshell screenings si and the effective charges
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Table 2. Different contributions to the binding energy, as obtained using the Slater rules for the screenings section 2.2.3.

Element Ek
Sla

-En e
Sla

-Ee e
Sla Ex

Sla EW
Sla ETOT

Sla ETOT
exp E ETOT

Sla
TOT
exp Virial

He 2.74 −6.80 1.28 −0.91 0.32 −3.37 −2.90 1.16 −2.10
Li 6.95 −17.11 4.44 −1.53 0.78 −6.48 −7.48 0.87 −1.84
Be 13.30 −33.32 9.45 −2.30 1.45 −11.43 −14.20 0.80 −1.77
B 22.06 −56.21 16.45 −3.24 2.32 −18.63 −24.23 0.77 −1.76
C 33.62 −86.92 25.55 −4.38 3.38 −28.74 −37.86 0.76 −1.78
N 48.47 −126.45 36.88 −5.73 4.65 −42.18 −54.42 0.78 −1.79
O 67.12 −175.81 50.57 −7.31 6.13 −59.31 −75.00 0.79 −1.81
F 90.17 −236.00 66.77 −9.14 7.81 −80.38 −99.50 0.81 −1.82
Ne 118.28 −308.00 85.61 −11.22 9.71 −105.62 −129.05 0.82 −1.83
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Table 3. Our results: different contributions to the total energy as obtained with the method proposed in section 2.2.2.

Element Ek
our

-En e
our

-Ee e
our Ex

our EW
our ETOT

our ETOT
exp E ETOT

our
TOT
exp Virial

He 2.64 −6.78 1.27 −0.91 0.57 −3.21 −2.90 1.11 −2.00
Li 6.96 −17.60 3.21 −1.82 1.15 −8.10 −7.48 1.08 −2.00
Be 13.75 −34.76 6.41 −2.96 1.89 −15.66 −14.20 1.10 −2.00
B 23.27 −59.10 11.05 −4.30 2.81 −26.18 −24.23 1.08 −2.00
C 36.00 −91.26 17.32 −5.83 3.90 −39.88 −37.86 1.05 −2.00
N 51.85 −131.74 25.31 −7.55 5.15 −57.00 −54.42 1.05 −2.00
O 69.86 −178.80 34.27 −9.39 6.38 −77.69 −75.00 1.04 −2.00
F 94.01 −239.69 46.85 −11.51 8.17 −102.18 −99.50 1.03 −2.00
Ne 120.55 −308.00 60.67 −13.73 9.95 −130.57 −129.05 1.01 −2.00
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are shown in table 2. In table 3 the contributions obtained with our simple variational
procedure are displayed. During the iterative procedure, the convergence to the minimum in
energy is accompanied by the simultaneous fulfillment of the virial theorem: º -virial 2. It
is remarkable that, as shown in table 3, the results of our model approach closely the
experimental values as Z increases, E E 1TOT

TF
TOT
exp . This is a reasonable result since the TF

theory has a statistical nature, and its predictive character improves as the number of electrons
increases. Finally, in table 4, we present, for comparative purposes, the results obtained within
the Hartree–Fock model, as obtained using the suite of computational codes due to
Cowan [6].

The results included in the tables are plotted in figures 1 and 2. In figure 1, we show the
ratio E ETOT

calc
TOT
exp as a function of the atomic number Z for the four employed methods. In

figure 2 is represented the value of the virial.

Figure 1. Ratios E ETOT
calc

TOT
exp for the different methods of calculation.

Table 4. Different contributions to the binding energy, as obtained with the Hartree–
Fock method [6].

Element Ek
HF

-En e
HF

-Ee e
HF Ex

HF ETOT
HF ETOT

exp E ETOT
HF

TOT
exp Virial

He 2.88 −6.77 2.06 −0.89 −2.90 −2.90 1.000 −2.00
Li 7.46 −17.18 4.08 −1.53 −7.44 −7.48 0.995 −2.00
Be 14.60 −33.66 7.16 −2.31 −14.67 −14.20 1.033 −2.00
B 24.77 −57.05 11.67 −3.27 −24.65 −24.23 1.017 −2.00
C 37.80 −88.28 17.82 −4.40 −37.83 −37.86 0.999 −2.00
N 54.57 −128.56 26.15 −5.75 −54.52 −54.42 1.002 −2.00
O 75.23 −178.77 36.88 −7.31 −75.05 −75.00 1.001 −2.00
F 100.12 −239.88 50.31 −9.10 −99.76 −99.50 1.003 −2.00
Ne 129.58 −312.85 66.76 −11.11 −129.00 −129.05 1.000 −2.00
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5. Conclusions

In this work we presented calculations of the binding energies of simple atoms (He to Ne) as
obtained within the framework of the Thomas–Fermi model, which constituted the seed of the
successful density functional theory developed years later. The present work focuses on the
concept of electronic density r ( )r (or, equivalently, the radial distribution function ( )D r ),
avoiding the concept of wavefunction, and uses instead reasonable semi-empirical guesses for
the analytical form of r ( )r , based on the form of the analytical solution for hydrogenic atoms
(1926), and the concept of different screened charges for different subshells, first suggested
by Moseley in 1913 [21].

Regarding the results obtained with Moliereʼs approach (which are equivalent to the ones
obtained by numerical resolution of the TF equation), it can be seen that »E E 0.75TOT

Mol
TOT
exp .

This confirms that, in its original formulation, the TF theory is not well suited for the
calculation of binding energies. However, when using better approximations for r ( )r , such as
those obtained by a variational procedure, then »E E 1TOT TOT

exp . By looking at the numerical
results detailed in the tables and figures, it can be concluded that our very simple method
gives values for the total energy and the virial comparable with the Hartree–Fock results. We
can conclude that, as a first approximation to the study of modern DFT, the TF deserves to be
treated to some extent.

Finally, it is necessary to highlight two important points. Firstly, the TF model, when
treated as a variational method, gives results comparable with Hartree–Fock. Second, students
should know that, whereas in the formulation of DFT the central magnitude is the electronic
density r ( )r instead of the wavefunction Y  ¼ ¾( )r r, , N1 , Kohn and Sham (KS) were forced
to employ the so-called KS orbitals in order to have an initial estimation of the density. In the
atomic case, the KS orbitals, although they do not have a priori physical meaning, are similar
to the HF orbitals [8, 12].

Figure 2. The virial E E ,POT KIN as calculated with the different methods.
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It is important to stress that, besides its value as a computational tool for both simple and
complex systems (atoms, solids, plasma), DFT has great conceptual relevance. In fact, several
parameters of interest in theoretical chemistry (such as chemical potencial, electronegativity
differences driving electron transfer, hardness and softness, affinity, etc), find a clear inter-
pretation in the DFT framework [13].

Appendix. Many-electron systems: the exchange interaction

We know from quantum mechanics that all the information about a given physical system is
contained in its wavefuncion Ψ. Non-relativistically, this wavefunction is calculated from the
Schrödinger equation Y = YH E . For a system with M nuclei and N electrons (a molecule,
for instance), the Hamiltonian takes the form

å å åå å å= -


- + +
= = = > = >


⎧⎨⎩

⎫⎬⎭ ( )H
Z

r r

Z Z

R2

1
. 22

i

N
i

A

M
A

iA i

N

j i

N

ij A

M

B A

M
A B

AB1

2

1 1 1

The first summation goes over the N electrons in the molecule and includes the one-
electron operators for the kinetic energy and the attraction between electrons and nuclei, with

=  -


∣ ∣r r RiA i A the distance between the ith electron and the Ath nuclei. The second term
accounts for the repulsion between pairs of electrons, rij being the distance between electrons
i and j. The last summation in equation (22) represents the repulsions between all pairs of
nuclei, ZA being the nuclear charge of atom A; and RAB the distance between nucleus A and B.
For an isolated atom the last term disappears, and riA should be thought of as  -


∣ ∣r R ;i with


R being the nuclear position, taken to be the zero of the coordinate system.

The prototypical case of a many-electron atom is He [1], [5]. For Z=2, the hamiltonian
(22) takes the form

= -


- + -


- + º + +   
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )H

r r r
H H H

2

2

2

2 1
. 231

2

1

2
2

2 12
1 2 12

Because, due to the Pauli principle, the wavefunction must be antisymmetric, we construct the
spatial symmetric and antisymmetric combinations as

y y y y y= +( ) [ ( ) ( ) ( ) ( )] ( )1, 2
1

2
1 2 2 1 24a b a bS

and

y y y y y= -( ) [ ( ) ( ) ( ) ( )] ( )1, 2
1

2
1 2 2 1 . 25a b a bA

(The square root is a normalization constant.)
The above expressions must be multiplied, respectively, by the antisymmetric and

symmetric spin-functions c ( )1, 2A and c ( )1, 2S to obtain

y c y cY = Y =( ) ( ) ( ) ( ) ( ) ( ) ( )1, 2 1, 2 1, 2 or 1, 2 1, 2 1, 2 . 26total S A total A S
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Replacing with functions (26) in (23) we obtain

* *ò òt t= Y Y = + + Y Y E H E E Hd d ;a btot tot tot 12 tot

the last term is fundamental for our purposes; due to the form of y ( )1, 2S and y ( )1, 2A , a
direct (but not trivial) calculation gives

*ò tY Y = H J Kdtot 12 tot

where J is called the Coulombian integral

ò ò y y t t= ∣ ( )∣ ∣ ( )∣J
r

1
1 2 d d ,a b

12

2 2
1 2

which has the classical interpretation of the interaction energy of the two electrons, assuming
they are spatially distributed with densities r y= -∣ ( )∣1a1

2 and r y= -∣ ( )∣2b2
2. The

exchange integral K is

* *ò ò y y y y t t= ( ) ( ) ( ) ( )K
r

1
1 2 1 2 d da b b a

12
1 2

and has no classical interpretation: it is a manifestation of the Pauli principle.
In the HF model, the resulting numerical equations, essential to solve many-electron

problems, are integral and non-linear, due to the exchange terms [6]. In the Hartree–Fock–
Slater theory, the exchange terms are non-local and approximated by a statistical free-electron
approximation, similar to that used in the Thomas–Fermi–Dirac theory (see equation (7)
above). Later, in the Kohn and Sham theory, the Slater term is viewed as a special case of
DFT, and other approaches were developed [8].

A.1. The correlation energy

Two kinds of electron correlation exist. In the first, the correlations among the positions of the
various electrons are only partially taken into account through the Pauli exclusion principle:
this principle keeps the electrons of parallel spin appart. The second type of correlation
involves mainly electrons of different spins and the effect is due to Coulomb repulsion. It is
customary to define the correlation energy as

º - +( ) ( )E E E E . 27c average
exp

average
HF

relat

In the above equation, Eaverage
exp is the experimental total binding energy, Eaverage

HF is the
mean value of the atomic Hamiltonian given by equation (22) with M=1; for the two-
electron case, the appropriate equation is (23). On the other hand, Erelat is given by the sum of
mass-velocity plus Darwin and spin–orbit corrections [6]. For light atoms, Erelat can be
calculated by the perturbation theory and satisfies E E .relat average

HF

Several methods have been developed for the theoretical calculation of correlation
energies; however, each of these involves a major computational effort. Old calculations
made mainly by E Clementi in the 1960s indicated that, empirically, for atoms,

@ -e Ry0.08 electronc [6]. In newer papers, based on the free-electron-gas (‘jellium’)
model, the Coulomb electron correlation is obtained in terms of the radius rs of a sphere
whose volume is the local average volume per electron: r p= ( )r3 4 .s

3 In particular, Bar-
biellini obtained the approximate expression = -e Z r3.121 ,c c s with Zc being the total
charge redistributed by the Coulomb hole [24]. By comparison with Monte Carlo simulations,
Barbiellini found that =Z 0.0407,c therefore
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= - ( )e
r

Ry
0.127

electron; 28c
s

in the range = -r 1 6,s the values given by expression (28) are in good agreement with other
conventional theories.

For more complex systems (molecules and solids), a number of theoretical and numerical
works have been carried out. In the DFT theory the term Exc (exchange plus correlation
energies) is estimated using different approximate functionals. More accurate correlation and
exchange functionals are steadily being developed; for classic papers, the reader can consult
the book by Parr and Yang [13]; more modern works were published throughout the years. As
examples, two very recent articles must be referenced: the one by Sun et al [25] and the other
by Cohen and Mori-Sánchez [26]. Sun et al propose that the ground-state energy, electron
density and related properties of ordinary matter can be computed efficiently when the
exchange–correlation energy as a functional of the density is approximated semilocally. For
this, they propose the first meta-generalized-gradient approximation (meta-GGA). On the
other hand, in the paper of Cohen and Mori-Sanchez, the asymmetric two-site Hubbard model
is studied, which has a two-dimensional universe of density matrices. The exact functional
becomes a simple function of two variables whose three dimensional energy landscape can be
visualized and explored. Additionally, the extensive bibliography cited in these articles is an
important guide for newer papers, published principally in this century.
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