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Abstract. We construct a path-integral representation of the generating 
functional for the dissipative dynamics of a classical magnetic moment as 
described by the stochastic generalization of the Landau–Lifshitz–Gilbert 
equation proposed by Brown (1963 Phys. Rev. 130 1677), with the possible 
addition of spin-torque terms. In the process of constructing this functional in the 
Cartesian coordinate system, we critically revisit this stochastic equation. We 
present it in a form that accommodates for any discretization scheme thanks to 
the inclusion of a drift term. The generalized equation ensures the conservation 
of the magnetization modulus and the approach to the Gibbs–Boltzmann 
equilibrium in the absence of non-potential and time-dependent forces. The 
drift term vanishes only if the mid-point Stratonovich prescription is used. 
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We next reset the problem in the more natural spherical coordinate system. We 
show that the noise transforms non-trivially to spherical coordinates acquiring 
a non-vanishing mean value in this coordinate system, a fact that has been 
often overlooked in the literature. We next construct the generating functional 
formalism in this system of coordinates for any discretization prescription. The 
functional formalism in Cartesian or spherical coordinates should serve as a 
starting point to study different aspects of the out-of-equilibrium dynamics 
of magnets. Extensions to colored noise, micro-magnetism and disordered 
problems are straightforward.

Keywords: exact results, electrical and magnetic phenomena (theory), 
stochastic processes (theory)
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1. Introduction

The control of magnetic materials [2–4], already at the heart of the information tech-
nologies developed in the second half of the twentieth century, is undergoing a second 
revolution with the development of spintronics [5, 6].

In ferromagnetic materials, the spin degrees of freedom carried by localized elec-
trons tend to spontaneously long-range order below the Curie (second order) transition 
temperature. The so-called micromagnetic description consists in studying the local 
order parameter, M(x, t), the expectation value of the magnetization per unit volume 
averaged over, typically, a few lattice cells. In most relevant cases, this macroscopic 
composite object can be treated classically.

The spin–spin interaction is essentially due to the overlap of the electronic wave 
functions. Below the Curie temperature, this is the dominant interaction. The modulus 
of the local magnetization can be approximated by a temperature-dependent constant 
which takes the value of the spontaneous magnetization at the working temperature, 
i.e. |M(x, t)| = Ms. The direction of M is, instead, subject to the interactions and 
external forces, and it is non-uniform in space and varies in time.

When a ferromagnet is used to store information, bits are encoded in the orienta-
tion of the local magnetization. Usually, the magnetization is manipulated by applying 
Oersted fields generated by electric currents.

Very early, damping, i.e. the transfer of spin angular momentum from the magneti-
zation of the macrospin M(x, t) to the environment, became a matter of fundamental 
but also applied interest. Indeed, this is an important limiting factor in the reduction 
of the remagnetization rate in magnetic recording devices. The complex environment 
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of the macrospin offers many different mechanisms for damping (spin–orbit coupling, 
coupling to the lattice vibrations, spin-waves, etc.). In 1935, Landau and Lifshitz [7] 
(LL) proposed a phenomenological classical equation to account for all these processes 
through a unique damping coefficient. Though the LL equation yields reasonable results 
for small damping coefficient, it was initially taken to be unphysical as it predicts 
an acceleration of the magnetization precession at large damping. Some years later, 
Gilbert [8, 9] cured this problem by proposing an equation in which damping enters in 
a different manner. Ultimately, the two equations are equivalent after a redefinition of 
the parameters. Today, the latter equation is known as the Landau–Lifshitz–Gilbert 
(LLG) equation. Its inherent non-linearity makes it a difficult problem to solve, but 
also the source of very rich phenomena. Explicit solutions can be obtained in some par-
ticular cases but the generic cases require numerical integration [10, 11]. The dynamics 
of magnetic moments ruled by the LLG equation have been the focus of considerable 
research over the last 60 years.

For sufficiently small ferromagnetic particles, thermal fluctuations can become rele-
vant in determining the magnetization dynamics. In 1963, Brown [1] proposed a simple 
extension of the LLG equation in which thermal agitation is introduced à la Langevin, 
i.e. via the addition of a random magnetic field the correlation of which is proportional 
to the temperature. As already shown by Brown, the stochastic magnetization dynam-
ics can also be analyzed within the Fokker–Planck (FP) framework, that is, via the 
partial differential equation satisfied by the time-dependent probability distribution. 
Since then, thermal effects in the magnetization dynamics have been studied in great 
detail [10]. Moreover, progress in computational capabilities have now made possible 
numerical solutions of realistic situations [11, 12].

A new means to manipulate the magnetization of ferromagnetic devices via the spin-
transfer torque effect has opened a new perspective into magnetic storage technologies. 
It has also renewed the interest in the study of magnetization dynamics. Pioneered by 
the theoretical work by Slonczewski [13] and Berger [14], it was realized almost two 
decades ago that one could also manipulate the magnetization by exchanging angular 
momentum with a spin-polarized current of electrons. This proposal rapidly found 
some experimental evidence [15, 16] and, since then, the rapid advances in the field of 
spintronics have led to everyday life applications such as high-density magnetic record-
ing devices (see, for instance, [6] for a short review). Although quantum in origin, 
the spin-transfer torque effect can be handled phenomenologically by an appropriate 
generalization of the LLG equation. The LLG equation also appears in the context of 
molecular spintronics as a semi-classical limit of a full quantum problem [17–20].

In the quest for smaller and smaller devices with higher storage density capabilities, 
it has recently become crucial to take into account the effect of thermal fluctuations 
on the magnetization dynamics. Indeed, smaller magnetic domains are more prone to 
thermally activated magnetization reversal because the energy barrier is proportional 
to the volume of the domain. Furthermore, as one seeks to reduce the intensity of the 
currents used in magnetic devices (to reduce both power consumption and Joule heat-
ing), thermal fluctuations limit the signal-to-noise ratio.

Most of the existing literature dealing with thermal effects in the magnetiza-
tion dynamics of nanoparticles and nano-devices analyze the problem either by 
direct numerical simulation of the stochastic LLG equation or via the study of the 
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corresponding FP equation [21]. Yet, within the study of general stochastic processes 
there exists also the possibility of approaching the problem via the path integral 
formulation of generating functionals [22–24]. The use of generating functionals is 
an elegant and powerful method to derive generic properties of dynamical systems. 
Compared to the other approaches mentioned above, a path integral is handy for 
computing moments, probability distribution functions, transition probabilities and 
responses. It is also particularly well suited when it comes to perturbation theory 
and renormalization group analysis, as one can easily set up a diagrammatic expan-
sion. This approach has proven to be extremely useful to treat many physical sys-
tems. Two problems of current interest that have points in common with ours are 
the path-integral formulation of the motion of a Brownian particle confined to a 
finite volume [25] and the path-integral formulation [26–28] of a system of interact-
ing Langevin processes [29].

In this manuscript, we build the framework for a path-integral description of the 
magnetization dynamics described by the stochastic LLG equation. The expert reader, 
eager to see the actions in their various forms, can jump to equations (73), (74) and 
(77) for the Landau action, and equations (85)–(87) for the Gilbert action both in 
Cartesian coordinates; or to equations (154)–(156) for the Landau action, and equa-
tions (157)–(159) for the Gilbert action both in spherical coordinates.

The manuscript is organized as follows. In section 2 we introduce the stochastic 
LLG equation in its Landau–Lifshitz and Gilbert formulations, and we discuss the 
physical significance of each of its terms.

In section 3 we discuss the discretization of the stochastic integrals; the prescription 
used has to be carefully specified since it is a defining part of the dynamics in mul-
tiplicative random processes. We explain how the conservation of the magnetization 
magnitude imposes the Stratonovich discretization prescription if one persists in using 
the original LLG equation, or guides one into generalizations of it if the choice is to use 
other discretization schemes. This is particularly useful for numerical simulations for 
which the Itô prescription has been claimed to be simpler to implement.

In section 4, we derive the generating functional of the local magnetization by 
using the Martin—Siggia—Rose–Janssen–deDominicis (MSRJD) path integral [22–
24], which was originally introduced in the context of conventional Langevin equa-
tions. Although, the MSRJD formalism is well understood for systems with additive 
noise or with inertia (see, for instance, [30]), the stochastic LLG equation is a 
Markovian first-order stochastic differential equation with multiplicative white noise 
bringing in extra difficulties such as a non-trivial Jacobian [25, 31–34] that contrib-
utes to the action.

In section 5 we reset the general discretization scheme formulation of the stochastic 
LLG equation in the spherical coordinate system. A priori, this is the natural coordi-
nate system for numerical simulations since the non-linear constraint on the modulus 
of the magnetization is built in, lowering the dimensionality of the problem from 3D to 
2D. However, the random noise transforms non-trivially to the new coordinate system 
and, in particular, it is correlated with the polar angles, a fact that has often been over-
looked in the literature. We therefore correct the widespread but erroneous assumption 
stating that the two-dimensional (2D) random field in spherical coordinates is a simple 
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Gaussian white noise with vanishing mean. We end this section with the derivation of 
the generating functional in the spherical coordinate system.

Finally, in section 6 we recap our results and we announce a number of applications 
of the formalism here introduced that we plan to investigate in the future.

Technical details are reported in the appendices.

2. Magnetization dynamics

Let M(x, t) be the three-dimensional (3D) vector describing the local magnetiza-
tion in a ferromagnet and let us assume that its modulus is constant, and equal 
to the spontaneous magnetization of the ferromagnet at the working temperature 
T: |M(x, t)| ≡ Ms. For simplicity, we also assume that the space dependence can be 
neglected, that is to say, we work in the macro-spin approximation, and we later intro-
duce the time-dependent unit vector m(t) through M(t) = Ms m(t). We will not fol-
low the historic route in the presentation but rather give a presentation that we find  
more natural.

2.1. LLG equation

Whenever thermal fluctuations are negligible, the dissipative dynamics of the magneti-
zation can be described by the LLG equation [8, 9]

γ
η

= − ∧





−





M M H M
M

d d ,t t0 eff
s

 (1)

where dt denotes the time derivative d/dt. The modulus of the magnetization is auto-
matically conserved thanks to the cross product denoted ∧. γ0 ≡ γμ0 is the product of 
γ, the gyromagnetic ratio relating the magnetization to the angular momentum, and μ0, 
the vacuum permeability constant. The gyromagnetic factor is given by γ = μBg/ℏ (in 
our convention γ > 0 for the electronic spin) with μB Bohr’s magneton and g Lande’s 
g-factor. The first term in the rhs describes the magnetization precession around the 
local effective magnetic field Heff, while the second term is a phenomenological descrip-
tion of the dissipative mechanisms, introduced by Gilbert, which slow down this pre-
cession and push M towards the magnetic field Heff while keeping the modulus Ms 
fixed. In principle, dissipation could enter the problem with a memory kernel because 
the feedback of the environment on the magnetization involves, a priori, retardation 
effects. In that perspective, the choice of ηM ∧ dtM/Ms for the dissipative torque can 
then be understood as the first term of a derivative expansion. The damping constant 
η takes into account several dissipative mechanisms (spin–orbit coupling, magnon–pho-
non, magnon–impurity, etc). Dimensions are such that [H] = [γ0]−1 [t]−1 and [γ0η] = 1. 
In most relevant cases, such as magnetic recording, one has γ0η  1.

The local effective magnetic field can be divided into conservative and non-conser-
vative contributions,

= +H H H .eff eff
c

eff
nc (2)
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The conservative contribution µ δ δ= − −H MU/eff
c

0
1 , with U the energy per unit vol-

ume, can originate from an external (possibly time-dependent) magnetic field Hext, and 
a crystal field Hani associated to the crystalline anisotropy,

µ= − +M H MU V ( ).0 ext ani· (3)

Vani is here the anisotropy potential (per unit volume). Examples of anisotropy poten-
tials are [10]

∑= =
≠

MV K M M i j x y z( ) , , , , ,
i j

i jani
2 2

 (4)

corresponding to a cubic crystalline structure (each of the three Cartesian axes is a 
minimum of this function), or

= −MV K M M( ) ( ),zani s
2 2 (5)

associated to the uniaxial symmetry (having a minimum along the so-called easy axis, 
here the z-axis). We will give a very timely example of non-conservative Heff

nc, the spin-
torque term, in section 2.3. From the very structure of the equation, one sees that 
only the instantaneous component of the effective field, = +⊥ �H H Heff eff eff, that is 
perpendicular to the magnetization, i.e. ⊥Heff such that · =⊥H M 0eff , has an effect on its 
dynamics. Indeed, the field appears as

∧ = ∧ ⊥M H M H .eff eff (6)

The LLG equation can be written in the equivalent form [7]

γ
γ η

ηγ
= −

+
∧





+ ∧





M M H M H
M

d
1

,t
0

0
2 2 eff

0

s
eff (7)

by simply factorizing the time derivatives on the left-hand side of equation (1). In the 
rest of this manuscript, we shall refer to equations (1) and (7) as the Gilbert and the 
Landau formulation of the same LLG equation, respectively7. (We will come back to 
the passage from one to the other in section 4.)

Depending on the space dimension and the interactions, the LLG can exhibit a 
variety of non-linear structures (solitons, spatio-temporal patterns, etc), see [36] for a 
review. In some particular cases explicit solutions are known but the generic problem 
requires numerical integration [10, 11].

2.2. Stochastic LLG equation

In 1963, Brown [1] showed that thermal fluctuations can be taken into account by add-
ing a random field, H, à la Langevin in equation (1)

γ
η

= − ∧





+ −





M M H H M
M

d dt t0 eff
s

 (8)

7 We found some contradictions in the literature concerning the relation between the parameters in the two for-
mulations. To be more precise, we find that the parameters transform as in [10, 11] but differently from what is 
shown in [35]. 
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or, equivalently, by adding this field in equation (7)

γ
γ η

ηγ
= −

+
∧






+ + ∧ +






M M H H M H H
M

d
1

( ) ( ) .t
0

0
2 2 eff

0

s
eff (9)

Assuming that the thermal environment is composed of a large number of degrees of 
freedom and that the time-scale on which they relax is the shortest one in the problem, 
it is natural to consider Gaussian white noise statistics for the stochastic field. In formal 
terms,

⟨ ⟩ ⟨ ⟩ δ δ= ′ = − ′H t H t H t D t t( ) 0, ( ) ( ) 2 ( ),H Hi i j ij (10)

for all i, j = x, y, z. The parameter D is such that the fluctuation-dissipation relation of 
the second kind (in Kubo’s terminology [37]) is satisfied, that is to say, that the sLLG 
equation takes the magnetization to equilibrium, i.e. with a Gibbs–Boltzmann distribu-
tion function at the temperature T of the environment. As we will show explicitly in 
section 3.4, its relation to the parameters in the problem is

η
µ

=D
k T

M V
.B

s 0
 (11)

V is the volume of the sample and kB the Boltzmann constant. Dimensions are such 
that [D] = [t] [H2].

In both equations (8) and (9), the noise couples multiplicatively to the time-dependent 
magnetization. To completely define the Markovian dynamics of such a stochastic equa-
tion with multiplicative white noise, one needs to specify a prescription for the way in 
which the noise acts at a microscopic time level. As we will discuss in more detail in sec-
tion 3, written as they are, equations (8) and (9) have to be understood as Stratonovich 
equations, i.e. with a mid-point prescription [10, 38, 39], as this is the unique scheme 
consistent with the conservation of the modulus of the magnetization. Henceforth, we 
will refer to these equations as the stochastic Stratonovich LLG equations. We will also 
show in section 3 how to generalize these equations to use other discretization schemes.

It can be useful to work with adimensional variables and parameters. If one defines 
γ0Mst  t, M/Ms  m, Heff/Ms  heff, H/Ms  h, and ηγ0  η the dynamical 
equation becomes

η= − ∧ + −m m h h md ( d ),t teff (12)

or

η
η= −

+
∧ + + ∧ +m m h h m h hd

1

1
[( ) ( )].t 2 eff eff (13)

The Gaussian white noise h has zero average and correlations characterized by a new 
diffusion constant, γ0D/Ms D,

δ δ〈 〉 = 〈 ′ 〉 = − ′h t h t h t D t t( ) 0, ( ) ( ) 2 ( ).h hi i j ij (14)

All variables and parameters are now adimensional. Here again, the Gilbert and Landau 
stochastic equations (12) and (13) have to be understood as Stratonovich equations and 
are totally equivalent.

http://dx.doi.org/10.1088/1742-5468/2014/09/P09008
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2.3. Spin torque

The LLG equation (1) or its stochastic version (8) can also be used to describe spin-
transfer torque in magnetic multilayers [13, 14]. By means of this effect, a spin-polar-
ized electric current flowing through the multilayer can affect the orientation of the 
magnetization in one of the layers (the free moving one). Although the origin of this 
effect is quantum mechanical, it can be phenomenologically studied by adding to the 
LLG equation an extra ‘torque’ term which depends on the relative position of the lay-
ers, their polarization, the electrical current, and other properties of the material. This 
effect has been the topic of a tremendous amount of work during the last 15 years due 
to its many potential applications in the field of spintronics. In its simpler form, the 
Landau—Lifshitz–Gilbert–Slonczewski equation reads [40]

P
γ

η µ
= − ∧






+ −




− ∧ ∧M M H H M M M p

M

g J

M de
d d

2
( ),t t0 eff

s

B

s
2 (15)

where we singled out from Heff the spin-torque term. Here, gμB = γℏ with γ the gyro-
magnetic ratio, J is the current per unit area, P represents the (dimensionless) polar-
ization function of the fixed layer, p is a unit vector in the direction of the fixed layer 
magnetization, d the interlayer separation, and e is the electric charge of the carriers. 
(Recall that in the macromagnetic approach M is the magnetization per unit volume.)

In dimensionless variables, this equation reads

η χ= − ∧ + − − ∧ ∧m m h h m m m pd ( d ) ( )t teff (16)

with

Pχ
µ

=
�J

M de2
,

s
2

0
 (17)

a dimensionless parameter.
The last terms in equations (15) and (16) represent a torque that cannot be derived 

from a potential and provides a mechanism to exchange energy between the magnetic 
moment and the environment via the current that flows in the sample. Thus, a spin 
polarized current of electrons can be used to manipulate the dynamics of the magnetic 
moment, its spin flip rate and its precession frequency [6].

Initial studies of spin-torque assisted dynamics focused on the zero temperature 
limit [40, 41] while temperature effects were considered in [42–47]. Most of this lit-
erature addresses the problem via the numerical integration of the stochastic equa-
tion [11] or the FP approach. A simple way to understand, at least qualitatively, 
thermal effects in spin-torque driven dynamics is by realizing that spin torque effec-
tively modifies the dissipation coupling. If the current is such that this dissipation is 
lowered, one can expect thermal effects to be more relevant than in the absence of 
spin torque. Even more so, spin torque may not only reduce the effective dissipation 
constant but also make it negative meaning that the system amplifies disturbances 
from equilibrium [43].
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3. Discretization prescriptions

In this section, we discuss the time discretization of the stochastic magnetization 
dynamics. Indeed, as in any stochastic differential equation, the discretization used 
to define the Wiener integral is a defining part of the model, and should be carefully 
taken into account to obtain sensible physical results [48]. As we will show, in the 
way the stochastic equation is currently written (either in the form in equation (8) or 
in the one in equation (9), or in their adimensional versions), it conserves the magne-
tization modulus only if the Stratonovich prescription is used. Although this is not a 
new result (see, e.g., [10]), one still finds quite confusing statements in the literature 
[39, 49]. In the following discussion, we first describe the discretization of generic 
stochastic equations and we later discuss the case of the stochastic LLG (sLLG) 
equation. We next show how equations (8) and (9) have to be modified if one wishes 
to work with other stochastic calculi in order, notably, to ensure the conservation of 
the modulus of M.

3.1. Rules of stochastic calculus

Let us consider a set of time-dependent random variables xa(t) satisfying a set of first-
order differential equations,

= +x xx t f t g t h td ( ) ( ( )) ( ( )) ( ),t a a aj j (18)

where the xa, with a = 1, ⋅⋅⋅, N are the components of the stochastic variable x and hj, 
with j = 1, ⋅⋅⋅, M are the components of the Gaussian white-noise process h satisfying

δ δ〈 〉 = 〈 ′ 〉 = − ′h t h t h t D t t( ) 0, ( ) ( ) 2 ( ).h hi i j ij (19)

Here and in what follows, we use the Einstein summation convention over repeated 
indices. In equation (18), fa(x) and gaj(x) are the so-called drift term and diffusion 
matrix, respectively, and are arbitrary smooth functions of x(t) (but not of its time 
derivatives). Notice that, in general, the diffusion matrix is rectangular as the number 
of random variables is not necessarily equal to the number of random processes.

Due to the fact that hj(t) has an infinite variance, equation (18) is ill-defined until 
the product gaj(x(t)) hj(t) is given a proper microscopic meaning. This subtlety can be 
understood by looking at the integral

∫ ∫=x xg t h t t g t W t( ( )) ( ) d ( ( )) d ( ),aj j aj j (20)

where we have introduced the Wiener processes Wj(t) as hj(t) = dWj(t)/dt. The 
Riemann–Stieltjes integral is defined by using a set of times < < … < =t t tN0 1 T  in 
the interval Tt[ , ]0  and constructing the sum

∫ ∑=  − →∞ =

−

+x xg t W t g W t W t( ( ))d ( ) lim ( ) ( ) ( )
t

aj j
N n

N

aj n j n j n

0

1

1
0

T
 (21)
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where xn is taken in the interval [xn, xn + 1] and the rhs of equation (21) converges in the 
mean-square sense8. For a smooth measure Wj(t) the limit converges to a unique value, 
regardless of the choice of the xn's. However, a Wiener process Wj(t) is not smooth; 
in fact, it is nowhere differentiable. Therefore, the value of the integral depends on 
the prescription used to choose the xn's. There are several ways to define this integral 
that can be collected in the so-called ‘generalized Stratonovich prescription’ [50] or ‘α-
prescription’ [51], for which one uses

α α= + −+x x x(1 ) ,n n n1 (22)

with 0 ⩽ α ⩽ 1, and

α α= + −+x x xg g t t( ) ( ( ) (1 ) ( )).aj n aj n n1 (23)

The case α = 0 corresponds to the pre-point Itô prescription and α = 1/2 coincides 
with the mid-point Stratonovich one. The post-point prescription, α = 1, is also used 
[50, 52, 53].

For Markov processes with multiplicative white-noise, each choice of α corresponds 
to a different stochastic evolution. For any physical problem, the prescription is dic-
tated by the order of limits when sending the time scales associated to inertia and the 
relaxation of the thermal bath to zero [54]. Once the prescription is fixed, the stochastic 
dynamics are unambiguously defined.

In the cases in which the time scale associated to inertia is much smaller than the 
relaxation time of the bath, equation (18) is given an unambiguous meaning by adding 
a little color to the Gaussian noise, i.e. a finite variance [55], and by eventually tak-
ing the white-noise limit at the end of the calculations. This regularization procedure 
is equivalent to the Stratonovich prescription, α = 1/2 [56, 57]. In the present case of 
magnetization dynamics, there is a priori no term playing the role of inertia.

The rules of calculus applied to the stochastic variables also depend on the prescrip-
tion. In particular, the chain rule used to differentiate an arbitrary function Y(x(t)) of 
a set of stochastic variables reads [31–33]

α=
∂
∂

+ −
∂
∂ ∂

xY t
Y

x
x D

Y

x x
g gd ( ( )) d (1 2 ) .t

a
t a

a b
ak bk

2

 (24)

Clearly, in the Stratonovich prescription (α = 1/2), equation (24) is the usual chain 
rule of conventional calculus. For α = 0, equation (24) is the so-called Itô formula. For 
the α = 1 prescription, the latter differentiation rule only differs from the Itô formula 
by the sign of the last term. In fact, these two prescriptions are related by a time rever-
sal transformation t → − t and α → (1 − α).

3.2. Discretization scheme for the sLLG equation

Let us start with the dimension-full Landau formulation of the sLLG equation, i.e. with 
equation (9) that we recast in the generic form of equation (18)

= +M g H Hd ( ),t i ij j jeff, (25)

8 A sequence of random variables Xn converges in the mean-square sense to another random variable X if 
limn → ∞〈(Xn −X)2〉 = 0 [48].
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where we introduced the 3 × 3 diffusion matrix

ε
γ
η γ

ηγ
δ=

+
+ −g M

M
M M M

1
[ ( )].ij ijk k ij i j

0
2

0
2

0

s
s
2

 (26)

The Latin indices take values i, j = x, y, z, εijk is the completely antisymmetric Levi–
Civita tensor and we are always assuming summation over repeated indices. gij can be 
decomposed in symmetric and antisymmetric parts, g g gij ij ij

s a= + , with

γ
η γ

ηγ
δ=

+
−g

M
M M M

1
( ),ij ij i j

s 0
2

0
2

0

s
s
2

 (27)

ε
γ
η γ

=
+

g M
1

.ij ijk k
a 0

2
0
2 (28)

It is simple to show that g is transverse in the sense that

= =g M M g 0.ij j i ij (29)

Equation (25) then yields

=M Md 0.t· (30)

Contrary to what it may seem, this result does not imply the conservation of the 
magnetization modulus,  ·M M t M td( )/d d /d 0s

2= = , for all discretization schemes. 
Indeed, using the appropriate generalized chain rule given in equation (24), replacing

γ
η γ

δ
η

= =
+

− =( )g g g g M M M
M

g
1

,ik jk ki kj ij i j ij
0
2

2
0
2 s

2 s s (31)

and choosing = =M M MY M( ) s
2· , one finds

α
γ
η γ

= −
+

M D Md 4 (1 2 )
1

,t s
2 0

2

2
0
2 s

2
 (32)

where we used MidtMi = 0, equation (30). Therefore, the physical constraint that the 
modulus of the magnetization be conserved by the dynamics can only be satisfied when 
giving a Stratonovich prescription (α = 1/2) to equations (8) and (9).

3.3. α-covariant expression of the sLLG

If for any reason one prefers to work with a prescription with α ≠ 1/2 (for instance, 
to perform a numerical simulation with an algorithm based on the Itô calculus) while 
conserving the magnetization modulus, the equation has to be changed accordingly. 
An elegant way consists in replacing the time derivative by the α-covariant derivative

� α
γ
η γ

= + −
+

α Dd D d 2 (1 2 )
1

,t t t
( ) 0

2

2
0
2 (33)
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so that the α-covariant expression of the sLLG equation, in its dimension-full Landau 
formulation, reads

= +α M g H HD ( ).t i ij j j
( )

eff, (34)

The same replacement in equation (8) yields the α-covariant expression of the Gilbert 
formulation of the sLLG equation. In both cases, this replacement is equivalent to add-
ing a spurious drift term to the equation. Notice that the second term in equation (33) 
is odd under time reversal as it should be for a time derivative, since the time-reversal 
transformation includes the transformation α → (1 − α) [33].

Equation (34) encodes a family of stochastic equations with different underlying 
prescriptions, i.e. different α. The Stratonovich equation (25) can naturally be recov-
ered by setting α = 1/2. We emphasize that the general-α equation (34) is strictly 
equivalent to the Stratonovich equation (25) and that the choice of α cannot have 
any consequence on the physical properties of the system. In particular, equation (34) 
conserves the norm of the magnetization for any α since =αM MD 0i t i

( )
, which implies, 

using the generalized chain rule in equation (24), =Md 0t s
2 , and ensure the approach 

to Boltzmann equilibrium in conservative cases as we show the in the next subsection.
The same kind of argument can be applied to the adimensional equations (12) 

and (13).

3.4. FP approach

An alternative method to study the time evolution of a stochastic process is the 
FP approach, in which the system is characterized by the probability of finding 
M (or m) at time t. The probability distribution P(M, t) satisfies a determin-
istic partial differential equation, the solution of which completely describes the  
dynamics of the system.

The FP equation associated to the sLLG equation in Gilbert’s formulation and for 
Stratonovich calculus was derived by Brown [1], see also [10, 58]. We will show below 
that the α-covariant stochastic equation (34) leads to a FP equation that is indepen-
dent of α.

The FP method allows one to prove that the stochastic process described by equa-
tion (34) leads, at long times and under conservative time-independent forces, to the 
equilibrium Gibbs–Boltzmann probability distribution for any value of α, provided 
that the noise correlation D is set by an Einstein relation.

3.4.1. Derivation of the FP equation. In order to derive the FP equation, we begin 
with the identity

∫∆ ∆+ = + |M M M M MP t t P t t t P t( , ) d ( , , ) ( , ),0 0 0 (35)

where P(M, t + Δt|M0, t) is the conditional probability of finding M at the time 
t + Δt, provided the system was in the state M0 at the previous time t (note that M0 
is not necessarily the initial magnetization here). The integral in equation (35) runs 
over all accessible values of M0. This equation holds for any value of Δt but we will 
later focus on infinitesimal time increments.

http://dx.doi.org/10.1088/1742-5468/2014/09/P09008
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To make contact with the stochastic process in the Langevin-like description, it is 
convenient to define the conditional probability in the following way:

∆ δ ∆+ | = 〈 − + 〉M M M MP t t t t t( , , ) ( ( )) ,H0 (36)

where the mean value is taken over the noise H, and M(t + Δt) is determined by 
the stochastic equation (34) with the initial condition M(t) = M0. Expanding equa-
tion (36) in powers of ΔM = M(t + Δt) − M(t) = M(t + Δt) − M0 we immediately 
obtain

∆ δ δ ∆

δ ∆ ∆

+ | = − − ∂ −

+ ∂∂ − + …

M M M M M M

M M

P t t t M

M M

( , , ) ( ) ( )

1

2
( ) ,

H

H

i i

i j i j

0 0 0

0

⟨ ⟩

⟨ ⟩
 

(37)

where ∂i ≡ ∂/∂Mi and the ellipsis indicate terms involving higher order correlations.
The idea is to compute the correlations 〈ΔMi〉H and 〈ΔMiΔMj〉H to leading order in 

Δt and then take the limit Δt → 0. To do this, we integrate the sLLG equation (34) in 
the interval (t, t + Δt) obtaining

∫∆ ∆ α∆ ∆= + + + ′ ′
∆+

M M MM f t g t t t H t( ) [ ( )] d ( ),i i ij
t

t t

j0 0 (38)

where we have used the α-discretization procedure to define the last Wiener integral as 

explained in section 3.1, ∫∆+ − = ′ ′
∆+

W t t W t t H t( ) ( ) d ( )j j
t

t t

j , and

γ
η γ

α= −
+

−M Mf g H D M( ) ( ) 2
1

(1 2 ) ,i ij j i0 0 eff,
0
2

2
0
2 0 (39)

γ
η γ

ηγ
δ=

+







+ −






Mg M
M

M M M( )
1

( ) ,ij ijk k ij i j0
0

2
0
2 0

0

s
s
2

0 0ε (40)

see equation (26). Solving equation (38) to order Δt (by expanding gij in powers of 
ΔM and solving iteratively), and computing the mean values using 〈Hi(t)Hj(t′)〉H =  
2Dδijδ(t − t′), we finally obtain

∆ ∆ α ∆〈 〉 = + ∂� �M M MM f t D g g t( ) 2 ( ) ( ) ,Hi i k k i0 0 0 (41)

∆ ∆ ∆〈 〉 = M MM M Dg g t2 ( ) ( ) .Hi j ik jk0 0 (42)

Interestingly enough, the mean value as well as the two point correlation are of order 
Δt. Higher momenta of the distribution such as 〈ΔMiΔMjΔMk〉H are of higher order in 
Δt and do not contribute to the expansion in equation (43) for sufficiently small Δt. It 
is important to note that these results depend on M0.

Replacing now equation (37) into equation (35) and integrating over M0 we have

∆ ∆ ∆ ∆+ − = − ∂ 〈 〉 + ∂∂ 〈 〉

+ …

M M M MP t t P t M P t M M P t( , ) ( , ) [ ( , )]
1

2
[ ( , )]

.

H Hi i i j i j

 (43)
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Using the averages found in equations (41) and (42) and performing the continuum 
limit Δt → 0 we finally find the desired partial differential equation for P(M, t),

α∂ = − ∂ + ∂

+∂∂

� �M M M M M

M M M

P t f D g g P t

Dg g P t

( , ) [( ( ) 2 ( ) ( )) ( , )]

[ ( ) ( ) ( , )].

t i i k k i

i j ik jk
 

(44)

It is instructive to rewrite equation (44) in the form of a continuity equation,

∂ + ∇ =M J MP t t( , ) ( , ) 0,t · (45)

where the components of the current probability J(M, t) are given by

α=  + − ∂ − ∂ − ∂ � �J f D g g Dg g Dg g P(2 1) .i i k k i ik j jk ik jk j (46)

The two following properties of the diffusion matrix g

γ
η γ

∂ = −
+� �g g M
2

1
,k k i i

0
2

2
0
2 0 (47)

∂ =g g 0,ik j jk (48)

and the explicit form of fi given in equation (39) allow us to arrive at the simpler 
expression,

= − ∂( )J g H Dg g P.i ij j ik jk jeff, (49)

Thus, the FP equation, related with the stochastic process governed by the α-covariant 
sLLG equation (34), is given by

{ }∂ = ∂  − ∂ M MP t g H Dg g P t( , ) ( , ) .t i ij j ik jk jeff, (50)

Note that, as anticipated, this differential equation is α-independent. Thus, the α-
covariant sLLG equation (34) leads to a unique time evolution for the magnetization 
probability for any value of the parameter α. Also, from gijMj = 0, it is immediate to 
check that the current probability is transverse, J·M = 0, meaning that there is no 
dynamics in the direction of the magnetization and, consequently, the time evolution 
preserves the magnetization modulus.

3.4.2. Approach to equilibrium. With the FP equation defined in equation (50), we 
can study the asymptotic probability distribution. Any stationary state at long times,

=
→∞

M MP P t( ) lim ( , ),
t

st
 (51)

has an associated stationary current that satisfies ∂ =J 0i i
st . However, solutions to this 

equation do not necessarily represent equilibrium distributions as they could be non-
equilibrium steady states with non-vanishing probability current. Indeed, the equi-
librium distribution is defined as a stationary solution of the FP equation with zero 
current, Jeq = 0, and it is expected to be reached asymptotically in the absence of 
explicit time dependent or non-potential forces.
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Considering the ansatz V= −M MP N( ) exp ( [ ])eq  for the equilibrium probability, 
where N is a normalization constant, the condition =J 0i

eq  implies

V+ ∂ =g H Dg g 0.ij j ik jk jeff, (52)

In order to solve it for V M( ), we assume that the effective magnetic field can be 
obtained from a potential energy density µ= = − ∂− MH H U[ ]i i

c
ieff, eff, 0

1 . Then,

µ− ∂ + ∂ =− g U Dg g 0.ij j ik jk j0
1 V (53)

We can further simplify this equation by noting that the antisymmetric part contrib-
utes with a topological divergence-less term since ∂ ∂ =g U( ) 0i ij j

a  for symmetry reasons. 
Also, from equation (31), g M g g( / )ij ik jk

s
sη= . Then the null stationary current condition 

takes the very simple form,

V
µ η

∂





−




=g

U DM
0,ij j

s

0

s
 (54)

with obvious solution V DM U/( )s 0η µ= . The equilibrium solution of the FP equation is 
of the Gibbs–Boltzmann type PGB = Nexp(−β U V) provided we choose

D k T M V/( )B s 0η µ=
 (55)

which is the Einstein relation or, more generally, a consequence of the fluctuation-
dissipation theorem of the second kind in Kubo’s terminology [37].

4. Generating functional

It is a well-established fact that stochastic process can be analyzed with the help of 
path integrals. Janssen [23] introduced such a description for stochastic processes, a 
very convenient formalism to manipulate correlation and response functions, that is 
close in spirit to the operator approach of Martin—Siggia–Rose [22]. The formalism 
was later applied to quenched disorder by De Dominicis [24, 59] and is often referred 
as the MSRJD formalism. Over the years, there have been numerous attempts to gen-
eralize the work of Janssen to the case of multiplicative noise, i.e. the case in which 
the diffusion matrix depends on the stochastic variable. The literature on this problem 
is rather extensive and in many cases also confusing. No attempt will be made here to 
review this literature (the interested reader can look at [60] for a thorough description 
of path integral methods in the stochastic context). Instead, we will focus on the spe-
cific problem at hand, the stochastic dynamics of the magnetization in the Cartesian 
and spherical coordinate systems.

Let us consider that the system is prepared at an initial time, t0, and subsequently 
let evolve until the final time of the experiment, T . It is common to consider the limit 
T → ∞, but we prefer to keep the final time arbitrary. In the rest of this manuscript, 

we will encounter many time integrals of the form 
T

∫ …td
t0

 and, for the sake of simplic-

ity, we will most frequently simply denote them ∫ …td   .

http://dx.doi.org/10.1088/1742-5468/2014/09/P09008


Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation

17doi:10.1088/1742-5468/2014/09/P09008

J. S
tat. M

ech. (2014) P
09008

The generating functional of observables averaged over thermal histories is 
defined as

Z
T

⟨ ⟨ · ⟩ ⟩∫λ λ= Mt t t[ ] exp d ( ) ( ) ,H H
t

i
0

 (56)

where 〈···〉i = ∫dM0··· Pi[M0, Heff(t0)] is the average over the initial conditions, 
M0 ≡ M(t0) with |M0| = Ms, distributed with the probability distribution function 
Pi[M0, Heff(t0)] which is normalized to unity. The average over the realizations of the 
thermal noise, which are distributed according to the probability distribution func-
tional Pn[H], is denoted

D∫〈 〉 ≡� �H HP[ ] [ ].H n (57)

Pn[H] is also normalized to unity. In the rest of the manuscript, we use the notation

〈 〉 ≡ 〈〈 〉 〉� � .
Hi (58)

λ is a vector source that couples linearly to the fluctuating magnetization configuration 
MH(t) which is the unique solution to the sLLG equation for a given initial condition 
M0 and a given history of the noise [H]. By construction λ = =0[ ] 1Z .

In the rest of this section, we construct the MSRJD representation of the generat-
ing functional Z λ[ ] according to the following steps. The first one is to exchange the 
dependence on the unique solution [MH] with a sum over all trajectories by imposing 
the equation of motion written in the form Eq[M, H] = 0 via a delta functional:

Z D D

J
T

·

∫ ∫

∫δ

λ

λ

=

×











| |

H H M M H

M H M H M

P P t

t t tEq

[ ] [ ] [ ] [ ] [ , ( )]

[ , ] [ , ] exp d ( ) ( ).
t

n i 0 eff 0

0

 

(59)

The measure DM[ ], defined precisely in appendix A, has to be understood as the sum, 
at each time step, over vectors M(t) in the entire �3 space. In particular, it includes 
the integration over the initial conditions at time t0. As discussed in section 3.2, the 
constraint |M(t)| = cst is encoded in the equation of motion (see later section 4.1.2). 
Notice that, at the level of the path integral, this allows one to consider Mx, My and 
Mz as unconstrained variables, i.e. |M(t)| ≠ cst. The Jacobian J M H[ , ] ensures that 
the rhs of equation (59) does not depend on the particular formulation of Eq[M, H]:

J
δ
δ

≡M H
M H u

M v
[ , ] det

Eq [ , ]( )

( )ij uv

i

j;
 (60)

with the coordinate indices i, j = x, y, z and the times u, v. (If one thinks in terms 
of discrete time, the equation is imposed by a product of δ-functions starting at time 
indexed n = 1 and ending at time indexed n = N. We next exponentiate the functional 
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Dirac delta with the help of a Lagrange multiplier M̂[i ]. Afterwards, we average over 

the initial conditions M0 and the noise realizations [H]. Finally, we obtain a path inte-
gral representation of λ[ ]Z  in which the trajectories are weighted by the exponential of 

an action functional ^M MS[ , i ]:

Z D D ^ ^ ·∫ ∫λ λ= 


+ 


M M M M MS t t t[ ] [ ] [i ] exp [ , i ] d ( ) ( ) . (61)

4.1. Landau formulation

In section 2, we presented two formulations of the same sLLG equation (Gilbert and 
Landau) with generic discretization prescriptions. These different starting points lead 
to distinct formulations of the generating functional that describe the same physics. In 
the presentation below, we choose to start with the dimension-full Landau formulation 
of the α-covariant sLLG equation, i.e. with equation (34)

≡ − + =αM H M g H HEq [ , ] D ( ) 0,Li t i ij j j
( )

eff, (62)

and we construct a formalism that is valid in any α-prescription. The subscript L stands 
for Landau formulation here and in the rest of this section. We collected in the magnetic 
field Heff all contributions from conservative as well as non-conservative origin, includ-
ing the possible spin-torque terms. We discuss the generating functional obtained when 
starting from the Gilbert formulation, and its equivalence to the Landau formulation, 
in section 4.2 and appendix B. In section 4.3 we recall how these generating functionals 
enable one to compute all cumulants and linear responses of the magnetization.

The operator in the determinant can be worked out explicitly and put into the form

δ
δ

δ δ δ= − + −
u

M v
u v A v u v

Eq ( )

( )
d ( ) ( ) ( ),

Li

j
ij u ij (63)

with

α
γ
η γ

δ= −
+

−
∂
∂

+ −
∂
∂

A D
g

M
H H g

H

M
2 (1 2 )

1
( ) ,ij ij

ik

j
k k ik

k

j

0
2

2
0
2 eff,

eff,
 (64)

where we assumed that Heff is ultra-local in time in the sense that it involves only 
the magnetization evaluated at time u but no time derivatives, i.e. the effective mag-
netic field can be of the form Heff(M(u), u). From now on we will use the notation 
∂i = ∂/∂Mi as in section 3.4. Using that the inverse of δik du δ(u − w) is proportional 
to the Heaviside function δikΘ(w − v), the Jacobian becomes

δ δ δ δ Θ= − ×  − + − M H u u w w v w v A v[ , ] det [ ( )d ( )] det ( ) ( ) ( ) .L
ik uw

ik u
kj wv

kj kj
; ;

J  (65)

We treat the second determinant in the way described in appendix E. Notice that 
Ckj(w, v) = Θ(w − v) Akj(v) is causal. Usually, the expansion stops at the first order due 
to the causality of the operator C. However, when there is a white-noise dependence 
in this operator, as it is the case here, one has to be careful and consider the possible 
contribution of the second-order term, C2 [25, 61]. This is explained in appendix E. In 

http://dx.doi.org/10.1088/1742-5468/2014/09/P09008


Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation

19doi:10.1088/1742-5468/2014/09/P09008

J. S
tat. M

ech. (2014) P
09008

the Cartesian framework, the contribution of the second-order term is an irrelevant 
constant and only the first term has a non-trivial dependence on the magnetization 
field. We obtain

J ∫α∝ 





M H tA t[ , ] exp d ( ) ,L ii (66)

where the factor α comes Θ(0) = α in the α-prescription. Indeed, when working with con-
tinuous-time notations, it can be shown [48] that the α discretization prescription intro-

duced in section 3 translates into the prescriptions ∫ δ α− = −t G t t t G td ( ) ( ) (1 ) ( )
t

t

1 1
1

2

 

and ∫ δ α− =t G t t t G td ( ) ( ) ( )
t

t

2 2
1

2

 for any G(t) that is a causal functional of the ran-

dom field. In particular, for G(t) = 1, this can be conveniently collected into Θ(0) ≡ α. 
The integrand in equation (66) is

α
γ
η γ

δ
ηγ
η γ

= −
+

+
+

+ − ∂A t D
M

M
H H g H( ) 2 (1 2 )

1

2

1
( ) .ii ii

i
i i ik i k

0
2

2
0
2

0
2

2
0
2

s
eff, eff,

Finally, dropping all terms that are constant in the overall normalization, we obtain

J

ε

·

·

∫αγ
η γ

η η δ

η

∝




 +

 + − ∂

+ ∂ + 







M H H H

M H

M
t M M M M

M M H

[ , ] exp
1

1
d 2 ( )

2 .

L i j ij j i

ijk k j i

0
2

2
0
2

s
eff s

2
eff,

s eff,
nc

 

(67)

Coming back to the generating functional λ[ ]Z , we now exponentiate the delta func-
tional that imposes the sLLG equation as

D ^ ^ ·∫ ∫δ 




∝M H M M M HtEq Eq[ , ] [ ] exp d i [ , ],L L (68)

in which M̂ is integrated over the entire �3 space at each time slice and has dimension 
^ = −M M[i ] [ ] 1. The integration over the Gaussian white noise H yields

^

^ ^

DH t M H M g H
H H

D

D t g g M M

[ ] exp d
2

1
i

1

2 2

exp d i i ,

j j i ij j
j j

ji ki

0
2

2
0
2

j k{ }

∫ ∫

∫

αηγ
η γ










 +

− −











∝
 

(69)

where the cross term vanishes thanks to the property gijMj = 0. We will also drop a 
factor that depends only on Ms

2 in the overall normalization. Accordingly, the effect 
of the random field contribution coming from the Jacobian disappears. Altogether, we 
recast the generating functional in the form

{ }∫ ∫λ λ= +M M MS t[ ] [ ] [ ] exp d .LZ D D ^ · (70)

The action SL is a functional of the histories of the magnetization [M] and the auxiliary 

field M̂[i ]. It reads
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ε

^ ^ ^

·

∫ ∫

∫αγ
η γ

ηγ ηγ δ

= + − +

+
+


 + − ∂

+ ∂ 


α( )M H

M H

S P t t M M g H D t g g M M

M
t M M M H

M M H

ln [ , ( )] d i D d i i

1

1
d 2 ( )

.

L i t i ij j ji ki j k

i j ij j i

ijk k j i

i 0 eff 0
( )

eff,

0
2

0
2

s
0 eff 0 s

2
eff,

s eff,
nc

 
(71)

Notice that we identified M0 with M(t0) and we included the integral over the initial 

conditions, ∫ Md 0, into the functional integral ∫ M[ ]D  and their probability distribu-

tion, Pi(M0), into the action functional.
One identifies the contribution of the deterministic dynamics, SL,det

˜ , the dissipative 
and thermal effects, S̃L,diss, and the Jacobian

= + +S S S S .L L L L,det ,diss ,jac
˜ ˜ (72)

Using the decomposition of gij in symmetric and antisymmetric parts, = +g g gij ij ij
s a, 

already used in section 3.4, and renaming indices conveniently one has

^ ·∫= + −αM HS P t t t M D M g H˜ ln [ ( ), ( )] d i ( ),L i i t i ij j,det 0 eff 0
( ) a

eff (73)

^ ^∫ η
=




 −






S t g M
DM

M H˜ d i i ,L ij i j j,diss
s s

eff (74)

ε

·∫αγ
η γ

ηγ ηγ δ=
+


 + − ∂

+ ∂ 


M HS
M

t M M M H

M M H

1

1
d 2 ( )

.

L i j ij j i

ijk k j i

,jac
0
2

0
2

s
0 eff 0 s

2
eff,

s eff,
nc (75)

Remembering that D is proportional to η [see equation (55)], one sees that S̃L,diss van-
ishes at η = 0 while the remaining deterministic and Jacobian parts, ˜ +S SL L,det ,jac,  
yield what one would have obtained starting from the equation without dissipation. 
This writing of the Landau action, shows that gs contains the information on the dis-
sipative aspects of the dynamics.

Note that gs does not have an inverse. This is related to the ‘gauge invariance’ of 

the action, that retains the same form under the parallel translation ^ ^→ +M M Mai i ,  
with a generic.

4.1.1. Rewriting of the Jacobian. As mentioned in the introduction, one should distin-
guish the parallel and perpendicular components of the effective field = +⊥ �H H Heff eff eff.  
We will write them as

ε= + = +⊥�H H H fM MT ,i i i i ilk l keff, eff, eff, (76)

where f and T can be functions of M. This separation is different from the separation in 
conservative and non-conservative contributions. Notice that T is not defined uniquely 
as any translation parallel to M leaves this relation unchanged. Using this separation, 
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one proves that the Jacobian contribution to the action, SL,jac, is independent of the 
parallel component of the effective field, more precisely, it is independent of f. This 
arises due to the cancellation of the first term with one stemming from the second one.

The Jacobian contribution to the action then reads

ε∫
αγ
η γ

ηγ δ=
+


 − ∂ + ∂ 


⊥ ⊥S

M
t M M M H M M H

1

1
d ( ) .L i j ij j ijk k j,jac

0
2

0
2

s
0 s

2
eff s effi i (77)

As expected, we conclude that the full action does not depend on �Heff.

4.1.2. Conservation of the modulus. The decomposition of the auxiliary field 
^ ^ ^

�= + ⊥M M Mi i i  into a sum of parallel and perpendicular components to the magnetiza-

tion M (i.e. ^ · =⊥M Mi 0 and ^� ∧ =M M 0i ) will allow us to show that the modulus Ms 

is conserved by the dynamics and to derive the Gilbert formulation of the action func-

tional (see section 4.2 for the latter).
As Migij = 0, then

ε^ ^ ^γ
η γ

ηγ=
+

+M g M M M Mi
1

[ i i ].i ij jkl k l j
0
2

0
2 0 s (78)

Therefore, we find ^ ^ ^ ^·γ η γ= + ⊥ ⊥M Mg g M Mi i M /(1 ) i iji ki j k s
2

0
2 2

0
2 . This property allows us to 

rewrite the action in (71) in an equivalent form:

= + +S S S S ,L L L L,det ,diss ,jac (79)

with

^

^

·

·

�∫

∫
η γ

ηγ

ηγ γ

= +

+
+


 −

− ∧ + ∧ 

α

⊥

−

M H M M

M M H

M M M H

S P t t t D

t t M

M

ln [ ( ), ( )] d i

1

1
d i d

( d ) ,

L i t

t

,det 0 eff 0
( )

2
0
2 0

2
s eff

0 s
1

0 eff
 

(80)

^ ^·∫η γ
γ ηγ η γ=

+



+ ∧ + 
⊥ ⊥

−( )M M M M MS t D M M
1

1
d i i d d .L t t,diss 2

0
2 0

2
s
2

0 s
1 2

0
2

 (81)

The Jacobian contribution, SL,jac, is again given by equation (77) as it does not involve 
M̂i . We added and subtracted a term in what we called deterministic and dissipative 
contributions for later convenience. The dissipative part, SL,diss, only regroups terms 
that involve the interactions with the environment such as thermal effects and the dis-
sipative torque. It does not depend on the deterministic forces acting on the problem, 
grouped in Heff, that appear only in SL,det. At η = 0, SL,diss vanishes while the remaining 
deterministic part, SL,det, again yields what one would have obtained starting from the 
equation without dissipation. This cutting up will take a clear meaning in the Gilbert 
formulation of the generating functional (see section 4.2).
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The sector of the formalism that involves ^�Mi , the component of M̂i  which is paral-

lel to M, encodes the conservation of the modulus of the magnetization. Indeed, the 

only term involving ^�Mi  in the action functional given in equations (80) and (81) is

^ ^· ·� �∫ ∫=α αM M
M

Mt D t M
M

Dd i d i .t t
( )

s

( )

 

(82)

If one were to integrate over �̂M , this would yield a delta functional

·M MD ,t
( )δ 




α
 (83)

that imposes the constraint · =αM MD 0t
( )

 at all times, simply expressing the conser-
vation of the modulus, =Md 0t s

2 , as we explained in section 3.3.

4.2. Gilbert formulation

As we stressed in section 2, the Gilbert and Landau formulations of the sLLG equa-
tion, equations (8) and (9), or their adimensional form in equations (12) and (13), are 
strictly equivalent. In section 4.1, we constructed a prescription-covariant functional 
formalism starting from the α-covariant expression of the Landau formulation of the 
sLLG equation, namely equation (34). Starting from the α-covariant expression of 
equation (12) and following a similar route (see appendix B), one can construct another 
action functional corresponding to the Gilbert formulation of the problem. The ensuing 
Gilbert action functional reads (the subscript G stands for Gilbert formulation):

= + +S S S SG G G G,det ,diss ,jac (84)

with

^ ^· ·�∫ ∫

γ

= + +






∧ +





α

α

⊥M H M M M

M M H

S P t t t D t

M
D

ln [ ( ), ( )] d i d i

1
,

G t

t

,det i 0 eff 0
( )

s
2

( )
0 eff

 (85)

^ ^·∫ γ γ
η

=





−





α
⊥ ⊥M M MS t

M
Dd i D i .G t,diss 0 0

s

( )
 (86)

ε∫
αγ
η γ

ηγ δ=
+


 − ∂ + ∂ 


⊥ ⊥S

M
t M M M H M M H

1

1
d ( ) .G i j ij j ijk k j,jac

0
2

0
2

s
0 s

2
eff s effi i (87)

The Jacobian contribution, SG,jac, is identical to equation (77), SG,jac = SL,jac. The 
equivalence between the Landau and the Gilbert formulations simply corresponds to a 
transformation of the auxiliary field M̂i . One passes from the Landau action functional 
given in equations (80) and (81) to the Gilbert formulation in equations (85) and (86) 
via the following change

^ ^ ^� ηγ−





∧ +



⊥ ⊥ ⊥M M M M

M M
i

1 1
i i ,

s s
0 (88)
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which is a linear transformation with a constant Jacobian that can be dropped into the 
overall normalization. Conversely, one passes from the Gilbert action functional to the 
Landau formulation via the inverse transformation

^ ^ ^�
η γ

ηγ
+




∧ − 
⊥ ⊥ ⊥M M M MMi

1

1
i i .

2
0
2 0 s (89)

4.3. Observables

The generating functional can be used to evaluate the average of functions of the 
magnetization, in particular its n-times correlation functions, cumulants, and linear 
responses, by taking variations with respect to sources conveniently introduced in the 
action through linear couplings to the magnetization and the auxiliary field. We list a 
number of these observables below.

The averaged magnetization is given by

Z

Z
⟨ ⟩

δ
δλλ
λ

=
= λ=

M t
t

( )
1

[ 0]

[ ]

( )
.i

i 0
 (90)

The two-time correlations can be obtained from the variation of the Z with respect 
to two sources:

Z

Zδ
δλ δλλ

λ
〈 ′ 〉 =

= ′ λ=
M t M t

t t
( ) ( )

1

[ 0]

[ ]

( ) ( )
.i j

i j 0

 (91)

Similarly, one derives the n-times correlation functions by taking variations with respect 
to n factors λi evaluated at different times.

The cumulant generating functional is defined as Zλ λ≡W [ ] ln [ ]. For instance, one 
generates the second-order cumulant as

δ
δλ δλ

λ
′

= 〈 ′ 〉 − 〈 〉〈 ′ 〉
λ=

W

t t
M t M t M t M t

[ ]

( ) ( )
( ) ( ) ( ) ( ) .

i j
i j i j

0

2

The linear response is the result of the effect of a linear perturbation of the local 
effective magnetic field, �

∼
+H H Heff eff , performed at a time t′ on the observable 

of choice. The equation of motion and the dynamic action do not depend on �Heff. 
Therefore, the only variation that may have an effect on the averaged observables is 
the one on ⊥Heff. The linear response of the magnetization component Mi measured at a 
later time t, in the Landau formulation, is

^
⟨ ⟩ ⟨ ⟩

⟨ ⟩
∼ ∼

δ

δ

δ

δ
′ =

′
=

′
= ′ ′

=
⊥

=
⊥

MR t t
M t

H t

M t

H t
M t M( , )

( )

˜ ( )

( )

˜ ( )
( )i (t )g [ (t )] .

H H

ij
i S

j

i S

j

i k

0 0

kj S
L L

L

The average has to be taken with the weight exp SL with the Landau formulation of the 
action functional, SL, given in equations (77), (80) and (81). The presence of the auxil-
iary field M̂i  in the expression of the response is the reason why it is often referred to 
as the ‘response field’. This ‘classical Kubo formula’ can be generalized to the response 
of any observables A:
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^
⟨ ⟩ ⟨ ⟩

⟨ ⟩∼
∼ ∼

δ

δ

δ

δ
′ ≡

′
=

′
= ′ ′

=
⊥

=

MR t t
A t

H t

A t

H t
A t M( , )

( )

( )

( )

˜ ( )
( )i (t )g [ (t )] .

H H

Aj
S

j

S

j

k

0 0

kj S
L L

L
 (92)

The trivial case in which A is set to be a constant, gives RA j(t, t′) = 0 for all t and t′, 
yielding the identity

^⟨ ⟩′ =MM t gi ( ) [ (t )] 0.k Skj
L

 (93)

Within the Gilbert formulation of the α-covariant generating functional, one can 
also compute the linear response function. Another classical Kubo formula expressing 
the linear response as a two-time correlator is found

^
⟨ ⟩ ⟨ ⟩

⟨ ⟩∼ ∼
∼ ∼

δ

δ

δ

δ
γ′ =

′
=

′
= ′

=

⊥

=

⊥
⊥

R t t
M t

H t

M t

H t
M t M( , )

( )

( )

( )

( )
( ) i (t ) ,

H H

ij
i S

j

i S

j

i j S

0 0

0
G G

G (94)

where the averages are weighted by exp SG given in equations (84) with the contribu-
tions (85), (86) and (77). Applied now to any observable A this relation reads

^⟨ ⟩γ′ = ′⊥R t t A t M( , ) ( ) i (t ) .Aj j S0 G
 (95)

The trivial case in which A is set to be a constant, gives RA j(t, t′) = 0 for all t and t′, 
yielding the identity

^⟨ ⟩ =⊥M ti ( ) 0.SG
 (96)

4.4. Equilibrium dynamics

The magnetization undergoes equilibrium dynamics if it is prepared in and let evolve 
under equilibrium conditions. More specifically, initial conditions at temperature T 
have to be drawn from a Gibbs–Boltzmann distribution in a potential U (per unit 
volume), the system has to evolve with the same (time-independent) potential U with 
no additional non-potential fields, =H 0eff

nc , and it has to be in contact with a thermal 
bath in equilibrium at the same temperature.

Thermal initial conditions in the potential U correspond to the Gibbs–Boltzmann 
probability distribution

= β− −M HP t[ , ( )] e M H H
i

VU t Z t
0 eff 0

[ , ( )] ln [ ( )]0 ext 0 ext 0 (97)

with Z[Hext(t0)] ≡ ∫ dM0 e
−βVU[M0

,Hext(t0)]. The deterministic contribution to the 
Landau action functional in equations (73)–(77) reads

^∫= + −α( )M HS P t t M D M gln [ , ( )] d i H ,L i i t i ij j,det 0 eff 0
( ) a

eff,
c (98)

with H MU/c
eff 0

1µ= − ∂ ∂− . The Jacobian can be expressed in terms of U by using 

µ= − ∂−H Ui
c

ieff, 0
1  in equation (75) or µ= − ∂−H P Ui

c
ij jeff, 0

1  in equation (77) with Pij the 
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projector onto the direction perpendicular to the magnetization, P M M M/ij ij i j s
2δ= − . 

The dissipative part, SL,diss, remains unchanged.

5. Spherical coordinate formalism

As the modulus of the magnetization M is constant, the vector rotates on a sphere of 
radius Ms, and it is natural to work in a spherical coordinates system. In this section, we 
present an equivalent functional formalism for the dynamics of the magnetization, that 
uses a system of spherical coordinates. In section 5.1 we present the sLLG equation in 
spherical coordinates and in any discretization prescription. We stress in section 5.2 
that the statistics of the random field are not as trivial as they are in a Cartesian 
description. Although the non-trivial character of the noise has been correctly treated 
in some references (see, for instance [1], and section 4.4.5 in [48]), this subtlety has led 
to mistaken statements [38] and omission or lack of clarity in the literature [10, 39]. 
We hope to clarify this matter once and for all here. It is also important to note that 
the transformation from Cartesian to spherical coordinates is non-linear and one can-
not naively apply it to the generating functional. We construct the corresponding path 
integral formalism starting from the dynamic equations in the spherical coordinate 
system in section 5.4. The resulting action functional is given by the sum of the terms 
in equations (154), (155) and (156).

We introduce the usual coordinates Ms, θ and φ where Ms is the radial component, 
θ the polar angle, and φ the azimuthal angle (see appendix C for more details on the 
conventions used). The vector M defines the usual local basis θ φe e e( , , )Ms  with

θ φ θ φ θ φ θ φ θ≡ = + +M e e e eM M M( , , ) ( , ) ( sin cos sin cos cos ).M x y zs s ss (99)

Here and after, Greek indices such as μ or ν label the spherical coordinates Ms, θ, φ, 
and Latin indices continue to label the Cartesian coordinates x, y, z. We collect the 
spherical coordinates in a vector Ωμ. The rotation matrix is called R and we give its 
explicit form in appendix C.

5.1. α-covariant sLLG equation

Similarly to what was done in the Cartesian coordinate system, the Stratonovich sLLG 
equation in spherical coordinates should be modified to work in a generic α-prescription, 
while maintaining the physics unchanged. We wish to find the equation satisfied by the 
spherical coordinates Ms, θ, φ knowing that the Cartesian components of the magne-
tization vector M satisfy the sLLG given in equation (34) in the Landau formulation,

≡ − + =αM h M H HgEq 0[ , ] D ( ) ,L t
( )

eff (100)

and that the Cartesian chain rule in equation (24) applied to our problem reads

α γ
η γ

δ= ∂ +
−
+

− ∂∂( )M
D

M M Md d
(1 2 )

1
.t t i i ij i j i j

0
2

2
0
2 s

2 (101)

We start by re-writing the chain rule in spherical coordinates. We first work out the 
first term in equation (101) as
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α γ
η γ

θ

∂ = −
−
+

∂

+






+ ∂ + + ∂




θν ν ν θ φν ν ν φ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

M
D

M

M
g H H g H H

d
2 (1 2 )

1

1
( )

1

sin
( )

t i i M
0
2

2
0
2 s

s
eff eff

s

(see appendix C). The relevant elements of gμν are

ηγ ηγ
ηγ
η γ

= = = − =
+θθ φφ θφ φθg g g g

M

1
0 0

0
2

s

2
0
2 (102)

while = =µ µg g 0M Ms s
. In order to treat the second term of equation (101) we notice 

that

* δ − ∂∂ = ∇ − ∂∂M M M M M M( ) ,ij i j i j i j i js
2

s
2 2

where ∇2 is the Laplacian operator that in spherical coordinates reads

θ
θ

∇ =


 ∂ + ∂ + ∂ + ∂ + ∂



θ θ φM

M M
1

2 cot
1

sin
.M M

2

s
2 s

2 2
s

2
2

2
s s (103)

We also have ∂∂ = ∂M M Mi j i j Ms
2 2

s
. Therefore, the second term in equation (101) becomes

α γ
η γ
−
+

∇ − ∂
D

M
(1 2 )

1
( ).M

0
2

2
0
2 s

2 2 2
s (104)

Altogether we have

θ
α γ
η γ

θ
θ

=






∂ + + ∂






+
−
+



 ∂ + ∂ + ∂





θν ν θ φν ν ν φ

θ θ φ
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M

g H g H H

D

d
1 1

sin
( )

(1 2 )

1
cot

1

sin
.

t
s

eff

0
2

2
0
2

2
2

2 (105)

We now apply the differential operator (105) to Ms, θ and φ, respectively, to obtain the 
equations of motion in spherical coordinates

=Md 0,t s (106)

θ
α γ
η γ

θ= + +
−
+θν ν ν⊥ ⊥ ⊥

M
g H H

D
d

1
( )

(1 2 )

1
cot ,t

s
eff

0
2

2
0
2 (107)

φ
θ

= +φν ν ν⊥ ⊥ ⊥
M

g H Hd
1

sin
( ),t

s
eff (108)

and we use these identities in equation (105) to re-write the time-differential operator 
in a form that is explicitly independent of the external and random fields
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Ω
α γ
η γ θ

= ∂ +
−
+



∂ + ∂



µ Ω θ φµ⊥ ⊥

D
d d

(1 2 )

1

1

sin
.t t

0
2

2
0
2

2
2

2 (109)

This is the chain rule in spherical coordinates.
Introducing the covariant derivatives

≡α M MD d ,t t
( )

s s (110)

θ θ
α γ
η γ

θ≡ −
−
+

α D
D ( ) d

(1 2 )

(1 )
cot ,t t

( ) 0
2

2
0
2 (111)

φ φ≡αD ( ) d ,t t
( )

 (112)

we now recast equations (110)–(112) as

θ φ ≡ =αM MEq [ , , ] D 0,L M t,
sph

s
( )

ss (113)

θ φ θ≡ − + =θ
α

θν ν ν⊥ ⊥ ⊥M M g H HEq [ , , ] D ( ) ( ) 0,L t,
sph

s s
( )

eff (114)

θ φ θ φ≡ − + =φ
α

φν ν ν⊥ ⊥ ⊥M M g H HEq [ , , ] sin D ( ) ( ) 0.L t,
sph

s s
( )

eff (115)

Equation (113) encodes the conservation of the modulus. Using the explicit form of gμν 
given in equation (102), equations (114) and (115) become

θ
γ
η γ

ηγ−
+

+ + + =α
φ φ θ θH H H HD ( )

1
[ ( )] 0,t

( ) 0
2

0
2 eff, 0 eff, (116)

θ φ
γ
η γ

ηγ−
+

+ − + =α
φ φ θ θH H H Hsin D ( )

1
[ ( ) ( )] 0.t

( ) 0
2

0
2 0 eff, eff, (117)

Had we started from the Gilbert formulation of the sLLG equation in Cartesian 
coordinates, we would have naturally obtained

θ ηγ θ φ γ+ − + =α α
φ φH HD ( ) sin D ( ) ( ) 0,t t

( )
0

( )
0 eff, (118)

θ φ ηγ θ γ− + − + =α α
θ θH Hsin D ( ) D ( ) ( ) 0.t t

( )
0

( )
0 eff, (119)

In this form, the random field Hθ, Hφ may be erroneously interpreted as being additive, 
and that all discretization prescriptions are equivalent in spherical coordinates. This is 
not the case as the time derivative of φ in equations (115) and (119) are multiplied by 
a function of θ. Moreover, we will see in Sec. 5.2 that, in the local coordinate system, 
the random field has a non-trivial distribution that depends on the discretization.

Summarizing, we have shown how to write the sLLG equation in spherical coor-
dinates in a generic α-prescription. For each prescription the stochastic equations are 
different and one can simply encode the dependence on α by introducing α-covariant 
time derivatives. When treated with the correct rules of stochastic calculus, all equa-
tions yield the same physical results.
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An interesting observation is that in the case of a planar ferromagnet, i.e. when 
the magnetization is bound to live on the plane (moving on a circle), the equations no 
longer have any explicit dependence on α. In this case, one can project the equations on 
the x, y plane by setting θ = π/2 and the α-covariant time derivatives reduce to the 
usual time derivatives. This means that the sLLG equation is the same for all discreti-
zation schemes. We will see in section 5.2 that in the case θ = π/2, the noise in polar 
coordinate is a usual Gaussian white noise with vanishing mean. In other words, the 
stochastic evolution in two dimensions is driven by an effective additive noise, despite 
its original multiplicative character. However, this property only holds in two dimen-
sions and it is not true in general.

5.2. Random field statistics

The probability distribution function of the random noise in the Cartesian coordinate 
system is Gaussian with zero average. This statistics does not directly translate into 
another coordinate system. The distribution in the transformed system has to be care-
fully studied if one wishes to use the rotated components of the random field. As we 
found some misconceptions in the literature regarding this point, in this subsection we 
derive this distribution in spherical coordinates. The reader who is just interested in 
the generating functional construction can jump over this Subsection and go directly 
to section 5.4.

The equations of motion do not involve the radial component of the random field, 
HMs. We are then naturally interested in deriving the probability distributions of the 
orthoradial components, θ φP H H[ , ]n

sph . Let us start with the statistics of the random 
field in the Cartesian basis. The probability distribution of histories for such an isotro-
pic Gaussian white noise is given by

{ }∫∝ − + +P H H H
D

t H t H t H t[ , , ] exp
1

4
d [ ( ) ( ) ( ) ] .x y z x y zn

2 2 2 (120)

The rotation to the spherical coordinate system,

J= | |θ φ µ µ µ µ µ µ
− − −P H H H P R H R H R H[ , , ] [ , , ],M x y zn

sph rot
n

1 1 1
s (121)

with

θ φ
θ φ θ φ φ
θ φ θ φ φ
θ θ

= =









−

−










µ µ
− −MR R( ) ( , )

sin cos cos cos sin

sin sin cos sin cos

cos sin 0

,i i
1 1 (122)

involves the Jacobian

J
δ

δ
≡ ν

µ µ

ν

−

′
′

R t H t

H t
det

( ) ( )

( )
.i tt

irot
,

1

 (123)

After a series of transformations detailed in appendix F we set the calculation of the 
determinant in a form that allows us to use the identity (E.2) with a causal Cμν(w, v).  
In the present case, the noise dependence in the operator C requires to keep the second-
order contribution in the expansion, but all higher order terms vanish [25, 61]. We 

http://dx.doi.org/10.1088/1742-5468/2014/09/P09008


Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation

29doi:10.1088/1742-5468/2014/09/P09008

J. S
tat. M

ech. (2014) P
09008

therefore use equation (E.8). After a lengthy computation detailed in appendix F the 
Jacobian J rot is found to be

J ∫

∫ ∫

Ω
δΩ
δ

Ω
δΩ
δ Ω

δΩ
δ

=
∂

∂

− ′
∂

∂ ′
′
∂ ′
∂

′

× ′

µ
ρ

ν

ν

µ
ρ

µ
ρ

τ

τ

ν
ν

σ

κ

κ

µ

ρ σ

−

− −

⊥

⊥

⊥
⊥

⊥

⊥

⊥

⊥

⊥

⊥

tR t
R t t

H t
H t

t t R t
R t t

H t
R t

R t t

H t

H t H t

ln d ( )
( ) ( )

( )
( )

1

2
d d ( )

( ) ( )

( )
( )

( ) ( )

( )

( ) ( ).

j
j

j
j

k
k

rot
1

1 1

The ‘responses’ δΩ δ ′τ ν⊥ ⊥t H t( )/ ( ) are causal, making the integrand in the last term van-
ish for all t′ ≠ t. However, as it involves two random field factors (which are delta cor-
related) it may still yield a non-trivial contribution at t = t ′. We will see that in cases 
in which the ‘equal-time responses’ δΩ δτ ν⊥ ⊥t H t( )/ ( ) vanish (as in, e.g., non-Markovian 
processes) the Jacobian turns out to be trivial and equals one, = 1rotJ . This is the 
case for the Itô convention. However, the sLLGs in spherical coordinates and generic 
discretization prescription yield finite and non-vanishing equal-time responses and, 
hence, a non-trivial J rot.

Using a more compact notation, the probability distribution function reads

∫ ∫ ∫ ∫= − + − ′ ′ ′µ µ ρ ρ ρσ ρ σP H
D

t H t t L t H t t t Q t t H t H tln [ ]
1

4
d ( ) d ( ) ( )

1

2
d d ( , ) ( ) ( ),n

sph 2

with

Ω
δΩ
δ

≡
∂

∂
ρ µ

ρ

τ

τ

µ

−

⊥

⊥L t R t
R t t

H t
( ) ( )

( ) ( )

( )
,j

j
1

 (124)

Ω
δΩ
δ Ω

δΩ
δ

′ ≡
∂

∂ ′
′
∂ ′
∂

′
ρσ µ

ρ

τ

τ

ν
ν

σ

κ

κ

µ

− −

⊥

⊥

⊥

⊥Q t t R t
R t t

H t
R t

R t t

H t
( , ) ( )

( ) ( )

( )
( )

( ) ( )

( )
.j

j
k

k
1 1

 (125)

The responses can be computed by first formally recasting the solutions of the equa-
tions of motion (118) and (119) into

∫ ∫θ θ
γ
η γ

ηγ= + ′… +
+

′ ′ + ′φ θt t t H t H t( ) d
1

d [ ( ) ( )],
t

t

t

t

0
0

2
0
2 0

0 0
 (126)

∫ ∫φ φ
γ
η γ θ

ηγ= + ′ … +
+

′
′

′ − ′φ θt t t
t

H t H t( ) d
1

d
1

sin ( )
[ ( ) ( )],

t

t

t

t

0
0

2
0
2 0

0 0
 (127)

where we only expressed explicitly the kernels involving the random fields. The argu-
ment exposed in appendix F allows one to recast the last term in a form in which the 
product of random fields Hρ(t) Hσ(t ′) is replaced by its average, 2Dδρσ δ(t − t ′), con-
tracting the indices of the factors Q and cutting one of the time integrals. In short, one 
only needs the equal-time responses of the polar coordinates with respect to variations 

of the random fields. These read, using ∫ δ Θ α′ ′ − = =t t td ( ) (0)
t

t

0

,
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∫
δθ
δ

ηγ
η γ

δ
αηγ
η γ

=
+

− =
+θ

′ ′t

H t
t t t

( )

( ) 1
d ( )

1
,

t

t
0
2

2
0
2

0
2

2
0
2

0

 (128)

∫
δθ
δ

γ
η γ

δ
αγ
η γ

=
+

− =
+φ

′ ′t

H t
t t t

( )

( ) 1
d ( )

1
,

t

t
0

2
0
2

0
2

0
2

0

 (129)

∫
δφ
δ

γ
η γ θ

δ
θ

αγ
η γ

= −
+

− = −
+θ

′
′

′t

H t
t

t
t t

t

( )

( ) 1
d

1

sin ( )
( )

1

sin ( ) 1
,

t

t
0

2
0
2

0
2

0
2
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 (130)

∫
δφ
δ

ηγ
η γ θ

δ
θ

αηγ
η γ

=
+

− =
+φ

′
′

′t

H t
t

t
t t

t

( )

( ) 1
d

1

sin ( )
( )

1

sin ( ) 1
.

t

t
0
2

2
0
2

0
2

2
0
2

0

 (131)

The first terms in equations (126) and (127) give vanishing contributions since their 
integrands are finite at all times.

Using these results one calculates Lρ and Qρρ:

αγ
η γ

ηγ δ ηγ θδ θδ=
+

+ +ρ ρ ρθ ρφL t( )
1

[2 cot cot ],M
0
2

0
2 0 0s (132)

α γ
η γ θ

=
+



 +



ρρQ t t( , )

1
1

1

sin
,

2
0
2

2
0
2 2 (133)

and, after another lengthy calculation detailed in appendix F, we obtain the following 
expression for Pn

sph in terms of the random field components and the magnetization 
polar angles:

P H H t
D

H t t H t H t

D
t

[ , ] exp d
1

4
( )

1
cot ( ) [ ( ) ( )]

1
cot ( ) .

n
sph 2 0

2
0
2 0

2
0
2

2
0
2

2

∫ αγ
η γ

θ ηγ

α γ
η γ

θ

∝




− +

+
+

−
+






θ φ µ θ φ⊥

 

(134)

Itô calculus provides a special case in which a conventional Gaussian distribution is 
recovered. We stress that there is another special case in which this distribution boils 
down to a standard Gaussian distribution (with zero mean and delta correlations) for 
all discretization prescriptions: the case in which the magnetization is constrained to 
rotate on the plane θ = π/2.

5.3. FP approach

Following steps similar to the ones in section 3.4 and in [1], now for the α-scheme 
spherical equations of motion, one finds the α-generic FP equation

θ φ α
γ
η γ

θ
γ
η γ

θ θ φ

θ φ
γ
η γ

θ φ
θ
θ φ

∂ = − ∂




+ −

+
+

+






−∂ −
+





∂ + ∂

















θ θ

φ φ θ φ

P t f D D P t

f P t
D

P t P t

( , ; ) [ (2 1)
1

cot
1

cot ] ( , ; )

[ ( , ; )]
1

( , ; )
1

sin
( , ; )

t
0
2

2
0
2

0
2

2
0
2

0
2

2
0
2

2 2
2

 

(135)
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with

f
D

H H

f H H

(1 2 )

1
cot

1
( ),

1

1

sin
( ).

0
2

2
0
2

0
2

0
2 eff, 0 eff,

0
2

0
2 0 eff, eff,

α γ
η γ

θ
γ
η γ

ηγ

γ
η γ θ

ηγ

=
−
+

+
+

+

=
+

−

θ φ θ

φ φ θ

 

(136)

As in the Cartesian case one finds that the drift term in fθ cancels the following term 
and all explicit α dependence disappears from the FP equation. One can check that in 
the conservative case

µ µ
θ

= − ∂ = − ∂θ θ φ φ
− −H M U H M U( ) , ( )

1

sin
eff, s 0

1
eff, s 0

1 (137)

the stationary probability density

θ φ θ= β θ φ−P M N( , , ) sin e VU
eq s

( , ) (138)

with N a normalization constant is a solution to the FP equation, as long as D is given 
by equation (55).

5.4. Landau generating functional

The purpose of this subsection is to derive the generating functional in the spherical 
coordinate system. The steps performed in this section are very similar to the ones 
performed in section 4 when working with Cartesian coordinates.

Given an initial condition Ms0, θ0 and φ0 that we collect in the vector notation 
Ω0 = Ω(t0), and a particular realization of the Gaussian and zero-mean random vari-
ables [H] in the Cartesian coordinate system, there is a unique trajectory of the variables 
[Ms], [θ] and [φ], collected in [Ω], that obeys the equations of motion. The generating 
functional is defined as

∫ Ωλ λ= 〈 〉t t t[ ] exp d ( ) ( ) ,HZ · (139)

where 〈···〉 denotes the average over initial conditions and random field realizations. λ 
is a source that couples linearly to the fluctuating magnetization configuration ΩH(t).

Similarly to the Cartesian case, we construct the MSRJD representation of the 
generating functional λ[ ]Z  by imposing the equation of motion with a functional 
delta-function

·

Z D D

J

H H H

H H

P P t t

M t t tEq

[ ] [ ] [ ] [ ] [ ( ), ( )]

[ sin ] [ , ] [ , ] exp d ( ) ( ).
n

N

n

n i 0 eff 0

1
s
2 1 sph sph

∫ ∫

∫∏

Ω Ω

Ω Ω Ωθ δ

λ

λ

=

×










× | |

=

−

 

(140)

Pn[H] is the probability distribution of the random field in Cartesian coordinates, 
that we still take to be Gaussian with zero mean, delta correlated and variance 2D. 
For the moment we leave the initial probability density Pi general. A particular case 
is the one in which it is given by the equilibrium weight (138). The measure over 
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the spherical coordinates, D Ω[ ], is defined in appendix C and includes a summation 

over the initial conditions at time t0. The geometric factor ∏ θ| |
=

−M sin
n

N
n1 s

2 1 accom-

panies the δ function in the spherical coordinate system, see also appendix C. The  
Jacobian J Ω H[ , ]sph  is

Ω
Ωδ
δΩ

≡
µν

µ

ν
H

H u

v
[ , ] det

Eq [ , ]( )

( )uv

sph

;

sph

J (141)

with the coordinate indices μ, ν = Ms, θ, φ and the times u, v.
At this point we have the freedom to write the equation of motion in the Landau or 

Gilbert formulation. The advantage of the former lies in the fact that the time deriva-
tives are well separated from the other terms, thus simplifying the analysis. We choose 
to use a modified Landau formulation that we compactly write as follows:

M

H H H H

H H H H

Eq d 0,

Eq D ( )
1

[ ( )] 0,

Eq D ( )
1

1

sin
[ ( ) ( )] 0.

L M t

L t

L t

,
sph

s

,
sph ( ) 0

2
0
2 eff, 0 eff,

,
sph ( ) 0

2
0
2 0 eff, eff,

s

θ
γ
η γ

ηγ

φ
γ
η γ θ

ηγ

= =

= −
+

+ + + =

= −
+

+ − + =

θ
α

φ φ θ θ

φ
α

φ φ θ θ

This form is convenient since, as the derivatives are separated from the rest, it is 
relatively simple to compute the Jacobian (as opposed to what has to be done in the 
Gilbert formulation that we develop in appendix H).

The operator in the determinant can be worked out explicitly as explained in  
appendix G

J ∫αγ
η γ

α γ
θ

ηγ

θ
ηγ

=




 +







−
− ∂ + + +

+ ∂ + − +










θ φ φ θ θ

φ θ θ φ φ

t
D

H H H H

H H H H

exp
1

d
(1 )

sin
[ ( )]

1

sin
[ ( )] .

L
sph 0

2
0
2

0
2 eff, 0 eff,

eff, 0 eff,

 

(142)

As found in the Cartesian calculation, it does not depend on the parallel component of 
the field, that in spherical coordinates means that L

sphJ  is independent of +H HM Meff, s s.

We next introduce an adimensional Lagrange multiplier Ω[i ]^
 to exponentiate the 

functional delta:

D ^ ^ ^ ^{ }∫ ∫Ω Ω Ω ΩΩ Ω Ω− + +θ θ φ φ( )H Ht[i ] exp d i Eq [ ] i Eq [ , ] i Eq [ , ] .M M
sph sph sph

s s

We identify all the terms in the integrand of the exponent that involve the random 
field H:

^ ^γ
η γ

Ω
θ
ηγ Ω ηγ

αγ
η γ

ηγ
ηγ
θ θ

− +
+



 − + +





+
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−∂ − ∂ − ∂ + ∂
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D
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0
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0
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The quadratic term in Hi comes from its probability distribution. The first set of linear 
terms comes from imposing the equations of motion with the Dirac delta function. The 
third group of terms comes from the Jacobian. Contrary to the Cartesian case, the lat-
ter will yield non-trivial contributions to the action. After integration and a number of 
simplifications that use the explicit expression of the rotation matrix R one finds that 
these terms give rise to

^
^ ^γ

η γ
Ω
θ

Ω α Ω θ
α
θ+









+ + +








φ
θ θ

D

1

(i )

sin
(i ) 2 i cot

sin
0
2

2
0
2

2

2

2 2

2

(apart from an irrelevant additive constant). The last term is of the same form as the 

first term in L
sphJ  and we will combine them together when writing �S jac

sph
 below.

We now perform the change of fields

^ ^�Ω θ Ωφ φi sin i , (143)

which comes with a Jacobian

∏ θ| |
=

−

sin ,
n

N

n

0

1

 (144)

where we were careful to evaluate the factors on the intermediate points 
θ αθ α θ≡ + −+ (1 )n n n1 . Notice indeed that the discretization matters here since there 
is no trivial continuous limit of this expression. See also the discussion in section 3.1. 
The product above can be re-written as

∏ ∏θ θ| | = | |
α θ

θ

=

−
−

=

sin e sin ,
n

N

n

n

N

n

0

1
(1 )ln

sin
sin

1

N

0

 (145)

where we used the development

θ α θ α θ= + −+sin sin (1 ) sin ,n n n1 (146)

and the fact that we do not need to consider higher order terms because they vanish 

from equation (144) once the limit δt → 0 is considered. The product ∏ θ| |
=

sin
n

N
n1
 in 

equation (145) cancels exactely the geometric one accompanying the delta functions in 
equation (140).

We now put all these results together to write the generating functional

Z D D ^ ^ ·∫ ∫Ω Ω Ω Ω Ωλ λ= +( )S t[ ] [ ] [ ] exp [ , ] d ,L
sph

 (147)

with the measure D  ∏Ω θ φ θ≡ | |
→∞ =

M M[ ] lim d d d sin
N n

N
n n n n n0 s s

2  (that includes the initial 

time t0), the full action

= + +� �S S S SL L L L
sph

,det
sph

,diss
sph

,jac
sph

 (148)

and
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(149)
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1
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2

2
0
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0
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2
0
2 eff, eff,

 

(150)

� ∫α
θ
θ

αγ
η γ

γ
θ

ηγ

θ
ηγ

= − +
+
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+ ∂ −






θ φ θ

φ θ φ

S t
D

H H

H H
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sin 1
d
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1
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( ) .

L
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sph 0 0

2
0
2

0
2 eff, 0 eff,

eff, 0 eff,

 
(151)

The expressions above can be modified to obtain a slightly more compact, and even-

tually more convenient, form. �SL,diss
sph

 includes a linear term in Ω̂θi  that can be replaced 

with the help of the identity

∫ ∫φ σφ φ φ φ σφ φ
σ σ

− − =






− − −






b a b
a

d exp [(i ) i i ] d exp (i ) i
4

ab

2
.2 2

2

2 2 (152)

We apply it to the functional integration over Ω̂θi  by choosing

σ
γ
η γ

γ α
η γ

θ

θ
γ
η γ

ηγ

=
+

= −
+

= −
+

+α
φ θ

D

a
D

b H H

1
,

2

1
cot ,

D ( )
1

( ).t

2 0
2

2
0
2

0
2

2
0
2

( ) 0
2

0
2 eff, 0 eff,

The integration generates the terms

σ σ
α γ
η γ

θ

α θ θ
γ
η γ

ηγ

− − = −
+

+ −
+

+α
φ θ

a ab D

H H

4 2 1
cot

cot [D ( )
1

( )].t

2

2 2

2
0
2

2
0
2

2

( ) 0
2

0
2 eff, 0 eff, (153)
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We rewrite the full action as = + +S S S SL L,det
sph

,diss
sph

jac
sph, with SL,det

sph  given in equa-

tion (149) that we repeat here to ease the reading of the final result,

^ ^

^

{∫Ω Ω Ω θ
γ
η γ

Ω θ φ
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η γ

= − +




 −

+







+




 +

+
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HS P t t M H

H

ln [ , ( )] d i d i D ( )
1

i sin D ( )
1

) ,

L M t t

t

,det
sph

i 0 eff 0 s
( ) 0

2
0
2 eff,

( ) 0
2

0
2 eff,

s

 

(154)

^ ^ ^ ^∫
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η γ

γ Ω γ Ω ηγ Ω Ω=
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+ + + 


φ θ θ θ φ φ( ) ( ) ( )S t D D H H
1

d i i i  i ,L,diss
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0
2 0

2

0
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0 eff, eff, (155)

∫
∫

α
θ
θ

α θ θ
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0
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0
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0
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(156)

This completes the construction of the generating functional for the Landau formula-
tion of the dynamics in the spherical coordinate system.

The construction of the Gilbert action reported in appendix H leads to

^ ^

^

{
}

∫Ω Ω Ω θ γ

Ω θ φ γ

= − + −

− +

θ
α

φ

φ
α

θ

HS P t t M H

H

ln [ , ( )] d i d  i [D ( ) ]

i [ sin D ( ) ] ,

G M t t

t

,det
sph

i 0 eff 0 s
( )

0 eff,

( )
0 eff,

s

 
(157)

^ ^ ^ ^∫ γ Ω γ Ω Ω ηγ θ φ Ω ηγ θ= + − −φ θ θ
α

φ
αS t D Dd [ (i ) (i ) i sin D ( ) i D ( )],G t t,diss

sph
0
2

2

0
2

2

0
( )

0
( )

 (158)

=S SG L,jac
sph

,jac
sph

 (159)

and = + +S S S SG G G G
sph

,det
sph

,diss
sph

,jac
sph . One can easily check that one can go from the 

Landau to the Gilbert formalism and vice versa within the path integral via a change 

of variables of the auxiliary fields, similarly to what we discussed in the Cartesian coor-
dinate system around equations (88) and (89):

^ ^ ^Ω Ω ηγ Ω= +θ θ φi  i i ,
L G G

0
 (160)

^ ^ ^Ω ηγ Ω Ω= −φ θ φi i i ,
L G G

0
 (161)
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with inverse

^ ^ ^

^ ^ ^

Ω
η γ

Ω ηγ Ω

Ω
η γ

ηγ Ω Ω

=
+



 + 




=
+



 − 




θ θ φ

φ θ φ

i
1

1
i i ,

i
1

1
i i .

G L L

G L L

2
0
2 0

2
0
2 0 (162)

6. Conclusions

In this manuscript we revisited the stochastic approach to the dynamics of a mag-
netic moment under the effect of thermal noise, dissipation, magnetic field of potential 
origin and, also, non-potential forces such as spin-torque terms. We used the sto-
chastic Landau–Lifshitz–Gilbert (sLLG) equation as a phenomenological description 
of the dynamics and we constructed a functional generating functional for physical 
observables.

We found rather confusing statements on the influence (or not) of the discreti-
zation scheme used to define the stochastic dynamics in discrete time in the litera-
ture [49]. Our first goal was to insist upon the fact that unless the Stratonovitch 
prescription is used to define the sLLG, a drift term has to be added to the equa-
tion of motion. The drift term ensures both the conservation of the magnetization 
modulus and the approach to Boltzmann equilibrium under conservative magnetic 
fields.

We also formulated the problem in the spherical coordinate system. Although this is 
the most natural framework to work in, due to the explicit conservation of the modulus 
of the magnetization, it has been the source of many confusing statements in the litera-
ture. For instance, it is stated in [39] that the random field in the spherical coordinate 
system is additive. In section 7.3.1 in [38] it is written that the spherical components of 
the random field is a Gaussian with zero mean. In this paper we showed that the polar 
coordinate field acquires a non-vanishing average. We clarified these issues not only in 
the standard Itô and Stratonovich schemes but also in the general α prescription. This 
is an important result for the correct numerical study of the magnetization dynamics.

We then derived the drift term to be added to the equation for the polar angle. We 
showed that the evolution dictated by this α prescription stochastic equations leads to 
the equilibrium Gibbs–Boltzmann distribution independently of α.

Next, we focused on the construction of the generating functional. We stressed that 
physical results should be independent of the framework used to write the path integral, 
this being the Landau versus Gilbert formulation of the dynamics, the α-prescription, 
or whether we use Cartesian or spherical coordinates.

The equivalence between the Landau and Gilbert formulations at the level of the 
equations of motion was carefully discussed in several textbooks on this subject [10]. 
We showed explicitly how this equivalence is realized in the path-integral formalism.

We proved the independence of the α-prescription in section 3.4 within the frame-
work of the Fokker–Planck equation. The α-invariance of physical results can also be 
shown within the generating functional formalism but, as the action depends explicitly 
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on α, this feature is less trivial to show in this set-up. One way to prove invariance is 
to use an underlying BRST symmetry [31]. Another possibility is to construct a pertur-
bative expansion and to show invariance in this way [34]. In both cases, an interplay 
between the contributions of all parts in the action, including the Jacobian, are neces-
sary to establish invariance.

At the level of the stochastic equations of motion, one can go from Cartesian to 
spherical expressions by using the transformation rules for the change of basis and the 
generalized chain rule for the time derivative. In the Fokker–Planck formalism, a change 
of variables also allows one to relate Cartesian and spherical approaches. However, at 
the level of the path integral, the equivalence is more subtle. As it is well-known from 
the results in [60, 62–64], a non-linear change of variables in the path integral gener-
ates non-trivial extra terms in the action (beyond the formal change of variables and 
the corresponding Jacobian). These are found also in this particular case. We have not 
discussed this issue in further detail in this manuscript since the more adequate scheme 
to do it is the BRST formalism [64] that we will develop elsewhere.

Our work can be extended in different directions. For simplicity, we presented the 
path integral for a single magnetic moment. The sLLG equation can be easily general-
ized to the case of a space-dependent magnetization by introducing a Ginzburg–Landau 
free-energy functional [10, 38, 39]. The generalization of the generating functional con-
struction to this case is straightforward. It will be useful to treat micromagnetism [65] 
and, in particular, the dynamics of magnetic domains.

A field in which the path-integral formulation of the stochastic dynamics has 
been specially successful is the one of systems with quenched randomness. As known 
since the work in [24], the average over quenched disorder is simple to perform within 
this functional framework and allows the analytic treatment of many interesting 
 phenomena [66].
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Appendix A. Path integral measure

The time interval T∈t t[ , ]0  is divided in N discrete time intervals, tn ≡ t0 + nΔt with 
n = 0, …, N and increment ∆ ≡ −t t N( )/0T . The continuous time limit is performed 
by sending N to infinity while keeping T − t0 finite.
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We define the path integral over functions defined on the time interval Tt[ , ]0  as

D∫ ∫∏≡
→∞ =

x x[ ] lim d .
N n

N

n

0

 (A.1)

When integrating over the magnetization, a 3D field in Cartesian coordinates,

∫ ∫∏≡
→∞ =

M M[ ] lim d ,
N n

N

n

0

D (A.2)

the integration on each time-slice is performed over the �3 space, and the spheri-
cal constraint is imposed by the equation of motion. More specifically, it is imposed 

through the ^ �Mi  sector of the path-integral expression of the generating functional, see 

section 4.1.2.

Appendix B. Gilbert Cartesian generating functional

We start from the evolution equation in the α-covariant Gilbert formulation in Cartesian 
coordinates,

γ
η

≡ +





+ −




=α αM H M H H M

M
Eq 0[ , ] D D ,G t t

( )
0 eff

s

( )
 (B.1)

and we impose this equation in a path integral over M as described in section 4. The 
Jacobian that ensures that the integration over M equals one is given by

J
δ
δ

≡M H
u

M v
[ , ] det

Eq ( )

( )
G

ij uv

Gi

j;
 (B.2)

with EqG given in equation (B.1). The operator in the determinant can be worked out 
explicitly and put into the form

δ
δ

δ δ= − + −
u

M v
X u u v A v u v

Eq ( )

( )
( )d ( ) ( ) ( )

Gi

j
ij u ij (B.3)

with

δ
ηγ

≡ +X u
M

M u( ) ( ),ij ij ijk k
0

s

ε (B.4)

ε ε εγ γ
ηγ

α
γ
η γ

δ≡ + + ∂ − + −
+

A H H M H
M

M D( ) d 2 (1 2 )
1

.ij ijk k k ilk l j k ijk t k ij0 eff 0 eff
0

s

0
2

2
0
2 (B.5)

Factorizing the operator Xik(u)du δ(u − w), with inverse Θ −−X v w v( ) ( )kj
1 ,

ε
η γ

δ
ηγ η γ

=
+





 − +







−X u
M

M u
M

M u M u( )
1

1
( ) ( ) ( ) ,ij ij ijk k i j

1
2

0
2

0

s

2
0
2

s
2 (B.6)

we write
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∫
δ
δ

δ δ δ Θ= − ×  − + − 
−u

M v
wX u u w w v w v X v A v

Eq ( )

( )
d ( )d ( ) ( ) ( ) ( ) ( ) .

Gi

j
ik u kj kl lj

1 (B.7)

The Jacobian becomes

J δ δ δ Θ= − ×  − + − 
−[ ]M H X u u w w v w v X v A v[ , ] det ( )d ( ) det ( ) ( ) ( ) ( ) .G

ik uw
ik u

kj wv
kj kr rj

; ;

1

 
(B.8)

Notice that the first factor is actually independent of M. Indeed, using detik;uw 
[Xik(u)du δ(u − w) ] = detij;uv [Xij(u) δ(u − v)] detjk;vw [δjk dvδ(v − w)], one easily finds 

ε∏ ∏δ δ
ηγ

η γ −  ∝





+






=  + X u u v

M
M udet ( )d ( ) det ( ) 1ij uv ij u u ij ij ijk k u;

0

s

2
0
2 , a trivial con-

stant. We treat the second determinant, that depends upon Aij and hence H, with the 
identity (E.2) to obtain

∫α∝ −( )M H t X A[ , ] exp d .G jr rj
1J (B.9)

In this case only the first term in the expansion yields a non-trivial contribution. 
Performing the contractions with −Xjr

1, we find

J

ε

·∫αγ
η γ

ηγ

ηγ
δ

∝



 +





 +

+ − ∂ + ∂










( )

M H M H Ht
M

M
M M M H M H

[ , ] exp
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d
2

( )

,

G

k j kj j k jlk l j k

0
2

0
2

0

s
eff

0

s
s
2

eff eff

where we omitted a constant factor. This result coincides with the Jacobian in the 
Landau formulation, see equation (67), and

=M H M H[ , ] [ , ].G LJ J (B.10)

Coming back to the generating functional Z λ[ ], we now exponentiate the delta func-
tional with an auxiliary field M̂i  that imposes equation (B.1) as

D ^ ^ ·∫ ∫δ ∝ 




M H M M M HtEq Eq[ [ , ]] exp d i [ , ].G G

From the very structure of the equation it is clear that after decomposing the auxiliary 

field in two components ^⊥Mi  and ^�Mi  perpendicular and parallel to M, respectively, 

one has

D D^ ^ ^

^

·

·

�

�

∫ ∫
∫

δ 




∝ 









× α

⊥ ⊥M H M M M M H

M M

t

t

Eq Eq[ , ] exp d i [ , ]

exp d i D .

G G

t
( )

The integration over the Gaussian white noise H involves the following terms in 
the exponential:
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^· ·
αηγ

η γ
γ
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+ ∧ −⊥
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M H M M H
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2D
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The Gaussian integral then yields ε ^α η γ η γ γ





+ +



⊥( )( )D M M4 / 1 iijk j

2 2
0
4 2

0
2 2

0
2

2

i . The first 

term is just a constant while the second one is non-trivial. We then recast the generat-
ing functional into the form

Z D D D^ ^ ·�∫ ∫λ λ= 








+⊥ ( )M M M MS t[ ] [ ] exp d ,G

where we neglected all trivial constant factors, with an action SG that reads

= + +� �S S S S ,G G G,det ,diss jac

and

^
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+ + ∧
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(B.11)

^ ^·� ∫ γ
ηγ
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(B.13)

For reasons that should become clear when reading section 4.2, we perform 

the change of (dummy) auxiliary fields from ^⊥Mi  to ^ ^′ ≡ ∧⊥ ⊥
−M M M Mi i s

1. The 
Jacobian of this change of variables is a constant and the action functional now reads 
SG = SG,det + SG,diss + Sjac with

^

^

·

·

�∫

∫ γ

= +

+





∧ +





α

α
⊥

[ ]M H M M

M M M M H

S P t t

t
M

ln , ( ) d i D

d i
1

D ,

G i t

t

,det 0 eff 0
( )

s

( )
0 s eff 

(B.14)

^ ^·∫ γ ηγ= − α
⊥ ⊥( )M M MS t D Md i i D ,G t,diss 0

2
s
2

0
( )

 (B.15)

where we used the identity ^ ^· ·= − ∧ ∧α α
⊥ ⊥

−( ) ( )M M M M M M Mi D i Dt t
( ) ( )

s
2 and 

we dropped the prime: ^ ^�′⊥ ⊥M Mi i . Sjac is unchanged. In section 4.2 we presented the 
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action functional given by the sum of the terms in equations (B.13), (B.14) and (B.15) 
and we showed that it can be taken to the Landau form by a suitable change of the 
auxiliary field. We prove in this way that the functional representations of the Landau 
and Gilbert formulation of the stochastic dynamics are totally equivalent.

Appendix C. Spherical coordinate conventions

We are using the spherical coordinate system in which θ the polar angle, θ ∈ [0, π], and φ  
the azimuthal angle, φ ∈ [0, 2π]. The local orthogonal unit vectors are =µ θ φe e e e( , , )Ms .  
The link to the Cartesian basis is given by

θ φ θ φ θ= = =M M M M M Msin cos , sin sin , cos .x y zs s s

We use Latin indices to label Cartesian coordinates (i = x, y, z) while Greek indices 
refer to the local basis (μ = Ms, θ, φ).

The rotation matrix linking Cartesian to local coordinates, eμ = Rμi ei, is

θ φ
θ φ θ φ θ
θ φ θ φ θ
φ φ

= =









−
−










µ µMR R( ) ( , )

sin cos sin sin cos

cos cos cos sin sin

sin cos 0
i i (C.1)

with RαiRβi = δαβ. Notice that det R = 1 and R−1 = tR:

θ φ
θ φ θ φ φ
θ φ θ φ φ
θ θ

= =









−

−










µ µ
− −MR R( ) ( , )

sin cos cos cos sin

sin sin cos sin cos

cos sin 0

.i i
1 1 (C.2)

and δ=α β αβ
− −R Ri i

1 1 .
The following properties are useful:

θ
δ δ δ δ

φ
θδ δ θδ δ θδ δ θδ δ

∂

∂
= − +

∂

∂
= − − + +

µ
ρ

µ ρθ µθ ρ

µ
ρ

µ ρφ µθ ρφ µφ ρ µφ ρθ

−

−

R
R

R
R

,

sin cos sin cos .

j
j

M M

j
j

M M

1

1

s s

s s

The delta function is not a scalar in the sense that it transforms non-trivially under 
coordinate transformations. This can be simply seen by considering the property

∫ δ= −x x x1 d ( ),3

which after a coordinate change to the spherical basis reads

∫ Ωδ θ φ θ φ= −( )( )x xM M1 d ( , , ) , , .3
s s

The measure is Ω θ θ φ= M Msin d d ds
2

s . The integrals run over Ms ⩾ 0, θ ∈ [0, π] and 

φ ∈ [0, 2π]. x(Ms, θ, φ) and θ φ( )x M , ,s  are the expressions for x and x in terms of the 
spherical coordinates. Using the identity
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δ θ φ θ φ
Ω
δ δ θ θ δ φ φ− =

∂

∂
− − −

µ

µ( )( )x xM M
x

M M( , , ) , , det ( ) ( ) ( ),
i i

s s s s

we get

M
M M

M M M

1 d
1

sin
( ) ( ) ( )

d d d ( ) ( ) ( ).

s
2 s s

s s s

∫

∫

Ω
θ
δ δ θ θ δ φ φ

θ φ δ δ θ θ δ φ φ

= − − −

= − − −
 

(C.3)

If xi are the Cartesian coordinates of the vector x and xμ the coordinates of the same 
vector in another coordinate system, the Jacobian matrix of the coordinate change is

≡
∂
∂

µ
µ

J
x

x
,i

i
 (C.4)

and the Jacobian of the transformation is ≡ µ µJdeti iJ .
We relate the derivatives with respect to Cartesian coordinates to those with respect 

to spherical coordinates as

∂ =
∂

∂
∂ = ∂µ
µ µ µ

−
x

x
J .i

i
i
1

For the vector M transformed to spherical coordinates, the Jacobian matrix (C.4) 
reads

φ θ φ θ φ θ
φ θ φ θ φ θ
θ θ

=









−

−










νJ

M M

M M

M

cos sin cos cos sin sin

sin sin sin cos cos sin

cos sin 0
i

s s

s s

s

 (C.5)

for i = x, y, z and μ = Ms, θ, φ.
With spherical coordinates, the integration measure is understood as

D ∣ ∣∫ ∫∏Ω θ φ θ≡
→∞ =

M M[ ] lim d d d sin .
N n

N

n n n n n

0

s s
2 (C.6)

Appendix D. Chain rule in spherical coordinates

The matrices introduced in appendix C and the properties listed above allow one to 
derive the chain rule in spherical coordinates from the one in Cartesian coordinates,

α γ
η γ

δ= ∂ +
−
+

− ∂∂( )M
D

M M Md d
(1 2 )

1
.t t i i ij i j i j

0
2

2
0
2 s

2 (D.1)
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The first term can be re-written as

Ω
α γ
η γ Ω

α γ
η γ Ω

α γ
η γ θ

∂ =
∂
∂

=




−

−
+

+






∂
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= −
−
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∂ +
∂
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= −
−
+
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σ
σ

σ
σ

µ µν ν σ
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θν ν θ φν ν φ

− −

−
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M M J
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M g H J

D
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D
M

M
g H g H

d d
2 (1 2 )

1

2 (1 2 )

1
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1

1 1
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,

t i i t i i i ij j i

M i i

M

1 0
2

2
0
2

1

0
2

2
0
2 s

1

0
2

2
0
2 s

s

s

s

where in the second line we introduced the equation of motion in Cartesian coordinates, 
in the third line we used ∂ = ∂M Mi i Ms s and = µ µν νg H R g Hij j i , and in the last line we used 
the fact that = =µ µg g 0M Ms s

. To shorten the notation we called = +H H Heff .
In order to treat the second term of equation (D.1), we notice that

* δ − ∂∂ = ∇ − ∂∂( )M M M M M M ,ij i j i j i j i js
2

s
2 2

with ∇2 the Laplacian operator in spherical coordinates

θ
θ

∇ =


 ∂ + ∂ + ∂ + ∂ + ∂



θ θ φM

M M
1
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1
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.M M
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s
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2 2
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2
s s (D.2)

We also have

Ω

Ω Ω

∂∂ =
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∂
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(D.3)

where in the first line we used ∂ = ∂M Mi i Ms s and we later used δ=σ σ
−M J Mi i M

1
s s

 and 
∂ =σ

−M J 0i M i
1

s  to obtain the last line. Therefore, the second term in equation (D.1) reads

α γ
η γ
−
+

∇ − ∂( )
D

M
(1 2 )

1
.M

0
2

2
0
2 s

2 2 2
s (D.4)

Altogether the chain rule in spherical coordinates is given by

θ
α γ
η γ

θ
θ

=


 ∂ + ∂



 +

−
+



 ∂ + ∂ + ∂



θν ν θ φν ν φ θ θ φ⊥ ⊥ ⊥ ⊥

M
g H g H

D
d

1 1
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(1 2 )

1
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1
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.t

s

0
2

2
0
2

2
2

2 (D.5)

Applying this differential operator to Ms, θ and φ respectively, we obtain

=Md 0,t s (D.6)
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θ
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η γ

θ= +
−
+θν ν⊥ ⊥

M
g H

D
d

1 (1 2 )

1
cot ,t

s

0
2

2
0
2

 (D.7)

φ
θ

= φν ν⊥ ⊥
M

g Hd
1

sin
.t

s

 (D.8)

We now define the covariant derivatives

θ θ
α γ

η γ
θ≡ −

−

+
α

( )
D

D ( ) d
(1 2 )

1
cot ,t t

( ) 0
2

2
0
2 (D.9)

φ φ≡αD ( ) d .t t
( )

 (D.10)

and we reintroduce the equations of motion (D.7) and (D.8) in equation (D.5) to  
re-write the differential operator as

D

D

d D ( ) D ( )
(1 2 )

1
cot

1

sin

d d
(1 2 )

1

1

sin
.

t t t

t t

( ) ( ) 0
2

2
0
2

2
2

2

0
2

2
0
2

2
2

2

θ φ
α γ
η γ

θ
θ

θ φ
α γ
η γ θ

= ∂ + ∂ +
−
+



 ∂ + ∂ + ∂





= ∂ + ∂ +
−
+



∂ + ∂





α
θ

α
φ θ θ φ

θ φ θ φ

 

(D.11)

We finally obtain an expression for the chain rule in spherical coordinates that is inde-
pendent of the external and random fields

Ω
α γ
η γ θ

= ∂ +
−
+



∂ + ∂



µ Ω θ φµ⊥ ⊥

D
d d

(1 2 )

1

1

sin
.t t

0
2

2
0
2

2
2

2 (D.12)

Appendix E. Determinants

We will be confronted to the task of calculating the determinant of an operator of the form

δ δ − +u v C u v( ) ( , ),ab ab (E.1)

where u and v are times and a and b are coordinate labels in a generic coordinate sys-
tem. Using the identity

+ = +C Cdet (1 ) exp Tr ln (1 ) (E.2)

and expanding ln(1 + C) one has

� � �� ����� �����∫∑+ =










µµ=

∞
− +

C du C C C u udet (1 ) exp ... ( , ).
n

n
n1

( 1)

times

n 1

 (E.3)
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The symbol ° indicates a matrix product and a time convolution. Typically, C will be 
proportional to the Heaviside Theta function, Cab(u, v) = Θ(u − v) Aab(u, v), hence 
causal. In regular cases, A does not diverge within the time interval and causality 
ensures that the terms with n > 1 vanish. This simplification does not necessarily apply 
to the cases we deal with since the matrix A depends on the white noise H and, roughly 
speaking, two such factors together are proportional to a temporal Dirac-delta func-
tion [25, 61]. Accordingly, we need to analyze each order in the expansion separately to 
decide which ones yield non-vanishing contributions.

Let us take = +A u A u A u H u( ) ( ) ( ) ( )ab ab abc c
1 2  where A1 and A2 do not depend on the 

random field. For concreteness, let us assume that the field Ha has zero mean and cor-
relations 〈Ha(u) Hb(v)〉 = 2Dδab δ(u − v). These are the A's we will work with in this 
manuscript. The first-order term, n = 1, in the series is

∫Θ= +u A u A u H u1st (0) d [ ( ) ( ) ( )].aa aac c
1 2 (E.4)

The second-order term, n = 2, in the series is

u v u v v u A v A v H v

A u A u H u

2nd d d ( ) ( )[ ( ) ( ) ( )]

[ ( ) ( ) ( )].

ab abc c

ba bad d

1 2

1 2

∫ ∫ Θ Θ= − − +

× +
 

(E.5)

Because of the two theta factors, the only non-vanishing contribution may come from 
u = v if the integrand diverged at this point. Let us now assume that one can replace 
a single random field factor by its average and two random field factors by their cor-
relations: Ha(u) → 〈Ha(u)〉 = 0 and Ha(u) Hb(v) → 〈Ha(u) Hb(v)〉 = 2Dδab δ(u − v). An 
argument to justify this procedure is given below. Thus,

u v u v v u D u v A v A u

D u A u A u

2nd d d ( ) ( ) 2 ( ) ( ) ( )

(0)2 d ( ) ( ).

cd abc bad

abc bac

2 2

2 2 2

∫ ∫
∫

Θ Θ δ δ

Θ

= − − −

=
 

(E.6)

This term is non-vanishing. What about higher order terms? Fortunately, they all van-
ish. For instance, the third-order term is

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

Θ Θ Θ

Θ Θ Θ
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(E.7)
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Similarly, one can prove that there are no further contributions to the series. In 
conclusion,

+ = + = −C C C Cdet (1 ) exp Tr ln (1 ) exp [Tr
1

2
Tr ].2 (E.8)

We now justify heuristically the replacement of the random field and product of two 
random fields, in the exponentials, by their averages. Given a generic functional of the 
random field, F[H], multiplied by an exponential of the kind

∫∫− ′ ′ ′t t Qab t t H t H t
e

1
2

d d ( , ) ( ) ( )a b (E.9)

with Qab(t, t′) a generic symmetric matrix in the ab indices and the times t and t′, let 
us consider its average over random field histories distributed according to a normal 
Gaussian pdf

∫∫∝ −HP [ ] e D
t H t

n

1
4

d ( )a
2

 (E.10)

that we indicate with 〈…〉0. We now evaluate the average as

*
∫∫= − ′ ′ ′)HFAve [ ] e .t t Q t t H t H t1

2
d d ( , ( ) ( )

0

ab a b

With a Taylor expansion of the exponential,

⟨ ⟩

∫ ∫ ∫ ∫∑= 
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 … … ′

× ′ … ′

=

′ ′ ′

H

n
t t t t Q t t Q t t

F H t H t H t H t

Ave
1

!

1
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[ ] ( ) ( ) ( ) ( )

n

n

n n a b a b n n

a b a n b n

0
1 1 1 1

1 1 0

n n

n n

1 1

1 1

we set the calculation in a way that we can use Wick theorem. Since Qab(t, t′) = 0 for 
all t ≠ t′, most of the contractions of the fields on the right side of the average vanish, 
except for the ones that set ti = t′i for all i = 1, …, n. Therefore, the only non-vanishing 
contributions should be of the form

⟨ ⟩ ⟨ ⟩ ⟨ ⟩

⟨ ⟩ δ δ δ δ

′ … ′

= … − ′ … − ′

H

H

F H t H t H t H t

F D t t t t

[ ] ( ) ( ) ( ) ( )]

[ ] (2 ) ( ) ( ).

a b a n a n

n
a b a b n n

0 1 1 0 0

0 1 1

n n

n n

1 1

1 1

This can be re-exponentiated to recast the average as

⟨ ⟩∫∫ ∫=− −′ ′ ′
H HF F[ ] e e [ ] .t t Q t t H t H t D tQ t t1

2
d d ( , ) ( ) ( )

0

d ( , )
0

ab a b aa

In short, the result of the calculation is equivalent to the replacement

⟨ ⟩→′ ′H t H t H t H t( ) ( ) ( ) ( )a b a b 0 (E.11)

in the exponential. This argument can be easily generalized to the case in which the 
random field has a non-zero average.

The line of reasoning followed in this Section is close in spirit to the one consider in 
[61]. A different but equivalent approach has been discussed in [25] (see also [67]). We 
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remark, nevertheless, that we have not used the invertibility of the diffusion matrix g 
as our g is actually not invertible.

Appendix F. Random field in spherical coordinates

The probability distribution of the random field components, in the Cartesian coordi-
nate system, is given by

{ }∫∝ − + +P H H H
D

t H t H t H t[ , , ] exp
1

4
d [ ( ) ( ) ( ) ] .x y z x y zn

2 2 2 (F.1)

The rotation to the spherical coordinate system,

= | |θ φ µ µ µ µ µ µ
− − −P H H H P R H R H R H[ , , ] [ , , ],M x y zn

sph rot
n

1 1 1
s J (F.2)

involves the Jacobian

J
δ

δ
≡ ν

µ µ

ν

−

′
′

R t H t

H t
det

( ) ( )

( )
.i tt

irot
,

1

 (F.3)

F.1. The Jacobian J rot

A series of simple operations allow us to factorize the Jacobian of the change of basis 
from Cartesian to spherical, rotJ  defined in equation (F.3), in two factors:

J δ
δ

δ

δ

δ δ
δ
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=




 − +







= − ′

×








′ − + ′
′

′








ν ν
µ

ν
µ

µ µ

µν µν µ
ρ

ν
ρ

′
− ′

−

′

′
− ′

′
′ ′ ′

− ′

′
′

′

′

′ ′

R t t t
R t

H t
H t

R t t t

t t R t
R t

H t
H t

det ( ) ( )
( )

( )
( )

det [ ( ) ( )]

det ( ) ( )
( )

( )
( ) ,

i tt i
i

i tt i

t t j
j

rot
,

1
1

,
1

,

1

that we can now compute since the first term is identical to one and the second one 
takes the form in equation (E.1) with

δ

δ
≡µν µ

ρ

ν
ρ

′
−

′
C t t R t

R t

H t
H t( , ) ( )

( )

( )
( ).j

j
1

 (F.4)

The factor 
δ

δ
ρ

ν

−

′

R t

H t

( )

( )

j
1

 is proportional to Θ(t − t′). Due to the random field dependence in  

C we need to use the result in (E.8) to express the determinant [25, 61]. The first term 
in the sum, n = 1, is

∫ ∫
δ

δ
= =µ

ρ

µ
ρ ρ ρ

−

tR t
R t

H t
H t tL t H tln exp d ( )
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J (F.5)
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The rotation matrix ρ
−Rj

1 is a function of θ and φ (not of Ms) and neither θ nor φ depend 
on the radial component of the noise HMs. Therefore

δ

δ Ω
δΩ
δ Ω

δΩ
δ

⇒
∂

∂
=
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∂
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R t t
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1 1 1

 (F.6)

and

Ω
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The second term in the series, n = 2, reads
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(F.7)

with

Ω
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F.2. Random field distribution

Let us now collect all terms together in a compact notation such that the probability 
distribution of the random field reads

∫ ∫

∫ ∫

= − +

−

µ µ µ µ

ρσ ρ σ
′ ′ ′

P H
D

t H t t L t H t

t t Q t t H t H t

ln [ ]
1

4
d ( ) d ( ) ( )

1

2
d d ( , ) ( ) ( ),

n
sph 2

 (F.9)

that vanishes for t′ ≠ t because of the response functions involved in its expression. 
Therefore, the integrand of the last integral above vanishes for t ≠ t′ but the integral 
may still yield a non-trivial contribution at t = t′ due to the presence of the two random 
field factors (which are delta correlated).The quadratic weight can be given a usual 
form by completing the square between the first two terms under the integral

− + = − − +µ µ µ µ µ µ
D

H t L t H t
D

H t DL t D L t
1

4
( ) ( ) ( )

1

4
[ ( ) 2 ( )] ( ),2 2 2

and the measure can be recast as

∫ ∫∫= + −µ µ µ ρσ ρ σ
′ ′ ′P H P H D t L t t t Q t t H t H tln [ ] ln [ ] d ( )

1

2
d d ( , ) ( ) ( ),n

sph
n
sph,0 2

where we singled out the conventional Gaussian part of the measure

∫≡ − −µ µ µP H
D

t H t DL tln [ ]
1

4
d [ ( ) 2 ( )] .n

sph,0 2 (F.10)
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We now rewrite the last term in a way that the noises appear as Hρ(t) − 2D Lρ(t). This 
rewriting introduces two new terms, one that is linear in Hρ(t) − 2D Lρ(t), another one 
in which this factor does not appear:

∫∫

∫∫
∫∫

∫∫

−

= − − −

+ −

−

ρσ ρ σ

ρσ ρ ρ σ σ

ρσ ρ σ σ
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2
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2
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1

2
d d ( , ) 2 ( )2 ( ).

 
(F.11)

The last term vanishes identically since Qρσ(t, t′) is equal to zero for t ≠ t′ and the 
accompanying factors do not diverge. A similar argument can be applied to the second 
term as two factors Hρ(t) − 2D Lρ(t) are needed to get a divergence in the integrand. 
The noise pdf then reads

∫

∫ ∫

= +

− − −

µ µ µ

ρσ ρ ρ σ σ
′ ′ ′ ′

P H P H D tL t

t t Q t t H t DL t H t DL t

ln [ ] ln [ ] d ( )

1

2
d d ( , ) [ ( ) 2 ( )][ ( ) 2 ( )].

n
sph

n
sph,0 2

We conclude that the probability density of the random field is

∫ ∫ ∫= − − + −µ µ µ µ ρρP H
D

t H t DL t D tL t D t Q t tln [ ]
1

4
d [ ( ) 2 ( )] d ( ) d ( , ).n

sph 2 2

After a lengthy computation that uses the properties mentioned in appendix C and the 
equal-time responses calculated in the main part of the text, equations (128)–(131), 
one derives
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and
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(F.13)

with the dots being just constant terms. Therefore, apart from irrelevant additive con-
stants we establish that
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α γ
η γ

θ= =
+

µ ρρL t Q t t t( ) ( , )
1

cot ( ).2
2

0
2

2
0
2

2

In the end, the measure is

{ }∫∝ − −µ µ µP H
D

t H t DL t[ ] exp
1

4
d [ ( ) 2 ( )] .n

sph 2
 (F.14)

One concludes that the random fields remain delta correlated but they acquire a mean 
value in the spherical basis.It is also quite clear that the radial and angular sectors 
decouple:

∝µ µ⊥P H P H P H[ ] [ ] [ ].Mn
sph

n
sph

n
sph

s (F.15)

As the equations of motion do not depend on the longitudinal noise the first term is 
irrelevant in the context of the LLG equation. The explicit form of the perpendicular 
sector of the random field distribution is
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Appendix G. The Jacobian J L
sph

We compute here the Jacobian needed for the construction of the generating functional 
in the spherical Landau formalism used in section 5.4.

Ω
Ωδ
δΩ

≡
µν

µ

ν
H

H u

v
[ , ] det

Eq [ , ]( )

( )
,L

uv

Lsph

;
J (G.1)

with the coordinate indices μ, ν = Ms, θ, φ and the times u, v. From its definition one 
has

J H
M u

v

w v A v

[ , ] det [d ] det
Eq ( , , ; )

( )

det [d ] det [ d ]

det [ ( ) ( )]

L
uv

u u v
uv

L

uv
u u v

uw
u u w

wv
w v

sph

;

s

;

;

Ω δ
δ θ φ

δν

δ δ δ

δ δ Θ

=

=

× + −

µ ν

µ

ν ν
µ ν

ν ν
µ ν µ ν

−
⊥

− −

−

⊥ ⊥

⊥

⊥ ⊥
⊥ ⊥

⊥ ⊥
⊥ ⊥ ⊥ ⊥

 
(G.2)

with
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γ
η γ

α γ
θ

ηγ

γ
η γ

ηγ

γ
η γ θ

ηγ

θ ηγ
γ
η γ θ

ηγ

=
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= −
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∂ + +

= −
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∂ −
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∂ − +

θθ θ φ θ
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1

1
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0
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0
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0
2 0 eff,

0
2

0
2 0 eff,

0
2

0
2 0

0 eff,

0
2

0
2 0 eff,

The first two factors contribute irrelevant constants. The last one can be treated 
with the identity (E.2) where the time-dependent 2 × 2 matrix with entries is 

Θ= −µ ν µ ν⊥ ⊥ ⊥ ⊥
C w v w v A v( , ) ( ) ( ). The causal character of C cuts the expansion at its 
second order. The first contribution is Tr C = Aθθ + Aφφ,

∫αγ
η γ

α γ
θ

ηγ

θ
ηγ

=
+







−
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0
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0
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(G.3)

The second-order term is given by = + +θθ θφ φθ φφC A A A ATr /2 ( 2 )/22 2 2 . Keeping only 

the terms that are proportional to two random fields, and using Hi(t) Hj(t′) → 〈Hi(t) 

Hj(t′)〉 = 2 Dδij δ(t − t′), see appendix E,

∫

∫
}

{
α γ

η γ
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(G.4)

The two terms together yield

J ∫
∫

αγ
η γ

α γ
θ

ηγ

θ
ηγ

α γ
η γ θ

=
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−
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(G.5)
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The first and last terms combine to yield a contribution proportional to α (1 − α)/ sin 2θ 
and

J ∫
}

αγ
η γ

α γ
θ

ηγ

θ
ηγ

=
+






−
− ∂ + + +

− ∂ + − +

θ φ φ θ θ
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t
D

H H H H

H H H H

1
d

(1 )

sin
[( ) ( )]

1

sin
[ ( ) ( )] .

L
sph 0

2
0
2

0
2 eff, 0 eff,

0 eff, eff,

 

(G.6)

Appendix H. Gilbert spherical generating functional

We here construct the generating functional Z λ[ ] by imposing the equations of motion 
in the Gilbert formulation

≡ =MEq d 0,G M t,
sph

ss (H.1)

θ ηγ θ φ γ≡ + − + =θ
α α

φ φH HEq D ( ) sin D ( ) ( ) 0,G t t,
sph ( )

0
( )

0 eff, (H.2)

θ φ ηγ θ γ≡ − + − + =φ
α α

θ θH HEq sin D ( ) D ( ) ( ) 0.G t t,
sph ( )

0
( )

0 eff, (H.3)

The Jacobian

Ω
δ Ω

δΩ
≡
µν

µ

ν
H

H u

v
[ , ] det

Eq [ , ]( )

( )
,G

uv

Gsph

;

sph

J (H.4)

with the coordinate indices μ, ν = Ms, θ, φ and the times u, v, reads
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uv

u u v u v
sph

;

The first factor is due to the Ms diagonal element and it can only yield a constant con-
tribution. We next focus on the second factor.
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 − 
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 − + − 



∝ 
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ν ρ

µ ρ
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ηγ θ
ηγ θ

≡




 −





µ ν⊥ ⊥X u( )

1 sin

sin
,

u

u

0

0
 (H.6)

η γ

ηγ
ηγ
θ θ

≡
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−










µ ν
−
⊥ ⊥

X v( )
1

1

1
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1

sin

,

v v

1
2

0
2

0

0 (H.7)

and

A
D
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H H H H

A H H

A
D

H H

H H H H
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(1 2 )
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1
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( )

1
cot ( ) ( ) ,
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1

1
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1
cot ( ) ( ) ,
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0
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2
0
2 2 0 eff,

0
2

2
0
2 0 eff, eff,

0 eff,

0
0
2

2
0
2 2 0 eff,

0
2

0
2 0 eff, eff,

0 eff,

α γ
η γ θ

γ

ηγ
η γ

θ ηγ

γ

ηγ
α γ
η γ θ

γ

γ
η γ

θ ηγ

γ

=
−
+

− ∂ +

+
+

 + − + 

= − ∂ +

= +
−
+

− ∂ +

−
+

 + − + 

= − ∂ +

θθ θ φ φ

φ φ θ θ

θφ φ φ φ

φθ θ θ θ

φ φ θ θ

φφ φ θ θ

where we used the equations of motion (H.2) and (H.3) to replace the occurrences of 
φαD ( )t

( )
 by its corresponding expression in terms of the random field. Indeed, making 

explicit the random field dependence of the Jacobian is crucial as we shall see below.
The absolute value of the first factor in equation (H.5) is

∏δ θ− =
µ ρ

µ ρ
=

−

⊥ ⊥
⊥ ⊥

X u u vdet ( ) ( ) sin ,
uv n

N

n
; 0

1

∣ ∣ (H.8)

where we were careful to evaluate the determinant factors on the intermediate points 
θ αθ α θ≡ + −+ (1 )n n n1 . Notice indeed that the discretization matters here since there 
is no trivial continuous limit of this expression. See also the discussion in section 3.1. 
The product above can be re-writen as

∣ ∣ ∣ ∣∏ ∏θ θ=
α θ

θ

=

−
−

=

sin e sin ,
n

N

n

n

N

n

0

1
(1 )ln

sin
sin

1

N

0

 (H.9)

where we used the development

θ α θ α θ= + −+sin sin (1 ) sin ,n n n1 (H.10)

and the fact that we do not need to consider higher order terms because they vanish 
from equation (H.8) once the limit δt → 0 is considered. The product ∏ θ

=
sin

n

N
n1

∣ ∣ in 

equation (H.9) cancels exactely the geometric one accompanying the delta functions in 
equation (140). In the following, we use this to drop it from the expressions.
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We treat the third factor in equation (H.5) with the identity (E.2) and we use the 
causality of Θ= −ρ ν ρ σ σ ν

−
⊥ ⊥ ⊥ ⊥ ⊥ ⊥C w v w v X v A v( , ) ( ) ( ) ( )1  to keep only the first two terms of 

the expansion. Performing the contractions with ρ σ
−
⊥ ⊥

X 1  and dropping a constant term in 
the overall normalization, we obtain

∫ ∫α
αγ
η γ

α γ
θ

ηγ
θ
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θ
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1 0
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0
2

0
2 eff,

0
eff, 0 eff, eff,

Note that the random field H is still present in this expression, as it was in the 
Cartesian framework calculation as well.

The second-order term in the expansion is a half of

∫ ∫ Θ Θ= − − σ µ µ ν ν ρ ρ σ
′ ′ ′ − − ′ ′

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
C t t t t t t X t A t X t A tTr d d ( ) ( ) ( ) ( ) ( ) ( )2 1 1

that making the sums over the ⊥ components and using the explicit form of X−1 reads

∫ ∫

}
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Θ Θ
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0 0

0 0
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We now replace µ ν⊥ ⊥A  by their explicit form. Since the two Θ functions make the inte-
grand vanish for t ≠ t′, the non-vanishing contributions can only come from divergent 
equal-time terms. Owing to the delta-correlated nature of the random field, we only 
keep the terms that are quadratic in the random field, see appendix E. We find

∫ ∫
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Following the same steps as in appendix F.2, we now replace the product of ran-
dom fields Hi(t) Hj(t′) by its average over the Gaussian measure, 2Dδij δ(t − t′), see 
again appendix E. After a tedious but straightforward computation, dropping constant 
terms, we obtain

∫
γ α
η γ θ

− =
+

C
D

t
1

2
Tr

1
d

1

sin
.2 0

2 2

2
0
2 2 (H.11)

Finally, putting all terms together, the Jacobian is

J ∣
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( ) ( )

1

sin
( )

sin
.

G
N

sph 0

0
2

0
2

0
2 eff,

0
eff, 0 eff,

eff,
0
2

As found in the Cartesian calculation and in the spherical construction for the Landau 
formulation of the dynamics, the Jacobian J G

sph does not depend on the parallel compo-
nent of the effective field, +H HM Meff, s s. Moreover, we find that the Landau and Gilbert 
Jacobian in spherical coordinates coincide. see equation (142) and appendix G for the 
Landau calculation.

We next introduce a Lagrange multiplier Ω�[i ] to exponentiate the functional delta:

D ^ ^ ^ ^{ }∫ ∫Ω Ω Ω Ω Ω Ω Ω




− + +φ φ θ θ( )H Hti exp d i Eq [ ]  i Eq [ , ]  i Eq [ , ] .M G M G G,
sph

,
sph

,
sph

s s

We identify all the terms in the integrand of the exponent in the exponential that 
involve the random field H:

^ ^γ Ω Ω

αγ
η γ

ηγ
θ

ηγ
θ

− + +

+
+



−∂ − ∂ − ∂ + ∂
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4
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.

i i i i

i i i i i

2
0

0
2

0
2

0
0

After integration and a number of simplifications that use the explicit expression of the 
rotation matrix R we find that these terms give rise to

^ ^ ^ ^γ Ω Ω
α
η γ

Ω ηγ Ω θ
α
η γ θ





 + +

+
+ +

+





φ θ θ φ( ) ( ) ( )D i i

2
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i i cot

1

1
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0
2

2 2

2
0
2 0

2

2
0
2 2

(apart from an irrelevant additive constant). Note that minus this form equals the terms 

in the exponential of the transverse random field measure in spherical coordinates, 
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equation (F.16), after the identification Ω γ→ −θ φ� Hi /(2 D)0  and Ω γ→ −φ θ� Hi /(2 D)0  

(plus a constant). We put all these results together to write the generating functional

Z D D ·� �∫ ∫Ω Ω Ω Ω Ωλ λ= 



 +( )S t t t[ ] [ ] [ ] exp , d ( ) ( ) ,G

sph
 (H.12)

the full action

= + +� � �S S S S ,G G G G
sph

,det
sph
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sph

,jac
sph

 (H.13)

and the terms

^
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(H.16)

(We canceled the last term in the result from the integration over Hi with one term 

from J G,jac
sph . )

We now use the identity (152) to bring the action SG
sph into a form that is closer to 

the one in the Landau formulation. We apply this identity to the integration over Ω̂φi  

and Ω̂θi  separately with

σ γ

αγ
η γ

ηγ θ
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=

= −
+
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for Ωφ�i , and
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for Ωθ�i . The new terms generated by the identity are
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in the second case. Adding them up one finds the total contribution
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We will add the first and last term to �SG,jac to get SL,jac
sph , see equation (156). In order to 

put together all terms in 1/ sin 2θ we dropped an irrelevant constant. We are left with 
the rest of the contributions that we rearrange as

^ ^

^

∫Ω Ω Ω θ γ

Ω θ φ γ

= − 


+ −

− + 


θ
α

φ

φ
α

θ

( )

( )

[ ]H H

H

S P t t Mln , ( ) d i d  i D ( )

i sin D ( ) ,

G M t t

t

,det
sph

i 0 eff 0 s
( )

0 eff,

( )
0 eff,

s

 (H.17)

^ ^ ^ ^∫ γ Ω γ Ω Ω ηγ θ φ Ω ηγ θ=






+ − − 
φ θ θ

α
φ

α( ) ( )S t D Dd i i i sin D ( ) i D ( ) ,G t t,diss
sph

0
2

2

0
2

2

0
( )

0
( )

 (H.18)

=S SG L,jac
sph

,jac
sph

 (H.19)

and = + +S S S SG G G G
sph

,det
sph

,diss
sph

,jac
sph .
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