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Abstract: Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy–Dirichlet problem for the
porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative
compactly supported integrable initial data behave for large times as a dipole-type solution to the equation
having the same first moment as the initial data, with an error which is o(t−1/m). However, on sets of the form
0 < x < g(t), with g(t) = o(t1/(2m)) as t → ∞, in the so-called near field, a scale which includes the particular
case of compact sets, the dipole solution is o(t−1/m), and their result gives neither the right rate of decay of the
solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing
that it is o(t−(2m+1)/(2m2)(1 + x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the
near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez.

Keywords: Porous Medium Equation on the Half-Line, Asymptotic Behavior, Matched Asymptotics

MSC 2010: 35B40, 35K65, 35R35
||
Communicated by: Antonio Ambrosetti and David Arcoya
Dedicated to our dear friend Ireneo Peral on the occasion of his 70th birthday

1 Introduction
This paper is concerned with the large time behavior of solutions to the porous medium equation (PME in
what follows) on the half-line with zero boundary data,

ut = (um)xx inℝ+ ×ℝ+, u(0, t) = 0, t ∈ ℝ+, u(x, 0) = u0(x), x ∈ ℝ+, (1.1)

with m > 1, and nonnegative and compactly supported integrable initial data. This problem, which models
the flow of a fluid in a porous medium, has a unique weak solution; see [12]. The asymptotic behavior was
first studied by Kamin and Vázquez in [11], and depends heavily on the fact that solutions to (1.1) preserve
the first moment along the evolution, ∫∞

0 xu(x, t) dx = constant for all t > 0. Indeed, the behavior is given in
terms of the so-called dipole solution of the PME with first moment M = ∫

∞
0 xu0(x) dx, that is,

DM(x, t) = t−αFM(ξ), ξ =
x
tβ
, α =

1
m
, β =

1
2m , (1.2)
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for a certain profile function FM. Note that this solution has a self-similar structure, and that, due to the choice
of the similarity exponents α and β, its first moment is constant in time. The precise result in [11] states that

lim
t→∞

tα sup
x∈ℝ+|u(x, t) − DM(x, t)| = 0, M =

∞

∫
0

xu0(x) dx. (1.3)

In order for DM to be a weak solution of the equation on the half-line, with DM(0, t) = 0, the profile FM has to
solve, in a weak sense,

(FmM)
��(ξ) + βξF�M(ξ) + αFM(ξ) = 0, ξ ∈ ℝ+, FM(0) = 0, (1.4)

while the condition on the value of the first moment imposes ∫∞
0 ξFM(ξ) dξ = M. A simple scaling argument

shows that
FM(ξ) = M

1
m F1(ξ/M

m−1
2m ). (1.5)

It turns out that there is a unique bounded profile corresponding to M = 1, namely

F1(ξ) = ξ
1
m (Cm − κmξ

m+1
m )

1
m−1
+ , (1.6)

with constants Cm and κm given by

κm =
m − 1

2m(m + 1) , Cm = (
κ

2m+1
m+1
m

∫
1
0 s

m+1
m (1 − s m+1

m )
1

m−1 ds)
m2−1
2m2

; (1.7)

see [2, 8, 9]. Note that F1 has compact support [0, ξ1], where ξ1 = (Cm/κm)m/(m+1). Thus, FM has compact
support [0, ξM], with

ξM = ξ1M
m−1
2m .

Let us remark that limt→0+ ∫∞
0 DM(x, t)φ(x) dx = Mφ�(0). In other words, the antisymmetric extension DM

of DM satisfies DM( ⋅ , t) → −2Mδ�, where δ� is the distributional derivative of the delta function. In physics,
this is called an elementary dipole. Hence the name dipole solution of the PME for DM.

Remark 1.1. (a) The result in [11] states that solutions to the signed PME in the whole real line

ut = (|u|m−1u)xx , (x, t) ∈ ℝ ×ℝ+, (1.8)

with an integrable and compactly supported initial data having zero mass and a nontrivial first moment
∫ℝ xu(x, 0) dx = P converge to DP/2, with an error which is o(t−α). Solutions to (1.1) clearly fall within this
framework, since they coincide with the restriction to the half-line of the solution to (1.8) having as initial
datum the antisymmetric extension of u0.

(b) The proof in [11] uses that v(x, t) = ∫
x
−∞ u(y, t) dy is a solution to the p-Laplacian evolution equation

with p = m + 1, that is,
vt = (|vx|m−1vx)x , (x, t) ∈ ℝ ×ℝ+. (1.9)

The convergence for u is deduced from the convergence of v and its derivatives. In particular, DM = ∂xB−2M,
where BK denotes the source-type solution to (1.9) that has Kδ as initial datum.

The limit (1.3) gives the first nontrivial term in the asymptotic expansion of u for x = O(tβ), in the so-called
far field limit. However, since FM(0) = 0, in the near field, x = o(tβ), it only says that u is o(t−α). The aim of this
paper is to improve the result of Kamin and Vázquez in the near field by giving a sharp decay rate, which is
faster than that in the far field, and a nontrivial asymptotic profile, which turns out to be a multiple of x1/m.
The precise result reads as follows.

Theorem 1.2. Let u be the unique weak solution to (1.1). Then

lim
t→∞

tα+
β
m sup
x∈ℝ+ |u(x, t) − DM(x, t)|

(1 + x) 1
m

= 0, (1.10)

where DM is the unique dipole solution to the PME with first moment M = ∫
∞
0 xu0(x) dx.
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Inparticular, on compact sets x ∈ [0, K], u isO(t−(α+β/m)), and tα+β/mu(x, t) converges toM2/(m+1)C1/(m−1)
m x1/m,

while

sup
0≤x≤g(t)

u(x, t) = O( tα+
β
m

g(t) 1
m
)

if g(t) → ∞, g(t) = o(tβ).
We already know that the result is true in the far-field scale, ξ1 ≤ x/tβ ≤ ξ2, 0 < ξ1 ≤ ξ2 < ∞; see (1.3). If

x ≥ g(t)tβ, with g(t) → ∞ as t → ∞ (the very far field scale), formula (1.3) yields a better result. Nevertheless,
since DM(x, t) = 0 for x ≥ ξM tβ, it only says that the solution is o(t−α) there. However, Kamin and Vázquez
proved, by using some asymptotic formulas from [6], that s(t) = sup{x : u(x, t) > 0} satisfies

s(t) = ξM tβ + o(1), s(t) ≥ ξM tβ ,

which gives a complete characterization of the asymptotic behavior for x > ξM tβ. Hence, it only remains to
check what happens in the near-field. This is done through a matching argument with the outer behavior,
which is based on a clever choice of sub- and supersolutions. Comparison is performed in sets of the form
0 < x < δtβ for some small δ. The ordering in the outer boundary comes from the outer behavior which was
already known from the analysis in [11]. We devote Section 2 to obtain the upper limit and Section 3 to get
the lower one.

A similar analysis for the linear heat equation has recently been performed in [4]. However, in that case
linearity made things easier since a representation formula for the solution in terms of the initial datum was
available. That paper also considers a nonlocal version of the heat equation.

Problem (1.1) admits at least two generalizations to higher dimensions. The first one consists in consid-
ering the problem posed on a half-space, with zero boundary conditions at the boundary, which is a hyper-
plane. In this case, we also have that the asymptotic behavior of solutions with bounded and compactly sup-
ported initial data is given by a dipole-type self-similar solution; see [10]. But, as in the one-dimensional case,
the result does not describe properly the large time behavior in the near field scale. Due to the distinguished
role of one of the directions, the study of the near field limit will require new ideas, and will be considered
elsewhere.

The second generalization consists in considering the problem in outer domains, which are the com-
plement of open bounded sets, once more with zero boundary data. In dimension one a hole disconnects
the domain in several components, and one can reduce the study of the unbounded ones to the case of the
half-line.

For large dimensions, larger than or equal to three, a full description of the large time behavior in outer
domains, including both the near and the far field limit, was given in [3]. One of the main differences to the
one-dimensional case is that in large dimensions the rate of decay of solutions does not depend on the scale,
which makes the analysis easier. Moreover, there is a nontrivial asymptotic mass, and the far field limit is
given not by a dipole-type solution but by an instantaneous point-source solution with this residual mass. In
the critical two-dimensional case mass decays to zero, but very slowly. The far field behavior is still given by
an instantaneous point source solution, which in this case has a variable mass that decays to zero; see [7].
The near field limit, which is quite involved, is studied in [5]. As in the one-dimensional case, in this critical
dimension there are also different decay rates in different scales.

2 Control from Above
The purpose of this section is to prove the “upper” part of equation (1.10). To this end we will construct
a supersolution V approaching DM with the right rate as t goes to infinity. We only need the function V to be
a supersolution in sets of the form

Aδ,T = {(x, t) : t ≥ T, 0 < x < δtβ}
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for T > 0 big and δ > 0 small. Our candidate is

V(x, t) = k(t)t−αFM(
x + a
tβ

), a > 0, (2.1)

for some function k satisfying k(t) ↘ 1 as t → ∞. It will turn out that a good choice for k is given by the
solution to

tk�(t) = −α(km(t) − k(t)), t > T, k(T) = k0 > 1. (2.2)

Note that k(t) is well defined and that it is a monotone decreasing function of time.
We start by proving that V is a supersolution to the PME in Aδ,T if δ is small and T is big.

Lemma 2.1. Letm > 1 andM > 0. There exist values δ̄ > 0 and T > 0 depending only onM andm such that for
all a ∈ (0, 1), T ≥ T and k0 > 1 the function V given by (2.1)–(2.2) satisfies

Vt − (Vm)xx ≥ 0 in Aδ,T for all δ ∈ (0, δ̄).

Proof. Let ξ = (x + a)/tβ. Since mα + 2β = α + 1, a straightforward computation combined with (1.4) shows
that

(Vt − (Vm)xx)(x, t) = t−α−1(tk�(t)FM(ξ) + (k(t) − km(t))(FmM)
��(ξ)).

Thus, if we choose k satisfying (2.2), we get

(Vt − (Vm)xx)(x, t) = t−α−1(km(t) − k(t))(−αFM(ξ) − (FmM)
��(ξ)), x ∈ ℝ+, t ≥ T.

Now we observe that there is a value ̄ξ ∈ (0, ξ1) such that F�1(ξ) > 0 for ξ ∈ (0, ̄ξ ). Therefore,

F�M(ξ) > 0, ξ ∈ (0, ̄ξM
m−1
2m ). (2.3)

On the other hand, if we take δ̄ < ̄ξM(m−1)/(2m)/2 and then T = (1/δ̄)1/β, for any δ ∈ (0, δ̄) and T ≥ T we get

0 < ξ =
x + a
tβ

≤ 2δ̄ < ̄ξM
m−1
2m , (x, t) ∈ Aδ,T .

Hence, −(FmM)��(ξ) − αFM(ξ) = βξF
�
M(ξ) > 0 if (x, t) ∈ Aδ,T , and the desired result follows since k(t) > 1 for all

times.

We now arrive at the matching part of the result where, using the behavior in the far field scale, we obtain an
upper bound in sets of the form Aδ,T for δ small and T large.

Lemma 2.2. Let u be the unique weak solution to (1.1), M = ∫
∞
0 xu0(x) dx and δ̄ and T as in Lemma 2.1. For

every ε > 0 there exists a value Tε ≥ T such that for all a ∈ (0, 1) and T ≥ Tε there is a value k0 ≥ 1 such that
the function V given by (2.1)–(2.2) satisfies

u(x, t) ≤ (1 + Cδε)V(x, t), (x, t) ∈ Aδ,T , Cδ =
1

FM(δ)
, δ ∈ (0, δ̄). (2.4)

Proof. Formula (1.3) implies that for every ε > 0 there exists Tε, which may be assumed to be larger than T,
such that

tα|u(x, t) − DM(x, t)| ≤ ε, x ∈ ℝ+, t ≥ Tε . (2.5)

For any given T ≥ Tε and some big enough k0 > 1 to be determined below, we define V by (2.1)–(2.2).
Since k(t) > 1, inequality (2.3) implies that DM(x, t) ≤ V(x, t) in Aδ,T , and hence in Aδ,T . Therefore,

tα(u(x, t) − V(x, t)) ≤ tα|u(x, t) − DM(x, t)| + tα(DM(x, t) − V(x, t)) ≤ ε, (x, t) ∈ Aδ,T .

On the other hand, for x = δtβ and t ≥ T we have

tαV(x, t) ≥ tαDM(x, t) = FM(
x
tβ
) = FM(δ),
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and we conclude that
tα(u(x, t) − V(x, t)) ≤ tαCδεV(x, t).

Thus,
u(x, t) ≤ (1 + Cδε)V(x, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

W(x,t)
if x = δtβ , t ≥ T.

Since solutions to (1.8) with integrable initial data are bounded for t ≥ τ > 0, see [12], formula (1.3)
implies that there is a constant C0 > 0 such that u(x, t) ≤ C0t−α for t ≥ T. Thus, using the monotonicity prop-
erty (2.3), we get

V(x, T) = k(T)T−αFM(
x + a
Tβ

) ≥ k0FM(
a
Tβ

)T−α ≥ C0T−α ≥ u(x, T) for 0 < x < δTβ

if k0 > max{C0/FM(a/Tβ), 1}. Therefore, with that choice of k0, we have

u(x, T) ≤ V(x, T) ≤ W(x, T) if 0 < x < δTβ .

We now observe thatW is a supersolution to the PME in Aδ,T . Indeed, in that set

(Vm)xx(x, t) = −k(t)t−(α+1)(αFM(ξ) + βξF�M(ξ)) < 0,

and hence Lemma 2.1 implies that

Wt − (Wm)xx = (1 + Cδε)Vt − (1 + Cδε)m(Vm)xx
= (1 + Cδε)(Vt − (Vm)xx) − ((1 + Cδε)m − (1 + Cδε))(Vm)xx ≥ 0.

We finally notice thatW(0, t) > 0 for all t > T. Therefore, comparison yields (2.4).

The third ingredient, that we prove next, is that V and DM are ε-close in sets of the form Aδ,T for large times,
even when the difference is multiplied by

tα+
β
m

(1 + x) 1
m
,

if the parameter a in the definition of V is O(εm).

Lemma 2.3. Let m > 1, M > 0, ε > 0, and let δ̄ and T be as in Lemma 2.1. There exist values δ̂ ∈ (0, δ̄), T̂ ≥ T
independent of ε, and aε ∈ (0, 1], such that for all δ ∈ (0, δ̂), T ≥ T̂ and a ∈ (0, aε) the function V given by
(2.1)–(2.2) satisfies

tα+
β
m

(1 + x) 1
m
|V(x, t) − DM(x, t)| < ε in Aδ,T̂ε for some T̂ε ≥ T. (2.6)

Proof. There holds that

tα+
β
m

(1 + x) 1
m
|DM(x, t) − V(x, t)| =

t
β
m

(1 + x) 1
m

!!!!!!FM(
x + a
tβ

) − FM(
x
tβ
)
!!!!!!⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

I

+
t
β
m

(1 + x) 1
m
FM(

x + a
tβ

)|k(t) − 1|
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

II

.

In order to estimate I we notice that there exist constants ̂ξ ∈ (0, ̄ξ ) and K > 0 such that ξF�1(ξ) ≤ Kξ1/m for
ξ ∈ (0, ̂ξ ). Thus, if we take δ̂ < ̂ξM(m−1)/(2m)/2, and then T̂ = (1/δ̂)1/β, for any δ ∈ (0, δ̂) and T ≥ T̂, we get

I = t
β
m

(1 + x) 1
m

1

∫
0

F�M(
x + sa
tβ

)
a
tβ
ds = t

β
m

(1 + x) 1
m

1

∫
0

F�M(
x + sa
tβ

)
x + sa
tβ

a
x + sa

ds

≤ K
1

∫
0

(x + sa)
1
m −1a ds ≤ mKa

1
m in Aδ,T .

Therefore, I < ε
2 if a < aε := min{( ε

2mK )
m , 1}.
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As for the other term, we will use that

FM(ξ) ≤ C
1

m−1
m M

m+1
2m2 ξ

1
m , ξ ∈ ℝ+; (2.7)

see formulas (1.5)–(1.6). Therefore, taking into account that a < 1, we obtain

II ≤ C
1

m−1
m M

m+1
2m2 (

x + a
x + 1)

1
m |k(t) − 1| ≤ C

1
m−1
m M

m+1
2m2 |k(t) − 1| < ε

2

if t ≥ T̂ε for some T̂ε ≥ T since k(t) → 1 as t → ∞.

We finally arrive at the main result of this section, the upper limit.

Proposition 2.4. Let u be the unique weak solution to (1.1) and let DM be the unique dipole solution to the PME
with first moment M = ∫

∞
0 xu0(x) dx. If δ̂ is the constant given by Lemma 2.3, then

lim sup
t→∞

tα+
β
m sup
0<x<δtβ

(u(x, t) − DM(x, t))
(1 + x) 1

m
≤ 0

for all δ ∈ (0, δ̂).

Proof. Given ε > 0, let Tε be as in Lemma 2.2, and T̂ and aε as in Lemma 2.3. We take T ≥ max{Tε , T̂} and
a ∈ (0, aε), and then k0 > 1 large so that the function V defined by (2.1)–(2.2) satisfies (2.4) and (2.6) for any
given δ ∈ (0, δ̂) for some large T̂ε ≥ T.

On the other hand, since k(t) → 1 as t → ∞ and a ∈ (0, 1), using (2.7), we get

tα+
β
m V(x, t)

(1 + x) 1
m

=
k(t)t

β
m

(1 + x) 1
m
FM(

x + a
tβ

) ≤ 2C
1

m−1
m M

m+1
2m2 (

x + a
x + 1)

1
m ≤ 2C

1
m−1
m M

m+1
2m2

for all large enough times.
Combining all the estimates mentioned above we finally get, for 0 < x < δtβ and all large enough times,

tα+
β
m

(1 + x) 1
m
(u(x, t) − DM(x, t)) ≤ Cδε

tα+
β
m V(x, t)

(1 + x) 1
m

+ ε ≤ (Cδ2C
1

m−1
m M

m+1
2m2 + 1)ε.

3 Control from Below
We will now deal with the “lower” part of (1.10). The proof is quite similar to that of the “upper” part. How-
ever, in this case, subsolutions are only obtained in sets of the form

Aa,δ,T = {(x, t) : a < x < δtβ , t ≥ T},

and the points x ∈ (0, a) have to be treated separately.
The subsolution approaching DM with the right rate as t goes to infinity will have the form

v(x, t) = c(t)t−αFM(
x − a
tβ

), a > 0, (3.1)

where c is the solution to the initial value problem

tc�(t) = α(c(t) − cm(t)), t > T, c(T) = c0 ∈ (0, 1). (3.2)

The function c is well defined for t ≥ T. It is monotone increasing and c(t) ↗ 1 as t → ∞, as desired.
We start by proving that v is a subsolution to the PME in Aa,δ,T if δ is small and T is big, no matter the

value of a ∈ (0, 1).
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Lemma 3.1. Let m > 1 and M > 0, and let δ̄ > 0 be as in Lemma 2.1. For all a ∈ (0, 1), T > 0 and c0 ∈ (0, 1)
the function v given by (3.1)–(3.2) satisfies

vt − (vm)xx ≤ 0 in Aa,δ,T for all δ ∈ (0, δ̄).

Proof. Let ξ = (x − a)/tβ < x/tβ. A computation analogous to the onewe did in the proof of Lemma 2.1 shows
that

(vt − (vm)xx)(x, t) = −t−α−1(c(t) − cm(t))βξF�M(ξ);

but
0 < ξ =

x − a
tβ

<
x
tβ

< δ < δ̄ < ̄ξM
m−1
2m , (x, t) ∈ Aa,δ,T ,

and hence the result follows from (2.3) since c(t) < 1 for all times.

The matching with the outer behavior will require to know that u is positive in some set Aδ,T . This is what we
prove next.

Lemma 3.2. Let u be the unique weak solution to (1.1), M = ∫
∞
0 xu0(x) dx. Given δ ∈ (0, ξM), there exists

a time Tδ such that u(x, t) > 0 in Aδ,Tδ .

Proof. Since δ < ξM, the convergence result (1.3) implies that there is a time tδ such that u(x, t) ≥ Kt−α for
some K > 0 if x ∈ ( δ2 t

β , δtβ), t ≥ tδ.
We now use that nonnegative solutions to (1.1) have the so-called retention property: if u(x, ̄t) > 0,

then u(x, t) > 0 for all t ≥ ̄t. This can be proved in several ways, for instance, by using that the appli-
cation t Ü→ t1/(m−1)u(x, t) is non-decreasing. This monotonicity property follows easily from the estimate
ut ≥ − u

(m−1)t which is proved by using comparison arguments; see, for instance, [12]. Hence, we have
u(x, t) > 0 for x ∈ ( δ2 t

β
δ , δt

β), t ≥ tδ.
It only remains to prove that u(x, Tδ) > 0 if x ∈ (0, δ2T

β
δ ) for some large enough Tδ ≥ tδ since the result

will then follow from the retention property. The positivity in this fixed interval is achieved by comparison
with a suitable translate of a source-type solution of the PME,

B(x, t; C) = t−
1

m+1 (C − κm|ξ|2)
1

m−1
+ , ξ =

x
t 1
m+1 , C > 0,

where the constant κm is as in formula (1.7). Such solutions are due to Zel’dovič and Kompaneets [13] and
Barenblatt [1]. Indeed, take x0 ∈ ( δ2 t

β
δ , δt

β
δ). It is easy to check that if C > 0 is small enough, then

B(x − x0, tδ; C) = 0 if x ̸∈ (
δ
2 t

β
δ , δt

β
δ), sup

δ
2 t
β
δ≤x≤δt

β
δ

B(x − x0, tδ; C) ≤ Kt−αδ .

Moreover, B(x − x0, t; C) is a solution to (1.1) until it touches the boundary x = 0. This will happen in a finite
time Tδ ≥ tδ. Then comparison yields that u(x, t) ≥ B(x − x0, t; C) for all t ∈ [tδ , Tδ], and hence the required
positivity.

We now perform the matching with the outer behavior in order to obtain the control from below.

Lemma 3.3. Let u be the unique weak solution to (1.1),M = ∫
∞
0 xu0(x) dx and δ̄ as in Lemma 2.1. Given ε > 0,

a ∈ (0, 1) and δ ∈ (0, δ̄), there is a time Tε,a,δ > 0 such that for all T ≥ Tε,a,δ there is a value c0 ∈ (0, 1) such
that the function v given by (3.1)–(3.2) satisfies

u(x, t) ≥ (1 − Cδε)v(x, t), (x, t) ∈ Aa,δ,T , Cδ =
1

FM(δ)
. (3.3)

Proof. Let δ ∈ (0, δ̄) and a ∈ (0, 1). Note that δ̄ < ξM. The convergence result (1.3) implies that, given ε > 0,
there exists a value Ta,ε,δ ≥ max{Tδ̄ , (

a
δ )

1/β} such that (2.5) holds with Tε = Tε,a,δ.
Let T ≥ Tε,a,δ. We know from Lemma 3.2 that there is a constant κ = κ(a, δ, T) such that u(x, T) ≥ κ if

a < x < δTβ. Take now c0 ∈ (0, 1) small so that c0T−αFM(δ) ≤ κ. With this choice of T and c0, we define v
by (3.1)–(3.2). Using the monotonicity property (2.3), we get

u(x, T) ≥ c0T−αFM(
x − a
T ) = v(x, T), a < x < δTβ .
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On the other hand, since T ≥ Tε,a,δ, the convergence result (1.3) together with the self-similar form of DM,
cf. formula (1.2), yields

u(x, t) ≥ −εt−α + DM(x, t) = (1 − FM(δ)−1ε)DM(x, t), x = δtβ , t ≥ T.

Wenotice now that c(t) < 1. Therefore, inequality (2.3) implies that DM ≥ v in Aδ,T , andwe conclude that

u(x, t) ≥ (1 − Cδε)v(x, t)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
w(x,t)

, x = δtβ , t ≥ T

for ε < FM(δ) and Cδ = 1/FM(δ).
We now observe that w is a subsolution to the PME in Aa,δ,T . Indeed, in that set we have

(vm)xx(x, t) = −c(t)t−(α+1)(αFM(ξ) + βξF�M(ξ)) < 0,

and hence Lemma 3.1 implies that

wt − (wm)xx = (1 − Cδε)(vt − (vm)xx) − ((1 − Cδε)m − (1 − Cδε))(vm)xx ≤ 0 in Aa,δ,T .

We finally notice that w(a, t) = 0 for all t > T. Therefore, a comparison argument allows to conclude
that (3.3) holds.

The next step is to control the difference between v and DM for large times.

Lemma 3.4. Given m > 1, M > 0 and ε > 0, let δ̂ and aε ∈ (0, 1] be as in Lemma 2.3. Then for all δ ∈ (0, δ̂),
T > 0 and a ∈ (0, aε) the function v given by (3.1)–(3.2) satisfies

tα+
β
m

(1 + x) 1
m
|DM(x, t) − v(x, t)| < ε in Aa,δ,T̃ε for some T̃ε ≥ T. (3.4)

Proof. Let x ∈ (a, δtβ) with δ < δ̂. Arguing as in the proof of Lemma 2.3, we get

tα+
β
m

(1 + x) 1
m

!!!!!!t
−αFM(

x − a
tβ

) − DM(x, t)
!!!!!! ≤

t
β
m

(1 + x) 1
m

1

∫
0

F�M(
x − sa
tβ

)
x − sa
tβ

a
x − sa

ds

≤ K
1

∫
0

(x − sa)
1
m −1a ds

≤ mKa
1
m <

ε
2

if a < aε := min{( ε
2mK )

m , 1}.
On the other hand, using (2.7), we obtain

tα+
β
m

(1 + x) 1
m

!!!!!!t
−αFM(

x − a
tβ

) − v(x, t)
!!!!!! =

t
β
m

(1 + x) 1
m
FM(

x − a
tβ

)|1 − c(t)|

≤ C
1

m−1
m M

m+1
2m2 (

x − a
1 + x )

1
m |1 − c(t)|

≤ C
1

m−1
m M

m+1
2m2 |1 − c(t)| < ε

2

if t ≥ T̃ε for some large enough T̃ε ≥ T since c(t) → 1 as t → ∞.
The combination of the above two estimates yields the result.

We now have all tools we need to prove the lower limit. Here a difference arises with respect to the upper
limit: we will have to treat separately the limit in sets of the form (0, a) with a small. This is done by using
that both u and DM are small in this set for large times.
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Proposition 3.5. Let u be the unique weak solution to (1.1) and let DM be the unique dipole solution to the PME
with first moment M = ∫

∞
0 xu0(x) dx. If δ̂ is the constant given by Lemma 2.3, then

lim inf
t→∞

tα+
β
m sup
0<x<δtβ

(u(x, t) − DM(x, t))
(1 + x) 1

m
≥ 0

for all δ ∈ (0, δ̂).

Proof. Given δ ∈ (0, δ̂) and ε ∈ (0, FM(δ)), we choose a small value a ∈ (0, aε)with aε ∈ (0, 1] as in Lemma2.3.
Wewill specify how small it has to be later on.We take T ≥ max{Tε , Tε,a,δ}, with Tε as in Lemma2.2 and Tε,a,δ
as in Lemma3.3, and then c0 ∈ (0, 1) small enough so that the function v defined by (3.1)–(3.2) satisfies (3.3)
and (3.4).

By Lemma 2.2, we know that there is a value k0 ≥ 1 such that the function V defined by (2.1)–(2.2)
satisfies (2.4). Besides, since k(t) → 1 as t → ∞, there exists a time Ť ≥ T such that k(t) ≤ 2 for all t ≥ Ť.
Therefore, since Cδε < 1, using (2.7), we get

tα+
β
m u(x, t)

(1 + x) 1
m

≤ (1 + Cδε)
tα+

β
m V(x, t)

(1 + x) 1
m

≤ 2(1 + Cδε)
t
β
m

(1 + x) 1
m
FM(

x + a
tβ

)

≤ 4C
1

m−1
m M

m+1
2m2 (2a)

1
m <

ε
2

if a is small enough. On the other hand, using again (2.7), we get

tα+
β
m DM(x, t)
(1 + x) 1

m
=

t
β
m

(1 + x) 1
m
FM(

x
tβ
) ≤ C

1
m−1
m M

m+1
2m2 a

1
m <

ε
2 .

We conclude that
tα+

β
m sup
0<x<a

|u(x, t) − DM(x, t)|
(1 + x) 1

m
≤ ε

if t is large enough.
We now consider the set a < x < δtβ. Since c(t) → 1 as t → ∞, using (2.7), we get

tα+
β
m v(x, t)

(1 + x) 1
m

=
c(t)t

β
m

(1 + x) 1
m
FM(

x − a
tβ

) ≤ 2C
1

m−1
m M

m+1
2m2 (

x − a
x + 1)

1
m ≤ 2C

1
m−1
m M

m+1
2m2

for all large enough times. Combining this estimate with (3.3) and (3.4), we finally get

tα+
β
m

(1 + x) 1
m
(u(x, t) − DM(x, t)) ≥ −Cδε

tα+
β
m v(x, t)

(1 + x) 1
m

− ε ≥ −(Cδ2C
1

m−1
m M

m+1
2m2 + 1)ε

for a < x < δtβ and all large enough times.
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