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Abstract

We investigate the capabilities of an effective non-retarded formalism (ENR) for the exploration
and design of nanoparticle composites with specific optical properties. We consider a composite
material comprising periodically distributed metallic spheres in a dielectric host matrix. The
effective macroscopic dielectric function of the composite medium is obtained by means of the
ENR and is used to calculate the electromagnetic response of a slab made of an inhomogeneous
material. This response is compared with that obtained by using the layer Korringa—Kohn—
Rostoker wave calculation method (LKKR). We analyze the optical properties for different
filling fractions, especially in the vicinity of the resonance frequencies of the macroscopic
dielectric function. We notice that for dense systems within the long wavelength regime, the
results of some analytical theories developed by other authors do not properly describe the
multipolar excitations and interactions of orders higher than the dipole, in contrast with the
results obtained by using an ENR. Therefore, those methods are not suitable for the design of
compound films with novel properties. We show that by appropriately choosing the parameters
of the composite, it is possible to achieve a tunable absorber film, and more generally, we show
that ENR is a versatile tool for the design of nanoparticle composite materials with specific
properties.

Keywords: effective media, optical resonances, recursive methods, thin films, tunable absorbers,
nanoparticles
PACS numbers: 78.67.Bf, 77.22.Ch, 78.20.Ci, 78.20.Bh
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1. Introduction

The optical properties of inhomogeneous materials have been
extensively studied for several decades. Some formalisms,
such as the theories of spectral representations [1-3], spatial
fluctuations [4, 5], renormalized polarizabilities [6, 7], and
diagrammatic series [8, 9], attempt to obtain the electro-
magnetic macroscopic response of these systems by using

2040-8978/14/105012+10$33.00

analytical and/or semi-analytical expressions. If the typical
wavelengths are much larger than the size of the inhomo-
geneities, it is possible to design a quasi-static treatment (also
called long wavelength approximation) that is the basis for
many of the current methods for determining the effective
electric macroscopic permittivity of the system. An enligh-
tening review of traditional approaches to solving the problem
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by means of effective medium models can be found in several
studies [10-13].

We are interested in ordered inhomogeneous systems
formed by two phases, one metallic and the other dielectric.
Our interest in metal—dielectric composites lies in the possi-
bility of designing their optical properties by adapting the
parameters of the materials. More specifically, if the phases of
the composite are chosen with appropriate geometry and
sizes, it is possible to tune the resonance of the dielectric
macroscopic function within the visible range [14-17].
Effective medium theories describe the macroscopic dielectric
function of complex composite nanostructures in terms of the
dielectric functions of their components and of a limited
number of geometrical parameters. In the case of diluted
systems with spherical inclusions, the filling fraction is suf-
ficient information to obtain the macroscopic dielectric
function, as established by the traditional effective medium
theories [18, 19], in which only dipolar contributions among
the particles that compose the system are taken into account.
However, most of the interesting effects are more strongly
manifested for inclusions with complex geometries and close
to the percolation threshold of the conductive phase—i.e., in
systems with high filling fractions.

Waterman et al [20] proposed an expansion of the
macroscopic dielectric function in terms of the filling fraction
of an infinite periodic array of spheres. It is well known that
for high concentrations of metallic particles, the multipolar
interactions yield a macroscopic dielectric response that
exhibits higher-order resonances, independently of the size of
the particles [21, 22]. Although Waterman’s formulation
takes into account the multipolar interactions between the
scatterers, the predicted contribution of these higher-order
terms is almost negligible. Therefore, many later works have
stated that the corrections to the Maxwell Garnett formulation
that account for higher-order multipolar effects would be
significant only for systems with large particles compared
with the operating wavelength, i.e., beyond the long wave-
length limit, and would be negligible for small particles even
in the case of a large filling fraction. This situation prompted
the development of the Extended Maxwell Garnett approx-
imation, which has been employed by many authors [23-25].
Among the theories developed to study non-diluted [26, 27]
and ordered [14, 22, 28] systems, the effective non-retarded
method (ENR) has been recently proposed. This formalism
makes it possible to obtain the complex and frequency
dependent macroscopic dielectric function for arbitrarily
shaped inclusions, either particles or vesicles, periodically
ordered in 2D or 3D arrays. It can also deal with inter-
penetrating inclusions and dissipative and dispersive materials
[15]. Although the ENR allows dealing in principle with
inclusions of arbitrary geometry, it seems to be better suited
for particles or vesicles with planar faces, such as cubes or
parallelepipeds. This is because its numerical implementation
requires a discrete representation; a cubic grid is used to
discretize the unit cell.

Given the demonstrated versatility of this method for
predicting the optical properties of complex materials [16], it
is important to assess its behavior when applied to the case of

composites with curved surfaces, such as those made of
spherical inclusions, like those that have been recently man-
ufactured [29-31]. The case of spherical inclusions requires a
detailed analysis of the numerical procedure employed to
determine the dielectric macroscopic function. Moreover, it is
essential to validate the results by comparison with rigorous
methods which do not include approximations in the repre-
sentation of the shape of the inclusions. Among these meth-
ods, the layer Korringa-Kohn-Rostoker (LKKR) makes it
possible to investigate the electromagnetic response of com-
posites formed by periodic arrays of spheres and has been
shown to be numerically efficient. In the LKKR, the elec-
tromagnetic interactions between the scatterers are calculated
by means of the layer-multiple-scattering method for sphe-
rical particles [32-35]. Recently, simulated reflectance spectra
calculated by means of the vector LKKR at high-order band
frequencies have shown a clear correlation between theore-
tical and experimental results [36].

The main advantage of the ENR over the LKKR is the
possibility of studying the optical properties of composites
with arbitrary geometries, including systems formed by
dielectric vesicles within a conducting medium and inter-
penetrated systems [15-17]. We will show that the ENR is
applicable to the case of spherical metallic composites
embedded in a dielectric medium and that it can satisfactorily
predict multipolar effects of higher-order. To do so, we
investigate the electromagnetic response of a composite slab
and compare the results obtained by using the ENR and the
LKKR. In section 2, we use the ENR to obtain the macro-
scopic dielectric response of a medium comprising a simple
cubic lattice of spheres. In section 3, we use the LKKR to
obtain the electromagnetic response of a composite material
slab and is compared with that given by the ENR. In section 4
we explore the potential of the ENR as a design tool for
tunable absorbers from diluted to overlapping particles.
Finally, we provide concluding remarks in section 5.

2. The macroscopic dielectric function

Let us consider a composite made up of arbitrarily shaped
inclusions arranged in a periodic 3D array. Provided that the
length of the inclusions in the material is small compared with
the electromagnetic wavelength, this mixture can be treated as
a homogenized composite material. The ENR method is
based on Haydock’s recursive scheme [37], from which a
tridiagonal representation of a characteristic function [15, 16]
is obtained and yields the macroscopic dielectric function
(eM) of the composite. This result depends on the shape of the
inclusions, on the dielectric function of the components, and
on the filling fraction (f) of the array (the ratio of the volume
occupied by particles in the unit cell to the total volume of the
unit cell). Since the coefficients that appear in the tridiagonal
representation depend on the shape of the particles and on f,
but not on the dielectric constant of the inclusions, once they
are obtained for a particular geometry and concentration
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Figure 1. Unit cell of a simple cubic lattice of lattice parameter L
made up of spherical particles of radius r and dielectric function ey,

embedded in a matrix with dielectric constant egij. The sphere is

discretized by small cubes of side L/(2 M + 1). In this illustration,
r = 0.38L and M = 20).

of the scatterers they can be used for inclusions of different
materials, saving considerable computation time.

In the following discussion, we apply the ENR to
investigate materials with spherical inclusions arranged in a
simple cubic lattice of period L (figure 1). We consider an
array of metallic spheres embedded in a dielectric host
material of permittivity €giej. To model the permittivity of the
metal e, as a function of frequency w, we use the Drude
formula

2

@p
€sph(w) =1- - . (D
o +iowl
where w,, is the bulk plasma frequency, I" stands for the
relaxation time, and i is the imaginary unit.

For the numerical implementation, the unit cell is divided
into (2M + 1)} cubes of side L/(2M + 1) by taking 2M + 1
equidistant points on each of its sides, and the discretized
inclusion is defined by the set of cubes contained within the
volume of the actual sphere. The discretization process is
particularly suitable for particles with planar facets, since they
can be exactly represented by stacking cubes. For curved
inclusions, the discretized particle exhibits a stepped surface
(as shown in figure 1 for M = 20) that becomes smoother as M
increases. The choice of M is not only important to properly
represent the geometry of the particle but also to obtain an
acceptable resolution in the Fourier transform calculations
involved in the ENR [15]. The appropriate value for M must
be found for each combination of parameters. We imple-
mented the ENR by using the Perl Data Language [38].

In figure 2 we show the real and imaginary parts of the
macroscopic dielectric function as a function of the photon
energy /Zw within the optical range for M = 60 and 120. We
consider two different composites: (a) one made of silver (Ag)
particles (7" = 0.03 eV and 7w, = 8.5 V) embedded in a
titanium dioxide (TiO,) matrix (egiep = 7.84), and (b) the

other made of gold (Au) particles ("= 0.1 eV and
/i, = 7.0 eV) immersed in a tellurium dioxide (TeO,) matrix
(€diet = 5.2). The parameters hw, and %" were obtained by
fitting the real and imaginary parts of the dielectric function
given by (1) to the experimental data of [39] in the NIR-VIS
range; this fit is adequate below 3 eV. Two different filling
fractions are considered in both cases: f=0.045 (r = 0.22 L,
left panels) and f = 0.23 (r = 0.38 L, right panels).

In figure 2, we also include results obtained from the
Waterman formulation (W), which coincide with those
obtained by the Maxwell-Garnett approach (MG) and by the
Extended Maxwell-Garnett formula [23-25] (not shown), as
expected by the long wavelength approximation. As shown
in figure 2(a), the curves exhibit a sort of ripple that
smooths out as M is increased. This fluctuation is more
significant for the composite of Ag spheres than for that of
Au spheres (figure 2(b)), suggesting that the choice of a
proper value of M is more critical when the contrast between
the permittivities of the constituent materials is higher and
also for smaller values of I'". Since the memory requirements
for computing the coefficients of the tridiagonal repre-
sentation of the characteristic function of the composite
increase with (2M + 1)?, in what follows we have chosen
M = 120, which yields an adequate convergence. We can
estimate the error due to this finite discretization through its
effect on the first Haydock coefficient, which is given by the
average of the characteristic function within the unit cell
[16] and which should thus converge towards f as M
increases. Taking M = 120, the relative error of this coef-
ficient is ~ 0.04% for f = 0.045, and it decreases as f
increases.

From the Mie theory, an isolated sphere is expected to
exhibit multipolar resonances for e = —€giet(! + 1) /l,
where [ is a positive integer [40], with corresponding fre-
quencies

o~ ol /(1 + ega(l + /1), )

according to equation (1). The dipole resonance (I = 1) is at
7iw ~ 2.1 eV for both compositions considered above. As
could be expected, for our dilute f = 0.045 composites,
Im {eM} exhibits a peak close to this isolated dipolar reso-
nance. However, for our dense f = 0.23 system, the multiple
scattering between the spheres has a significant impact on the
optical response of the system; consequently, the resonant
frequency is red-shifted towards ~1.71 eV. In this case,
Im {eM} exhibits a second peak at ~ 2.5eV which is asso-
ciated with an octupole resonance (I = 3 in equation (2)) [22].
Notice that only resonances with odd / can be excited due to
the symmetry of the system. Surprisingly, this peak does not
appear in the Waterman results, although his approach takes
into account higher-order interactions between the scatterers.
For the diluted case, the overall matching of the ENR and the
W curves is very good. However, the dipole resonance peak
obtained by the ENR is lower and slightly wider than that
predicted by the W. This may be due to the discretized nature
of the spherical particle within the ENR. In all cases, Re {e™}
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Figure 2. Imaginary and real parts of the macroscopic dielectric function €™ of a simple cubic lattice of metallic spheres embedded in a
dielectric matrix: (a) Ag spheres within TiO,, (b) Au spheres within TeO,. The left side corresponds to f = 0.045 and the right side to f'=0.23.
Dashed lines and thick solid lines correspond to M = 60 and 120, respectively. For f = 0.23, the insets show the vicinity of /7w =~ 2.5eV.
Results given by the Waterman e al model (W) are shown as thin solid lines.

and Im {e¥} satisfy the Kramers—Kronig relationship, as
expected.

3. Optical properties of hanocomposite thin films

In this section, we analyze the electromagnetic response of a
slab made of a composite material. We first use the LKKR to
investigate the influence of the number of layers of spheres on
its optical properties and establish the conditions for which
the results given by the LKKR permit a valid comparison
with those of the effective medium theory (ENR). In figure 3
we show schematically (a) the composite slab modeled with
the LKKR and (b) its view according to the ENR.

3.1. The LKKR method

Among the methods available for the calculation of the
electromagnetic response of composite periodic structures
made of spheres, the LKKR appears to be numerically effi-
cient. Within its framework, the electromagnetic interactions
between the inclusions arranged in the periodic lattice are
calculated by means of the layer-multiple scattering method
for spherical scatterers [32-35]. The crystal can be considered
as a stack of parallel layers formed by spheres periodically
arranged in a 2D Bravais lattice. To solve the electromagnetic
problem, the multiple scattering between spheres of each
single layer is calculated first. Then the scattered response of
multiple layers is determined by using a procedure similar to
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Figure 3. Nanocomposite freestanding film (thickness d). The thick black arrows indicate the propagation direction of the incident field. (a)
LKKR: composite slab made of N layers of metallic spheres of permittivity ey, immersed in a dielectric host medium of permittivity egie. In

the figure, we illustrate the case N = 6. (b) ENR: slab of a homogeneous material characterized by the macroscopic dielectric function €.

the one used to calculate the reflection and transmission
properties of stratified media with planar interfaces. The
computer program MULTEM ([33, 35] is a numerical imple-
mentation of the LKKR.

As mentioned in section 2, the optical response given by
the ENR is determined by the filling fraction f of the structure.
In contrast, to perform the simulations using MULTEM, the
number of layers of spheres within the slab (V) is required. As
a consequence, if we fix the thickness (d) of a slab and take
the filling fraction of the nanomaterial to be a simple cubic
lattice of non-overlapping spheres, the lattice parameter L and
the radius » of the spheres are determined by L = d/N and
r = L(3f/4rn)"3. Thus, given d, by varying N, it is possible to
find different pairs of values r, L that correspond to the
same f.

To investigate the influence of the number of layers for
fixed values of d and f, in figure 4 we plot the reflectance R
and the absorptance A of a freestanding film made of our Ag/
TiO, system and illuminated by normally incident light as a
function of the photon energy /Zw for d = 360 nm and 1820
nm and different values of N, calculated with the LKKR
method. For both thicknesses, we consider two different
filling fractions, f = 0.045 (top panel) and f = 0.23 (bottom
panel). As N increases, r and L become smaller, the wave-
length becomes relatively larger, and thus it is to be expected
that the long wavelength condition is asymptotically
approached. This behavior can be verified in figure 4, in
which the curves for large N are close to each other. In table 1
we summarize the values of L and r for the slabs investigated
in the present example. According to the values of r given in
table 1, we can conclude that 32 layers for d = 360 nm and
128 layers for d = 1820 nm are sufficient to ensure the long
wavelength condition within the spectral range considered.

M

3.2. Comparison between the LKKR and the ENR

Figure 5 displays the reflectance, absorptance, and transmit-
tance of the same films as in figure 4 obtained by using three
different approaches: LKKR, ENR, and W. For the ENR
calculations we used M = 120. Taking into account the ana-
lysis of section 3.1, for the LKKR simulations we used N = 32
for d = 360 nm and N = 128 for d = 1820 nm. The electro-
magnetic response of the slab is closely linked to the mac-
roscopic dielectric function of the composite, i.e., to the
behavior of Re {e} and Im {eM}, which are strongly fre-
quency dependent (see figure 2). Accordingly, the response of
the slab exhibits different features in different spectral
regions.

For low frequencies (o< 2eV for f = 0.045 and Ziw<
1.7eV for f = 0.23), the curves for both values of f display
oscillations due to the Fabry—Perot interference and, as
expected, adjacent maxima are closer to each other for thicker
slabs. In this spectral region, Re {¢”} > 0 (as shown in
figure 2 (a)) and therefore the effective medium behaves as a
lossy transparent material that allows partial transmission
across the slab. However, as the dipole resonance frequency is
approached from below, Re {¢} and Im {e¥} increase, and
as a result, a lower transmittance is observed. This behavior
becomes more evident for the thicker slab as observed on the
right of figure 5 (b), in the ranges 1.8eV < Zw< 2eV for
f=0.045 and 1.5eV < 7Zw< 1.7V for f = 0.23.

It can be observed that for both thicknesses considered, a
high reflectance band starts at the dipole resonance frequency:
at 2 eV (620 nm) for f = 0.045 and at ~1.7 eV (729.4 nm)
for f=0.23 (see left panels of figure 5). Within this band, the
reflectance is very high (more than 80%) and the transmit-
tance is negligible. Notice that right at the dipole resonance
Re {eM} changes sign and becomes negative in a frequency
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Figure 4. Reflectance R (left) and absorptance A (right) of a composite slab made of Ag spheres embedded in a TiO, matrix, as calculated
with the LKKR method. (a) d = 360 nm, N= 8, (dashed), 16 (dot-dashed) and 32 (solid). (b) d = 1820, N = 32 (dashed) 64 (dot-dashed) and
128 (solid). Top (bottom) panels in each group correspond to f = 0.045 (f = 0.23).

Table 1. Geometrical parameters of the composite slab considered in
figure 4.

d(nm) N L(nm) r(nm) (f=0.045) r(om) (f= 0.23)
8 45 9.9 17.1
360 16 225 4.95 8.55
32 11.25 2.47 4.27
32 56.87 12.51 21.61
1820 64 28.44 6.25 10.80
128  14.22 3.14 541

range that defines the reflectance bandwidth. This band is
wider for f=0.23 (1.7eV < 7w < 2.9 eV) than for = 0.045
2eV < 7w < 2.2eV) because the dipolar interaction is
stronger for higher concentrations of spheres, as observed in

figure 2(a). Besides, for f = 0.23 there is a pronounced dip
within the high reflectance band very close to the octupolar
resonance at &~ 2.5eV. This dip is located within a narrow
frequency range within which Re {¢M} is positive (see
figure 2 (a)) and in which the effective medium behaves again
as a lossy transparent material which allows light propagation.
However, the electromagnetic response in this region differs
substantially from that exhibited in the low frequency zone, as
in the vicinity of the multipole resonance Re {e} = I;
therefore the contrast between the macroscopic permittivity of
the slab and that of the vacuum is very low. Consequently, the
reflectance becomes negligible and most of the incident
energy enters the slab and is largely absorbed, although in this
region Im {eM} is smaller than at the dipole resonance. A
similar effect has already been reported in 2D [14] and 3D
structures [16].
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Figure 5. Reflectance R (left), absorptance A (center) and transmittance 7 (right) of a composite slab made of Ag spheres embedded in a TiO,
matrix. (a) d = 360 nm and b) d = 1820 nm. Top (bottom) panels of each pair correspond to f= 0.045 (f = 0.23). We show results of the

LKKR (solid), ENR (dashed), and W (dot-dashed) models.

In general, the qualitative agreement between the ENR
and the LKKR curves is satisfactory. Both methods ade-
quately describe the spectral response of the composite slab.
However, there are some quantitative differences in certain
spectral ranges which could be due to the roughness of the
discretized spheres in the ENR, which produces modes that
affect the electromagnetic response. For f= 0.045, the LKKR
and W curves are in excellent agreement. However, for
f = 0.23, the Waterman formulation does not predict the
splitting of the reflectance band. Although LKKR, ENR, and
W consider in their formulations multipolar interactions
between the spheres, only LKKR and ENR adequately
describe the splitting of the reflection band at those fre-
quencies at which multipole resonances are excited. From the
point of view of potential applications, compound metal—di-
electric films can be used as light absorbers [41] the frequency
of which may be tuned by appropriately choosing f and €g;e].

4. Tuning of absorption bands

In this section we show that by properly combining the filling
fraction of the array of nanoparticles and the dielectric constant
of the host medium, composite films can be used as tunable
frequency light absorbers. Figure 6 displays the absorptance vs.
frequency for a composite slab made of Ag spheres embedded
in titanium dioxide, as in the previous examples, for different
values of f, from f= 0.05 (diluted composite of metallic spheres)
up to f = 0.9 (interpenetrated spheres). The slab is illuminated
under normal incidence and its thickness is 1820 nm.

Notice that the reflection band discussed for figure 5
corresponds to a wide flat-bottomed valley in figure 6. Within
this band the absorptance A < 10%. As fincreases, its spectral
position is red-shifted and its bandwidth changes. In contrast,
an absorption band for which the absorptance is A > 90% is
located near Zw= 2.2 eV (564 nm) for f=~ 0.05 and its position



J. Opt. 16 (2014) 105012

G Ortiz et al

0.75
0.5
0.25

Figure 6. Absorptance of a composite slab of thickness d = 1820 nm
made of a sc lattice of Ag spheres embedded in TiO, as a function of
filling fraction f and energy /7w, as calculated with the ENR method.

is blue-shifted as f increases, reaching Zw~ 3 eV (412 nm) for
f=0.25. At f~ 0.15 a second absorption peak splits from the
main absorption band and is redshifted as f increases up to
f=0.5. This peak originates from the octupolar resonance [22].
At f= /6 =~ 0.52 the system percolates and becomes con-
ducting. For larger f, the spheres interpenetrate and the inter-
action among the dielectric interstices produces an absorption
band (A~ 90%) due to the index matching between the mac-
roscopic dielectric function and air at near infrared (NIR)
resonant frequencies [14, 16]. As fincreases, this band shifts to
higher frequencies, as expected. Notice that we took advantage
of the computational efficiency and versatility of the ENR
method to swiftly and exhaustively explore the parameter space
of the system, including regions with non-trivial geometries
such as that corresponding to interpenetrated spheres.

So far, we have investigated the absorptance of the slab
by considering different filling fractions for a fixed value of
the dielectric constant of the host medium. To investigate the
influence of €4 in the distribution of the absorption bands,
we show in figure 7 the absorptance of a composite slab of Ag
nanoparticles as a function of the response of the host egie for
a fixed filling fraction f = 0.23. As egie increases, the dipole
and multipole resonances and the corresponding absorption
bands are red-shifted, whereas the bandwidths remains
approximately constant.

These examples show that the ENR constitutes a useful
and powerful tool for the design of tunable absorbers based
on metallic nanoparticle composites: by appropriately
selecting the filling fraction and the permittivity of the host
medium, the electromagnetic response can be tuned to obtain,
for example, absorption peaks and negligible transmittance
and reflectance in the visible range of the electromagnetic
spectrum.

As a final example that further illustrates the versatility of
the ENR for attacking more complex geometries, in figure 8
we show the absorptance A of a slab of width d = 1820 nm
made of a composite composed of Ag square nanoprisms with
sides a, and a, = a, along the cartesian axes arranged in a
simple cubic lattice with lattice parameter L within a TiO,
matrix as a function of the aspect ratio { = a,/a, and the
photon energy 7w for a fixed filling fraction f = 0.3. For
definitiveness, we assume the incident light is polarized along
the x direction and impinges normally on the slab,

LLLOC00000
Lhwwbsmo~Nmoo

4 - :
10 12 14 16 18 20 22 24 26 28 30
fiw (eV)

Figure 7. Absorptance of a composite slab made of Ag spheres for
f=0.23 versus €gie] and /.

propagating along the z direction. Notice that for { = f the
neighbor prisms coalesce to form a 1D superlattice of con-
tinuous conducting planes along the yz directions alternating
with dielectric layers. Thus, in this 1D limit the response of
the system is given exactly by the 1D Maxwell MG expres-
sion, as verified by the figure. In contrast, for { =1 / \/f,
neighbor prisms coalesce to form a square array of wires
continuously conducting along the x direction, the response
for which should be given exactly by the MG theory in 2D
[12], which is again verified by figure 8. In both the 1D and
2D MG theories we take the polarization along the optical
axis of the structure. For the intermediate value { = 1 the
system is given by a cubic lattice of nanocubes, each of which
has a several optically active resonances, as described by
Fuchs [42], which yield absorption peaks which are shifted
due to the interaction among neighbors. These peaks are
further shifted as the particles are deformed by changing ¢.

5. Conclusions

We have considered a composite material made up of a per-
iodic lattice of metallic spheres within a dielectric host matrix.
The capabilities of the ENR approach in calculating its
effective macroscopic dielectric function have been investi-
gated. We have compared the optical response of a composite
slab obtained by the ENR with that obtained from the LKKR.
We have shown that within the long wavelength regime the
two methods agree.

Both methods adequately describe the spectral response
of a composite slab. We analyzed in detail the optical prop-
erties of the slab in different frequency regions and for dif-
ferent filling fractions and interpreted the results in terms of
the macroscopic dielectric function. We have found char-
acteristic features in the response such as reflection and
absorption bands the positions and widths of which can be
controlled through the filling fraction and the permittivities of
the particles and the host medium. These novel optical
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Figure 8. Two views of the absorptance A of a composite slab made of Ag square prisms embedded in a TiO, matrix versus their aspect ratio
¢ and the photon energy /%w. The slab lies on the xy plane and the light propagates along z and is linearly polarized along x. The filling

fraction is fixed at f= 0.3. The inset shows the shapes of the particles corresponding to {~ 0.3, 0.7, 1.2 and 1.8. With black lines we show the
results of the MG theory in 1D corresponding to { = 0.3 and MG in 2D corresponding to { = 1.8. The two views are mutually rotated by 90°.

properties are related to the excitation of multipolar reso-
nances of orders higher than the dipolar.

The ENR allowed us to swiftly explore systems with
varying geometrical parameters, including such non-trivial
geometries as those corresponding to such high filling frac-
tions that neighbor particles interpenetrate and for which other
calculation schemes are inapplicable. We further illustrated
the versatility of the ENR formalism by calculating the optical
properties of an array of prisms of varying aspect ratio
interpolating continuously between a 1D superlattice, a 3D
cubic array of cubes, and a 2D square array of wires.

It is worth mentioning that although the faceted shape of
the discretized particles is a drawback for modeling spherical
inclusions, it can also be viewed as an advantage for studying
the optical features of synthesized metallic nanoparticles that
exhibit facets as a consequence of the manufacturing process
[43—45]. The ENR therefore constitutes a versatile tool to
investigate and design the optical properties of metallic
nanoparticle composites.
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