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Abstract. One fundamental motivation to know the dispersive, or frequency

dependent characteristics of localized surface plasmos (LSPs) supported by elliptical

shaped particles wrapped with graphene sheet, as well as their scattering characteristics

when these elliptical LSPs are excited, is related with the design of plasmonic structures

capable to manipulate light at sub-wavelength scale. The anisotropy imposed by

the ellipse eccentricity can be used as a geometrical tool for controlling plasmonic

resonances. Unlike metallic case, where the multipolar eigenmodes are independent of

each others, we find that the induced current on graphene boundary couples multipolar

eigenmodes with the same parity. In the long wavelength limit, a recursive relation

equation for LSPs in term of the ellipse eccentricity parameter is derived and explicit

solutions at lowest order are presented. In this approximation, we obtain analytical

expressions for both the anisotropic polarizability tensor elements and the scattered

power when LSPs are excited by plane wave incidence.

1. Introduction

Light scattering properties on metallic wire particles with non-circular cross section have

been extensively studied [1, 2]. The two-dimensional geometrical anisotropy leads to a

splitting in two or more plasmon branches corresponding to the lowest energy states,

instead of one as occur in the circular case, which are evidenced on the angular optical

response of the wire [3]. This fact together with other outstanding properties have found

applications in some optical topics requiring field hot spots, such as surface enhanced

Raman and optical nano-antennas development [4, 5, 6, 7].

Sub-wavelength structures coated with a graphene sheet provide a suitable

alternative to metallic elements because they exhibit relative low loss and highly tunable,

via electrostatic gating or chemical doping [8], surface plasmons in the frequency region
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from microwaves to infrared [9]. The small plasmon wavelength, which usually reaches

values smaller than one tenth of the wavelength of the photon of the same frequency,

deals with the possibility to build smaller plasmonic constituent elements, a feature

positioning the graphene as a promising platform to the development of controllable

plasmon devices, in particular of a new generation of sensors and modulators from

microwaves to the mid-infrared regimes [10, 11, 12, 13] constituting an intersection

between optics and electronic.

Graphene layers structures has attracted wide attention in many applications due

to a strong adsorption capacity for contaminants [14, 15], electrical properties [16, 17, 18]

and improved light harvesting [19, 20, 21].

In the framework of electromagnetic scattering by sub-wavelength graphene

particles, an extensive wealth of theoretical analysis have been developed, allowing

possible a wide range of applications based on the interaction between graphene

and electromagnetic radiation via LSP mechanisms, including sensing [22, 23],

superscattering [24, 25], low energy spasers [26, 27, 28, 30], PT-symmetric structures

tailoring lasing modes [29, 30], and micro and nano antennas [31, 32, 33, 34].

This work deals with the plasmon properties of an elliptical dielectric wire wrapped

with graphene. The LSP branches corresponding to lower eigenmodes are obtained

by solving the homogeneous problem, i.e., the scattering problem without external

excitation. Unlike the metallic case, where LSP eigenmodes are uncoupled between

them, the current density on graphene coating couples all multipolar LSPs with the

same parity given rise to an infinite set of coupled equations for the field amplitude.

Moreover, the tangential direction of charge oscillation on graphene covered leads to a

counterintuitive splitting: the low dipolar frequency mode corresponds to polarizability

oscillations along minor ellipse axis while the high dipolar frequency mode corresponds

to polarizability oscillations along the major ellipse axis. In this framework, analytical

expressions of the anysotropic polarizability is found. We also provided analytical

expressions for the scattered power when the graphene elliptical wire is excited by a

plane wave. All scattering curves are compared with those obtained by applying a

rigorous formalism based in the Green surface integral method [35, 36] valid for arbitrary

shaped cross sections.

This paper is organized as follows. Firstly, in Section 2 we develop an analytical

method based on the separation of variables in elliptical coordinates and obtain an

approximated solution for the electromagnetic field scattered by an elliptical wire cover

with graphene. This approach allows us to express each of the amplitudes in the

multipolar expansion of the fields as a series of power of the ellipse eccentricity. In

Section 3 we present the results related with the dispersive characteristics and the

scattering calculations for a dielectric wire wrapped with graphene. Finally, concluding

remarks are provided in Section 4. The Gaussian system of units is used and an

exp(−iωt) time-dependence is implicit throughout the paper, with ω as the angular

frequency, t as the time, and i =
√
−1. The symbols Re and Im are respectively used

for denoting the real and imaginary parts of a complex quantity.
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Figure 1. Schematic illustration of the elliptical wire wrapped with graphene. The

wire (ε1 and surface conductivity σ) is embedded in a transparent medium with

permittivity ε2. Both media are non magnetic, µ1 = µ2 = 1.

2. Theory

2.1. Scattered field equations

We consider an elliptical dielectric cylinder wrapped with graphene sheet. The elliptical

profile has the major semi-axis a along x axis and the minor semi-axis b along the y

axis. We use elliptical coordinates, which are related with the Cartesian coordinates by

following relations

x = l cosh(ρ) cos(φ),

y = l sinh (ρ) sin(φ),

z = z

(1)

ρ and φ are the radial and angular elliptical coordinates. The unit vectors ρ̂ and φ̂

are normal and tangent along elliptical shape, respectively (see Figure 1). In this way,

the boundary curve of the ellipse is given by ρ = ρ0, tanh(ρ0) = b/a, with the major

semi-axis a = l cosh(ρ0) along the x axis and the minor semi-axis b = l sinh(ρ0) along

the y axis. The scale parameter l is related with a and b by the following l =
√
a2 − b2.
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The magnetic field inside the elliptic cylinder ρ < ρ0 can be expressed as follows:

H(1)(ρ, φ) =

+∞∑

m=1

am sinh(mρ) sin(mφ) + cm cosh(mρ) cos(mφ), (2)

and the field outside the ellipse ρ > ρ0 is expressed as,

H(2)(ρ, φ) =

+∞∑

m=1

bme
−mρ sin(mφ) + dme

−mρ cos(mφ) +H(inc). (3)

where the last term corresponds to the incident magnetic field. Firstly, we suppose a

plane wave incidence with the electric field along the x axis and amplitude E0. In this

case, the incident magnetic field in the long wavelength limit is written as

H(inc)(ρ, φ) = −ik0E0ε2l sinh(ρ) sin(φ). (4)

The symmetry imposed by the incident field direction imposes the amplitudes cm and dm
in the field expressions (2) and (3) to be zero. By using the Ampere-Maxwell equation,

we can relate the components of the electric field and the z-component of the magnetic

field as follows,

E(j) = − 1

ik0εj
∇t × ẑH(j) (5)

j = 1, 2,

∇t =
1

f(ρ0, φ)

[
ρ̂
∂

∂ρ
+ φ̂

∂

∂φ

]
(6)

is the transverse part of the ∇ operator and f(ρ0, φ) = l
√

cosh2(ρ)− cos2(φ). The

boundary condition along the contour of the ellipse ρ = ρ0 is written as [37],

1
ε1

∂H(1)

∂ρ
|ρ0 = 1

ε2
∂H(2)

∂ρ
|ρ0[

H(2) +H(inc) −H(1)
]
|ρ0 = 4πσ

c
[E

(2)
φ + E

(inc)
φ ]|ρ0 .

(7)

Using field expressions (2) and (3) with cm = dm = 0 into the boundary condition

(7) and projecting into the Fourier basis, two system of equations for amplitudes am and

bm are obtained. Then, we can eliminate amplitudes am to obtain one set of equations

for amplitudes Bm = bme
−mρ0 (see appendix Appendix B),

Bktk +
+∞∑

m6=k

MkmBm = Qk, (8)

with

Mkm =
4πσ

ck0ε2
imskm, (9)

tk = 1 +
ε1
ε2

tanh(kρ0) +Mkk, (10)

Qk = ik0E0(ε2 − ε1)l sinh(ρ0)δk1 +
4πσ

c
E0 coth(ρ0)sk1. (11)
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2.2. Lowest order eccentricity

Before studying the scattering problem given by Eq. (8), we first study the homogeneous

problem (or eigenmodes problem), i.e., the scattering problem without an external

source (E0 = 0 in Eq. (8)). To do this, we consider the homogeneous part in Eq.

(8) which can be rewritten as

Bktk +

+∞∑

m6=k

MkmBm = 0, (12)

Since in the limit of null eccentricity tanh(kρ0) = 1 for ρ = ∞, the first term in Eq.

(12) reduces to the dispersion relation of a cylinder with circular cross section for the k

multipolar order, while the second term reduce to zero. For small values of eccentricity,

e = l/b =
√
(a/b)2 − 1 << 1, we can expand Eq. (12) in powers of e as follows.

Taking into account that the matrix element is of order O(2) for k 6= m (see appendix

Appendix C), skm ≈ e2, from Eq. (9) we deduce that M1m is at last of order O(2) and

thus we can expand the homogeneous equation (12) in powers of e. The form that Eq.

(12) takes for k = 1 is,

B1t1 +

+∞∑

m6=1

M1mBm = 0, (13)

and the form that Eq. (12) takes for m 6= 1 is,

Bm = −Mm1

tm
B1 −

+∞∑

n 6=1,m

Mmn

tm
Bn. (14)

Replacing Eq. (14) into Eq. (13), we obtain

B1t1 −
+∞∑

m6=1

M1m
Mm1

tm
B1 −

+∞∑

m6=1

+∞∑

n 6=1,m

M1m
Mmn

tm
Bn = 0. (15)

Following the same steps as described above, we solve Eq. (12) by iteration,

t1 −
+∞∑

m6=1

M1m
Mm1

tm
−

+∞∑

m6=1

+∞∑

n 6=1,m

M1m
Mmn

tm

Mn1

tn
+ ... = 0. (16)

This equation is the dispersion relation of elliptical LSPs on graphene. To find the LSP

characteristics, we consider the lowest order, e4, in the dispersion relation (16),

t1 −M13
M31

t3
= 0, (17)

which can be made explicit using Eqs. (9) and (10) as follows
(
1 +

ε1
ε2

tanh(ρ0) +
4πσ

ck0ε2
is11

)

×
(
1 +

ε1
ε2

tanh(3ρ0) + 3
4πσ

ck0ε2
is33

)
+ 3

(
4πσ

ck0ε2

)2

(s13)
2 = 0, (18)
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where we have used s13 = s31 and the fact that s12 = s21 = 0. The expressions for s1m
and s33 until order e2 can be obtained from Eq. (C3) (see appendix Appendix C),

s11 =
1

b

[
1− 3

8
e2
]
,

s13 =
1

b

1

8
e2,

s33 =
1

b

[
1− 1

4
e2
]
. (19)

We note that for null eccentricity, the matrix element s13 = 0 and tanh(ρ0) =

tanh(3ρ0) = 1, as a consequence the dispersion relation (18) reduces to a product

between two factors, both corresponding to a circular cylinder. One of these factors

corresponds to the dispersion relation of the dipolar order (m = 1) and the other

corresponds to the hexapolar order (m = 3). For small values of eccentricity, the matrix

element s13 6= 0 and consequently the last term in Eq. (18) is not null, with which Eq.

(18) represents the elliptical LSP dispersion relation. Note that the coupling mechanism

between the dipolar and the hexapolar orders is evidenced by the presence of the last

term in the dispersion equation (18).

It is worth nothing that Eq. (18) is the lowest order of the elliptical LSP dispersion

relation. This is true because the truncation of Eq. (15) at order O(4) in eccentricity

admit only modes m ≤ 4. In addition, for higher orders, O(2N) for example, Eq. (15)

couples m = 1, 3, 5, ..., 2N − 1 multipolar orders.

At the same order in eccentricity as we have written Eq. (17), from Eq. (8) we can

obtain the dipolar coefficient b1 for the scattering of a plane wave (non homogeneous

problem) polarized along x axis,

b1 = E0e
ρ0 b̃1, (20)

where

b̃1 =
Ax

t1t3 −M13M31
, (21)

and

Ax =

(
ik0b[ε2 − ε1] +

4πσs11
c tanh(ρ0)

)

×
(
1 +

ε1
ε2

tanh(3ρ0) +
4πσi3s33

ck0ε2l sinh(ρ0)

)

−
(
4πσ

c

)2
cosh(ρ0)is13s31

k0ε2l sinh
2(ρ0)

(22)

Once the scattering amplitude b1 is found, the polarizability αx is given by (see appendix

Appendix D)

αx =
i(a+ b)

4k0
b̃1. (23)
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Following the same steps that allow us to obtain Eq. (17) but taking the electric

field along the y axis, we obtain the lowest order dispersion equation for y polarization,
(
1 +

ε1
ε2

coth(ρ0) +
4πσ

ck0ε2
iv11

)(
1 +

ε1
ε2

coth(3ρ0) + 3
4πσ

ck0ε2
iv33

)

+3

(
4πσ

ck0ε2

)2

(v13)
2 = 0, (24)

v11 =
1

a

[
1 +

3

8
e2
]
,

v13 = v31 =
1

a

1

8
e2,

v33 =
1

a

[
1 +

1

4
e2
]
. (25)

At the same order in eccentricity as we have written Eq. (24), the dipolar coefficient d1
for the scattering of a plane wave polarized along y axis,

d1 = E0e
ρ0 d̃1, (26)

where d1 is the dipolar amplitude of the scattered field in medium 2 for y polarization

and

d̃1 =
Ay

q1q3 −N13N31
, (27)

where

Ay =

(
ik0b[ε2 − ε1] +

4πσv11
c coth(ρ0)

)

×
(
1 +

ε1
ε2

coth(3ρ0) +
4πσi3v33

ck0ε2l cosh(ρ0)

)
(28)

−
(
4πσ

c

)2
sinh(ρ0)iv13v31

k0ε2l cosh
2(ρ0)

, (29)

and

qk = 1 +
ε1
ε2

coth(kρ0) +Nkk, (30)

Nmk =
4πσ

ck0ε2
imvkm. (31)

The corresponding polarizability αy is given by (see appendix Appendix D)

αy =
i(a + b)

4k0
d̃1. (32)

It is interesting to note that in the limit of ρ0 → ∞, the polarizabilities (23) and

(32) tend to the value corresponding to the circular case,

αc = ε2
b2

2

[
ε1 − ε2 +

4πσi
ck0b

ε1 + ε2 +
4πσi
ck0b

]
. (33)
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Polarizabilities (23) and (32) constitutes the central object for optical interactions

where the quasistatic regime is applicable [38], such as enhanced and confined optical

near–fields [39], metasurface and metagrating applications [40] and nanoparticles

bonding [41, 42, 43]. In the present work, we use these expressions to calculate the

power scattered by the particle in the quasistatic limit as follows. Taking into account

that the radiated power by a point dipole p is [44],

P =
πω3

4c2
|p|2, (34)

and neglecting third order contributions, we can replace the induced dipole moment

components pj = αj E0 (j = x, y) to calculate the power scattered by the elliptical

particle in the dipolar limit. Considering that the incident power is P0 = c
8π
E2

02Li,

Li = a, b for x and y polarization, respectively, the normalized power scattered by the

particles is written as

Pi

P0
=

π2ω3

Lic3
|αi|2. (35)

3. Results

In this section we use the formalism developed in the above section to calculate the

eigenfrequencies and the scattering cross section curves. In all the examples the wire is

immersed in vacuum (ε2 = µ2 = 1), the dielectric core has a permittivity ε1 = 3.9 and

permeability µ1 = 1. The graphene parameters are T = 300K and γg = 0.1 meV.

In order to explore the effects that the departure from the circular geometry has

on the dispersive characteristics of LSPs, we compare the results obtained for all

elliptical shapes with those obtained in the circular case with the same perimeter.

We assume that the perimeter is sufficiently large to describe the optical properties

of the wires as characterized by the same local surface conductivity as planar graphene

(see appendix Appendix A). Moreover, since the aroused interest on graphene due to

plasmonic properties in THz and IR frequency regions, graphene–coated wires with a

micro-sized cross section have become an attractive platform for optical applications

(see [45, 46, 47] and Refs. therein). In this way, we have chosen a perimeter equal

to π µm for all examples, excepting those presented in Fig. 5a where we have selected

π/2 andπ/4µm. Even though nonlocal effects could appear in our system for frequencies

lower than characteristic resonance frequencies, this is not interesting for our purposes

(see appendix Appendix E).

Firstly, we evaluate the coupling mechanism between multipolar orders provided by

the graphene current. To do this, by solving Eq. (8) we calculate the amplitude modulus

|bm| for m = 1 and 3 (both non-null lowest order) as a function of ω/c frequency and for

three values of eccentricity, a/b = 1.05, 1.2 and 1.4. Without loss of generality we made

the calculation for horizontal (or x) polarization (electric field parallel to x axis). For

the lowest eccentricity value of a/b = 1.05 we observe that the amplitude b1 reaches it

maximum value (≈ 10) at ~ω = 31.52meV corresponding to the dipolar excitation. At
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the same frequency, the amplitude b3 reaches a local maximum (≈ 0.1), evidencing the

coupling between third and first order modes. This means that the amplitude b3 not

only contributes to the scattered field at the resonance frequency of the m = 1 order

(where the |b1| amplitude reaches the absolute maximum value), a fact that also occur

on metallic nanoparticles [1, 48, 49, 50] for which the field amplitudes are decoupled,

but also reaches a local maximum at this frequency.

 0.001

 0.01

 0.1

 1

 10

 39.4  49.25  59.1  68.95  78.8

b1 (a/b=1.05)
b3 (a/b=1.05)
b1 (a/b=1.2)
b3 (a/b=1.2)
b1 (a/b=1.4)
b3 (a/b=1.4)

hω (meV)

A
m

p
li

tu
d

e

Figure 2. Amplitudes bm modulus (m = 1 and 3) as a function of ω/c frequency for

a/b = 1.05, 1.2, 1.4 and for x polarization. The perimeter of the ellipse is π µm and

chemical potential µg = 0.5eV .

On the other hand, the amplitude b3 reaches the absolute maximum value at

~ω ≈ 59meV corresponding to the hexapolar order excitation, while the first order

amplitude b1 shows a local maximum and minimum at this frequency value. As

eccentricity values are increasing, two effects are observed: on the one hand, dipolar

and hexapolar order frequencies moves to higher values and, on the other hand, the

coupling mechanism between different orders appear more visible, as can be seen in

Figure 2 where the local maximum value of b3 curve at the resonant dipolar frequency

(where the b1 amplitude reaches the absolute maximum value) increases with the value

of a/b. The same behavior is observed near ~ω ≈ 59meV, where the local variation

of the b1 amplitude at the hexapolar resonant frequency is more visible with the a/b

increment. These results show how a non–zero surface conductivity on graphene couples

different orders of the same parity (see second term in Eq. (8)) causing all these modes

to reach a local maximum at the resonant frequency of one of them.

In the vertical (or y) polarization (electric field parallel to y axis) case (not shown in

Figure 2), we obtain similar results with the only exception that the resonant frequency

is a decreasing function of the eccentricity a/b, instead of being increasing as occur in

the x polarization case.

In order to gain insight about the resonant frequency dependence with the

eccentricity of the wire, we solve the homogeneous problem at lowest order in eccentricity
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Figure 3. (a) Real part of the eigenfrequencies as a function of a
b
(a
b
=

√
e2 + 1). (b)

Scattering cross section for incidence direction parallel to y axis (electric field along x

axis) and parallel to y axis (electric field along the y axis). Continuous lines correspond

to the calculus using Eq. (35) and dashed line curves correspond to calculation using

GSIM. The arrows indicate the incident direction. The perimeter of the ellipse is π µm

and chemical potential µg = 0.5eV.

to obtain the dispersion equation for lower modes. Figure 3 shows the dispersion relation

as a function of a/b (a/b ≤ 1.4) and the scattering curves for both horizontal and vertical

polarization for a/b = 1.2 (e = 0.66). From Figure 3a we see two branches, the upper

branch, calculated with Eq. (17), corresponds to x polarization and the lower branch,

calculated with Eq. (24), corresponds to y polarization. For null eccentricity, a = b,

these two branches converge to the value ~ω = 34.28meV corresponding to the case

of circular cross section. As the value of eccentricity increases, the gap between two

branches increases leading to an increment in the splitting between resonance frequencies

when the structure is illuminated with a plane wave. In Figure 3b we plotted the

scattering curves for plane wave incidence by using Eq. (35) with i = x and i = y for

x and y polarization, respectively, (continuous line). The calculation also was made by

using a rigorous method based on the Green surface integral method (GSIM) (dashed

line) [35]. Two peaks are observed. The lower frequency peak, angle of incidence

θ = 90◦, corresponds to excitation of y-polarized LSPs, i.e., surface plasmons whose

polarizability αy is along the y axis. The upper frequency peak, angle of incidence θ = 0,

correspond to excitation of x-polarized LSPs, i.e., surface plasmons whose polarizability

αx is along the x axis. Both resonance frequencies agree well with the values calculated

from the dispersion equation. We also observe a small red shifting of the resonance

peaks calculated using GSIM with respect to those calculated using Eq. (35).

It is worth noting that unlike metallic structures, where the lower modal frequency

is associated to oscillations along the major axis (the x axis in the present case) and

the upper modal frequency is along the minor axis (the y axis in the present case), from
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Figure 4. Real part of the eigenfrequencies as a function of a
b
(a
b
=

√
e2 + 1) for

µg = 0.6, 0.7, 0.8, 0.9, 1eV. Solid lines correspond to x polarization and dashed lines

corresponds to y polarization. Other parameters are the same as in Figure 3

Figure 3 we see that the situation is completely other way around for graphene wrapped

wires. This fact is due to the geometrical difference between the charge oscillations on

each of the systems. While in the metallic case the displacement of charge is along the

induced electric field, in the graphene particles case, the movement of charge is along

the boundary elliptical curvature.

In order to study the behavior with graphene parameters, we calculate the

eigenfrequency dependence on chemical potential. Figure 4 shows the eigenfrequency

branches, one for x polarization and the other for y polarization, for various values of

the chemical potential, µg = 0.6, 0.7, 0.8, 0.9, 1eV. We observe that eigenfrequencies of

the upper and lower branches increase with the chemical potential increment. This is

consistent with the fact that frequency plasmonic resonances for circular cross section

cylinders are proportional to
√
µg [52].

Finally, we calculate the dependence of the eigenfrequencies with the size and the

contrast between external and internal constitutive parameters. In Figure 5a we observe

that both branches, corresponding to x and y polarizations, increase their frequencies as

the ellipse perimeter is decreased from π to π/4µm. This fact can be understood from

the circular case studied in [52], where we have demonstrated that the eigenfrequency

depends on the radius as ω ≈ R−1/2. In Figure 5b we have plotted the eigenfrequency

branches for three values of the permittivity of the internal medium, ε1 = 3.9, 3, 2.13.

We observe that Re ~ω increases with the decreasing of the permittivity value. This

behavior is consistent with the fact that the eigenfrequency depends on permittivities

as ω ≈ (1 + ε1)
−1/2 for circular graphene wires [52].
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Figure 5. Real part of the eigenfrequencies as a function of a
b
(a
b
=

√
e2 + 1). (a)

ε1 = 3.9 and various values of perimeters: π, π/2, π/4µm, (b) for perimeter equal to

πµm and various values of permittivities, ε1 = 3.9, 3, 2.13. The chemical potential is

µg = 0.5eV. Solid lines correspond to x polarization and dashed lines corresponds to

y polarization.

4. Conclusion

In conclusion, we have analytically studied the dispersive characteristics for an ellipical

dielectric wire wrapped with graphene. We have found two branches corresponding

to the lowest frequency band, one of them corresponds to eigenmodes with a dipole

moment along the major axis and the other with a dipole moment along the minor

axis of the wire elliptical cross section. Interestingly, we found that contrary to what

happens in the metallic plasmonic case, the low dipolar frequency branch corresponds

to polarizability oscillations along minor ellipse axis and the high dipolar frequency

eigenmode corresponds to polarizability oscillations along the major ellipse axis. We

have found analytical expressions for the polarizability elements along the ellipse axis

which reduces to that of the circular shaped wire as the eccentricity parameter tends to

zero.

We think that the results provided in this work can be employed for a deeper

interpretation of the dispersive characteristics of elliptical graphene plasmons, which

opens up possibilities for practical applications using structures capable to manipulate

light at sub-wavelength scale.

Appendix A. Graphene conductivity

The graphene layer is considered as an infinitesimally thin layer with a frequency-

dependent surface conductivity σ(ω) given by the Kubo formula [51], σ = σintra+σinter,
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with the intraband and interband contributions given by

σintra(ω) =
2ie2kBT

π~2(ω + iγg)
ln [2cosh(µg/2kBT )] , (A1)

σinter(ω) =
e2

~

{
1

2
+

1

π
arctan [(~ω − 2µg)/2kBT ]−

i

2π
ln

[
(~ω + 2µg)

2

(~ω − 2µg)2 + (2kBT )2

]}
, (A2)

where µg is the chemical potential (controlled with the help of a gate voltage), γg the

carriers scattering rate, e the electron charge, kB the Boltzmann constant and ~ the

reduced Planck constant.

Appendix B. Boundary conditions

By replacing Eqs. (2) and (3) into Eq. (7) we obtain a set of two coupled equations for

amplitudes am and bm,

+∞∑

m=1

(
am
ε1

cosh(mρ0)m+m
bm
ε2

e−mρ0

)
sin(φ) =

1

ε2

∂H(inc)

∂ρ
(B1)

+∞∑

m=1

(
bme

−mρ0 − am sinh(mρ0) +
4πσ

ck0ε2
imbme

−mρ0
1

f(ρ0, φ)

)

× sin(mφ) =

−H(inc)|ρ0 +
4πσ

ck0ε2
i

1

f(ρ0, φ)

∂H(inc)

∂ρ
|ρ0. (B2)

Note that the left hand side of Eq. (B1) is written as a sine Fourier series, then we can

expand the right hand side as a sine series and find, performing Fourier integral, a lineal

equation between amplitudes am and bm,

ak
ε1

cosh(kρ0)k +
bk
ε2
ke−kρ0 = −ik0E0l cosh(ρ0)δk1. (B3)

Contrary, Eq. (B2) presents a difficulty related with the graphene current factor

f−1(ρ0, φ). Multiplying Eq. (3) by sin(kφ) (k ≥ 1) and integrating in [−π, π], we

obtain,

bke
−kρ0 − ak sinh(kρ0) +

+∞∑

m=1

4πσ

ck0ε2
imbme

−mρ0skm =

−hk +
4πσ

ck0ε2
idhk, (B4)

where

skm =
1

π

∫ π

−π

1

f(ρ0, φ)
sin(mφ) sin(kφ)dφ (B5)
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hk =
1

π

∫ π

−π

H(inc)|ρ sin(kφ)dφ (B6)

dhk =
1

π

∫ π

−π

1

f(ρ0, φ)

∂H(inc)

∂ρ
|ρ0 sin(kφ)dφ. (B7)

Note that both functions H(inc)|ρ0 and ∂H(inc)

∂ρ
|ρ0 have an angular dependence ≈ sin(φ)

and thus hk ≈ δk1 and dhk ≈ skmδm1. Therefore, Eq. (B4) can be written as,

bke
−kρ0 − ak sinh(kρ0) +

+∞∑

m=1

4πσ

ck0ε2
imbme

−mρ0skm =

ik0E0ε2l sinh(ρ0)δk1 +
4πσ

c
E0 coth(ρ0)sk1. (B8)

Note that in absence of graphene, i.e. σ = 0, the system of Eqs. (B3) and (B8) are

uncoupled for field amplitudes. Contrary, in presence of graphene, the graphene current

term in the left hand side of Eq. (B8) couples orders with the same parity. This is true

because the matrix elements skm 6= 0 provided that m+ k be even (Eq. (B5)).

By eliminatig the amplitudes am from Eqs. (B3) and (B8), we obtain an equation

for amplitudes bm,

bke
−kρ0

(
1 +

ε1
ε2

tanh(kρ0) +
4πσ

ck0ε2
ikskkbke

−kρ0

)
+

+∞∑

m6=k

4πσ

ck0ε2
imbme

−mρ0skm =

ik0E0(ε2 − ε1)l sinh(ρ0)δk1 +
4πσ

c
E0 coth(ρ0)sk1. (B9)

Appendix C. Explicit form of skm matrix elements

We expand the current factor as power of sin(φ),

1

h(ρ0, φ)
=

1

sinh(ρ0)
√
1 + sin2(φ)e2

=

1

sinh(ρ0)
[1− sin2(φ)

1

2
e2 +

3

8
sin4(φ)e4 − 5

16
sin6(φ)e6

+
35

128
sin8(φ)e8 − 63

226
sin10(φ)e10

+
231

1024
sin12(φ)e12 − 429

2048
sin14(φ)e14 + ...]. (C1)

Note that the expansion (C1) is valid for a/b <
√
2. By replacing Eq. (C1) into Eq.

(B5), we obtain

skm =
1

bπ

∫ π

−π

[1− sin2(φ)
1

2
e2 +

3

8
sin4(φ)e4

− 5

16
sin6(φ)e6 +

35

128
sin8(φ)e8 − 63

226
sin10(φ)e10
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+
231

1024
sin12(φ)e12 − 429

2048
sin14(φ)e14 + ...]

× sin(mφ) sin(kφ)dφ. (C2)

From this equation, we can see that skm ≈ e2 (skm is of order O(2)) for k 6= m. For

example, if we consider k = 1, it is straightforward verify,

s1m =
1

b
[δm1 −

e2

2

(
3

4
δm1 −

1

4
δm3

)

+
3

8
e4

(
5

8
δm1 −

5

16
δm3 +

11

16
δm5

)
+ ...]. (C3)

We can see that s11 is of order O(0), s13 is of order O(2), s15 is order O(4), ..., s1m is

order O(m− 1).

Appendix D. Field of a dipole moment placed at the origin

We consider a line dipole source (whose axis lies along the z axis) with a dipole moment

p is placed at the origin. The magnetic field is along the z axis (H(r) = φ(r)r̂). The

wave equation for φ(r) when the retardation is negligible reads

∇2φ(r) = −4πik0p×∇δ(r). (D1)

The solution φ(r) of Eq. (D1) can be written as

φ(r) = ik0p×∇f(r), (D2)

where f(r) satisfies

∇2φ(r) = −4πδ(r). (D3)

By solving Eq. (D3) we obtain φ(r) = −2 log(r). Then, the magnetic field φ(r) of a

point dipole calculated using Eq. (D2) in elliptical coordinates (1) is given by

φ(r) = −2ik0
px sinh ρ sinφ− py cosh ρ cosφ

l(cosh2 ρ− sin2 φ)
, (D4)

where px and py are the Cartesian components of the dipole moment p. For ρ values

large enough, this expression can be rewritten as

φ(r) = −4ik0
px sin φ− py cos φ

l
e−ρ. (D5)

By comparing this equation (with py = 0) with the first term in the scattered field given

in Eq. (3) we obtain the induced electrical dipole as a function of the b1 scattering

amplitude

px =
il

4k0
b1 =

il

4k0
E0e

ρ0 b̃1 =
i(a+ b)

4k0
E0b̃1, (D6)

where the sub-index stand for the direction of the dipole moment. In the last equality in

Eq. (D6) we have used leρ0 = a+b. Finally, dividing Eq. (D6) by E0, the corresponding

polarizability αx is obtained.
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In the similar way, by comparing Eq. (D5) (with px = 0) with the second term in

Eq. (3) we obtain the induced electrical dipole

py =
il

4k0
d1 =

il

4k0
E0e

ρ0 d̃1 =
i(a + b)

4k0
E0d̃1. (D7)

By dividing Eq. (D7) by the incident field amplitude E0, we obtain the αy polarizability

(32).

Appendix E. Nonlocal response in graphene conductivity

The objective of this section is to provide information about the relation between the

local graphene conductivity response considered in this work and the dimensions of the

proposed structure. The local approximation begins to break down as a reduction of the

structure takes place. The nonlocality or spatial dispersion in graphene conductivity

arises when the plasmon phase velocity vSP is slow and comparable with the electron

Fermi velocity vF ≈ 1012 µm/s. Since, we focused on cylindrical structures whose

cross section is a slight deviation from the circular cross section, an estimation of their

size can be made by considering a cylinder with circular cross section and radius R

(a < R < b). Taking into account the small size of the cylinder, R/λ << 1 ( λ = 2π/ω

the wavelength), the phase velocity of plasmons vSP = kSP/ω can be estimated by using

the quasistatic approximation. In this way, the surface plasmon effective momentum

kSP , which is along the azimutal angle (φ axis), can be written as [52],

kSP =
m

R
, (E1)

where m is the eigenmode order. If we consider m = 1 (dipolar order), the factor

vF
vSP

=
vF
Rω

≈ 1012µm/s

R ω
c
3× 1014µm/s

=
1

R ω
c
300

. (E2)

The smaller vF
vSP

in Eq. (E2), the better the local conductivity approximation. For

example, if we consider a value vF
vSP

< 1/10, graphene local conductivity differs less

than 1% from that considering non local effects [38]. As a consequence, our method is

acceptable provided that

R
ω

c
>

1

30
. (E3)

Equation (E3) establishes a reasonable limit for the applicability of our model. Figure

E1 shows a map with two regions. In one of them the nonlocal effects can be neglected

(upper region), whereas in the other (lower region) these effects become important. The

curve separating these regions corresponds to R values, named Rc, for which the equality

in Eq. (E3) is fulfilled.
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[24] SH Raad, CJ Zapata-RodrÃguez, Z Atlasbaf, Graphene-coated resonators with frequency-

selective super-scattering and super-cloaking, Journal of Physics D: Applied Physics 52 (49),

495101

[25] M Gingins, M Cuevas, and R A Depine, Surface plasmon dispersion engineering for optimizing

scattering, emission, and radiation properties on a graphene spherical device, Applied Optics

59, (2020) 4254-4262

[26] O. L. Berman, R. Y. Kezerashvili, and Y. E. Lozovik, Graphene nanoribbon based spaser,

PHYSICAL REVIEW B 88, 235424 (2013)

[27] S. B. Ardakani and R. Faez, Tunable spherical graphene surface plasmon amplification by

stimulated emission of radiation, Journal of Nanophotonics 13, 026009 (2019).

[28] L Prelat, M Cuevas, N Passarelli, RB Marún, R Depine, Spaser and optical amplification

conditions in graphene-coated active wires, Journal of the Optical Society of America B 38,

2118–2126 (2021)

[29] W Zhang, T Wu, and X Zhang, Tailoring Eigenmodes at Spectral Singularities in Graphene-based

PT Systems, Scientific Reports 7, (2017) 11407
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[40] D. R. Abujetas, J. Olmos-Trigo, J. J. Sáenz, and J. A. Sánchez-Gil, Coupled electric and magnetic

dipole formulation for planar arrays of particles: Resonances and bound states in the continuum

for all-dielectric metasurfaces, Phys. Rev. B 102, (2020) 125411.

[41] PC Chaumet,and M Nieto-Vesperinas, “Optical binding of particles with or without the presence

of a flat dielectric surface,” Phys. Rev. B 64, 035422 (2001).

[42] N Kostina, M Petrov, A Ivinskaya, S Sukhov, A Bogdanov, I Toftul, M Nieto-Vesperinas, P

Ginzburg, and A Shalin, “Optical binding via surface plasmon polariton interference,” Phys.

Rev. B 99, 125416 (2019).

[43] NA Kostina, DA Kislov, AN Ivinskaya, A Proskurin, DN Redka, A Novitsky, P Ginzburg, and

AS Shalin, “Nanoscale Tunable Optical Binding Mediated by Hyperbolic Metamaterials,” ACS

Photonics 7, (2020), 425–433.

[44] M Cuevas, Graphene coated subwavelength wires: a theoretical investigation of emission and

radiation properties, Journal of Quantitative Spectroscopy and Radiative Transfer 200, (2017)

190-197

[45] R A Depine Graphene Optics: Electromagnetic solution of canonical problems (IOP Concise

Physics. San Raefel, CA, USA: Morgan and Claypool Publishers 2017)

[46] D Teng, K Wang, Z Li, Graphene-coated nanowire waveguides and their applications,

Nanomaterials 10, (2020) 229

[47] D. O. Herasymova, S. Dukhopelnykov, A. Nosich, Infrared diffraction radiation from twin circular

dielectric rods covered with graphene: plasmon resonances and beam position sensing, J Opt.

Soc.of Am. B 38, (2021)

[48] H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-

metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,”

Phys. Rev. B 76, 115123 (2007).

[49] V. Karanikolas, C. A. Marocico, and A. L. Bradley, Spontaneous emission and energy transfer

rates near a coated metallic cylinder, Phys. Rev. A 89, 063817 (2014)

[50] J. Barthes, A. Bouhelier, A. Dereux and G Colas des Francs, Coupling of a dipolar emitter into

one-dimensional surface plasmon, Sci. Rep. 3, 2734 (2013)

[51] Falkovsky FA, Optical properties of graphene and IV-VI semiconductors, Phys. Usp. 51 887-897

[52] M. Cuevas, M. A. Riso, and R. A. Depine, Complex frequencies and field distributions of localized

surface plasmon modes in graphene-coated subwavelength wires, J. Quant. Spectrosc. Radiat.

Transfer 173, 26-33 (2016).


	1 Introduction
	2 Theory
	2.1 Scattered field equations
	2.2 Lowest order eccentricity

	3 Results
	4 Conclusion
	Appendix A Graphene conductivity
	Appendix B Boundary conditions
	Appendix C Explicit form of sk m matrix elements
	Appendix D Field of a dipole moment placed at the origin
	Appendix E Nonlocal response in graphene conductivity

