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a b s t r a c t

We design and analyze an algorithm for computing rational points
of hypersurfaces defined over a finite field based on searches on
‘‘vertical strips’’, namely searches on parallel lines in a given di-
rection. Our results show that, on average, less than two searches
suffice to obtain a rational point. We also analyze the probability
distribution of outputs, using the notion of Shannon entropy, and
prove that the algorithm is somewhat close to any ‘‘ideal’’ equidis-
tributed algorithm.
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1. Introduction

Let Fq be the finite field of q elements, X1, . . . , Xr indeterminates over Fq and Fq[X1, . . . , Xr ] the
ring of polynomials in X1, . . . , Xr with coefficients in Fq. Let Fr,d := {F ∈ Fq[X1, . . . , Xr ] : deg(F) ≤

d}. Suppose that r ≥ 2 and d ≥ 2, and let F be an element ofFr,d. In this paperwe address the problem
of finding an Fq-rational zero of F , namely a point x ∈ Fr

q with F(x) = 0.

✩ Communicated by L. Pardo.

∗ Corresponding author at: Instituto del Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150
(B1613GSX) Los Polvorines, Buenos Aires, Argentina.

E-mail addresses: gmatera@ungs.edu.ar (G. Matera), vperez@ungs.edu.ar (M. Pérez), mprivite@ungs.edu.ar (M. Privitelli).

http://dx.doi.org/10.1016/j.jco.2016.11.003
0885-064X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jco.2016.11.003
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
mailto:gmatera@ungs.edu.ar
mailto:vperez@ungs.edu.ar
mailto:mprivite@ungs.edu.ar
http://dx.doi.org/10.1016/j.jco.2016.11.003


2 G. Matera et al. / Journal of Complexity ( ) –

It is well-known that the elements of Fr,d have qr−1 zeros in Fr
q on average. More precisely, we

have the following result (see, e.g., [16, Theorem 6.16]):

1
|Fr,d|


F∈Fr,d

N(F) = qr−1, (1.1)

where N(F) := |{x ∈ Fr
q : F(x) = 0}|. This suggests a strategy to find an Fq-rational zero of a given

F ∈ Fr,d. Since the expected number of zeros of F is equal to the cardinality of Fr−1
q , given a1 ∈ Fr−1

q ,
one may try to find a zero of F having a1 as its first r − 1 coordinates. If the polynomial F(a1, Xr) has
no zeros in Fq, then a further element a2 ∈ Fr−1

q can be picked up to see whether F(a2, Xr) has a zero
in Fq. The algorithm proceeds in this way until a zero of F in Fr

q is obtained.
Following the terminology of [22], which considers the case r = 2, each set {ai} × Fq is called a

‘‘vertical strip’’. Therefore, our algorithm, which extends the one of [22] to r-variate polynomials, is
called ‘‘Search on Vertical Strips’’ (SVS for short), and is described as follows.

Algorithm SVS.
Input: a polynomial F ∈ Fr,d.
Output: either a zero x ∈ Fr

q of F , or ‘‘failure’’.
Set i := 1 and f := 1
While 1 ≤ i ≤ qr−1 and f = 1 do
Choose at random ai ∈ Fr−1

q \ {a1, . . . , ai−1}

Compute f := gcd(F(ai, Xr), X
q
r − Xr)

If f = 0, then choose xr,i ∈ Fq at random
If f ∉ {0, 1}, then compute a root xr,i ∈ Fq of f
i := i + 1
End While
If f ≠ 1 return (ai, xr,i), else return ‘‘failure’’.

Ignoring the cost of random generation of elements of Fr−1
q , at the ith step of the main loop we

compute the vector of coefficients of the polynomial F(ai, Xr). Since an element of Fr,d has D :=
d+r

r


coefficients, the number of arithmetic operations in Fq required to compute such a vector is O∼(D),
where the notation O∼ ignores logarithmic factors. Throughout this paper, all asymptotic estimates
are valid for fixed d and r , and q growing to infinity. Then the gcd f is computed, and a root of f in Fq is
determined, provided that f ≠ 1. This can be donewithO∼(d log2 q) arithmetic operations in Fq (see,
e.g., [21, Corollary 14.16]). As a consequence, for a choice a := (a1, . . . , aqr−1) for the vertical strips to
be considered, the whole procedure requires O∼


Ca(F) · (D + d log2 q)


arithmetic operations in Fq,

where Ca(F) is the least value of i for which F(ai, Xr) has a zero in Fq.
This paper is devoted to analyze the SVS algorithm fromaprobabilistic point of view. As its behavior

is essentially determined by the number of vertical strips which must be considered, we analyze, for
a given s ≥ 1, the probability distribution of the number of searches performed by the algorithm. For
this purpose, we consider the set F of all possible choices of vertical strips and the random variable
Cr,d : F × Fr,d → N which counts the number of vertical strips that are searched. We prove that the
probability that s vertical strips are searched, for ‘‘moderate’’ values of s, satisfies the estimate

P[Cr,d = s] = (1 − µd)
s−1µd + O(q−1/2), (1.2)

where µd :=
d

j=1(−1)j−1/j!. Observe that µd ≈ 1 − e−1
= 0.6321 . . . for large d, where e denotes

the basis of the natural logarithm. We remark that the quantity µd arises also in connection with
a classical combinatorial notion over finite fields, that of the value set of univariate polynomials
(cf. [16,20]). For a polynomial f ∈ Fq[T ], denote by V(f ) := |{f (c) : c ∈ Fq}| the cardinality of the
value set of f . In [4], Birch and Swinnerton–Dyer established the following classical result: if f ∈ Fq[T ]

is a generic polynomial of degree d, then V(f ) = µd q + O(1).
The estimate (1.2) relies on the analysis of the behavior of the SVS algorithm for a fixed choice

a1, . . . , as ∈ Fr−1
q for the first s vertical strips. It turns out that the probability that the s vertical strips
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under consideration are searched is essentially that of the right-hand side of (1.2). As a side note, this
may be considered as a ‘‘realistic’’ version of the SVS algorithm in the sense of [1]. As the author states,
‘‘when a randomized algorithm is implemented, one always uses a sequence whose later values come
from earlier ones in a deterministic fashion. This invalidates the assumption of independence and
might cause one to regard results about probabilistic algorithms with suspicion’’. Our results show
that the probabilistic behavior of the SVS algorithm is not essentially altered when a fixed choice of
vertical strips is considered.

As a consequence of (1.2) we obtain an upper bound on the average-case complexity E[X] of the
SVS algorithm, where X : F × Fr,d → N is the random variable that counts the number of arithmetic
operations in Fq performed for a given choice of vertical strips on a given input. We prove that

E[X] ≤
1
µd
τ(d, r, q)+ O(q−1/2), (1.3)

where τ(d, r, q) := O∼(D + d log2 q) is the cost of a search in a single vertical strip. In other words,
on average at most 1/µd ≈ 1.58 vertical strips must be searched to obtain a rational zero of the
polynomial under consideration. Simulations we run suggest that the upper bound (1.3) is close to
optimal. We observe that the probabilistic algorithms of [22] (for r = 2) and [5,17] (for general r)
propose d searches in order to achieve a probability of success greater than 1/2. Our result suggests
that these analyses are somewhat pessimistic.

On the other hand, it must be said that the result of [22] holds for any bivariate polynomial,
while that of [5] is valid for any absolutely irreducible r-variate polynomial. If the polynomials under
consideration are produced by some complicated process, it might be argued that our results do
not contribute to the analysis of the cost of the corresponding algorithm to search for Fq-rational
zeros. Nevertheless, a crucial aspect of our approach is that we express the probability P[Cr,d = s]
of (1.2), and thus the average-case complexity E[X] of (1.3), in terms of the average cardinality of
the value set of certain families of univariate polynomials related to the set of input polynomials
under consideration.We believe that this technique can be extended to deal with (linear or nonlinear)
families of polynomials of Fr,d, provided that the asymptotic behavior of the average cardinality of
the corresponding families of univariate polynomials is known (see [8,18,19] for results in connection
with this matter).

Another critical aspect to analyze is the distribution of outputs. Given F ∈ Fr,d, the SVS algorithm
outputs an Fq-rational zero of F , which is determined by certain random choices made during its
execution. As a consequence, it is relevant to have insight on the probability distribution of outputs.
For an ‘‘ideal’’ algorithm (from the point of view of the distribution of outputs), outputs should be
equidistributed. For this reason, in [22] the basic SVS strategy for bivariate polynomials over Fq is
modified so that all Fq-rational zeros of the input polynomial are equally probable outputs. Such a
modification can also be applied to our algorithm.

Nevertheless, as this modification implies a certain slowdown, we shall pursue a different course
of action, analyzing the average distribution of outputs by means of the concept of Shannon entropy.
If the output for an input polynomial F tends to be concentrated on a few Fq-rational zeros of F , then
we may say that the ‘‘amount of information’’ that we obtain is ‘‘small’’. On the other hand, if all the
Fq-rational zeros of F are equally probable outputs, then the amount of information provided by the
algorithm is considered to be larger. Following [3] (see also [2]), we define a Shannon entropy HF
associated to an input F ∈ Fr,d of the SVS algorithm, which measures how ‘‘concentrated’’ are the
corresponding outputs. Thenwe analyze the average entropyH when F runs through all the elements
of Fr,d.

For an ‘‘ideal’’ algorithm for computing Fq-rational zeros of elements of Fr,d and F ∈ Fr,d, it is easy
to see that H ideal

F = logN(F), where log denotes the natural logarithm. It follows that

H ideal
≤ log(qr−1)

(see (5.3)). Our main result concerning the distribution of outputs asserts that

H ≥
1

2µd
log(qr−1)(1 + O(q−1)). (1.4)
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Since 1/2µd ≈ 0.79 for large d, we may paraphrase (1.4) as saying that the SVS algorithm is at least
79% as good as any ‘‘ideal’’ algorithm, from the point of view of the distribution of the outputs.

The proof of (1.4) relies on an analysis of the expected number of vertical strips of the elements of
Fr,d which may be of independent interest. Denote by NS(r, d) the average number of vertical strips
with Fq-rational zeros of F , when F runs through all the elements of Fr,d. We prove that

NS(r, d) = µd qr−1
+ O(qr−2). (1.5)

We also estimate the variance of the number of vertical strips with Fq-rational zeros.
The paper is organized as follows. Section 2 is devoted to the analyses of the probability that one

or two vertical strips are searched. In Section 3 we estimate the expected number of vertical strips
to be searched for a given choice of s ≥ 3 vertical strips. We express the probability that s vertical
strips are searched in terms of average cardinalities of value sets and apply estimates for the latter in
order to establish an explicit estimate of the former. In Section 4 we apply the results of Sections 2
and 3 to establish (1.2) and (1.3). Section 5 is concernedwith the probability distribution of outputs. In
Section 5.1 we establish (1.5) and an estimate of the corresponding variance. In Section 5.2 we apply
these estimates to prove (1.4). Finally, in Section 6 we exhibit a few simulations aimed at confirming
the asymptotic results (1.2) and (1.3).

2. Probability of success in the first two searches

We start discussing how frequently one or two searches on vertical strips suffice to find a zero of
the input polynomial. As it will become evident, this will happen in most cases. Therefore, accurate
estimates on the probability of these two cases are critical for an accurate description of the behavior
of the algorithm.

2.1. Probability of success in the first search

For integers r ≥ 2 and d ≥ 2, we estimate the probability that the SVS algorithm, on input an
element of Fr,d := {F ∈ Fq[X1, . . . , Xr ] : deg(F) ≤ d}, finds a root of it in the first vertical strip. As r
and d are fixed, we shall drop the indices r and d from the notations.

Each possible choice for the first vertical strip is determined by an element of Fr−1
q . As a

consequence, we may represent the situation by means of the random variable C1 := C1,r,d :

Fr−1
q × Fr,d → {1,∞} defined in the following way:

C1(a, F) :=


1 if F(a, Xr) has an Fq-rational zero,
∞ otherwise.

We consider the set Fr−1
q × Fr,d endowed with the uniform probability P1 := P1,r,d and study the

probability of the set {C1 = 1}. The next result provides an exact formula for this probability.

Theorem 2.1. For q > d, we have the identity

P1[C1 = 1] =

d
j=1

(−1)j−1

q
j


q−j

+ (−1)d

q − 1
d


q−d−1.

Proof. For any F ∈ Fr,d, we denote by VS(F) the set of vertical strips where F has an Fq-rational zero
and by NS(F) its cardinality, that is,

VS(F) := {a ∈ Fr−1
q : (∃ xr ∈ Fq) F(a, xr) = 0}, NS(F) := |VS(F)|.

It is easy to see that {C1 = 1} =


F∈Fr,d
VS(F) × {F}. Since this is a union of disjoint subsets of

Fr−1
q × Fr,d, it follows that

P1[C1 = 1] =
1

qr−1|Fr,d|


F∈Fr,d

NS(F). (2.1)
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Fix F ∈ Fr,d. Observe that

VS(F) =


x∈Fq

{a ∈ Fr−1
q : F(a, x) = 0}.

As a consequence, by the inclusion–exclusion principle we obtain

NS(F) =


x∈Fq

{a ∈ Fr−1
q : F(a, x) = 0}


=

q
j=1

(−1)j−1


Xj⊂Fq

{a ∈ Fr−1
q : (∀x ∈ Xj) F(a, x) = 0}

,
where Xj runs through all the subsets of Fq of cardinality j. We conclude that

F∈Fr,d

NS(F) =


F∈Fr,d

q
j=1

(−1)j−1


Xj⊂Fq

{a ∈ Fr−1
q : (∀x ∈ Xj) F(a, x) = 0}

.
For any j with 1 ≤ j ≤ q, we denote

Nj :=
1

qr−1|Fr,d|


F∈Fr,d


Xj⊂Fq

{a ∈ Fr−1
q : (∀x ∈ Xj) F(a, x) = 0}

,
where Xj runs through all the subsets of Fq of cardinality j. If j ≤ d and a is fixed, then the equalities
F(a, x) = 0 (x ∈ Xj) are j linearly-independent conditions on the coefficients of F in the Fq-vector
space Fr,d. It follows that

Nj =
1

qr−1|Fr,d|


Xj⊂Fq


a∈Fr−1

q

{F ∈ Fr,d : (∀x ∈ Xj) F(a, x) = 0}


=
1

qr−1+dimFr,d


Xj⊂Fq


a∈Fr−1

q

qdimFr,d−j
=


q
j


q−j. (2.2)

On the other hand, if j > d, then F(a, x) = 0 for every x ∈ Xj if and only if F(a, Xr) = 0. The condition
F(a, Xr) = 0 is expressed by means of d+ 1 linearly-independent linear equations on the coefficients
of F in Fr,d. We conclude that

Nj =
1

qr−1+dimFr,d


Xj⊂Fq


a∈Fr−1

q

qdimFr,d−(d+1)
=


q
j


q−d−1. (2.3)

Combining (2.2) and (2.3) we obtain

P1[C1 = 1] =

q
j=1

(−1)j−1Nj =

d
j=1

(−1)j−1

q
j


q−j

+

q
j=d+1

(−1)j−1

q
j


q−d−1.

Finally, since

q
j=d+1

(−1)j−1

q
j


=

d
j=0

(−1)j

q
j


= (−1)d


q − 1
d


(2.4)

(see, e.g., [14, (5.16)]), we readily deduce the statement of the theorem. �

Next we discuss the asymptotic behavior of the probability P1[C1 = 1]. Fix d ≥ 2. From
Theorem 2.1 it can be seen that

P1[C1 = 1] = µd + O(q−1), µd :=

d
j=1

(−1)j−1

j!
.
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To show this, given positive integers k, j with k ≤ j, we shall denote by


j
k


the unsigned Stirling

number of the first kind, namely the number of permutations of j elements with k disjoint cycles. The
following properties of the Stirling numbers are well-known (see, e.g., [13, Section A.8]):

j
j


= 1,


j

j − 1


=


j
2


,

j
k=0


j
k


= j!.

We shall also use the following well-known identity (see, e.g., [14, (6.13)]):
q
j


=

j
k=0

(−1)j−k

j!


j
k


qk. (2.5)

According to Theorem 2.1 and (2.5), we have

P1[C1 = 1] =

d
j=1

(−1)j−1
j

k=0

(−1)j−k

j!


j
k


qk−j

+ (−1)d

q − 1
d


q−d−1

=

d
j=1

(−1)j−1

j!


j
j


+

d
j=1

(−1)j

j!


j

j − 1


q−1

+

d
j=1

j−2
k=0

(−1)k−1

j!


j
k


qk−j

+ (−1)d

q − 1
d


q−d−1.

It follows that

P1[C1 = 1] = µd +
1
q

d
j=1

(−1)j

j!


j
2


−

d
j=1

j−2
k=0

(−1)k

j!


j
k


qk−j

+
(−1)d

qd+1


q − 1
d


.

As a consequence, for d > 2 we obtain

|P1[C1 = 1] − µd| ≤
1
q

 d
j=1

(−1)j

j!


j
2

 +

d
j=1

j−2
k=0

1
j!


j
k


1
q2

+
1

qd+1


q − 1
d


≤

1
4q

+
d
q2

+
1
2q
.

For d = 2, this inequality is obtained by a direct calculation. We have therefore the following result.

Corollary 2.2. For q > d,P1[C1 = 1] − µd
 ≤

2
q
.

As d tends to infinity, the number P1[C1 = 1] tends to 1 − e−1
= 0.6321 . . . ,where e denotes the

basis of the natural logarithm. This explains the numerical results in the first row of the tables of the
simulations of Section 6.

It is worth remarking that the quantity P1[C1 = 1] is closely connected with the probability that
a univariate polynomial of degree at most d has Fq-rational roots. More precisely, consider the set
F1,d of univariate polynomials of degree at most dwith coefficients in Fq, endowed with the uniform
probability p1,d, and the random variable N1,d : F1,d → Z≥0 which counts the number of Fq-rational
zeros, namely

N1,d(f ) := |{x ∈ Fq : f (x) = 0}|.
The random variable N1,d has been implicitly studied in the literature (see, e.g., [9, Section 2] or
[15, Theorem 3]). It can be proved that, for q > d,

p1,d[N1,d > 0] = P1[C1 = 1].
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2.2. Probability of success in the second search

Next we analyze the probability that the SVS algorithm performs exactly two searches.
Each possible choice for the first two vertical strips is determined by an element a := (a1, a2) ∈

Fr−1
q × Fr−1

q with a1 ≠ a2. Therefore, we denote by F2 the set of all such possible choices and by N2
its cardinality, that is,

F2 := {a := (a1, a2) ∈ Fr−1
q × Fr−1

q : a1 ≠ a2}, N2 := |F2| = qr−1(qr−1
− 1).

We shall study the random variable C2 := C2,r,d : F2 × Fr,d → {1, 2,∞} defined as

C2(a, F) :=

1 if N1,d(F(a1, Xr)) > 0,
2 if N1,d(F(a1, Xr)) = 0 and N1,d(F(a2, Xr)) > 0,
∞ otherwise.

We consider the set F2×Fr,d endowedwith the uniform probability P2 := P2,r,d. We aim to determine
the probability P2[C2 = 2].

This probability will be expressed in terms of probabilities concerning the random variables Ca :=

Ca,r,d : Fr,d → {1, 2,∞} which count the number of searches that are performed on the vertical
strips defined by a := (a1, a2) ∈ F2 until an Fq-rational zero is obtained, Ca(F) = ∞ meaning that F
does not have Fq-rational zeros on these two vertical strips. For this purpose, the setFr,d is considered
to be endowed with the uniform probability pr,d. The relation between these random variables and
P2[C2 = 2] is expressed in the following lemma.

Lemma 2.3. We have

P2[C2 = 2] =
1
N2


a∈F2

pr,d[Ca = 2].

Proof. Observe that

{C2 = 2} =


a∈F2

{a} × {F ∈ Fr,d : Ca(F) = 2}.

Since this is union of disjoint sets, we conclude that

P2[C2 = 2] =
1
N2


a∈F2

{F ∈ Fr,d : Ca(F) = 2}


|Fr,d|
=

1
N2


a∈F2

pr,d[Ca = 2],

which proves the lemma. �

Next we estimate the probability pr,d[Ca = 2] for a given a ∈ F2.

Proposition 2.4. For q > d and a := (a1, a2) ∈ F2, we havepr,d[Ca = 2] − µd(1 − µd)
 ≤

3
q
.

Proof. Observe that

{Ca = 2} = {F ∈ Fr,d : N1,d(F(a2, T )) > 0} \ {F ∈ Fr,d : N1,d(F(a1, T )) > 0}.

The number of elements of Fr,d having Fq-rational zeros in the vertical strip defined by a2 is
determined in Theorem 2.1. Therefore, it remains to find the number Na,2 of elements of Fr,d having
Fq-rational zeros both in the vertical strips defined by a1 and a2. We have

Na,2 =


x∈Fq


y∈Fq

{F ∈ Fr,d : F(a1, x) = F(a2, y) = 0}
.
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Given sets X ⊂ Fq and Y ⊂ Fq, we denote

Sa(X,Y) := {F ∈ Fr,d : F(a1, x) = F(a2, y) = 0 for all x ∈ X and y ∈ Y}.

Then the inclusion–exclusion principle implies

Na,2 =

q
j=1

q
k=1

(−1)j+k


Xj⊂Fq


Yk⊂Fq

Sa(Xj,Yk)
 (2.6)

where the sum runs over all subsets Xj ⊂ Fq and Yk ⊂ Fq of j and k elements respectively.

Claim. Na,2
|Fr,d|

=

P1[C1 = 1]

2
+

q−1
q2d+2

q−1
d

2
=


P1[C1 = 1]

2
+ O(q−1).

Proof of Claim. For 1 ≤ j, k ≤ q, let

Nj,k :=


Xj⊂Fq


Yk⊂Fq

|Sa(Xj,Yk)|.

We determine Nj,k according to whether one of the following four cases occurs.
First suppose that j, k ≤ d. As a1 ≠ a2, the equalities F(a1, x) = 0, F(a2, y) = 0 for all x ∈ Xj

and y ∈ Yk impose j + k linearly-independent conditions on the coefficients of F ∈ Fr,d. Therefore,
|Sa(Xj,Yk)| = qdimFr,d−j−k, which implies

Nj,k =


Xj⊂Fq


Yk⊂Fq

qdimFr,d−j−k
=


q
j


q
k


qdimFr,d−j−k.

The second case is determined by the conditions j > d and k ≤ d. If j > d and Xj ⊂ Fq is
a subset of cardinality j, then the condition F(a1, x) = 0 is satisfied for every x ∈ Xj if and only
if F(a1, Xr) = 0. We may express the latter by d + 1 linearly-independent linear equations on the
coefficients of F ∈ Fr,d. On the other hand, the equalities F(a2, y) = 0 for all y ∈ Yk impose k
additional linearly-independent conditions on the coefficients of F . We conclude that

Nj,k =


Xj,Yk⊂Fq

qdimFr,d−(d+1)−k
=


q
j


q
k


qdimFr,d−(d+1)−k.

The third case, namely j ≤ d and k > d, is completely analogous to the second one. Finally, when
j > d and k > d, the conditions under consideration imply F(a1, Xr) = F(a2, Xr) = 0. We readily
deduce that

Nj,k =


q
j


q
k


qdimFr,d−2d−1.

From the expression for Nj,k of the four cases under consideration we infer that

Na,2

|Fr,d|
=

1
|Fr,d|

q
j=1

q
k=1

(−1)j+kNj,k

=

d
j=1

d
k=1

(−1)j+k

q
j


q
k


q−j−k

+ 2
d

j=1

q
k=d+1

(−1)j+k

q
j


q
k


q−j−(d+1)

+

q
j=d+1

q
k=d+1

(−1)j+k

q
j


q
k


q−2d−1.
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By (2.4) and elementary calculations we obtain

Na,2

|Fr,d|
=

 d
j=1

(−1)j

q
j


q−j

2

− 2
 d

j=1

(−1)j

q
j


q−j


(−1)d


q − 1
d


q−d−1

+


q − 1
d

2

q−2d−1.

This and Theorem 2.1 readily imply the claim. �

Combining the previous claim and Theorem 2.1 we deduce that

pr,d[Ca = 2] = P1[C1 = 1] −
Na,2

|Fr,d|

=

1 − P1[C1 = 1]


P1[C1 = 1] −

q − 1
q2d+2


q − 1
d

2

.

Let g : R → R, g(x) := (1 − x)x. The Mean Value theorem shows that there exists ξ ∈ (0, 1) such
that 

1 − P1[C1 = 1]

P1[C1 = 1] − (1 − µd)µd = g ′(ξ)


P1[C1 = 1] − µd


.

As the function x → g ′(x) maps the real interval [0, 1] to [−1, 1], we conclude that |g ′(ξ)| ≤ 1.
Therefore, from Corollary 2.2 it follows that(1 − P1[C1 = 1])P1[C1 = 1] − (1 − µd)µd

 ≤
P1[C1 = 1] − µd

 ≤
2
q
.

On the other hand, it is easy to see that q−1
q2d+2

q−1
d

2
≤ 1/q. This immediately implies the statement of

the proposition. �

Proposition 2.4 is the critical step in the analysis of the behavior of the probability P2[C2 = 2],
which is estimated in the next result.

Theorem 2.5. For any q > d,

|P2[C2 = 2] − (1 − µd)µd| ≤
3
q
.

Proof. By Lemma 2.3 and Proposition 2.4 we obtain

|P2[C2 = 2] − (1 − µd)µd| ≤
1
N2


a∈F2

pr,d[Ca = 2] − (1 − µd)µd
 ≤

3
q
.

This finishes the proof of the theorem. �

We finish the section with a remark concerning the spaces considered so far to discuss the
probability that the SVS algorithm performs atmost two searches on vertical strips. For the analysis of
the probability of one searchwe have considered F1 := Fr−1

q and the randomvariable C1 : F1×Fr,d →

{1,∞}, while in the analysis of the probability of two searches we have considered the random
variable C2 : F2 × Fr,d → {1, 2,∞}. To link both analyses, in Lemma 4.1 we prove that

P2[C2 = 1] = P1[C1 = 1],

which shows the consistency of the probability spaces underlying Theorems 2.1 and 2.5. In Section 4
we shall show that the analysis of the probability that s vertical strips are searched can be done in a
unified framework for any s ≥ 1.
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3. The number of searches for given vertical strips

As can be inferred from Section 2, a critical step in the probabilistic analysis of SVS algorithm is the
determination of the probability of s searches, for a given choice of s vertical strips. The cases s = 1
and s = 2 were discussed in Section 2. In this section we carry out the analysis of the general case.

Fix 3 ≤ s ≤ min{
d+r−1

r−1


, qr−1

} and a1, . . . , as ∈ Fr−1
q with ai ≠ aj for i ≠ j. Denote a :=

(a1, . . . , as). Assuming that a is the choice for the first s vertical strips to be considered, we analyze
the probability that the SVS algorithm finds an Fq-rational zero of the polynomial under consideration
in the sth search.

For this purpose, we consider the set Fr,d endowed with the uniform probability pr,d and the
random variable Ca := Ca,r,d : Fr,d → {1, 2, . . . , s,∞} which counts the number of searches for
a given input on the vertical strips determined by a1, . . . , as, Ca(F) = ∞ meaning that F has no
Fq-rational zeros on these vertical strips.

We start with the following elementary result.

Lemma 3.1. Let V andW be Fq-linear spaces of finite dimension andΦ : V → W any Fq-linearmapping.
Consider V and W endowed with the uniform probabilities PV and PW respectively. Then for any A ⊂ W
we have

PV(Φ
−1(A)) =

|A ∩ Im(Φ)|
|Im(Φ)|

=
PW(A ∩ Im(Φ))
PW(Im(Φ))

=: PIm8(A).

Proof. We have
1

|V|
|Φ−1(A)| =

1
|V|


w∈A

|Φ−1(w)| =
1

|V|
|Ker(Φ)| |A ∩ Im(Φ)|.

By the Dimension theorem and the equality |S| = qdim S, valid for any Fq-vector space S, we see that
|V| = |Ker(Φ)| |Im(Φ)|. Then

1
|V|

|Φ−1(A)| =
|A ∩ Im(Φ)|

|Im(Φ)|
=

PW(A ∩ Im(Φ))
PW(Im(Φ))

.

This finishes the proof of the lemma. �

For simplicity of notations, we replace the variable Xr by a new indeterminate T and consider the
Fq-linear mappingΦ := Φa : Fr,d → F s

1,d defined as

Φ(F) :=

F(a1, T ), . . . , F(as, T )


. (3.1)

Since Im(Φ) is an Fq-linear space, by Lemma 3.1 it follows that

pr,d[Ca = s] =

({N = 0}s−1
× {N > 0}) ∩ Im(Φ)


|Im(Φ)|

, (3.2)

whereN := N1,d denotes the random variable which counts the number of zeros in Fq of the elements
of F1,d. As a consequence, we need to estimate the quantity

Rs :=
{N = 0}s−1

× {N > 0}

∩ Im(Φ)

.
In the next section we obtain a characterization of the image of Φ that will allow us to express Rs in
terms of the average cardinality of the value set of certain families of univariate polynomials. This is
the critical step to estimate the quantity Rs.

As we explain below, there exists a unique positive integer κs ≤ d such that
κs + r − 2

r − 1


< s ≤


κs + r − 1

r − 1


.
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In the sequel we shall assume that the points a1, . . . , as under consideration satisfy the condition we
now state. For 1 ≤ j ≤ κs, let Dj :=

j+r−1
r−1


and denote byΩj := {ω1, . . . ,ωDj} ⊂ (Z≥0)

r−1 the set of
(r−1)-tuplesωk := (ωk,1, . . . , ωk,r−1)with |ωk| := ωk,1+· · ·+ωk,r−1 ≤ j. Let aωk

i := aωk,1
i,1 · · · aωk,r−1

i,r−1
for 1 ≤ i ≤ s and 1 ≤ k ≤ Dj. Then we require that the multivariate Vandermonde matrix

Mj :=


aω1
1 · · · a

ωDj
1

...
...

aω1
s · · · a

ωDj
s

 ∈ F
s×Dj
q (3.3)

has maximal rank min{Dj, s} for 1 ≤ j ≤ κs.
We briefly argue that this is a mild requirement which is likely to be satisfied by any ‘‘reasonable’’

choice of the elements a1, . . . , as ∈ Fr−1
q . Let A1, . . . ,As be (r − 1)-tuples of indeterminates over Fq,

that is, Ai := (Ai,1, . . . , Ai,r−1) for 1 ≤ i ≤ s, and denote by Vj the following min{Dj, s} × min{Dj, s}
Vandermonde matrix with entries in Fq[A1, . . . ,As]:

Vj :=


Aω1
1 · · · A

ωmin{Dj,s}

1
...

...

Aω1
min{Dj,s}

· · · A
ωmin{Dj,s}

min{Dj,s}

 .

Assume that the numbering of Ωj := {ω1, . . . , ωDj} ⊂ (Z≥0)
r−1 is made according to degrees, i.e.,

|ωk| ≤ |ωl| whenever k ≤ l. In particular, ω1 = (0, . . . , 0). By [10, Theorem 1.5] it follows that detVj

is absolutely irreducible, namely it is a nonzero irreducible element of Fq[A1, . . . ,As], for 1 ≤ j ≤ κs.
Let δj denote the degree of detVj. We have the bound δj ≤ jDj. Then [6, Theorem 5.2] proves that the
number Nj of (r − 1)-tuples a1, . . . , as ∈ Fr−1

q annihilating detVj satisfies the estimate

|Nj − qs(r−1)−1
| ≤ (δj − 1)(δj − 2)qs(r−1)− 3

2 + 5δ
13
3

j qs(r−1)−2. (3.4)

Any choice of a1, . . . , as avoiding these Nj = O(qs(r−1)−1) tuples for 1 ≤ j ≤ κs will satisfy our
requirements. Furthermore, many ‘‘bad’’ choices a1, . . . , as annihilating the polynomial detVj for a
given jwill also work, as other minors of the Vandermonde matrix Mj of (3.3) may be nonsingular. In
particular, for s ≤ r and a1, . . . , as affinely independent, our requirement is satisfied.

Summarizing, denote Vs
:=

κs
j=1 detVj ∈ Fq[A1, . . . ,As] and let

Bs := {a := (a1, . . . , as) ∈ Fs(r−1)
q : Vs(a) = 0}. (3.5)

Then |Bs| = O(qs(r−1)−1) and all the results of this section are valid for any a ∈ Fs(r−1)
q \ Bs.

3.1. A characterization of the image ofΦ

In order to characterize the image Im(Φ), we shall express each element of Fr,d by its coordinates
in the standard monomial basis B of Fr,d, considering the monomial order we now define. Denote
by Bi the set of monomials of Fq[X1, . . . , Xr−1] of degree at most i for 0 ≤ i ≤ d, with the standard
lexicographical order defined by setting X1 < X2 < · · · < Xr−1. The basis B is considered with
the order B = {Xd

r , X
d−1
r B1, . . . , XrBd−1,Bd}, where each set Xd−i

r Bi is ordered following the order
induced by the one of Bi. In other words, any F ∈ Fr,d can be uniquely expressed as

F =

d
i=0

Fi(X1, . . . , Xr−1)X i
r ,

where each Fi has degree at most d − i for 0 ≤ i ≤ d. Then the vector of coefficients (F)B of F in the
basis B is given by (F)B =


(Fd)B0 , . . . , (F0)Bd


. On the other hand, we shall express the elements of

F s
1,d in the basis B ′

:= {T d, . . . , T , 1}s.
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Let

Dj :=


j + r − 1
r − 1


= |Bj| (0 ≤ j ≤ d), D :=


d + r
r


= |B| =

d
j=0

|Bj|.

We also set D−1 := 0. Observe that the sequence (Dj)j≥−1 is strictly increasing. Therefore, for each i
with 1 ≤ i ≤ s there exists a unique κi ∈ N such that

Dκi−1 < i ≤ Dκi . (3.6)

The following remarks can be easily established.

Remark 3.2. • κi ≤ j if and only if i ≤ Dj.
• κ1 = 0, κs ≤ d.

The matrix MΦ ∈ Fs(d+1)×D
q of Φ with respect to the bases defined above can be written as the

following block matrix:

MΦ =

M1
...
Ms

 ,

where Mi ∈ F(d+1)×D
q is the diagonal block matrix

Mi :=


Mi,0

Mi,1
. . .

Mi,d

 , Mi,j :=

aα
i : |α| ≤ j


∈ F

1×Dj
q .

Our first result concerns the dimension of Im(Φ).

Lemma 3.3. For s ≤ min{Dd, qr−1
}, we have

dim Im(Φ) =


κs − 1 + r

r


+ s(d − κs + 1) =

s
i=1

(d + 1 − κi).

Proof. Let h := (h1, . . . , hs) be an element of Im(Φ). Then there exists F ∈ Fr,d with h = Φ(F).
Denote by (F)B =


(Fd)B0 , . . . , (F0)Bd


the coordinates of F in the basis B. Then the block structure

of the matrix MΦ implies

Φ(F) =

d
j=0

M1,j
...

Ms,j

 (Fd−j)BjT
d−j. (3.7)

As a ∉ Bs, we have

rank

M1,j
...

Ms,j

 = min{Dj, s} =


Dj for 0 ≤ j ≤ κs − 1,
s for κs ≤ j ≤ d.

As a consequence,

dim Im(Φ) =

κs−1
j=0

Dj + s(d − κs + 1) =


κs − 1 + r

r


+ s(d − κs + 1).
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This proves the first assertion of the lemma. To prove the second assertion, we have

s
i=1

(d + 1 − κi) =

κs
j=0

min{Dj, s}
i=Dj−1+1

(d + 1 − j)

=

κs−1
j=0

(d + 1 − j)(Dj − Dj−1)+ (d + 1 − κs)(s − Dκs−1).

Since
k

j=0(Dj − Dj−1) = Dk, we conclude that

s
i=1

(d + 1 − κi) = −

κs−1
j=0

j(Dj − Dj−1)+ (d + 1 − κs)s + κsDκs−1.

Taking into account the identity
K

j=0 j
j+R

R


= (R + 1)

R+1+K
R+2


, we obtain

s
i=1

(d + 1 − κi) = −(r − 1)

κs + r − 2

r


+ (d + 1 − κs)s + κsDκs−1.

A simple calculation finishes the proof of the lemma. �

Next we determine a suitable parameterization of Im(Φ). To this end, letΦ∗
: Im(Φ) → Fdim Im(Φ)

q
be the Fq-linear mapping defined by

Φ∗(h) := h∗,

where h := (h1, . . . , hs), hi := (hd,i, . . . , h0,i) ∈ Fd+1
q for 1 ≤ i ≤ s and

h∗
:= (h∗

1, . . . , h
∗

s ), h∗

i := (hd−κi,i, . . . , h0,i) (1 ≤ i ≤ s). (3.8)

Lemma 3.3 shows thatΦ∗ is well-defined.

Lemma 3.4. Φ∗ is an isomorphism.

Proof. Since Φ∗ is a linear mapping between Fq-vector spaces of the same dimension, it suffices to
show thatΦ∗ is injective. Fix h := Φ(F) ∈ Im(Φ)with h∗

= 0. From (3.7) we deduce thatM1,j
...

Ms,j

 (Fd−j)Bj =

hd−j,1
...

hd−j,s

 . (3.9)

Fix j with 0 ≤ j ≤ κs − 1. Then the element hd−j,i is included in the definition of h∗

i if and only if
i ≤ Dj (see Remark 3.2). As h∗

= 0 by hypothesis, it follows that hd−j,i = 0 for 1 ≤ i ≤ Dj and we have
the identity

M1,j
...

MDj,j
MDj+1,j
...

Ms,j


(Fd−j)Bj =



0
...
0

hd−j,Dj+1
...

hd−j,s


.

Since the upper (Dj ×Dj)-submatrix of the matrix in the left-hand side is invertible, we conclude that
(Fd−j)Bj = 0. This implies hd−j,Dj+1 = · · · = hd−j,s = 0. On the other hand, for j ≥ κs the element
hd−j,i is included in the definition of h∗

i for 1 ≤ i ≤ s and therefore hd−j,i = 0 for 1 ≤ i ≤ s. This shows
that h = 0. �
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Denote by Ψ := (ψ1, . . . , ψs) : Fdim Im(Φ)
q → Im(Φ) the inverse mapping of Φ∗. We need further

information concerning the mappings ψi.

Lemma 3.5. Let be given h∗

i := (hd−κi,i, . . . , h0,i) ∈ Fd+1−κi
q for 1 ≤ i ≤ s. Let h∗

:= (h∗

1, . . . , h
∗
s ) ∈

Fdim Im(Φ)
q and h := Ψ (h∗). Denote

hi := ψi(h∗) := hd,i T d
+ · · · + hd+1−κi,i T

d+1−κi + hd−κi,i T
d−κi + · · · + h0,i.

Then hd,i, . . . , hd+1−κi,i are uniquely determined by h∗

1, . . . , h
∗

i−1.

Proof. Fix k with 0 ≤ k ≤ κi − 1. Write h := Φ(F). In the proof of Lemma 3.3 we prove that M1,k
...

MDk,k

 (Fd−k)Bk =

 hd−k,1
...

hd−k,Dk

 ,

where the (Dk × Dk)-matrix in the left-hand side is invertible. The element hd−k,l is included in the
definition of h∗

l if and only if l ≤ Dk. Furthermore, we have k ≤ κi − 1 ≤ κi−1. We conclude that the
vector in the right-hand side is uniquely determined by h∗

1, . . . , h
∗

i−1, and thus so is (Fd−k)Bk . Therefore,
the identityM1,k

...
Mi,k

 (Fd−k)Bk =

hd−k,1
...

hd−k,i


shows that the element hd−k,i is uniquely determined by h∗

1, . . . , h
∗

i−1. �

We end this section with the following remark.

Remark 3.6. For each h := (h1, . . . , hs) ∈ Im(Φ), we have hd,1 = · · · = hd,s. Indeed, from (3.7) we
deduce thatM1,0

...
Ms,0

 (Fd)B0 =

1
...
1

 (Fd)B0 =

hd,1
...

hd,s

 .

This implies hd,1 = · · · = hd,s = (Fd)B0 . In particular, the coefficient hd,1 of the monomial T d in the
polynomial h1 uniquely determines the coefficient hd,j of the monomial T d in hj for 2 ≤ j ≤ s. �

3.2. The probability of s searches in terms of cardinalities of value sets

For a := (a1, . . . , as) ∈ Fq
s(r−1)

\ Bs as before, we need to estimate the quantity

Rs :=
{N = 0}s−1

× {N > 0}

∩ Im(Φ)

.
According to Lemma 3.4, each element h ∈ Im(Φ) can be uniquely expressed in the form h =

Ψ (h∗), where h∗ is defined as in (3.8). Hence,

Rs =


h∗∈Fdim Im(Φ)

q

1{N=0}s−1×{N>0}

Ψ (h∗)


, (3.10)

where1{N=0}s−1×{N>0} : F s
1,d → {0, 1}denotes the characteristic function of the set {N = 0}s−1

×{N >
0}. By Lemma 3.5, the coordinate ψi(h∗) depends only on h∗

i := (h∗

1, . . . , h
∗

i ) for 1 ≤ i ≤ s. We shall
therefore write ψi(h∗) as ψi(h∗

i ) for 1 ≤ i ≤ s, with a slight abuse of notation.
First, we rewrite the expression (3.10) for Rs in a suitable form for our purposes.
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Lemma 3.7. Let h := (
d

j=0 hj,1T j, . . . ,
d

j=0 hj,sT j) be an arbitrary element of Im(Φ) and let h∗
:=

Φ∗(h) := (h∗

1, . . . , h
∗
s ) ∈ Fdim Im(Φ)

q be defined as in (3.8). For s ≤ min{Dd, qr−1
}, the following identity

holds:

Rs =


h∗1∈Fd+1

q
N(ψ1(h

∗
1))=0

· · ·


h∗s−1∈F

d+1−κs−1
q

N(ψs−1(h
∗
s−1))=0


h∗
s ∈Fd+1−κs

q

1{N>0}

ψs(h∗

s )

.

Proof. Wemay rewrite (3.10) in the following way:

Rs =


h∗
1∈Fd+1

q

· · ·


h∗
s ∈Fd+1−κs

q

1{N=0}s−1×{N>0}

Ψ (h∗)


.

As a consequence of the remarks before the statement of Lemma 3.7, it follows that

1{N=0}s−1×{N>0}

Ψ (h∗)


=

s−1
i=1

1{N=0}

ψi(h∗)


· 1{N>0}


ψs(h∗)


=

s−1
i=1

1{N=0}

ψi(h∗

i )

· 1{N>0}


ψs(h∗

s )

.

Then the previous expression for Rs can be rewritten as follows:

Rs =


h∗
1∈Fd+1

q

1{N=0}

ψ1(h∗

1)

· · ·


h∗
s−1∈F

d+1−κs−1
q

1{N=0}

ψs−1(h∗

s−1)
 
h∗
s ∈Fd+1−κs

q

1{N>0}

ψs(h∗

s )

,

which readily implies the lemma. �

For 1 ≤ i ≤ s − 1, fix h∗

i ∈ Fd+1−κi
q . For each h∗

s := (hd−κs,s, . . . , h0,s) ∈ Fd+1−κs
q , denote by fh∗

s the
polynomial

fh∗
s := ψs(h∗

1, . . . , h
∗

s ) := hd,sT d
+ · · · + hd+1−κs,sT

d+1−κs + hd−κs,sT
d−κs + · · · + h0,s.

According to Lemma 3.7, we are interested in estimating the sum
h∗
s ∈Fd+1−κs

q

1{N>0}(fh∗
s ). (3.11)

For h∗
s := (hd−κs,s, . . . , h0,s) ∈ Fd+1−κs

q , denote h∗
s := (hd−κs,s, . . . , h1,s) ∈ Fd−κs

q and fh∗
s

:=d
j=1 hj,sT j

= fh∗
s − fh∗

s (0). We observe that
h∗
s ∈Fd+1−κs

q

1{N>0}(fh∗
s ) =


h∗
s ∈Fd−κs

q


h0,s∈Fq

1{N>0}(fh∗
s ) =


h∗
s ∈Fd−κs

q

V(fh∗
s
)

=
1
q


h∗
s ∈Fd+1−κs

q

V(fh∗
s ), (3.12)

where V(f ) := |{f (c) : c ∈ Fq}| is the cardinality of the value set of f ∈ Fq[T ]. Lemma 3.5 proves that
hd,s, . . . , hd+1−κs,s are uniquely determined by h∗

s−1 := (h∗

1, . . . , h
∗

s−1). Thus, the sum in the right-hand
side of (3.12) takes as argument the cardinality of the value set of all the elements of F1,d having its
first κs coefficients (hd,s, . . . , hd+1−κs,s) prescribed. Set ψ

fix
s (h

∗

s−1) := (hd,s, . . . , hd+1−κs,s) and denote

Vd(κs, ψ
fix
s (h

∗

s−1)) :=
1

qd+1−κs


h∗
s ∈Fd+1−κs

q

V(fh∗
s ). (3.13)

Now we express the probability that Ca = s in terms of Vd(κs, ψ
fix
s (h

∗

s−1)).
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Lemma 3.8. For s ≤ min{Dd, qr−1
}, the following identity holds:

pr,d[Ca = s] =
1

q
s−1
i=1

(d+1−κi)


h∗1∈Fd+1

q
N(ψ1(h

∗
1))=0

· · ·


h∗s−1∈F

d+1−κs−1
q

N(ψs−1(h
∗
s−1))=0

Vd(κs, ψ
fix
s (h

∗

s−1))

q
.

Proof. By Lemma 3.3 we know that dim Im(Φ) =
s

i=1(d + 1 − κi). Combining this with (3.2) and
Lemma 3.7 we obtain

pr,d[Ca = s]

=
1

q
s−1
i=1

(d+1−κi)


h∗1∈Fd+1

q
N(ψ1(h

∗
1))=0

· · ·


h∗s−1∈F

d+1−κs−1
q

N(ψs−1(h
∗
s−1))=0

1
qd+1−κs


h∗
s ∈Fd−κs+1

q

1{N>0}

ψs(h∗

s )

.

Then (3.12) and (3.13) complete the proof of the lemma. �

If s ≤ min{Dd−2, qr−1
}, then, aswe explain in the next section, for any h∗

s−1 such that fh∗
s is of degree

d, the average cardinality in (3.13) has the asymptotic behavior Vd(κs, ψ
fix
s (h

∗

s−1)) = µd q + O(q1/2).
Combining this with Lemma 3.8 we shall be led to consider ‘‘inner’’ sums in the expression for
pr,d[Ca = s], which shall be expressed in terms of the average cardinality of the value sets of
the families of polynomials we now introduce. For 1 ≤ i ≤ s − 1 and 1 ≤ j ≤ i − 1, fix
h∗

j := (hd−κj,j, . . . , h0,j) ∈ F
d+1−κj
q . For each h∗

i := (hd−κi,i, . . . , h0,i) ∈ Fd+1−κi
q , denote

fh∗
i

:= ψi(h∗

1, . . . , h
∗

i ) := hd,iT d
+ · · · + hd+1−κi,iT

d+1−κi + hd−κi,iT
d−κi + · · · + h0,i.

Lemma 3.5 proves that the coefficients hd,i, . . . , hd−κi+1,i are uniquely determined by h∗

i−1 :=

(h∗

1, . . . , h
∗

i−1). Consequently, we set ψ fix
i (h

∗

i−1) := (hd,i, . . . , hd+1−κi,i) and consider the average
cardinality

Vd(κi, ψ
fix
i (h

∗

i−1)) :=
1

qd+1−κi


h∗
i ∈F

d+1−κi
q

V(fh∗
i
). (3.14)

Our next result expresses theprobability of s searches in termsof the quantitiesVd(κi, ψ
fix
i (h

∗

i−1)) (1 ≤

i ≤ s).

Theorem 3.9. For s ≤ min{Dd, qr−1
}, we have

pr,d[Ca = s] = (1 − µd)
s−1µd

q − 1
q

+

s
i=0

Ti,

where |T0| ≤ 1/q,

Ti :=(1 − µd)
s−i−1µd

q − 1

q

i−1
j=1

(d+1−κj)


h∗1∈Fd+1

q
N(ψ1(h

∗
1))=0

hd,1=1

· · ·


h∗i−1∈F

d+1−κi−1
q

N(ψi−1(h
∗
i−1))=0


µd −

Vd(κi, ψ
fix
i (h

∗

i−1))

q



for 1 ≤ i ≤ s − 1, and

Ts :=
q − 1

q
s−1
i=1

(d+1−κi)


h∗1∈Fd+1

q
N(ψ1(h

∗
1))=0

hd,1=1

· · ·


h∗s−1∈F

d+1−κs−1
q

N(ψs−1(h
∗
s−1))=0


Vd(κs, ψ

fix
s (h

∗

s−1))

q
− µd


.
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Proof. DenoteC := Ca.We split the expression for pr,d[C = s] of Lemma3.8 into two sums, depending
on whether hd,1 = 0 or not. More precisely, we write

pr,d[C = s] = pr,d[C = s, Fd = 0] + pr,d[C = s, Fd ≠ 0],

where

pr,d[C = s, Fd = 0] =
1

q
s−1
i=1

(d+1−κi)


h∗1∈Fd+1

q
N(ψ1(h

∗
1))=0

hd,1=0

· · ·


h∗s−1∈F

d+1−κs−1
q

N(ψs−1(h
∗
s−1))=0

Vd(κs, ψ
fix
s (h

∗

s−1))

q
,

pr,d[C = s, Fd ≠ 0] =
1

q
s−1
i=1

(d+1−κi)


h∗1∈Fd+1

q
N(ψ1(h

∗
1))=0

hd,1≠0

· · ·


h∗s−1∈F

d+1−κs−1
q

N(ψs−1(h
∗
s−1))=0

Vd(κs, ψ
fix
s (h

∗

s−1))

q
,

=
q − 1

q
s−1
i=1

(d+1−κi)


h∗1∈Fd+1

q
N(ψ1(h

∗
1))=0

hd,1=1

· · ·


h∗s−1∈F

d+1−κs−1
q

N(ψs−1(h
∗
s−1))=0

Vd(κs, ψ
fix
s (h

∗

s−1))

q
.

In the first termwe consider the intersection of the Fq-linear space Im(Φ)with the linear subspace
F s

1,d−1. As the former is not contained in the latter, the dimension of the intersection drops at least by
one, and Lemma 3.1 implies

T0 := pr,d[C = s, Fd = 0] ≤
|Im(Φ) ∩ F s

1,d−1|

|Im(Φ)|
≤

qdim Im(Φ)−1

qdim Im(Φ)
=

1
q
.

On the other hand, it is easy to see that the expression for pr,d[C = s, Fd ≠ 0] may be rewritten in the
following way:

pr,d[C = s, Fd ≠ 0] = µd
q − 1

q
s−1
i=1

(d+1−κi)


h∗1∈Fd+1

q
N(ψ1(h

∗
1))=0

hd,1=1

· · ·


h∗s−1∈F

d+1−κs−1
q

N(ψs−1(h
∗
s−1))=0

1 + Ts,

where Ts is defined as in the statement of the theorem.
Now we claim that, for 1 ≤ j ≤ s,

pr,d[C = s, Fd ≠ 0] = (1 − µd)
s−jµd

q − 1

q
j−1
i=1

(d+1−κi)


h∗1∈Fd+1

q
N(ψ1(h

∗
1))=0

hd,1=1

· · ·


h∗j−1∈F

d+1−κj−1
q

N(ψj−1(h
∗
j−1))=0

1 +

s
i=j

Ti,

where Ti is defined as in the statement of the theorem. The claim for j = 1 is the assertion of the
theorem.

We argue by downward induction on j from s to 1, the case j = s being already proved. For j < s,
suppose that the claim for j + 1 is already established. We have

1
qd+1−κj


h∗j ∈F

d+1−κj
q

N(ψj(h
∗
j ))=0

1 = 1 −
1

qd+1−κj


h∗j ∈F

d+1−κj
q

N(ψj(h
∗
j ))>0

1 = 1 −
Vd(κj, ψ

fix
j (h

∗

j−1))

q
.

Replacing this identity in the expression for pr,d[C = s, Fd ≠ 0] corresponding to the claim for j + 1
we readily deduce the claim for j, finishing thus the proof of the theorem. �
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3.3. The probability of Ca = s

Theorem 3.9 shows that the probability that the SVS algorithm stops after s ≤ Dd attempts can be
expressed in terms of the average cardinality Vd(κi, ψ

fix
i (h

∗

i−1)) of the value set of certain families of
univariate polynomials for 1 ≤ i ≤ s. Each of these families consists of all the polynomials

fb :=

j−1
i=0

ad−iT d−i
+

d
i=j

bd−iT d−i

with b := (bd−j, . . . , b0) ∈ Fd+1−j
q , for a given 1 ≤ j ≤ d and a := (ad, . . . , ad−j) ∈ Fj−1

q with ad ≠ 0
(due to Remark 3.6). We are interested in the average

Vd(j, a) :=
1

qd+1−j


b∈Fd+1−j

q

V(fb).

Suppose that q > d. In [8], the following estimate is obtained for 1 ≤ j ≤ d/2 − 1:

|Vd(j, a)− µd q| ≤
e−1

2
+
(d − 2)5e2

√
d

2d−2
+

7
q
. (3.15)

On the other hand, in [18] it is proved that, if the characteristic p of Fq is greater than 2 and 1 ≤ j ≤

d − 3, then

|Vd(j, a)− µd q| ≤ d2 2d−1q
1
2 + 133 dd+5e2

√
d−d. (3.16)

Estimates (3.15) and (3.16) are the key point to determine the asymptotic behavior of the right-
hand side of the expression for pr,d[Ca = s] of Theorem 3.9. More precisely, we have the following
result.

Theorem 3.10. Let be given a := (a1, . . . , as) ∈ Fs(r−1)
q \ Bs, where the set Bs is defined in (3.5). For

s ≤ min
d/2+r−1

r−1


, qr−1


, we have

pr,d[Ca = s] − (1 − µd)
s−1µd

 ≤


e−1

+
(d − 2)5e2

√
d

2d−1
+ 1


q−1

+ 14q−2.

On the other hand, if p > 2 and s ≤ min
d+r−3

r−1


, qr−1


, thenpr,d[Ca = s] − (1 − µd)

s−1µd
 ≤ d22dq−

1
2 + (266 dd+5e2

√
d−d

+ 1)q−1.

Proof. Suppose that s ≤ min
d/2+r−1

r−1


, qr−1


. Then κs ≤ d/2, and thus 1 ≤ κi − 1 ≤ d/2 − 1 for

1 ≤ i ≤ s. With notations as in Section 3.2, fix 1 ≤ i ≤ s and h∗

j := (hd−κj,j, . . . , h0,j) ∈ Fq
d+1−κj for

1 ≤ j ≤ i − 1. Denote h∗

i−1 := (h∗

1, . . . , h
∗

i−1), set ψ
fix
i (h

∗

i−1) := (hd,i, . . . , hd+1−κi,i) and consider the
average cardinality Vd(κi, ψ

fix
i (h

∗

i−1)) as in (3.13) or (3.14). By (3.15) we conclude that, for any h∗

i−1
with deg fh∗

i
= d,Vd(κi, ψ

fix
i (h

∗

i−1))

q
− µd

 ≤


e−1

2
+
(d − 2)5e2

√
d

2d−2


q−1

+ 7q−2.

Further, defining Ti as in the statement of Theorem 3.9 for 1 ≤ i ≤ s, we obtain

|Ti| ≤ (1 − µd)
s−i−1µd


e−1

2
+
(d − 2)5e2

√
d

2d−2


q−1

+ 7q−2


(1 ≤ i ≤ s − 1),

|Ts| ≤


e−1

2
+
(d − 2)5e2

√
d

2d−2


q−1

+ 7q−2.

Therefore, the first assertion of the theorem follows from Theorem 3.9.
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On the other hand, for s ≤ min
d+r−3

r−1


, qr−1


we have κs ≤ d − 2, and hence κi − 1 ≤ d − 3 for

1 ≤ i ≤ s. Therefore, if p > 2, then (3.16) shows thatVd(κi, ψ
fix
i (h

∗

i−1))

q
− µd

 ≤ d2 2d−1q−
1
2 + 133 dd+5e2

√
d−dq−1.

It follows that

|Ti| ≤ (1 − µd)
s−i−1µd


d2 2d−1q−

1
2 + 133 dd+5e2

√
d−dq−1 (1 ≤ i ≤ s − 1),

|Ts| ≤ d2 2d−1q−
1
2 + 133 dd+5e2

√
d−dq−1.

This readily implies the second assertion of the theorem. �

We remark that the approach of the proof of Theorem 3.10 cannot be applied to estimate the
probability that s > s∗ :=

d+r−3
r−1


vertical strips are searched, since the behavior of the mapping

Φ := Φa : Fr,d → F s
1,d of (3.1) may change significantly in this case. In what concerns ‘‘large’’ values

of s, from Theorem 3.10 one easily deduces the following result.

Corollary 3.11. With notations as in Theorem 3.10, for s∗ := min
 d

2 +r−1
r−1


, qr−1


we have

pr,d[Ca > s∗] = (1 − µd)
s∗

+ O(q−1).

On the other hand, if p > 2 and s∗ := min
d+r−3

r−1


, qr−1


, then

pr,d[Ca > s∗] = (1 − µd)
s∗

+ O(q−1/2).

As |1 − µd| ≤ 1/2, from the expression of s∗ in both cases it follows that the main term of this
probability decreases exponentially with r and d.

4. Probabilistic analysis of the SVS algorithm

In this section we determine the average-case complexity of the SVS algorithm. This analysis relies
on the probability distribution of the number of searches performed, which is the subject of the next
section.

4.1. Probability distribution of the number of searches

Similarly to Section 2, for s ≥ 3 we denote

Fs := {(a1, . . . , as) ∈ Fr−1
q × · · · × Fr−1

q : ai ≠ aj for i ≠ j}, Ns := |Fs|,

and consider the random variable Cs := Cs,r,d : Fs × Fr,d → {1, . . . , s,∞} defined for a :=

(a1, . . . , as) ∈ Fs and F ∈ Fr,d in the following way:

Cs(a, F) :=


min{j : N1,d(F(aj, Xr)) > 0} if ∃j with N1,d(F(aj, Xr)) > 0,
∞ otherwise.

We consider the set Fs × Fr,d as before endowed with the uniform probability Ps := Ps,r,d and
analyze the probability Ps[Cs = s]. To link the probability spaces determined by Fs × Fr,d and Ps
for 1 ≤ s ≤ qr−1, we have the following result.

Lemma 4.1. Let s > 1 and let πs : Fs × Fr,d → Fs−1 × Fr,d be the mapping induced by the projection
Fs → Fs−1 on the first s − 1 coordinates. If S ⊂ Fs−1 × Fr,d, then Ps[π−1

s (S)] = Ps−1[S].
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Proof. Note that

π−1
s (S) =


F∈Fr,d

{(a1, . . . , as) ∈ Fs : (a1, . . . , as−1, F) ∈ S} × {F}

=


F∈Fr,d


(a1,...,as−1)∈Fs−1 :

(a1,...,as−1,F)∈S

{(a1, . . . , as−1)} × (Fr−1
q \ {a1, . . . , as−1})× {F}.

It follows that

Ps[π−1
s (S)] =

1
Ns|Fr,d|


F∈Fr,d


a∈Fs−1:(a,F)∈S

(qr−1
− s + 1)

=
1

Ns−1|Fr,d|


F∈Fr,d

{a ∈ Fs−1 : (a, F) ∈ S}
 = Ps−1[S].

This proves the lemma. �

According to the Kolmogorov extension theorem (see, e.g., [12, Chapter IV, Section 5, Extension
Theorem]), the conditions of ‘‘consistency’’ of Lemma4.1 imply that the probabilities Ps (1 ≤ s ≤ qr−1)
can be put in a unified framework. More precisely, we define F := Fqr−1 and P := Pqr−1 . Then the
probability measure P defined on F allows us to interpret consistently all the results of this paper.
In the same vein, the variables Cs (1 ≤ s ≤ qr−1) can be naturally extended to a random variable
C : F × Fr,d → N ∪ {∞}. Consequently, we shall drop the subscript s from the notations Ps and Cs in
what follows.

For the analysis of the probability distribution of the number of searcheswe express the probability
P[C = s] in terms of probabilities concerning the random variables Ca := Ca,r,d : Fr,d → N, a ∈ Fs,
which count the number of vertical strips that are searched when the choice for the first s vertical
strips is a. As the result can be proved following the proof of Lemma 2.3mutatis mutandis, we state it
without proof.

Lemma 4.2. We have

P[C = s] =
1
Ns


a∈Fs

pr,d[Ca = s].

In Theorem 3.10 we determine the asymptotic behavior of pr,d[Ca = s] for a ∈ Fs \ Bs, where
Bs ⊂ Fs is the set of (3.5). By (3.4) it follows that |Bs| = O(qs(r−1)−1), where the O-constant depends
on s, d and r , but is independent of q. Now, to estimate the probability P[C = s], Lemma 4.2 implies

P[C = s] =
1
Ns


a∈Fs\Bs

pr,d[Ca = s] +
1
Ns


a∈Bs

pr,d[Ca = s]

=
1
Ns


a∈Fs\Bs

pr,d[Ca = s] + O(q−1).

As a consequence, from Theorem 3.10 we deduce the following result.

Theorem 4.3. For s ≤
d/2+r−1

r−1


, we have

P[C = s] = (1 − µd)
s−1µd + O(q−1).

On the other hand, if p > 2 and s ≤
d+r−3

r−1


, then

P[C = s] = (1 − µd)
s−1µd + O(q−1/2).



G. Matera et al. / Journal of Complexity ( ) – 21

4.2. Average-case complexity

Now we are ready to determine the average-case complexity of the SVS algorithm.
Recall that, given F ∈ Fr,d, the SVS algorithm successively generates a sequence a := (a1, a2,

. . . , aqr−1) ∈ Fqr−1 , and searches for Fq-rational zeros of F in the vertical strips {ai} × Fq for
1 ≤ i ≤ qr−1, until a zero of F is found or all the vertical strips are exhausted. As discussed in
Section 1, the whole procedure requires at most Ca(F) · τ(d, r, q) arithmetic operations in Fq, where
τ(d, r, q) := O∼(D + d log2 q) is the maximum number of arithmetic operations in Fq necessary to
perform a search in an arbitrary vertical strip.

The SVS algorithm has a probabilistic routine which searches for Fq-rational zeros of elements of
F1,d, which relies on rd random choices of elements of Fq, for certain rd ∈ N. We denote byΩd := Frd

q
the set of all such random choices and consider Ωd endowed with the uniform probability, F × Fr,d
with the (uniform) probability P of Section 4, and F×Fr,d×Ωd with the product probability. Therefore,
the cost of the SVS algorithm is represented by the random variable X := Xr,d : F×Fr,d ×Ωd :→ N≥0
which counts the number X(a, F , ω) of arithmetic operations performed on input F ∈ Fr,d, with the
choice of vertical strips defined by a and the choice ω for the parameters of the routine for univariate
root finding.

We aim to determine the asymptotic behavior of the expected value of X , namely

E[X] :=
1

|F| |Fr,d| |Ωd|


(a,F ,ω)

X(a, F , ω) ≤
τ(d, r, q)
|F| |Fr,d|


F∈Fr,d


a∈F

C(a, F).

We first study the case r > 2, for which we have the following result.

Theorem 4.4. Let r > 2 and s∗ :=
d/2+r−1

r−1


. Then the average-case complexity of the SVS algorithm is

bounded in the following way:

E[X] ≤ τ(d, r, q)

µ−1

d + d(1 − d−1)s
∗

+ O(q−1/2), (4.1)

where τ(d, r, q) is the cost of the search in a vertical strip.

Proof. Recall that an element ofFr,d is called relatively Fq-irreducible if none of its irreducible factors
over Fq is absolutely irreducible. Consider the sets

A := {F ∈ Fr,d : F is relatively Fq-irreducible}, B := Fr,d \ A.

We have
F∈Fr,d


a∈F

C(a, F) =


F∈A


a∈F

C(a, F)+


F∈B


a∈F

C(a, F). (4.2)

By [23, Corollary 6.7], it follows that |A|/|Fr,d| = O

q

−r(r−1)
2


. Hence, we obtain

1
|F| |Fr,d|


F∈A


a∈F

C(a, F) ≤
qr−1

|Fr,d|
|A| = O


q
(r−1)(2−r)

2


= O(q−1). (4.3)

Next we study the second term in the right-hand side of (4.2). We have

1
|F| |Fr,d|


F∈B


a∈F

C(a, F) =
1

|Fr,d|


F∈B

qr−1
s=1

s
|{a ∈ F : C(a, F) = s}|

|F|
.
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From the conditions of consistency of Lemma 4.1, it follows that

1
|F| |Fr,d|


F∈B


a∈F

C(a, F) =
|B|

|Fr,d|

qr−1
s=1

s
1
|B|


F∈B

|{a ∈ Fs : C(a, F) = s}|
|Fs|

=
|B|

|Fr,d|

qr−1
s=1

sPF×B[C = s],

where PF×B denotes the uniform probability in F × B.

For s ≤ s∗, Theorem 4.3 allows us to estimate the probability of [C = s]. Therefore, we decompose
the sum above in the following way:

qr−1
s=1

sPF×B[C = s] =

s∗
s=1

sPF×B[C = s] + (s∗ + 1)
qr−1

s=s∗+1

PF×B[C = s]

+

qr−1
s=s∗+2

(s − s∗ − 1)PF×B[C = s]

=

s∗
s=1

sPF×B[C = s] + (s∗ + 1)PF×B[C ≥ s∗ + 1] +

qr−1
s=s∗+2

PF×B[C ≥ s]. (4.4)

First we estimate the sum S1 of the first two terms in the right-hand of (4.4). Arguing as in
Lemma 4.2, we see that

PF×B[C = s] =
1

|Fs|


a∈Fs

pB[Ca = s].

From Theorem 4.3 and Corollary 3.11 we have

S1 =

s∗
s=1

s(µd(1 − µd)
s−1

+ O(q−1))+ (s∗ + 1)(1 − µd)
s∗

+ O(q−1)

= µd

s∗
s=1

s(1 − µd)
s−1

+ (s∗ + 1)(1 − µd)
s∗

+ O(q−1).

Taking into account that


n≥1 nz
n−1

= 1/(1 − z)2 for any |z| ≤ 1, we obtain

S1 =
1
µd

− µd


s≥s∗+1

s(1 − µd)
s−1

+ (s∗ + 1)(1 − µd)
s∗

+ O(q−1) =
1
µd

+ O(q−1), (4.5)

where the last inequality follows from the identity


s≥s∗+1 sz
s−1

= zs
∗

(s∗ + 1− zs∗)/(1− z)2, which
holds for any |z| < 1 (see, e.g., [14, Section 2.3]).

Next, we estimate the second sum S2 of the right-hand of (4.4). Observe that

pB[Ca ≥ s] = pB[F ∈ B : N1,d(F(ai, Xr)) = 0 (1 ≤ i ≤ s − 1)].
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Hence,

S2 ≤
1
|B|

qr−1
s=s∗+2

1
|Fs|


(a,as)∈Fs−1×Fr−1

q

|{F ∈ B : N1,d(F(ai, Xr)) = 0 (1 ≤ i ≤ s − 1)}|

≤
qr−1

|B|

qr−1
s=s∗+2

1
qr−1 − (s − 1)


a∈Fs−1


F∈B

N1,d(F(ai,Xr ))=0 (1≤i≤s−1)

1
|Fs−1|

≤
qr−1

|B|

qr−1
s=s∗+2

1
qr−1 − (s − 1)


F∈B

PFs−1 [N1,d = 0],

where PFs−1 [N1,d = 0] := PFs−1 [{a ∈ Fs−1 : N1,d(F(ai, Xr)) = 0, 1 ≤ i ≤ s − 1}]. As N1,d = 0 follows
a hypergeometric distribution, the probability PFs−1 [N1,d = 0] can be expressed in the following way
(see, e.g., [11, Chapter 6]):

PFs−1 [N1,d = 0] =

qr−1
−NS(F)
s−1

qr−1

s−1

 .

We deduce that

S2 ≤
1
|B|

qr−1
s=s∗+2


F∈B


1 −

NS(F)− 1
qr−1 − 1

s−1

. (4.6)

Fix F ∈ B. Then F has at least an absolutely irreducible factor defined over Fq. Hence, for q > d4,
by [6, Theorem 5.2] it follows that NS(F) ≥

qr−1

d (1 − α), with α := d2q−1/2. This implies

1 −
NS(F)− 1
qr−1 − 1

= 1 −
1 − α

d
+ O


q1−r.

Combining this inequality with (4.6) we conclude that

S2 ≤
1
|B|

qr−1
s=s∗+2


F∈B


1 − (1 − α)d−1

+ O(q1−r)
s−1

=

qr−1
s=s∗+2


1 − (1 − α)d−1

+ O(q1−r)
s−1

=


1 − (1 − α)d−1

s∗+1

(1 − α)d−1
+ O(q1−r) = d(1 − d−1)s

∗
+1

+ O(q−1/2).

Combining (4.2), (4.3) and (4.5) with this inequality, we deduce (4.1). �

Since s∗ > d2/4, the term d(1 − d−1)s
∗
+1 tends to zero as d and r grow, and therefore the right-

hand side of (4.1) behaves as µd
−1τ(d, r, q). We may paraphrase this as saying that, on average, at

most µd
−1

≈ 1.58 . . . vertical strips are searched until an Fq-rational point of the input polynomial
is obtained. For perspective, we remark that the probabilistic algorithms of [22] (for bivariate polyno-
mials) and [5,17] (for r-variate polynomials) propose d searches in order to achieve a probability of
success greater than 1/2.

Now we analyze the average-case complexity E[X] for r = 2, that is,

E[X] :=
1

|F| |F2,d| |Ωd|


(a,F ,ω)

X(a, F , ω) ≤
τ(d, r, q)
|F| |F2,d|


F∈Fr,d


a∈F

C(a, F).
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For a real 0 < α < 1 to be determined, we consider the subsets

A := {F ∈ F2,d : NS(F) ≤ (1 − α)NS(2, d)},
B := {F ∈ F2,d : NS(F) > (1 − α)NS(2, d)},

where NS(F) is the number of vertical strips on which F has Fq-rational zeros, and NS(2, d) is the
average number of such vertical strips. We have

F∈F2,d


a∈F

C(a, F) =


F∈A


a∈F

C(a, F)+


F∈B


a∈F

C(a, F). (4.7)

To estimate the first term of the right-hand of (4.7), we start with an estimate for |A|. For this
purpose, according to Lemma 5.1 and Proposition 5.2, the mean NS(2, d) and the variance NS2(2, d)
of NS(·) have the asymptotic behavior NS(2, d) = µd q + O(1) and NS2(2, d) = ((d!)−2

+ µd(1 −

µd))q + O(1) respectively. Then the Chebyshev inequality (see Corollary 5.3) implies

|A| ≤


1

(α µd d!)2
+

1 − µd

α2µd


qdimF2,d−1

+ O(qdimF2,d−2).

It follows that

1
|F| |F2,d|


F∈A


a∈F

C(a, F) ≤
|A|q
|F2,d|

≤


1

(α µd d!)2
+

1 − µd

α2µd


+ O(q−1). (4.8)

Next we study the second sum in the right-hand side of (4.7). Arguing as in the case r > 2, for
s∗ := d/2 + 1 we obtain

1
|F| |F2,d|


F∈B


a∈F

C(a, F) ≤
1
µd

+
1
|B|

q
s=s∗+2


F∈B


1 −

NS(F)− 1
q − 1

s−1

+ O(q−1).

Fix F ∈ B. By definition NS(F) > (1 − α)NS(2, d) and, according to Lemma 5.1, we have NS(2, d) =

µd q + O(1). Hence, we obtain

1 −
NS(F)− 1

q − 1
≤ 1 − (1 − α)µd + O(q−1).

Therefore,

1
|B|

q
s=s∗+2


F∈B


1 −

NS(F)− 1
q − 1

s−1

≤
(1 − (1 − α)µd)

s∗+1

(1 − α)µd
+ O(q−1).

Combining (4.7) and (4.8) with this inequality, we conclude that

E[X] ≤ τ(d, r, q)


1
α2


1 − µd

µd
+

1
(d!)2µ2

d


+

1
µd

+

1 − (1 − α)µd

s∗+1


+ O(q−1).

Fixing α∗
:= 1 − 1/

√
s∗, we obtain the following result.

Theorem 4.5. Let r := 2, s∗ := d/2 + 1 and α∗
:= 1 − 1/

√
s∗. The average-case complexity of the SVS

algorithm is bounded in the following way:

E[X] ≤ τ(d, r, q)


1
α∗2


1 − µd

µd
+

1
(d!)2µ2

d


+

1
µd

+


1 −

µd
√
s∗

s∗+1


+ O(q−1),

where τ(d, r, q) is the cost of the search in a vertical strip.

As d grows, the quantity s∗ tends to infinity and the expression parenthesized in E[X] tends to
(2 − µd)/µd ≈ 2.16 . . . This is an upper bound for the number of vertical strips that are searched on
average for r = 2.
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5. On the probability distribution of the outputs

This section is devoted to the analysis of the probability distribution of the outputs of the SVS
algorithm. For this purpose, following [3] (see also [2]), we use the concept of Shannon entropy. For
F ∈ Fr,d, denote Z(F) := {x ∈ Fr

q : F(x) = 0} and N(F) := |Z(F)|. We define a Shannon entropy HF
associated with F as

HF :=


x∈Z(F)

−Px,F log(Px,F ), (5.1)

where Px,F is the probability that the SVS algorithm outputs x on input F and log denotes the natural
logarithm. It is well-known that HF ≤ logN(F), and equality holds if and only if Px,F = 1/N(F) for
every x ∈ Z(F). We shall consider the average entropy when F runs through all the elements of Fr,d,
namely

H :=
1

|Fr,d|


F∈Fr,d

HF . (5.2)

For an ‘‘ideal’’ algorithm for the search of Fq-rational zeros of elements of Fr,d, from the point
of view of the probability distribution of outputs, and F ∈ Fr,d, the probability P ideal

x,F that a given
x ∈ Z(F) occurs as output is equal to 1/N(F). As a consequence, according to the definition (5.1), the
corresponding entropy is

H ideal
F :=


x∈Z(F)

−P ideal
x,F log(P ideal

x,F ) =


x∈Z(F)

logN(F)
N(F)

= logN(F).

By the concavity of the function x → log x, we conclude that

H ideal
:=

1
|Fr,d|


F∈Fr,d

H ideal
F ≤ log




F∈Fr,d

N(F)

|Fr,d|

 = log(qr−1), (5.3)

where the last identity is due to (1.1). In our analysis below, we shall exhibit a lower bound on the
average entropy H which nearly matches this upper bound.

5.1. On the number of vertical strips

A critical point in the study of the behavior ofH is the analysis of the probability distribution of the
random variable NS : Fr,d → Z≥0 which counts the number of vertical strips with Fq-rational zeros
of the elements of Fr,d.

Recall that VS(F) denotes the set of vertical strips where each F ∈ Fr,d has Fq-rational zeros and
NS(F) is its cardinality, that is,

VS(F) := {a ∈ Fr−1
q : (∃ xr ∈ Fq) F(a, xr) = 0}, NS(F) := |VS(F)|.

We start considering the average number of vertical strips in Fr,d, namely

NS(r, d) :=
1

|Fr,d|


F∈Fr,d

NS(F).

According to (2.1), we have NS(r, d) = qr−1P[C = 1]. Therefore, as an immediate consequence of
Theorem 2.1 and Corollary 2.2 we have the following result.

Lemma 5.1. The number NS(r, d) satisfies

NS(r, d) =

d
k=1

(−1)k−1

q
k


qr−1−k

+ (−1)d

q − 1
d


qr−d−2

= µd qr−1
+ O(qr−2).
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Next we determine the variance NS2(r, d) of the random variable NS(·), that is,

NS2(r, d) :=
1

|Fr,d|


F∈Fr,d


NS(F)− NS(r, d)

2
=

1
|Fr,d|


F∈Fr,d

NS(F)2 − NS(r, d)2.

Proposition 5.2. The variance NS2(r, d) satisfies

NS2(r, d) =
1
(d!)2

q2r−3
+ µd(1 − µd) qr−1

+ O(q2r−4).

Proof. Recall the notations F2 := (Fr−1
q )2 \ {(a, a) : a ∈ Fr−1

q } and N2 := |F2|. Fix F ∈ Fr,d. We have

NS(F)2 =

 
x,y∈Fq

{(a1, a2) ∈ (Fr−1
q )2 : F(a1, x) = F(a2, y) = 0}

.
Then the inclusion–exclusion principle implies

F∈Fr,d

NS(F)2 =


F∈Fr,d

q
j=1

q
k=1

(−1)j+k


Xj⊂Fq


Yk⊂Fq

S(Xj,Yk)

=

q
j=1

q
k=1

(−1)j+k


Xj⊂Fq


Yk⊂Fq


F∈Fr,d

S(Xj,Yk),

whereXj andYk run through all the subsets of Fq of cardinality j and k, respectively, and, for arbitrary
subsets X ⊂ Fq and Y ⊂ Fq,

S(X,Y) :=
{(a1, a2) ∈ (Fr−1

q )2 : (∀x ∈ X)(∀x ∈ Y) F(a1, x) = 0, F(a2, y) = 0}
.

For a := (a1, a2) ∈ (Fr−1
q )2 and subsets X ⊂ Fq and Y ⊂ Fq, denote

Sa(X,Y) := {F ∈ Fr,d : (∀x ∈ X)(∀x ∈ Y) F(a1, x) = 0, F(a2, y) = 0}.

It follows that
F∈Fr,d

NS(F)2 =

q
j=1

q
k=1

(−1)j+k


Xj⊂Fq


Yk⊂Fq


a∈(Fr−1

q )2

|Sa(Xj,Yk)|

=


a∈(Fr−1

q )2

q
j=1

q
k=1

(−1)j+k


Xj⊂Fq


Yk⊂Fq

|Sa(Xj,Yk)| =:


a∈(Fr−1

q )2

Na,2,

where Na,2 is defined as in (2.6). If a ∈ F2, then the claim in the proof of Proposition 2.4 asserts that

Na,2

|Fr,d|
=


P[C = 1]

2
+

q − 1
q2d+2


q − 1
d

2

.

On the other hand, for (a, a) ∈ (Fr−1
q )2 \ F2, by elementary calculations we see that

N(a,a),2 :=

q
j=1

q
k=1

(−1)j+k


Xj⊂Fq


Yk⊂Fq

|S(a,a)(Xj,Yk)| =

q
j=1

(−1)j−1


Xj⊂Fq

|Sa(Xj)|,
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where Sa(Z) := {F ∈ Fr,d : (∀z ∈ Z) F(a, z) = 0} for any subset Z ⊂ Fq. Thus,

1
|Fr,d|


F∈Fr,d

NS(F)2 =


a∈F2

Na,2

|Fr,d|
+

1
|Fr,d|


a∈Fr−1

q

q
j=1

(−1)j−1


Xj⊂Fq

|Sa(Xj)|

= N2


q1−rNS(r, d)

2
+

q − 1
q2d+2


q − 1
d

2
+


F∈Fr,d

NS(F)
|Fr,d|

.

The statement of the proposition follows easily from Lemma 5.1. �

By the Chebyshev inequality we obtain a lower bound on the number of F ∈ Fr,d for which NS(F)
differs a certain proportion from the expected value NS(r, d).

Corollary 5.3. For 0 < α < 1, the number A(α) of F ∈ Fr,d for which NS(F) ≤ (1 − α)NS(r, d) is
bounded as

A(α) ≤
1

(α µd d!)2
qdimFr,d−1

+
1
α2

1 − µd

µd
qdimFr,d−r+1

+ O(qdimFr,d−2).

Proof. By Lemma 5.1 and Proposition 5.2, the Chebyshev inequality implies

pr,d (|NS(F)− NS(r, d)| ≥ αNS(r, d)) ≤
NS2(r, d)
α2NS(r, d)2

.

Taking into account that

NS2(r, d)
α2NS(r, d)2

=
1

(α µd d!)2
q−1

+
1 − µd

α2µd
q1−r

+ O(q−2),

the corollary readily follows. �

5.2. A lower bound for the entropy

In order to analyze the Shannon entropy (5.2), it is necessary to determine the probability Px,F that
an element x := (a, x) ∈ Fr

q occurs as output on input F ∈ Fr,d.
Given an input polynomial F ∈ Fr,d, and the vertical strip defined by an element a ∈ Fr−1

q , the SVS
algorithmproceeds to search forFq-rational zeros of the univariate polynomial f := gcd


F(a, T ), T q

−

T

. If this search is done using the randomized algorithm of Cantor and Zassenhaus (see [7]), then all

the F×
q -rational zeros of f are equiprobable (see, e.g., [21, Section 14.3]). The algorithm can be easily

modified so that all Fq-rational zeros of f are equiprobable. In the sequel we shall assume that the
search of roots in Fq of elements of F1,d is performed using a randomized algorithm for which all
outputs are equiprobable.

For the analysis of the distribution of outputs, we denote as before by Ωd := Frd
q the set of all

possible randomchoices of elements ofFq madeby the routine for univariate root finding.We consider
Ωd to be endowed with the uniform probability, F× Fr,d with the probability measure P of Section 4,
and F×Fr,d ×Ωd with the product probability P ×PΩd . Finally, we shall consider probabilities related
to the random variable Cout : F × Fr,d × Ωd → Fr

q ∪ {∅} defined in the following way: for a triple
(a, F , γ ) ∈ F × Fr,d × Ωd, if F has an Fq-rational zero on any of the vertical strips defined by a, and
aj is the first vertical strip with this property, then Cout(a, F , γ ) := (aj, x), where x ∈ Fq is the zero
of F(aj, T ) computed by the root-finding routine determined by the random choice γ . Otherwise, we
define Cout(a, F , γ ) := ∅. In these terms, the probability Px,F that an element x := (a, x) ∈ Fr

q occurs as
output on input F ∈ Fr,d may be expressed as the conditional probability P×PΩd


Cout = x|F


, namely

Px,F = P × PΩd


Cout = x|F


:=

P × PΩd


{Cout = x} ∩ (F × {F} ×Ωd)


P × PΩd


F × {F} ×Ωd

 .
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Now we are ready to determine Px,F . For this purpose, we denote by Na(F) the number of Fq-
rational zeros of F in the vertical strip defined by a, i.e.,

Na(F) := |{x ∈ Fq : F(a, x) = 0}|.

We have the following result.

Lemma 5.4. Let F ∈ Fr,d and x := (a, x) ∈ Z(F). Then

Px,F =
1

NS(F)Na(F)
.

Proof. If x occurs as output at the jth step, then the SVS algorithm must have chosen elements
a1, . . . , aj−1 for the first j − 1 searches such that Nak(F) = 0 for 1 ≤ k ≤ j − 1, and the element
a for the jth search. Finally, the routine for finding roots of F(a, T )must output x, which occurs with
probability 1/Na(F).

Recall that the element aj ∈ Fr−1
q for the jth search is randomly chosen among the elements of

Fr−1
q \ {a1, . . . , aj−1} with equiprobability. Therefore, if a arises as the choice for the jth step, then the

SVS algorithm must have chosen pairwise-distinct elements a1, . . . , aj−1 ∈ Fr−1
q \ NS(F) for the first

j − 1 searches. The probability of these choices is

P(Na1(F) = 0, . . . ,Naj−1(F) = 0, aj = a|F) =

j−2
k=0


1 −

NS(F)
qr−1 − k


·

1
qr−1 − j + 1

=
1

qr−1

qr−1
−NS(F)
j−1

qr−1−1
j−1

 .

As there are qr−1
− NS(F) elements b ∈ Fr−1

q with Nb(F) = 0, the algorithm performs at most
qr−1

− NS(F)+ 1 searches. Finally, when a is chosen, the probability to find x as the Fq-rational zero
of F(a, T ) is equal to 1/Na(F). It follows that

Px,F =

qr−1
−NS(F)+1
j=1

P(Na1(F) = 0, . . . ,Naj−1(F) = 0, aj = a|F) ·
1

Na(F)

=
1

qr−1Na(F)

qr−1
−NS(F)
j=0

qr−1
−NS(F)
j

qr−1−1
j

 .

According to, e.g., [14, Section 5.2, Problem 1],

qr−1
−NS(F)
j=0

qr−1
−NS(F)
j

qr−1−1
j

 =
qr−1

NS(F)
.

We conclude that

Px,F =
1

qr−1Na(F)
qr−1

NS(F)
=

1
NS(F)Na(F)

.

This completes the proof of the lemma. �

For any F ∈ Fr,d, consider the entropy

HF =


(a,x)∈Z(F)

log

NS(F)Na(F)


NS(F)Na(F)

. (5.4)
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We aim to determine the asymptotic behavior of the average entropy

H :=
1

|Fr,d|


F∈Fr,d

HF =
1

|Fr,d|


F∈Fr,d


(a,x)∈Z(F)

log

NS(F)Na(F)


NS(F)Na(F)

.

Observe that
F∈Fr,d


(a,xr )∈Z(F)

1 =


(a,x)∈Fr

q

|{F ∈ Fr,d : F(a, x) = 0}| = qdimFr,d+r−1. (5.5)

Further, the function h : (0,+∞) → R, h(x) := log x/x is increasing in the interval [e,+∞) and
convex in the interval [e3/2,+∞). By Corollary 5.3, the probability of the set of F ∈ Fr,d having up to
e3/2 = 4.48 . . . vertical strips is O(q−1). Therefore,

H =


F∈Fr,d


(a,x)∈Z(F)

1

|Fr,d|


F∈Fr,d


(a,x)∈Z(F)

log(NS(F)Na(F))
NS(F)Na(F)

F∈Fr,d


(a,x)∈Z(F)

1

≥ qr−1 h




F∈Fr,d


(a,x)∈Z(F)

NS(F)Na(F)
F∈Fr,d


(a,x)∈Z(F)

1

 (1 + O(q−1)). (5.6)

Next we analyze the numerator

N :=


F∈Fr,d


(a,x)∈Z(F)

NS(F)Na(F)

in the argument of h in the last expression.

Lemma 5.5. We have N = 2µd q2r−2+dimFr,d(1 + O(q−1)).

Proof. For F ∈ Fr,d and a ∈ VS(F), we have

NS(F) =


x∈Fq

{a ∈ Fr−1
q : F(a, x) = 0}

, Na(F) =
{x ∈ Fq : F(a, x) = 0}

 .
As a consequence,

N =


F∈Fr,d


(a,x)∈Frq
F(a,x)=0


y∈Fq

F(a,y)=0


z∈Fq

{b ∈ Fr−1
q : F(b, z) = 0}


=


F∈Fr,d


(a,x)∈Frq
F(a,x)=0


y∈Fq

F(a,y)=0

q
k=1

(−1)k−1


Zk⊂Fq
|Zk |=k

{b ∈ Fr−1
q : F(b, T )|Zk ≡ 0}


=

q
k=1

(−1)k−1


a∈Fr−1
q


x∈Fq


y∈Fq


Zk⊂Fq
|Zk |=k

Na,x,y,Zk ,

where

Na,x,y,Zk :=


F∈Fr,d

F(a,x)=F(a,y)=0

{b ∈ Fr−1
q : F(b, T )|Zk ≡ 0}


=


b∈Fr−1

q

{F ∈ Fr,d : F(a, x) = 0, F(a, y) = 0, F(b, T )|Zk ≡ 0}
.
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Suppose that k ≤ d. For b ≠ a and x ≠ y, the equalities F(a, x) = 0, F(a, y) = 0, F(b, T )|Zk ≡ 0
are linearly-independent conditions on the coefficients of F . If b ≠ a and x = y, then we have k + 1
linearly-independent conditions. Finally, for b = a, the number of linearly-independent conditions
depends on the size of the intersection {x, y} ∩ Zk. It follows that

Na,x,y,Zk = (qr−1
− 1) qdimFr,d−k−|{x,y}|

+ qdimFr,d−min{d+1,|{x,y}∪Zk|}.

Therefore, by elementary calculations we obtain
x∈Fq


y∈Fq


Zk⊂Fq
|Zk |=k

Na,x,y,Zk = (qr−1
− 1)


q
k


qdimFr,d−k


q2 − q
q2

+
q
q


(1 + O(q1−r))

=
2q − 1

q
(qr−1

− 1)

q
k


qdimFr,d−k(1 + O(q1−r)).

Now assume that k > d. Then the condition F(b, T )|Zk ≡ 0 is equivalent to F(b, T ) = 0. Arguing
as above, we deduce that

x∈Fq


y∈Fq


Zk⊂Fq
|Zk |=k

Na,x,y,Zk =
2q − 1

q
(qr−1

− 1)

q
k


qdimFr,d−(d+1)(1 + O(q1−r)).

Putting these equalities together and using (2.4), we obtain

N = 2q2r−2+dimFr,d
2q − 1
2q

(1 − q1−r)

×

 d
k=1

(−1)k−1

q
k


q−k

+

q
k=d+1

(−1)k−1

q
k


q−d−1


(1 + O(q1−r))

= 2µd q2r−2+dimFr,d(1 + O(q−1)).

This finishes the proof of the lemma. �

Combining (5.6) with (5.5) and Lemma 5.5, it follows that

H ≥ qr−1h

2µd q2r−2+dimFr,d(1 + O(q−1))

qr−1+dimFr,d


(1 + O(q−1)).

In other words, we have the following result.

Theorem 5.6. If H denotes the average entropy of the SVS algorithm, then

H ≥
1

2µd
log(qr−1)(1 + O(q−1)).

Recall that, according to (5.3), for an algorithm for which the outputs are equidistributed we have
the upper bound H ≤ log(qr−1). For large d we have

1
2µd

≈
1

2(1 − e−1)
≈ 0.79.

Wemay therefore paraphrase Theorem 5.6 as saying that the SVS algorithm is at least 79% as good as
any ‘‘ideal’’ algorithm.

6. Simulations on test examples

We end the paper with a description of the results on the number of searches that were obtained
by executing the SVS algorithm on random samples of elements Fr,d, for given values of q, r and d.
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Table 1
Random sample with q = 67, r = 2 and d = 30.

s ps ps ϵs

1 0.635031 0.632121 0.004583
2 0.231664 0.232544 0.003799
3 0.084627 0.085548 0.010889
4 0.030921 0.031471 0.017789
5 0.011279 0.011578 0.026473
6 0.004101 0.004259 0.038575
7 0.001509 0.001567 0.038166
8 0.000553 0.000576 0.042349
9 0.000199 0.000212 0.067918

10 0.000076 0.000078 0.030513
11 0.000025 0.000029 0.161872
12 0.000010 0.000011 0.038441
13 0.000038 0.000003 0.022074
14 0.000011 0.000001 0.339501
15 0.000001 0.000001 0.051253

Recall that C : F×Fr,d → N∪{∞} denotes the random variable which counts the number of searches
that are performed for all possible choices of vertical strips. Theorem 4.3 shows that

P[C = s] ≈ (1 − µd)
s−1µd.

The simulationswe exhibit were aimed to test whether the right-hand side of the previous expression
approximates the left-hand side on the examples considered. For a random sample S ⊂ Fr,d and
a ∈ Fs, we use the following notations:

pa := pr,d[S ∩ Ca = s], ps := (1 − µd)
s−1µd.

We take N := 30 choices of a ∈ Fs, and compute the sample mean

ps :=

N
i=1

pai
N
.

Furthermore, we consider the corresponding relative errors:

ϵs :=
|ps −ps|ps .

Finally, we compare the average number N
q
r,d of vertical strips searched with its theoretical upper

bound according to Theorem 4.4, namely 1/µd.
We consider only relatively moderate values of s, since for higher values the probability pa is

so small that the corresponding information becomes uninteresting. This also explains the fact that
relative errors ϵs tend to grow as s grows. Finally, we remark that, although polynomials without Fq-
rational zeros occur in some of the experiments described below, the number of such polynomial is
so small that it does not affect the average behavior of our simulations.

6.1. Examples with r := 2 and q := 67 and q := 8

In this section we consider random samples of bivariate polynomials with coefficients in the finite
field F67. In Table 1 we consider a random sample S of 1 000000 polynomials of F67[X1, X2] of degree
atmost d := 30 and analyze howmany vertical strips are searched on this sample. Therefore, we haveps := (1 − µ30)

s−1µ30, where µ30 := 0.6321205588 . . . . Further, we have N
67
2,30 = 1.574924 . . . , to

be compared with 1/µ30 = 1.581977 . . . .
Our second example concerns a sample of 1 000000 polynomials of F67[X1, X2] of degree at most

d := 5. We have ps := (1 − µ5)
s−1µ5, where µ5 := 0.6333333 . . . . The corresponding results
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Table 2
Random sample with q = 67, r = 2 and d = 5.

s ps ps ϵs

1 0.635885 0.633333 0.004012
2 0.231459 0.232222 0.003298
3 0.084318 0.085148 0.009844
4 0.030727 0.031221 0.016085
5 0.011188 0.011448 0.023224
6 0.004091 0.004197 0.025996
7 0.001481 0.001539 0.039029
8 0.000543 0.000564 0.040109
9 0.000195 0.000207 0.056976

10 0.000069 0.000076 0.085938
11 0.000029 0.000028 0.030685
12 0.000009 0.000010 0.129198
13 0.000003 0.000003 0.133380
14 0.000002 0.000001 0.085740
15 0.000001 0.000001 0.057169

Table 3
Random sample with q = 8, r = 3 and d = 3.

s ps ps ϵs

1 0.663161 0.666666 0.005259
2 0.222801 0.222222 0.002605
3 0.075617 0.074074 0.014151
4 0.025319 0.024691 0.020831
5 0.008725 0.008230 0.060146
6 0.002859 0.002743 0.042289

are summarized in Table 2. We observe that N
67
2,5 = 1.572816 . . . , to be compared with 1/µ5 =

1.578947 . . . .
We end this section by considering polynomials with coefficients in a non-prime field, namely

F8[X1, X2]. In this case,ps := (1 − µ3)
s−1µ3, where µ3 := 0.666666 . . . . In Table 3 the results for a

sample of 100000 polynomials of degree at most d := 3 are exhibited. We have N
8
3,3 = 1.504512 . . . ,

to be compared with 1/µ3 = 1.5.

6.2. Examples with r := 3 and q := 11 and q := 67

Finally, we consider two samples of 1 000000 polynomials of Fq[X1, X2, X3]. The first sample
contains polynomials of degree at most d := 5 with coefficients in F11, while the second one contains
polynomials of degree at most d := 5 with coefficients in F67. Results are exhibited in Tables 4
and 5 respectively. The average numbers of searched vertical strips are N

11
3,5 = 1.539646 . . . and

N
67
3,5 = 1.572975 . . . , both to be compared with 1/µ5 = 1.578947 . . . .
Summarizing, the results of Tables 1–5 show that the behavior predicted by the asymptotic

estimates of Theorems 4.3 and 4.4 is also appreciated in the numerical experiments we perform.
Nevertheless, as the cost of the SVS algorithm grows exponentially with the number r of variables
under consideration, our experiments only considered the cases r = 2 and r = 3.
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Table 4
Random sample with q = 11, r = 3 and d = 5.

s ps ps ϵs

1 0.649494 0.633333 0.024881
2 0.227637 0.232222 0.020145
3 0.079769 0.085148 0.067430
4 0.027999 0.031221 0.115075
5 0.009822 0.011448 0.165519
6 0.003419 0.004198 0.227683
7 0.001213 0.001539 0.269344
8 0.000421 0.000564 0.340555
9 0.000149 0.000207 0.382851

10 0.000050 0.000076 0.504379
11 0.000017 0.000028 0.662509
12 0.000002 0.000010 0.500062
13 0.000002 0.000004 0.726225
14 0.000001 0.000001 0.523767
15 0.000000 0.000001 2.017058

Table 5
Random sample with q = 67, r = 3 and d = 5.

s ps ps ϵs

1 0.635802 0.633333 0.003883
2 0.231571 0.232222 0.002810
3 0.084285 0.085148 0.010237
4 0.030732 0.031221 0.015898
5 0.011192 0.011447 0.022809
6 0.004081 0.004197 0.028645
7 0.001482 0.001539 0.038865
8 0.000541 0.000564 0.042865
9 0.000199 0.000207 0.039628

10 0.000071 0.000076 0.062618
11 0.000027 0.000028 0.017780
12 0.000010 0.000010 0.003320
13 0.000003 0.000004 0.078891
14 0.000001 0.000001 0.111938
15 0.000000 0.000001 0.257107
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