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The dynamics of Bose-Einstein condensates in asymmetric double wells is studied. We construct a two-mode
model and analyze the properties of the corresponding phase-space diagram, showing in particular that the
minimum of the phase-space portrait becomes shifted from the origin as a consequence of the nonvanishing
overlap between the ground and excited states from which the localized states are derived. We further
incorporate effective interaction corrections in the set of two-mode model parameters. Such a formalism is
applied to a recent experimentally explored system, which is confined by a toroidal trap with radial barriers
forming an arbitrary angle between them. We confront the model results with Gross-Pitaevskii simulations for
various angle values finding a very good agreement. We also analyze the accuracy of a previously employed
simple model for moving barriers, exploring a possible improvement that could cover a wider range of trap
asymmetries.
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I. INTRODUCTION

The two-mode (TM) model has been studied and exten-
sively applied to symmetric double-well atomic Bose-Einstein
condensates in the last years [1–8]. The dynamics of such a
model relies on assuming that the condensate order parameter
can be described as a superposition of wave functions
localized on each well with time-dependent coefficients. The
predicted Josephson and self-trapping regimes [1,2] have been
experimentally observed by Albiez et al. [5]. Also ring-shaped
condensates with two radial barriers forming a double well
have been theoretically studied in the case of dipolar [7] and
contact [9] interactions.

On the other hand, the situation is quite different in the
case of asymmetric double wells since no similar theoretical
development for such configurations has been reported so
far. This kind of system has become increasingly interesting
due to recent experiments [10–12], where toroidal traps with
two radial barriers moving symmetrically were investigated,
which involves a much richer type of dynamics. In fact, in
addition to representing the first experimental realization of a
superconducting quantum interference device (SQUID) analog
with a Bose-Einstein condensate [10,11], such experiments
show a critical barrier velocity above which atoms become
compressed on one side and expanded on the other side, in
close analogy to the transition from dc to ac Josephson effects.
Such an ac regime presents a higher degree of complexity
since excitations like solitons and vortices may be shed into
the rarefied portion of the condensate, giving rise at their
eventual decay to an additional resistive current [12]. If we
restrict ourselves to small displacements of the barriers from
the symmetric configuration, it has been shown in Ref. [10]
that a straightforward generalization of the symmetric TM
model to such a dynamic configuration works well. However,
it is easy to understand that any first step to achieve an
analogous model valid for more general barrier movements
should necessarily involve the study of an asymmetric TM
model, which constitutes the main goal of the present work.
Thus, focusing on an arbitrary configuration of fixed barriers,
we begin in Sec. II by analyzing the properties of the
stationary states of an asymmetric pair of weakly coupled

condensates, from which both localized states are derived. In
fact, the nonvanishing overlap between the Gross-Pitaevskii
(GP) ground state and the excited stationary state turns out to
determine the position of the minimum in the phase-space
diagram. We derive the full set of TM model parameters
and further introduce in Sec. III the corrections in the
interaction energy parameter using the proposal of the authors
of Ref. [9] adapted for an asymmetric system. In Sec. IV A,
we describe the system we use in our model applications
and simulations following the experimental settings of the
authors of Ref. [10]. The corresponding phase-space diagram
is obtained in Sec. IV B, where we compare the TM results
with GP simulations, showing that our model, corrected by the
modified effective interaction parameters, yields a much more
accurate dynamics. The case of moving barriers is considered
in Sec. IV C, where we derive equations of motion similar
to those employed in Ref. [10], discuss the importance of
terms disregarded in this approach, and explore a possible
improvement. Finally, in Sec. V we summarize our work giving
some concluding remarks.

II. ASYMMETRIC TWO-MODE MODEL

The TM model dynamics has been extensively studied in
symmetric double-well potentials [2,3]. The commonly used
ansatz for the wave function reads

ψTM(r,t) = b1(t) ψ1(r) + b2(t) ψ2(r), (1)

where ψ1(r) and ψ2(r) are real, normalized to unity, localized
wave functions at each well. The complex time-dependent
coefficients are written as bk(t) = √

Nk/N eiφk (k = 1,2),
where φk and Nk represent the phase and particle number
in the k well, respectively, and N denotes the total number
of particles. We will use the same ansatz for our generic
asymmetric configuration, with localized states constructed
from the ground state ψG(r), which we assume real and
positive, and from the excited stationary state ψE(r), which
we assume real and negative (positive) in the “1” (“2”) well.
Both states are supposed to be normalized to one. Then, the
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localized states read

ψ1(r) = ψG(r) − ψE(r)√
2(1 − β)

, (2)

ψ2(r) = ψG(r) + ψE(r)√
2(1 + β)

, (3)

where β ≡ 〈ψG|ψE〉 = ∫
d3r ψG(r)ψE(r). Here it is impor-

tant to remark that although the stationary states of the asym-
metric case present a nonvanishing overlap, the corresponding
localized states are indeed orthogonal by construction. Writing
the stationary states in terms of the localized ones we have

ψG =
√

1 − β

2
ψ1(r) +

√
1 + β

2
ψ2(r), (4)

ψE = −
√

1 − β

2
ψ1(r) +

√
1 + β

2
ψ2(r). (5)

Thus, we may see from the above equations that both stationary
states have identical populations at each site.

As usual, to obtain the TM dynamics, we introduce the
order parameter into the time-dependent GP equation

i�
∂ψTM(r,t)

∂t
=

[
− �

2

2m
∇2 + Vtrap(r)

+ g N |ψTM(r,t)|2
]
ψTM(r,t). (6)

Projecting it onto ψ1(r) and ψ2(r), and integrating both
equations using the hopping and on-site energy parameters
given in Eqs. (A1) to (A8) of the Appendix, one obtains

i�
db1

dt
= ε1b1 − Kb2 + U1N |b1|2b1 − F12 N [2Re(b∗

1b2)b1

+ b2|b1|2] − F21Nb2|b2|2
+ IN [2Re(b∗

1b2)b2 + b1|b2|2], (7)

i�
db2

dt
= ε2b2 − Kb1 + U2N |b2|2b2 − F21 N [2Re(b∗

2b1)b2

+ b1|b2|2] − F12Nb1|b1|2
+ IN [2Re(b∗

2b1)b1 + b2|b1|2]. (8)

These equations include all the terms introduced for a
symmetric system in the improved two-mode model [3]. In
terms of imbalance Z = (N2 − N1)/N and phase difference
φ = φ1 − φ2, we obtain the following equations of motion

�Ż = −(Ja + ZJb)
√

1 − Z2 sin φ + IN (1 − Z2) sin(2φ) ,

(9)

�φ̇ = −A + UaNZ + Ja

[
Z√

1 − Z2

]
cos φ

+ Jb

[
2Z2 − 1√

1 − Z2

]
cos φ − IN Z[2 + cos(2φ)], (10)

where

A = ε1 − ε2 + 1

2
N (U1 − U2) , (11)

Ja = 2K + N (F21 + F12) , (12)

Jb = N (F21 − F12) , (13)

Ua = U1 + U2

2
, (14)

with the corresponding parameter definitions given in the
Appendix. The above equations of motion can be obtained
from the following Hamiltonian

H (Z,φ) = −AZ + UaN

2
Z2 − (Ja + ZJb)

√
1 − Z2 cos φ

− INZ2 + IN

2
(1 − Z2) cos(2φ) , (15)

using the fact Z and φ are canonical conjugated coordinates,
i.e., Ż = −∂H/∂φ and φ̇ = ∂H/∂Z.

The phase-space portrait (Z,φ) of such a Hamiltonian
exhibits a minimum (Z0,0), and for strongly interacting
systems, a saddle (Z0,π ) and two maxima (±ZM,π ). As can
be easily deduced from Eqs. (4) and (5), the overlap between
the ground and excited states determines the stationary
imbalance Z0 = β. Thus, we may see that the minimum and
saddle will be shifted in a Z = β value from the corresponding
locations on the φ axis in the case of the symmetric double well.
Using the TM model parameters, Z0 may be approximated
disregarding almost negligible terms by

Z0 � A

UaN
. (16)

The separatrix between closed, with a bounded phase (BP),
and open, with a running phase (RP), orbits arises from the
condition that the energy corresponds to the saddle point,
H (Z,φ) = H (Z0,π ). Particularly, for φ = 0 the separatrix
yields a critical imbalance Zc given approximately by

Zc � Z0 ±

√√√√4(Ja + Z0Jb)
√

1 − Z2
0

UaN
, (17)

where the plus (minus) sign corresponds to the separatrix above
(below) the BP orbits.

III. EFFECTIVE INTERACTION EFFECTS

The inclusion of effective interaction effects in the TM
model of a symmetric double-well system has shown to
provide an accurate correction to the disagreements with
GP simulations [9,13]. Such a correction takes into account
the density deformation of the GP mean-field term when
varying the imbalance, which results in a net reduction of
the interaction energy parameter. Within the Thomas-Fermi
approximation, the corresponding reducing factor can be
analytically obtained [13], whereas a numerical calculation
using the ground-state density has shown to provide accurate
values in more general cases [9]. We note that a similar
correction (about a 20% reduction) has been introduced in the
plasma oscillation frequency of a tunable superfluid junction,
which was shown to be crucial to accurately describing
experimental results [14].

Here we follow the same procedure of the authors of
Ref. [13] and revise the term related to the interaction
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energy

U1N1 − U2N2 � U
�N1
1 N1 − U

�N2
2 N2 , (18)

where

U
�Nk

k =
∫

d3r ψ2
k (r) ρ

�Nk

k (r) (k = 1,2). (19)

In asymmetric double-well systems, in principle, the de-
formation of each localized density is not the same and
thus the effective interactions U

�N1
1 and U

�N2
2 [9,13] should

be treated separately. The idea behind the method is that
nonequilibrium states can be well aproximated by localized
on-site states corresponding to the instantaneous population
at each well N0

k + �Nk , where N0
k denotes the population

of the k well for N particles. Such localized states can be
obtained from the stationary states of systems with a total
number of particles different from N , whose localized on-site
densities (normalized to unity) are denoted by ρ

�Nk

k (r) in
Eq. (19). More details about this calculation will be given in
Sec. IV A.

We will assume that analogously to the symmetric
case [9,13], the following first-order approximation remains
valid in any case

U
�Nk

k =
(

1 − 2αk

�Nk

N

)
Uk, (20)

where the parameter αk may be numerically evaluated ac-
cording to the procedure of the authors of Ref. [9]. Using
2�N1

N
= Z0 − Z = −2�N2

N
in Eq. (20) and replacing this result

in Eq. (18) we obtain

U
�N1
1 N1 − U�N2N2

N
= 1

2
[(1 − α1Z0)U1 − (1 + α2Z0)U2)]

− Z

2
[(1 − α1)U1 + (1 − α2)U2)]

− Z(Z − Z0)

2
(α1U1 − α2U2). (21)

Then, with the following definitions of effective on-site
energy-dependent parameters

Ã = ε1 − ε2 + 1
2N [(1 − α1Z0)U1 − (1 + α2Z0)U2] , (22)

Ũa = 1
2 [(1 − α1)U1 + (1 − α2)U2)] , (23)

B̃ = 1
2 (α1U1 − α2U2) , (24)

and introducing the correction (21) into the equation of
motion (10), we obtain

�φ̇ = −Ã + ŨaNZ + Z(Z − Z0)NB̃

+ Ja

[
Z√

1 − Z2

]
cos φ + Jb

[
2Z2 − 1√

1 − Z2

]
cos φ

− IN Z[2 + cos(2φ)], (25)

which is consistent with the following “effective” Hamiltonian

H̃ (Z,φ) = −ÃZ + ŨaN

2
Z2 − (Ja + ZJb)

√
1 − Z2 cos φ

− INZ2 + IN

2
(1 − Z2) cos(2φ)

−
(

1

2
Z0Z

2 − 1

3
Z3

)
B̃N. (26)

The model represented by the equations of motion (9) and (25)
and the Hamiltonian (26), will be called as the effective
two-mode (ETM) model in what follows. With respect to the
new phase-space portrait derived from this Hamiltonian, it can
be easily verified that the position of the minimum remains
located at Z0, which may be also approximated by

Z0 � Ã

ŨaN
, (27)

whereas the shape of the orbits may differ from that obtained
with the bare parameters, as will be shown in the following
sections. We also note that Ũa and Ã become reduced with
respect to Ua and A, as seen from Eqs. (22) and (23), provided
the parameters αk are positive. On the other hand, we remark
that the parameter B̃ arises from the combined effects of
interaction and asymmetry.

IV. NUMERICAL RESULTS

A. System

We describe in what follows the system utilized in our
simulations and model applications. All the trapping parame-
ters and condensate details have been chosen to reproduce the
experimental setting of Ref. [10]. The trapping potential can
be written as the sum of a part that depends only on x and y

and a part that is harmonic in the tightly bound direction z:

Vtrap(x,y,z) = V (x,y) + λ2z2 (28)

being

V (x,y) = VT(r) + VB (x,y). (29)

The above potential consists of a superposition of a toroidal
term VT(r) (r2 = x2 + y2) and the radial barrier term VB (x,y).
The toroidal potential was modeled through the following
Laguerre-Gauss optical potential [15]

VT(r) = −V0

(
r2

r2
0

)
exp

(
1 − r2

r2
0

)
, (30)

where V0 corresponds to the depth of the potential and r0 the
radial position of its minimum. We have used scaled units
referenced to a chosen unit of length denoted by L0 (in our
case L0 = 1 μm). Energy and time units were defined in terms
of L0:

E0 = �
2

mL2
0

, T0 = �/E0, (31)

where m denotes the mass of a condensate atom. For the
present case of 87Rb atoms we have E0/kB = 5.5298 nK and
T0 = 1.3813 ms.
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The barrier was modeled as

VB(x,y) = Vb

2∑
k=1

exp

{
− [y cos θk − x sin θk]2

λ2
b

}

×[y sin θk + x cos θk], (32)

where  denotes the Heaviside function with θ1 = θ and θ2 =
π − θ . The parameter θ will be assumed as time dependent
in the case of moving barriers. We have utilized, according
to Ref. [10], the following trap parameters: V0 = 70 nK,
r0 = 4 μm, Vb = 41.07 nK, and λb = 1 μm. These barrier
parameters yield a full width at half maximum of the barrier
nearly below 2 μm, which is in agreement with the experimen-
tal data leading to a tunnel junction. We have assumed a high
λ = 8 value yielding a quasi-bidimensional condensate and
allowing a simplified numerical treatment [16]. So, stationary
states are written as the product of a two-dimensional (2D)
wave function ϕ(x,y) and a Gaussian wave function along the

z coordinate,
√

λ1/2

π1/2 e− λz2

2 . Thus, assuming barriers remaining
at rest, the GP equation for the former reads [16]

−1

2

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)
+ V (x,y) ϕ + gN

√
λ

2π
|ϕ|2ϕ = μϕ

(33)

with

g = 4π�
2a/m

E0L
3
0

= 4πa/L0, (34)

where a = 98.98 a0 denotes the s-wave scattering length of
87Rb, a0 being the Bohr radius. In Fig. 1 we depict the 2D
particle density |ϕ(x,y)|2 for the ground state at different
positions of the barriers. According to the notation of previous
sections we will call the top and bottom wells of Fig. 1 as
“1” and “2,” respectively. In the following we will restrict

our calculations to a system with N = 3000. As regards the
excited state, we have obtained its wave function by evolving
in imaginary time an initial wave function identical to that
of the ground state in site “2,” whereas we introduced a
change of sign in the site “1,” i.e., a wave-function positive
in site “2” and negative in site “1,” a feature that turns out
to persist until final convergence to the stationary excited
state. This procedure works well for all configurations below
θ = 0.394π , while for more asymmetric systems, the energy
gap between the excited and the ground states becomes so low
that the imaginary-time evolution leads to a “decay” to the
ground state. Here it is interesting to notice that, generalizing
the TM result of the symmetric case [14], such a gap reads
(Ja + Z0Jb)

√
1 − Z2

0 > 0, which vanishes for Z0 → 1, as
expected.

To illustrate the method we used to calculate the coefficients
αk in Eq. (20), we depict in Fig. 2 the quantities 1 − U

�Nk

k /Uk

as functions of �Nk

N
= (Nk − N0

k )/N for θ = π/5, where N0
k

is obtained from the projection of the ground state onto the
k-localized state for N = 3000, whereas Nk is calculated
analogously, but with a different total number of particles.
Thus, according to Eq. (20), we have extracted the values of
αk from the slope of the lines. We note that α1 turns out to be
larger than α2 because the smaller condensate should present
the larger deformation for an identical change in the particle
number.

B. Phase-space portrait and dynamics for static barriers

We first note that for 0 � θ � π/2, the overlap between
the ground and excited states verifies 0 � β � 1, and the
same occurs for the position of minimum and saddle since
Z0 = β. In Fig. 3 we depict the phase-space diagram of
Hamiltonian (15) for θ = π/5. In this case we have Z0 =
0.5163, which corresponds to the Z coordinate of minimum
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FIG. 1. (Color online) Particle density isocontours for the ground state at different positions of the barriers for N = 3000.
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FIG. 2. The functions 1 − U
�Nk

k /Uk for top well (left panel) and bottom well (right panel), versus each corresponding particle number
difference for θ = π/5. The square dots represent calculated values, while the solid lines correspond to linear fits of such values.

and saddle in such a figure. The separatrix between BP and
RP orbits has been numerically obtained and has been denoted
by dashed lines in Fig. 3. We remark that the values Zc =
Z0 ± 0.0358 derived from Eq. (17) are in well accordance
with the intersections of the dashed lines and the vertical
axis. In Fig. 4 we depict the phase-space portrait arising from
GP simulations and from ETM and TM models. We notice
that the minimum of Hamiltonian (26) remains located at Z0

[cf. Eq. (27)], whereas the shape of the orbits differ from that
observed in Fig. 3. Particularly, the separatrix between closed
and open orbits covers a wider range of Z values, as shown
in Fig. 4 through the locations of the critical imbalance Zc

arising from the TM model [cf. Eq. (17)] indicated by red
dots, and those arising from the ETM model (blue stars). Here

-1.0 -0.5 0.0 0.5 1.0

0.46
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0.54

0.56

0.58

Z

φ/π

FIG. 3. (Color online) Phase-space portrait Z versus φ for θ =
π/5 arising from Hamiltonian (15). Each orbit is represented by a
solid line, except for the separatrix between closed and open orbits,
which is represented by the dashed line. The minimum has been
indicated by a red star and the saddle point by red circles.

it is worth noticing also that the value of Zc obtained from
GP simulations coincides with the corresponding ETM result.
Therefore, we may conclude that the matching between ETM
model and GP simulation results turns out to be much better
than that of the plain TM model.

We have depicted in Fig. 5 the time evolution of imbalance
and phase difference for θ = π/5 and θ = π/3 arising from
GP simulations, together with the corresponding TM and
ETM results. It is remarkable that the excellent agreement
between GP and ETM time evolutions persists even for most
asymmetric configurations.
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FIG. 4. (Color online) Imbalance Z versus phase difference φ for
θ = π/5. The GP simulation results are represented by black solid
lines and the ETM model results by blue dashed lines. Orbits arising
from the bare TM model are also depicted using red dotted lines. The
separatrix points (Z = Zc,φ = 0) are indicated by dots: red circles
and blue stars correspond to TM and ETM models, respectively.
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FIG. 5. (Color online) Time evolution of the imbalance Z (left panels) and the phase difference φ (right panels) for θ = π/5 (upper four
panels) and θ = π/3 (lower four panels). The GP simulation results are represented by black solid lines, the bare TM model results by red
dotted lines, and the ETM model results by blue dashed lines.

C. Moving barriers

The experimental results found in Ref. [10] were well
reproduced from a simple model [17] that adapted the TM
equations of motion of a symmetrical configuration to the case
of moving barriers by simply taking into account the effect of
a θ -dependent equilibrium imbalance Z0[θ (t)]. Such a simple
model for moving barriers (SMMB) can be easily derived
from our equations of motion (9) and (25) by approximating
all the model parameters by their values of the symmetric
configuration, neglecting terms proportional to the small
parameter I , and replacing Ã → Z0[θ (t)]ŨaN according to

Eq. (27). Thus we obtain

�Ż = −J
√

1 − Z2 sin φ , (35)

�φ̇ = ŨN{Z − Z0[θ (t)]} + J
Z√

1 − Z2
cos φ , (36)

where J = Ja and Ũ = Ũa , respectively, denote hopping and
on-site energy parameters given by the corresponding values
of the symmetric case (θ = 0). The barrier movement in
these equations is represented by Z0[θ (t)], and of course only
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FIG. 6. (Color online) Time and θ dependence of the imbalance Z (left panel) and the phase difference φ (right panel) for the barrier
angular frequency fb = 0.1 Hz. The GP simulation results are represented by black solid lines and the SMMB results by blue dashed
lines.

small departures from the symmetric configuration should be
expected to be well reproduced. Particularly, the experiments
in Ref. [10] were restricted to θ < π/8, and in this paper we
will explore the dynamics for a wider range of asymmetric
final configurations.

By numerically analyzing Z0 as a function of θ , we have
observed a linear behavior Z0 = α θ (2πα = 5.1585), except
for values reaching θ � 0.4π where both barriers begin to
overlap (Z0 → 1). We note that the approximation 2πα = 4
used in Ref. [10], which amounts to assuming a linear behavior
of Z0(θ ) up to θ = π/2 [Z0(θ = π/2) = 1], corresponds to
the limit of a negligible barrier width and also neglecting any
healing length arising from the presence of barriers.

For simplicity, we will assume in this paper barriers moving
with a constant angular frequency fb, thus θ (t) = 2πfb t and
we may approximate

Z0[θ (t)] = α2πfb t. (37)

In Figs. 6 and 7 we depict the time evolution of imbalance
Z and phase difference φ for barriers moving with fb = 0.1

and 0.5 Hz, respectively. The solid lines correspond to GP
simulation results, while the dashed ones correspond to the
SMMB results. There we may observe typical behaviors of the
so-called dc- and ac-Josephson regimes for barrier frequencies
0.1 and 0.5 Hz, respectively [10,17]. In fact, the dc-Josephson
regime, which occurs below certain critical barrier frequency,
is characterized by small oscillations around Z0(t) and a
bounded phase difference, and for this reason we shall call
it as the dynamical bounded-phase (DBP) regime. On the
other hand, for a large enough barrier velocity a compression
dynamics occurs [10,12], which defines the ac-Josephson
regime. Such a regime exhibits an unbounded phase and so we
shall call it in what follows as the dynamical running-phase
(DRP) regime.

It is instructive to analyze the short-time behavior of
both regimes using the SMMB equations (35) and (36). For
small barrier angular frequencies within the DBP regime,
an analytically tractable dynamics arises by linearizing the
SMMB for Z 
 1 and φ 
 1. Thus we obtain the approximate
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FIG. 7. (Color online) Same as Fig. 6 for the barrier angular frequency fb = 0.5 Hz. The inset within the left panel corresponds to a more
extended evolution of the imbalance.
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FIG. 8. (Color online) Snapshots of the particle density (left) and phase distribution (right). The top panels correspond to fb = 0.1 Hz and
t = 1500 ms, while the bottom panels correspond to fb = 0.5 Hz and t = 300 ms. In both cases the barriers are located at θ = 0.3π .

solutions

Z = 2παfb

[
t − 1

ωp

sin(ωpt)

]
, (38)

φ = −�2παfb

J
[1 − cos(ωpt)] , (39)

with ωp =
√

ŨNJ
�2 , that qualitatively resembles the GP dy-

namics of Fig. 6, mainly the fact that Z oscillates around
Z0(t) and the bounded phase remains confined to negative
values. For longer times, increasing differences between the
GP simulation results and those of the SMMB are observed for
θ > 0.15 π in the phase evolution at the right panel of Fig. 6.

On the other hand, in the DRP regime, we may approximate
for large barrier angular frequencies

�φ̇ � −ŨNZ0(t) = −ŨN2παfbt , (40)

which yields an unbounded monotonically decreasing phase.
This qualitatively reproduces the behavior of the phase
difference shown in the right panel of Fig. 7, particularly the

increasing negative slope that is observed along the evolution.
As regards the imbalance shown in the left panel, we may
see that the GP behavior is only reproduced by the SMMB
at very short times (t < 60 ms). For longer times the SMMB
completely fails to describe the GP dynamics. In particular,
from the inset in this figure, it may be seen that the model
asymptotically oscillates around Z � 0.02, whereas the GP
simulation shows an almost quadratic behavior, approaching
Z = 1. Note that any realistic dynamics should tend to Z = 1
where the barriers are superposed. The above failure of the
SMMB in the DRP regime is easily understood from a simple
inspection of the density and phase snapshots shown in Fig. 8.
In fact, it is clear that any variant of the TM model, like that
yielding the SMMB, is supposed to rely on assuming that the
shape of the density should at any time resemble that of a
stationary state (Fig. 1), and the phase should remain almost
homogeneous at each well. This is indeed the case for the
snapshots of fb = 0.1 Hz in Fig. 8, which are consistent with
the quite acceptable results for the SMMB in Fig. 6, and also
suggest that an “improved SMMB” covering a wider range of
asymmetric configurations could be eventually devised for the
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FIG. 9. (Color online) Z − Z0 versus φ for several barrier veloc-
ities. The GP simulation results (black solid lines) may be compared
to the SMMB results (blue dashed lines) for the barrier frequencies
0.17, 0.25, and 0.2775 Hz. The GP critical barrier frequency f

(2)
b �

0.2775 Hz is represented by black dotted lines. The SMMB Z − Z0

turning points for 0.25 Hz (0.2775 Hz) are represented by black circles
(red stars). Inset: The phase of the first SMMB Z − Z0 turning points
versus the barrier frequency for DBP (DRP) evolutions is represented
by black circles (red stars), while the estimate (41) is depicted by a
solid line.

DBP regime. On the other hand, the snapshots of fb = 0.5 Hz
show a very different situation, with important deformations
in the density, as compared to that of the ground state, and with
clear inhomogeneities in the phase at the bottom well, which
reflects the formation of excitations like vortices in the rarefied
portion of the condensate, as also discussed in Ref. [12]. None
of these features could be taken into account in any simple
model like the SMMB.

In Fig. 9 we depict Z(t) − Z0(t) as a function of φ(t)
obtained from GP simulations and from the SMMB for
several frequencies. It may be seen that the DBP oscillations
are confined within an oval-like region, whereas the DRP
evolutions are localized on the negative Z − Z0 half-plane and
can acquire any phase value. As regards the DBP oscillations,
it is important to remark that they are not closed orbits since
each new loop does not exactly reproduce the previous one.
Moreover, after a number of DBP loops, a given orbit (e.g.,
fb = 0.25 Hz) may “decay” to the DRP regime. So, for
the sake of clarity, we have only plotted in Fig. 9 that part
of the trajectory corresponding to the first period of each
DBP evolution. In addition, we point out that the asymmetry
parameter θ in Fig. 9 does not exceed in any case the
experimental limit of π/8.

It is interesting to analyze the turning points of the above
trajectories, where the time derivatives of Z − Z0 or φ

vanish. The φ turning points are located, as seen in Fig. 9,
approximately at the origin and on the negative φ axis for

the DBP loops, while they are absent in the DRP regime,
as expected. On the other hand, the Z − Z0 turning points
change from being a couple of almost vertically aligned points
for the DBP loops (e.g. the black circles for fb = 0.25 Hz
in Fig. 9) to becoming pairs of a maximum at left and a
minimum at right, located almost symmetrically with respect
to the vertical line φ = −π/2, as indicated by the red stars for
fb = 0.2775 Hz. However, there are no such turning points
above certain frequency, as observed for fb = 0.5 Hz in Fig. 9.
This may be deduced from the following estimate of the phase
φ of the Z − Z0 turning points

fb � −J sin φ

�2πα
, (41)

which stems from Eqs. (35) and (37) using the approximation
Z2 
 1. First it is convenient to compare the above prediction
to the phase of the first SMMB turning points for several
barrier frequencies in the inset of Fig. 9. We may see that there
is an excellent agreement between the above formula and such
points, while we have found that this approximation remains
quite acceptable for subsequent periods within θ < π/8, as
observed for the red stars in the main plot of Fig. 9. Now,
one may define two critical frequencies f

(1)
b and f

(2)
b from

the inset of Fig. 9. In fact, above the maximum of the sinusoid
f

(1)
b � J/(�2πα) � 0.38 Hz, there are no more turning points,

which corresponds to the barrier frequency leading to the
critical current defined in Ref. [10]. On the other hand,
the minimum barrier frequency f

(2)
b above which there are

no more φ turning points, with the corresponding lack of
any DBP regime (0.2775 Hz for GP results), corresponds
in the inset of Fig. 9 to the transition from black circles to
red stars.

The increasing discrepancies between the GP simulation
results and those of the SMMB above certain asymmetry
shown in Fig. 6 arise, as already pointed out, from the
use of the parameters of the symmetric system in the
SMMB. A first attempt to quantify the extent to which such
an approximation could affect the SMMB results can be
evaluated by appreciating the differences in the value of the
ETM model parameters in Table I with respect to those of the
symmetric case. Note that the only nonvanishing parameters of
the symmetric configuration are those of the SMMB, Ũa = Ũ

and Ja = J , and the neglected parameter I . On the other
hand, although all the remaining parameters become finite for
asymmetric configurations, for θ � π/8 only a little effect of
such asymmetries on the SMMB accuracy should be expected
to occur since, Ũa and Ja vary less than 10%, we have
Z0Jb 
 Ja , and Ã � ŨaNZ0 [cf. Eq. (27)] is well fulfilled
in Table I. This explains the good agreement between GP and
SMMB results observed in Fig. 9 and also the agreement with
experimental data reported in Ref. [10].

Now, the simplest improvement to the SMMB to take
into account the evolving trap configuration may be provided
by an immediate generalization of the ETM model with its
parameters depending on the instantaneous trap asymmetry,
i.e., for a time-dependent θ . To test such a possibility in the
DBP regime, we depict in Figs. 10 and 11 the derivatives
of imbalance and phase difference as functions of time
arising from GP simulations for fb = 0.1 Hz, and compare
such results to those given by the SMMB, and with the
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TABLE I. ETM Model parameters for different positions of the barriers. The values are given in nK except for the particle imbalance Z0.

Parameter θ = 0 θ = π/16 θ = π/8 θ = π/5

Ã 0 4.734 10.06 15.95
Ũa 9.655 × 10−3 9.769 × 10−3 1.000 × 10−2 1.030 × 10−2

B̃ 0 7.590 × 10−4 1.823 × 10−3 4.278 × 10−3

Ja 1.495 × 10−2 1.474 × 10−2 1.395 × 10−2 1.109 × 10−2

Jb 0 2.512 × 10−3 5.693 × 10−3 1.226 × 10−2

I 7.068 × 10−8 7.256 × 10−8 7.885 × 10−8 9.606 × 10−8

Z0 0 0.1615 0.323 0.516

corresponding values arising from the ETM equations (9)
and (25) for a variable (time-dependent) θ with Z and φ taken
from the GP simulation results. Then we may observe in Fig. 10
that the SMMB prediction for the imbalance derivative (blue
solid line) shows an increasing departure from the GP results
for θ above 0.15 π . On the other hand, the results arising from
the ETM model (yellow stars) show a better agreement with
the GP simulation values for the whole time evolution.

As regards the calculations of the phase derivative, first we
want to remark that we have found that the hopping terms (the
terms in Ja , Jb, I , and J ) in the Eq. (10) for TM, Eq. (25)
for ETM, and Eq. (36) of the SMMB turn out to be all
negligible with respect to the on-site energy-dependent terms,
so we have disregarded their contribution in the calculations
corresponding to Fig. 11. Thus, again one finds that the SMMB
results increasingly differ from the GP results for θ above
0.15 π , and also that the ETM calculation clearly improves
the agreement with the simulation results. In addition, it is
possible in this case to test the accuracy of the ETM model
results versus those of the plain TM model, as observed in
Fig. 11.
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FIG. 10. (Color online) (dZ/dt)/ sin φ calculated from GP sim-
ulation results (black dots), from the ETM model, −√

1 − Z2(Ja +
ZJb)/� + (I/�)N (1 − Z2) sin(2φ)/ sin φ (yellow stars), and from
the SMMB, −√

1 − Z2J/� (blue solid line). The barrier velocity
corresponds to fb = 0.1 Hz.

V. CONCLUSION

We have developed a two-mode model of a Bose-Einstein
condensate in an asymmetric double well. Taking into account
effective interaction effects as proposed previously for sym-
metric configurations, we have introduced corrections to such a
model to improve the agreement with simulation results. Thus,
we applied this formalism to a recently explored experimental
setting of a toroidal trap split into an asymmetric double-well
condensate by means of a pair of radial barriers. We have
found that the qualitative agreement with the GP simulation
results arising from the plain asymmetric TM model, became
enhanced to the extent of an excellent concordance when the
effective interaction effects were considered, for practically
the whole range of asymmetric configurations.

We have explored the range of validity of the simplest
theoretical model for moving barriers, previously utilized
to describe experimental results, finding that it should fail
for larger departures from the symmetric configuration than
those considered in the experiment, and also for the running-
phase regime of higher barrier frequencies. Finally, we have
performed an analysis of a possible improvement of this model,
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FIG. 11. (Color online) (dφ/dt)/(Z − Z0) calculated from GP
simulation results (black dots), from the ETM model,
N

(
Ũa + ZB̃

)
/� (yellow stars), from the plain TM model, NUa/�

(red circles), and from the SMMB, NŨ/� (blue solid line). The
barrier velocity corresponds to fb = 0.1 Hz.
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which consists in an immediate generalization of the asymmet-
ric ETM model to a moving-barrier configuration, simply by
employing parameters depending on the instantaneous trap
asymmetry. Our results obtained for the DBP regime pave the
way for further studying more complex dynamics driven by
different kinds of barrier movements.
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APPENDIX: TM MODEL PARAMETERS

The TM model parameters read

ε1 =
∫

d3r ψ1(r)

[
− �

2

2m
∇2 + Vtrap(r)

]
ψ1(r), (A1)

ε2 =
∫

d3r ψ2(r)

[
− �

2

2m
∇2 + Vtrap(r)

]
ψ2(r), (A2)

K = −
∫

d3r ψ1(r)

[
− �

2

2m
∇2 + Vtrap(r)

]
ψ2(r), (A3)

U1 = g

∫
d3r ψ4

1 (r), (A4)

U2 = g

∫
d3r ψ4

2 (r), (A5)

F12 = −g

∫
d3r ψ3

1 (r)ψ2(r), (A6)

F21 = −g

∫
d3r ψ1(r)ψ3

2 (r), (A7)

I = g

∫
d3r ψ2

1 (r) ψ2
2 (r). (A8)

We note that according to the definitions (11) and (14), A

and Ua turn out to be on-site energy-dependent parameters,
as they are built from the on-site energy parameters εk

and Uk . On the other hand, K is the standard hopping
coefficient, while the remaining hopping parameters F12, F21,
and I were first introduced by Ananikian and Bergeman in
Ref. [3]. Particularly, NF12 and NF21 can be interpreted
as additional contributions to the tunneling obtained from a
modified Hamiltonian that includes the interaction term as an
effective potential [4]. We remark that in both references the
authors assumed symmetric traps with F12 = F21, a parameter
which in our case would only contribute to the hopping
parameter Ja (12). On the other hand, in an asymmetric trap,
the difference between F21 and F12 gives rise to the additional
hopping parameter Jb (13). As regards the parameter I , it
corresponds to atom-pair tunneling processes and, although it
turns out to be in most cases negligible, it was recently shown
that for enough strong interaction regimes a quantum phase
transition driven by such atom-pair tunneling events should be
expected to take place [18].
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