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Minimal massive gravity (MMG) is an extension of three-dimensional topologically massive gravity
that, when formulated about anti-de Sitter space, accomplishes solving the tension between bulk and
boundary unitarity that other models in three dimensions suffer from. We study this theory at the chiral
point, i.e. at the point of the parameter space where one of the central charges of the dual conformal field
theory vanishes. We investigate the nonlinear regime of the theory, meaning that we study exact solutions to
the MMG field equations that are not Einstein manifolds. We exhibit a large class of solutions of this type,
which behave asymptotically in different manners. In particular, we find analytic solutions that represent
two-parameter deformations of extremal Bañados–Teitelboim–Zanelli black holes. These geometries
behave asymptotically as solutions of the so-called log gravity, and, despite the weakened falling off close
to the boundary, they have finite mass and finite angular momentum, which we compute. We also find
time-dependent deformations of Bañados–Teitelboim–Zanelli that obey Brown–Henneaux asymptotic
boundary conditions. The existence of such solutions shows that the Birkhoff theorem does not hold in
MMG at the chiral point. Other peculiar features of the theory at the chiral point, such as the degeneracy it
exhibits in the decoupling limit, are discussed.
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I. INTRODUCTION

Minimal massive gravity (MMG), introduced in Ref. [1],
is an extension of three-dimensional topologically massive
gravity (TMG) which, when formulated about anti-de Sitter
space (AdS), accomplishes solving the tension between
bulk and boundary unitarity. As TMG, MMG about AdS3
propagates a single local degree of freedom [2]. However,
in contrast to what happens in other models of three-
dimensional gravity such as TMG or new massive gravity
(NMG) [3], in MMG the AdS3 graviton excitation happens
to have positive energy for the same values of coupling
constants for which the central charges of the dual
conformal field theory (CFT) turn out to be positive.
Therefore, MMG seems to solves this bulk-boundary
unitarity puzzle in an ingenious way [1,4].
Having a minimal model of three-dimensional gravity

that allows for positive graviton excitations and, at the same
time, positive central charges in the dual theory, a natural
question arises as to what happens with the graviton
excitation at the so-called chiral point, i.e. at the point
of the parameter space where one of the two central charges
of the dual CFT2 vanishes. This question is natural as the
physics of the graviton excitation at the chiral point was
the main point in the discussion about the consistency of
the so-called chiral gravity; see Refs. [5–9].
Being parity-odd theories, both TMG and MMG in

AdS3 have an asymptotically symmetry algebra generated
by two copies of Virasoro algebra with different central

charges, c�. The difference between these central charges,
cþ − c−, controls the diffeomorphism anomaly in the dual
CFT2. There is a point (or a curve) in the parameter space
where one of these central charges (say c−) vanishes. It is
commonly believed that at that point, and provided
suitable boundary conditions are imposed, the boundary
theory becomes a chiral CFT2. At the chiral point, the bulk
theory also exhibits peculiar features, like the appearance
of new solutions with different boundary conditions.
Depending on the asymptotic boundary conditions
considered, the local degrees of freedom of the bulk theory
can vary. For instance, in the case of TMG at the chiral
point, there exist two different models that coexist, each of
them exhibiting substantially different features: One such
theory is chiral gravity, originally proposed by Li et al. in
Ref. [5], which is defined by considering TMG on AdS3
at the point c− ¼ 0 and imposing Brown–Henneaux
boundary conditions [10]. The other theory is the so-
called log gravity [9], which is defined by considering the
same action with the same values of the coupling constants
but demanding a weakened version of the asymptotic
boundary conditions originally proposed by Grumiller
and Johansson in Ref. [7]. While the former theory is
conjectured to be dual to a chiral CFT2, there is evidence
suggesting that the latter is dual to a nonunitary
(logarithmic) CFT2.
Unlike chiral gravity, log gravity exhibits a propagating

degree of freedom (a bulk graviton). In Ref. [7], the energy
of this graviton was computed and shown to be negative
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(for values of the couplings for which cþ was positive).
Besides, in Ref. [8], it was shown that such graviton causes
a linear instability in the theory, making it necessary to go
to second order in perturbation theory to capture its actual
asymptotic behavior [9]. An important piece of information
to confirm that a theory with a propagating graviton with
weakened falling off at the chiral point c− ¼ 0 actually
existed was given in Ref. [11], where it was proven that
exact solutions obeying the boundary conditions of [7] but
not obeying those of Ref. [10] actually exist. This permitted
bringing the discussion between chiral gravity vs log
gravity beyond the linear and next-to-linear level. One of
the results of this paper is to extend this analysis to the case
of MMG. We will show that MMG at the chiral point
(c− ¼ 0) admits exact solutions that are asymptotically
AdS3 in the sense proposed in Ref. [7] but fail to obey
Brown–Henneaux boundary conditions. Some of the sol-
utions we exhibit correspond to a two-parameter deforma-
tion of the extremal Bañados–Teitelboim–Zanelli (BTZ)
black holes [12], with a deformation that may behave
asymptotically either as the graviton of log gravity or as a
Brown–Henneaux solution. We compute the conserved
charges of these MMG solutions and show that, despite
the weakened asymptotics, the charges are finite. We also
consider the question as to whether exact solutions exist
which, while obeying the stronger Brown–Henneaux
asymptotics, happen not to be solutions of three-
dimensional general relativity. The (non)existence of such
solutions at the chiral point was an important ingredient in
the discussion of Ref. [9] about the contributions to the
chiral gravity partition function. Solutions of this sort for
the case of TMG were subsequently found in Ref. [13], and
here we show how they can be generalized and extended to
MMG. In particular, this leads us to show that in this theory
the Birkhoff theorem does not hold, in the sense that there
exist circularly symmetric vacuum solutions that are
time dependent. We find such time-dependent solutions
explicitly.
The paper is organized as follows. In Sec. 2, we briefly

introduce MMG theory in AdS3. In Sec. 3, we study the
theory at the chiral point at nonlinear level. That is, we
study analytic solutions of the theory that are not the
simple extensions of general relativity solutions. In
particular, we present a two-parametric deformation of
the extremal BTZ solution which has nonvanishing mass
and angular momentum at the chiral point. These sol-
utions are explicit examples of solutions that behaves
asymptotically as log gravity solutions. We also find
analytic time-dependent deformations of the extremal
BTZ black hole, showing that the Birkhoff theorem does
not hold in this model. Nevertheless, we show that
these time-dependent excitations carry zero conserved
charges. We also find a much more general set of
solutions, with different asymptotics. In Sec. 4, we
present our conclusions.

II. MINIMAL LOG GRAVITY

A. Minimal massive gravity

MMG is an extension of TMG. It can be conveniently
described in the so-called first-order formalism, i.e. in terms
of the vielbein one-form ea ¼ eaμdxμ and the spin con-
nection one-form ωab ¼ ωab

μ dxμ (where Latin indices refer
to the tangent space). First, let us recall that TMG can also
be described in such a way by first considering the
Einstein–Hilbert action with cosmological constant and
then adding to it the exotic Chern–Simons term forωab plus
a term that couples a Lagrange multiplier λa to the torsion
two-form Ta ¼ dea þ ωa

b∧eb; see for instance Ref. [14].
Then, the MMG is defined by augmenting the TMG action
written in the first-order formalism by also including a term
that is quadratic in λa. In this way, the variation of the action
with respect to ωab produces an algebraic equation for λa,
while the equation of motion associated to the variation
with respect to ea involves its covariant derivative
dλa þ ωa

b∧λb; see also Ref. [15]. This yields a set of
third-order field equations that defines MMG. In the
second-order formalism, the equations of motion of
MMG read

σGμν þ Λgμν þ
1

μ
Cμν ¼ −

γ

μ2
Jμν; ð2:1Þ

where Gμν is the Einstein tensor, Gμν ≡ Rμν − 1
2
Rgμν, and

Cμν is the Cotton tensor

Cμν ¼
ϵρσμffiffiffiffiffiffi−gp ∇ρSσν; ð2:2Þ

with Sμν being the Schouten tensor, Sμν ≡ Rμν − 1
4
Rgμν, and

where the tensor Jμν is defined also in terms of Sμν as
follows:

Jμν ¼
1

2

ϵρσμffiffiffiffiffiffi−gp ϵτηνffiffiffiffiffiffi−gp SρτSση: ð2:3Þ

In (2.1), Λ is the cosmological constant, μ is a coupling
constant with mass dimension 1, and γ is an arbitrary
dimensionless constant. σ stands for a coefficient that can
be set to σ ¼ �1 by rescaling the other coupling constants.
One can verify that (2.3) can be written as

Jμν ¼ R ρ
μ Rρν −

3

4
RRμν −

1

2
gμν

�
RρσRρσ −

5

8
R2

�
: ð2:4Þ

Since Jμν is of second order in the metric, the Lanczos–
Lovelock theorem implies that it can not be covariantly
conserved; that is, the quantity ∇μJ

μ
ν cannot vanish iden-

tically. In fact, one can show that
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∇μJ
μ
ν ¼ ϵρσνffiffiffiffiffiffi−gp SηρCησ; ð2:5Þ

and it does not vanish identically. However, ∇μJ
μ
ν ¼ 0

actually holds on shell, once equations of motion (2.1) are
imposed. The trace of (2.1) reduces to

σR − 6Λþ γ

μ2

�
RμνRμν −

3

8
R2

�
¼ 0; ð2:6Þ

which coincides with the trace of NMG field equations [3]
for a graviton mass m ¼ μ=

ffiffiffi
γ

p
.

The fact that covariant derivative (2.5) does not vanish
identically immediately suggests that the theory would
present at least two problems. First, a problem will emerge
when trying to couple the theory to matter. This issue was
addressed in Ref. [16], where the kind of matter content to
which MMG can actually be coupled consistently was
investigated. A second problem is related to the compu-
tation of conserved charges. Conservation of the field
equations is a crucial step in the derivation of the conserved
charge formulas. This issue was recently studied in
Ref. [17], where a method to compute conserved charges
in MMGwas proposed. This consists of an extension of the
Abbott–Deser–Tekin method, adapted to the peculiar case
of MMG. In this paper, we do not need to face any of these
two problems because, on the one hand, we will consider
the theory (2.1) in vacuum, and, on the other hand, we will
employ the definition of conserved charges worked out in
Ref. [17] which, as we will see, in our case also leads to
consistent results.

B. Minimal massive gravity in AdS3

We are interested in the theory about AdS3 space, which
is obviously a solution of (2.1). Assuming Rμν ¼
−ð2=l2Þgμν in (2.6), one finds

l2 ¼ 1

2Λ
ð−σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γΛ=μ2

q
Þ; ð2:7Þ

which gives an expression for the effective cosmological
constantΛeff ≡ −1=l2 in terms of the coupling constants of
the theory (provided μ2 ≥ γΛ).
The theory about AdS3 is conjectured to be dual to a two-

dimensional conformal field theory with central charges
given by1

c� ¼ 3l
2G

�
σ þ γ

2μ2l2
� 1

μl

�
; ð2:8Þ

with a normalization that leads to the Brown–Henneaux
result c� ¼ 3l=ð2GÞ valid for general relativity [10] in the

limit μ → ∞, and reproduces the expression for TMG
when γ ¼ 0.
The central charge c� vanishes at the point

μ2l2σ � μlþ γ=2 ¼ 0 ð2:9Þ

of the parameter space. In the case γ ¼ 0, this reduces to the
TMG chiral point μl ¼ �1. As for the case of TMG, we
will refer to the point c− ¼ 0 as the chiral point of the
theory. The theory has also another interesting point at
μ2 ¼ γΛ, but we will not study it here.

III. NONLINEAR SOLUTIONS

A. pp-wave solutions in AdS3

The first class of exact solutions we will consider is
pp-wave solutions in AdS3 space, also known as AdS
waves. For TMG, these solutions were studied in Ref. [18].
In MMG, AdS-wave solutions were also studied recently
[19], and here we review them because they are useful
solutions to gain intuition about the theory.
Let us start with the AdS3 metric written in Poincaré

coordinates, namely

ds20 ¼
l2

z2
ð−2dxþdx− þ dz2Þ; ð3:1Þ

where z ∈ R≥0. In these coordinates, the boundary of the
space is located at z ¼ 0. These coordinates, with x� ∈ R,
describe the Poincaré patch of AdS3 space.
For MMG to admit the AdS vacuum (3.1), the AdS3

radius l, the cosmological constant Λ, and the couplings
parameters μ and γ must obey (2.7) for l2 > 0. The scale of
the cosmological constant, lΛ ≡ jΛj−1=2, and the AdS3
radius l coincide when μ → ∞ or γ ¼ 0.
The metrics of AdS3 waves can be written as

ds2 ¼ l2

z2
ð−Fðxþ; zÞðdxþÞ2 − 2dxþdx− þ dz2Þ: ð3:2Þ

These metrics are conformally related to that of the
pp waves.
The AdS3-wave solutions (3.2) describe exact gravita-

tional waves propagating on an AdS3 background; there-
fore, we have to consider the value (2.7) for the effective
cosmological constant. With this choice, the equation of
motion reads

1

4l4μ3z

�
−ðγμþ 2l2μ3σÞl2

∂F
∂z

þ ðγμþ 2l2μ3σÞl2z
∂2F
∂z2 − 2l3μ2z2

∂3F
∂z3

�
¼ 0: ð3:3Þ

Considering a solution of the form F ∝ zα, the character-
istic polynomial reads1Here, we will adopt the notation of Ref. [17].
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αðα − 2Þðl2γμ − 2l3ðα − 1Þμ2 þ 2l4μ3σÞ ¼ 0; ð3:4Þ

and generic solution for the wave profile is

Fðxþ; zÞ ¼ FþðxþÞðz=lÞ1þlμσþ γ
2lμ; ð3:5Þ

where the function FþðxþÞ only depends on the coordinate
xþ. The solutions α ¼ 0 and α ¼ 2 can be eliminated by
coordinate transformations.
In addition to the power law behavior (3.5), new

logarithmic modes appear for some values of the param-
eters: For the special point of the parameter space
μ2l2σ þ μlþ γ=2 ¼ 0, such a logarithmic solution exists
and is given by

Fðxþ; zÞ ¼ FþðxþÞ logðzÞ: ð3:6Þ

Analogously, for the special point μ2l2σ − μlþ
γ=2 ¼ 0, the logarithmic solution is given by

Fðxþ; zÞ ¼ FþðxþÞðz2 logðzÞ − z2=2Þ: ð3:7Þ

In these logarithmic solutions, we have discarded the
constant term and the quadratic term in the variable z
because, as said, such terms can be eliminated by coor-
dinate transformations.
The appearance of logarithmic AdS3-wave solutions

suggests that much more general solutions with such
near-boundary behavior exist in the theory at the chiral
point. In the next subsections, we will see that this is indeed
the case. For instance, such as one can act on AdS3 space
with global transformations and generate in this way
interesting causal structures, like black holes, there exists
a rich variety of solutions that are locally equivalent to
AdS3 waves discussed above and exhibit interesting
properties.

B. Ansatz for nonlinear deformation of AdS3

Let us begin by considering the vacuum metric (3.1) and
a deformation of the form

ds2 ¼ ds20 þH−ðt; rÞðdx−Þ2 þHþðt; rÞðdxþÞ2; ð3:8Þ

where H�ðt; rÞ are two functions that may depend on time
and the radial direction (with coordinates r≡ ffiffiffi

2
p

l2=z and
x� ≡ t� lϕ). Notice that here we are preserving the
circular symmetry but allowing for nonstationary solutions.
In fact, we will see that time-dependent solutions for
H�ðt; rÞ exist.
In terms of coordinates r ¼ ffiffiffi

2
p

l2=z, t ¼ ðxþ þ x−Þ=2
and ϕ ¼ ðxþ − x−Þ=ð2lÞ, metric (3.8) takes the form

ds2 ¼ −
r2

l2
dt2 þ l2

r2
dr2 þ r2dϕ2 þH−ðt; rÞðdt − ldϕÞ2

þHþðt; rÞðdtþ ldϕÞ2: ð3:9Þ

This turns out to be a particularly convenient ansatz to
solve field equations (2.1). Inserting the form (3.9) in the
MMG equations of motion, one obtains a coupled third-
order differential equation for functions H�ðt; rÞ that,
despite the complexity of the higher-curvature terms, in
some cases can be solved analytically. Here, we are
interested in the chiral point c− ¼ 0, namely in the case
when μ2l2σ − μlþ γ=2 ¼ 0. At this point, a solution to
the MMG equations of motion with the form

H−ðrÞ ¼ 2k logðrÞ þ k0 ð3:10Þ

arises, with Hþ being zero and with k and k0 being two
arbitrary constants. It is easy to check that this solution,
which is the simplest case of a much more general class we
will study below, behaves asymptotically (i.e. at large r) as
the log gravity excitations [7,9], representing a nonlinear
realization of the theory. Besides, also at the point c− ¼ 0,
one finds a time-dependent solution of the form

H−ðr; tÞ ¼ ~kt −
~k2kγ
r4

þ k0; ð3:11Þ

with Hþ ¼ 0, where ~k, k0, and kγ are constants. While ~k
and k0 are arbitrary, constant kγ is determined in terms of γ
and l in a precise way we will describe below. Deformation
(3.11) provides a time-dependent solution of the MMG
equations of motion. It is worthwhile noticing that, in
contrast to (3.10), (3.11) behaves asymptotically respecting
Brown–Henneaux boundary conditions. It can be shown
that, despite being time dependent, this solution carries
vanishing mass; see (3.32) below.
Also at c− ¼ 0, one finds solutions that deform the AdS3

asymptotic in a much more drastic way. For instance, one
finds

HþðrÞ ¼ 2k̂r2 logðrÞ þ k0; ð3:12Þ

with H− ¼ 0 and with k̂ being an arbitrary constant. Of
course, this latter solution has its mirror image H−ðrÞ ¼
2k̂r2 logðrÞ þ k0 with Hþ ¼ 0 at cþ ¼ 0 (i.e. when
l2μ2σ þ lμþ γ=2 ¼ 0.)
In the next subsections, we will see how these solutions

can be generalized and, in particular, lead to a two-
parameter deformation of the extremal BTZ black hole.

C. Logarithmic deformations of BTZ solution

Let us begin by considering the extremal BTZ black hole
solution, namely
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ds2eBTZ ¼ −N2ðrÞdt2 þ dr2

N2ðrÞ þ r2ðNϕðrÞdt − dϕÞ2;

ð3:13Þ

with the metric functions

N2ðrÞ ¼ r2

l2
−M þM2l2

4r2
; Nϕ ¼ Ml

2r2
; ð3:14Þ

and with M being an integration constant. This solution,
which for M > 0 represents a maximally rotating black
hole in three dimensions, solves Einstein equations with
negative Λ in three dimensions [12], and, then, it also
solves the MMG field equations provided l2 > 0. The
black hole horizon is located at rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ml2=2

p
. At the

chiral point l2μ2σ − lμþ γ=2 ¼ 0, solutions (3.13)–(3.14)
have vanishing mass and vanishing angular momen-
tum [17].
Now, consider a deformation of the form

ds2 ¼ ds2eBTZ þ N2
kðrÞðdt − ldϕÞ2: ð3:15Þ

The case M ¼ 0 in (3.13)–(3.15) corresponds to
H−ðrÞ ¼ N2

kðrÞ, Hþ ¼ 0 in (3.9). Remarkably, at
l2μ2σ − lμþ γ=2 ¼ 0, the MMG field equations admit
the following configuration as an exact solution for
arbitrary M:

N2
kðrÞ ¼ k log ððr2 −Ml2=2Þ=r20Þ; ð3:16Þ

where k and r0 are two arbitrary constants. Notice that
(3.16) reduces to (3.10) in the caseM ¼ 0. Asymptotically,
(3.16) also behaves as a log gravity solution, as it damps off
slower than Brown–Henneaux configurations [10] while
obeying the Grumiller–Johansson weakened boundary
conditions [7]. More precisely, solution (3.16) behaves at
large r as

gtt ≃ r2

l2
þOðlogðrÞÞ; grr ≃ l2

r2
þOðr−4Þ; ð3:17Þ

gtϕ ≃OðlogðrÞÞ; gϕϕ ≃ r2 þOðlogðrÞÞ; ð3:18Þ

where Oðr−nÞ stands for functions of t and ϕ of which the
large r behavior damps off faster than or equal to 1=rn. The
presence of OðlogðrÞÞ is a typical feature that three- and
higher-dimensional higher-curvature gravity theories
exhibit at critical points of the moduli space.
The solution (3.13)–(3.16) represents a one-parameter

deformation of the extremal BTZ solution. As we will see
in the next subsection, it carries nonzero conserved charges,
which are given in terms of the integration constant k. The
case k ¼ 0 reduces to the extremal BTZ solution. Even for
k ≠ 0, all the curvature scalars associated to this solution
are constants and independent of k; nevertheless, the

solution exhibits a pathology at r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ml2=2

p
, where

the horizon of the case k ¼ 0 is located. At that radius,
the effective potential of geodesics becomes infinite,
tending either to þ∞ or −∞ depending on the sign of
k. For k ≠ 0, components gtt, gtϕ, and gϕϕ of the metric

blow up at the radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ml2=2

p
, where the would-be

horizon is located. The analysis of the geodesic equations
shows that angular velocity tends to infinity as the particles
approach that radius.
The solution (3.13)–(3.16), which has isometry group

SOð2Þ × R, is not locally AdS3 if k ≠ 0. In fact, it is not
even conformally flat.
At the point l2μ2σ þ lμþ γ=2 ¼ 0, we obtain also a

deformation of BTZ with the form

N̂2
kðrÞ ¼ kðr2 −Ml2=2Þ log ððr2 −Ml2=2Þ=r20Þ: ð3:19Þ

This represents a much more drastic deformation of the
AdS3 asymptotics. However, close to the horizon, it
behaves much better that (3.16), as (3.19) vanishes in
the limit r →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ml2=2

p
.

D. Conserved charges

Now, let us compute the conserved charges of the
solutions described above. We will employ the method
proposed by Tekin in Ref. [17], which provides a definition
of conserved charges in MMG. To avoid repetition, we will
not review the details of the method of Ref. [17] here;
instead, we will refer to the original paper and to the
seminal works [20,21]. Nevertheless, to facilitate the
discussion, we will work with the same notation as
in Ref. [17].
Let us denote by gμν the spacetime metric and by ḡμν the

background metric, with respect to which the charges will
be computed. These metrics have the same asymptotic
Killing symmetries, generated by ξ̄, and are related by
gμν ≡ ḡμν þ hμν. Then, the charges are given by the formula

Qμðξ̄Þ ¼ 1

2πG

I
dli

��
σ þ γ

2l2μ2

�
qμiE ðξ̄Þ

þ 1

2μ
qμiE ðΞ̄Þ þ

1

2μ
qμiC ðξ̄Þ

�
; ð3:20Þ

with the integral being evaluated on a circle at spatial
infinity. Functions qμiE ðξ̄Þ, qμiE ðΞ̄Þ, and qμiC ðξ̄Þ are defined in
Ref. [17] (see also Ref. [22]) and read

qμiE ðξ̄Þ ¼
ffiffiffiffiffiffi
−ḡ

p ðξ̄ν∇̄μhiν − ξ̄ν∇̄ihμν þ ξ̄μ∇̄ih − ξ̄i∇̄μh

þ hμν∇̄iξ̄ν − hiν∇̄μξ̄ν þ ξ̄i∇̄νhμν − ξ̄μ∇̄νhiν

þ h∇̄μξ̄iÞ; ð3:21Þ

qμiC ðξ̄Þ ¼ ϵμiβGνβξ̄
ν þ ϵνiβGμ

βξ̄ν þ ϵμνβGi
βξ̄ν; ð3:22Þ
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where Ξ̄β ¼ ϵανβ∇̄αξ̄ν=
ffiffiffiffiffiffi
−ḡ

p
and where Gμν is the linearized

cosmological Einstein tensor

Gμν ¼ RL
μν −

1

2
ḡμνRL þ 2

l2
hμν ð3:23Þ

with the linearized Ricci tensor RL
μν given by

RL
μν ¼

1

2
ð−□̄hμν − ∇̄μ∇̄νhþ ∇̄σ∇̄νhσμ þ ∇̄σ∇̄μhσνÞ;

ð3:24Þ

RL ¼ RL
μνḡμν þ

2

l2
h ¼ −□̄hþ ∇̄μ∇̄νh̄μν þ

2

l2
h; ð3:25Þ

with h ¼ ḡμνhμν. Notice that all contractions and raising
and lowering indices must be done with the background
metric ḡμν.
For a timelike Killing vector ξ̄μ ¼ ð−1; 0; 0Þ, (3.20)

corresponds to the energy, while for the spacelike
Killing vector ξ̄μ ¼ ð0; 0; 1Þ, it corresponds to the angular
momentum. Then, choosing the BTZ black hole with
M ¼ 0 and J ¼ 0 as the background metric ḡμν, we obtain
the mass and the angular momentum corresponding to the
Killing vectors ξ̄μ ¼ −∂t and ξ̄μ ¼ ∂ϕ, respectively. For the
solution given by equations (3.15)–(3.16) at the chiral point
l2μ2σ − lμþ γ=2 ¼ 0, the conserved charges are given by

M ¼ 2k
μlG

; J ¼ 2k
μG

: ð3:26Þ

As expected, in the limit γ ¼ 0 (3.26) agrees with the
result for TMG if the appropriate normalization of the
action is considered; cf. Eq. (3.51) of Ref. [14]; see
also Ref. [11].
Then, what we have found here is an exact one-

parameter deformation of the extremal BTZ black hole
that behaves asymptotically as a log gravity solution and,
besides, carries nonvanishing mass and angular momen-
tum. In the following subsections, we will generalize this
solution further.

E. Time-dependent deformations

Now, let us consider other exact solutions, which
represent different type of deformations of BTZ.
Consider again the ansatz

ds2 ¼ −N2ðrÞdt2 þ dr2

N2ðrÞ þ r2ðNϕðrÞdt − dϕÞ2

þ ~N2
~k
ðt; rÞðdt − ldϕÞ2; ð3:27Þ

where now the deformation function depends on time. One
can verify that at the chiral point l2μ2σ − lμþ γ=2 ¼ 0 the
field equations are solved for

~N2
~k
ðt; rÞ ¼ ~kt −

~k2l6

Nðr2 −Ml2=2Þ2 ; ð3:28Þ

where

N ¼ 96

5 − 4lμσ
¼ 96

1þ 2γ=ðlμÞ : ð3:29Þ

The case M ¼ 0 of (3.28) corresponds to (3.11) with
~k ¼ k=l2, kγ ¼ l6=N. This time-dependent solution gen-
eralizes one of the nonlinear solutions of TMG found in
Ref. [13]. Notice that, in fact, in the case lμσ ¼ 1 (i.e.
γ ¼ 0), the particular case M ¼ 0 of (3.11) reduces to
Eq. (3.22) of Ref. [13], for which N ¼ 96. It also general-
izes solutions of TMG coupled to NMG studied in Ref. [23]
to the case M ≥ 0.
The solution (3.27)–(3.29) presents a large r behavior

consistent with the expansion

gtt ≃ r2

l2
þOðr0Þ; grr ≃ l2

r2
þOðr−4Þ; ð3:30Þ

gtϕ ≃Oðr0Þ; gϕϕ ≃ r2 þOðr0Þ; ð3:31Þ

so that it satisfies the Brown–Henneaux boundary
conditions [10].
The existence of this type of solutions in the case of

TMG was relevant for the discussion about the contribution
to the partition function of chiral gravity [9]. This is
because one of the assumptions in Ref. [9] was the
nonexistence of solutions obeying Brown–Henneaux boun-
dary conditions and not being Einstein manifolds. The
discovery of such a solution in Ref. [13] proved that there
exist non-Einstein contributions. Here, we have shown that
also in MMG in AdS3 at the chiral point solutions exist that
obey Brown–Henneaux asymptotic boundary conditions
not being Einstein manifolds.
On the other hand, the existence of a time-dependent

circularly symmetric solution (3.27)–(3.29) manifestly
shows that in this theory the Birkhoff theorem does not
hold. A natural question is what are the conserved charges
associated to this time-dependent deformation of extremal
BTZ. Notice that, despite being time dependent, the linear
dependence on time appears in a next-to-leading term in the
large r expansion. One can use the method of Ref. [17]
described in the previous subsection and verify that the
mass and angular momentum associated to (3.27)–(3.29)
actually vanish, namely

M ¼ 0; J ¼ 0: ð3:32Þ

This raises the question as to whether non-Einstein
solutions obeying Brown–Henneaux conditions and having
nonvanishing conserved charges actually exist.
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There is also another interesting point, which is where N
in (3.29) diverges, that is, when lμσ ¼ −γσ ¼ 5=4. There,
a solution appears which corresponds to replacing ~N2

~k
ðt; rÞ

in (3.28) by ~N2
~k
ðt; rÞ ¼ k2r2 þ ~ktþ k0 þ N2

kðrÞ, withN2
kðrÞ

given by (3.16). Let us discuss this type of solutions with
more free parameters in the next subsection.

F. Two-parameter deformations and generalizations

Remarkably, if we add solutions (3.15) and (3.27), a new
solution to the field equations at the chiral point l2μ2σ −
lμþ γ=2 ¼ 0 is obtained, namely

H−ðt; rÞ ¼ N2
kðrÞ þ ~N2

~k
ðt; rÞ; ð3:33Þ

with N2
kðrÞ and ~N2

~k
ðt; rÞ defined in equations Eq. (3.16) and

Eq. (3.28), also solves the MMG field equations for
arbitrary k and ~k. We obtain in this way a two-parameter
deformation of extremal BTZ. The conserved charges of
this general solution can also be computed and shown to
yield (3.26).
Besides, one can explore a much more general ansatz for

H�, including dependence on the angular coordinate ϕ, and
still find analytic solutions. For instance, perturbing the
M ¼ 0 solution at the chiral point μ2l2σ − μlþ γ=2 ¼ 0,
one finds that

ds2 ¼ −
r2

l2
dt2 þ l2

r2
dr2 þ r2

l2
dx2 þH−ðt; r; xÞðdt − dxÞ2;

ð3:34Þ

with Hþ ¼ 0, and H−ðt; r; x ¼ lϕÞ solves the field equa-
tions for the expansion

H−ðt; r; xÞ ¼ hð2Þ− ðt; xÞr2 þ hð0Þ− ðt; xÞ
þ hð0þÞ

− logðrÞ þ hð−4Þ− r−4; ð3:35Þ

where hðnÞ− ðt; xÞ stand for functions of t and x that organize
the different terms of order OðrnÞ, with hð0þÞ

− being the
coefficient of the logarithmic term. The explicit forms of
these functions are

hð2Þ− ðt; xÞ ¼ k0 þ k−ðt − xÞ;
hð0Þ− ðt; xÞ ¼ ~k0 þ kttþ kxx;

ð3:36Þ

with constant coefficients

hð0þÞ
− ¼ 2k;

hð−4Þ− ¼ −l6ð1þ 2γ=ðlμÞÞðkx þ ktÞ2=96; ð3:37Þ

where k0, k−, ~k0, kt, kx, and k are all arbitrary constants.
However, periodicity in the angular coordinate ϕ≡ x=l
demands k− ¼ kx ¼ 0.

Solutions with different chirality (i.e. with Hþ ≠ 0 at
c− ¼ 0) can also be found. For instance, one finds

Hþðt; r; xÞ ¼ hð2þÞ
þ r2 logðrÞ þ hð2Þþ ðt; xÞr2 þ hð0Þþ ðt; xÞ

ð3:38Þ

and H− ¼ 0, with hð2þÞ
þ being an arbitrary constant, and

hð2Þþ ðt; xÞ ¼ kttþ kxxþ k0;

hð0Þþ ðt; xÞ ¼ ~k0 þ kþðtþ xÞ;
ð3:39Þ

where, again, kt, kx, k0, ~k0, and kþ are all arbitrary
constants.

G. Degeneracy and decoupling limit

An interesting phenomenon occurs in the limit where the
Cotton tensor disappears from the equations of motion
(2.1). This corresponds to the limit μ → ∞ and γ=μ → ∞,
keeping the ratio m2 ≡ μ2=γ fixed. In this limit, central
charges (2.8) read

c� ¼ 3l
2G

�
σ þ 1

2m2l2

�
; ð3:40Þ

and, therefore, the chiral point corresponds to m2l2σ ¼
−1=2. At this point, the ansatz

ds2 ¼ ds2eBTZ þH−ðrÞðdt − ldϕÞ2; ð3:41Þ

with H−ðrÞ depending only on r, solves the field equations
for arbitrary H−ðrÞ. This is consistent with the fact that
equation (3.4), when divided by μ3, is automatically
satisfied for m2l2σ ¼ −1=2 in the μ → ∞ limit. At this
point of the parameter space, other solutions also exhibit
special features. For instance, time-dependent solution
(3.11) disappears as N tends to zero in the limit
μ ∼ γ=μ → ∞.
The type of degeneracy that (3.41) exhibits, is a common

feature that higher-curvature theories present at special
points of the moduli spaces where symmetry enhancement
phenomena happen. This could also be a symptom indicat-
ing that the theory is not well defined in such a limit. It
would be interesting to understand this better.

IV. CONCLUSIONS

In this paper, we have studied MMG theory, which is the
extension of TMG proposed in Ref. [1] that solves the
tension between bulk and boundary unitarity, a problem
that theories like TMG and NMG have. Specifically, we
studied MMG about AdS3 space at the chiral point, i.e. at
the point of the parameter space where one of the central
charges of the boundary theory vanishes. We considered
both Brown–Henneaux [10] and Grumiller–Johansson [7]
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boundary conditions, which in the case of TMG at the
chiral point lead to the definition of chiral gravity [5] and
log gravity [9] theories, respectively.
We studied the theory at nonlinear level; that is, we

studied exact solutions to the MMG field equation ana-
lytically, focusing our attention to solutions of MMG
equations that are not Einstein manifolds. Then, we found
two-parametric deformations of extremally rotating BTZ
black holes. In particular, we found exact solutions that
behave asymptotically as log gravity excitations. We
computed the conserved charges of such configurations
and showed that, despite the weakened AdS3 asymptotic,
these log deformations of BTZ black holes exhibit
finite mass and finite angular momentum, which we
compute.
We also found time-dependent deformations of extremal

BTZ that depend on time linearly. These solutions do
respect the stronger AdS3 boundary conditions, and it
implies that at the chiral point solutions exist that behave
asymptotically as Brown–Henneaux gravitons despite not
being Einstein manifolds. Despite being time dependent,

these solutions have vanishing conserved charges. This
opens the question about the contribution of such a type of
configurations to the partition function of the theory.
The general case we considered includes both log

gravity and time-dependent deformations, representing two-
parameter deformations of BTZ. This led us to show
explicitly that the Birkhoff theorem does not hold in this
theory. We also investigate more general solutions that exist
at the chiral point ofMMG.Besides, the theory formulated at
other points of the parameter space also exhibits interesting
solutions of different types. For instance, it admits locally
AdS2 ×R geometries that are worth exploring.
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