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Post-Markovian quantum master equations from classical environment fluctuations
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In this paper we demonstrate that two commonly used phenomenological post-Markovian quantum master
equations can be derived without using any perturbative approximation. A system coupled to an environment
characterized by self-classical configurational fluctuations, the latter obeying a Markovian dynamics, defines
the underlying physical model. Both Shabani-Lidar equation [A. Shabani and D. A. Lidar, Phys. Rev. A 71,
020101(R) (2005)] and its associated approximated integrodifferential kernel master equation are obtained by
tracing out two different bipartite Markovian Lindblad dynamics where the environment fluctuations are taken
into account by an ancilla system. Furthermore, conditions under which the non-Markovian system dynamics
can be unraveled in terms of an ensemble of measurement trajectories are found. In addition, a non-Markovian
quantum jump approach is formulated. Contrary to recent analysis [L. Mazzola, E. M. Laine, H. P. Breuer,
S. Maniscalco, and J. Piilo, Phys. Rev. A 81, 062120 (2010)], we also demonstrate that these master equations,
even with exponential memory functions, may lead to non-Markovian effects such as an environment-to-system
backflow of information if the Hamiltonian system does not commutate with the dissipative dynamics.
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I. INTRODUCTION

Contrary to Markovian Lindblad dynamics [1,2], the
description of non-Markovian open quantum systems relies
on density matrix evolutions defined by integrodifferential
equations [3]. In these dynamics, the dependence of the system
state on its previous history is weighted by a memory kernel
function, which in turn may itself depend on each dissipative
channel. Different theoretical approaches and physical situa-
tions had been analyzed by many authors in order to establish
and characterize these equations [4–21]. The unraveling of the
non-Markovian dynamics in terms of measurement trajectories
has also been extensively studied [22–28].

On the basis of a phenomenological measurement theory
Shabani and Lidar introduced a non-Markovian dynamics
[12], called a post-Markovian equation, where a single kernel
weights the memory effects. In the “stationary case” it is

d

dt
ρs

t = Cs

∫ t

0
dt ′k(t − t ′) exp[(t − t ′)Cs]ρ

s
t ′ , (1)

where ρs
t is the system density matrix and Cs is an arbitrary

(diagonalized) Lindblad superoperator,

Cs[ρ] = 1

2

∑
α

γα([Vα,ρV †
α ] + [Vαρ,V †

α ]), {γα} � 0. (2)

The rates {γα} “measure” the weight of each dissipative
Lindblad channel defined by the system operators {Vα}. As
mentioned in [12], under the condition ||Cs || � 1/t, the
previous equation can be approximated as

d

dt
ρs

t = Cs

∫ t

0
dt ′k(t − t ′)ρs

t ′ , (3)

which shows the close relationship that exists between both
types of non-Markovian evolutions, Eqs. (1) and (3).

Different analyses of both non-Markovian master equations
can be found in literature [13–16]. In Ref. [13], by comparing
the solutions of both equations for a qubit system, conditions

on the limit of applicability of each dynamics were established.
In Ref. [14], the completely positive condition [1,2] of the
solution maps was studied by assuming an exponential kernel.
In that case, Eq. (1) always results in a completely positive
solution map while Eq. (3) does not fulfill this condition, in
general [4,5]. In Ref. [15] it was found that neither Eq. (1) nor
Eq. (3) is able to induce “genuine” non-Markovian effects such
as an environment-to-system backflow of information [21]. A
stringent constraint on the usefulness of these equations is
established by this result. In addition, the hazards of using
non-Markovian evolutions like Eq. (1) in systems containing
a partially unitary dynamics were analyzed in Ref. [16].

In spite of the previous analysis [13–16], consistently with
its original formulation [12], the non-Markovian evolutions
(1) and (3) rely on phenomenological ingredients such as the
memory kernel k(t). In fact, microscopic dynamics that lead
to a given kernel are generally unknown. On the other hand,
assuming that a continuous-in-time measurement process is
performed over the system, it is not known which kind of
stochastic trajectories [29–33] may describe the conditional
system dynamics [22–28]. The main goal of this paper is to
answer these issues. In addition, we criticize and generalize
some previous results [13–16] about these non-Markovian
dynamics.

Over the basis of single molecule spectroscopy arrange-
ments [34], in the present study we consider a system coupled
to an environment characterized by (Markovian) classical
self-fluctuations, which in turn modify or modulate the system
dissipative dynamics. This situation can be described with a
bipartite Lindblad evolution [17], where an auxiliary ancilla
system takes into account the environment fluctuations [35].
Under these assumptions, without introducing any perturbative
approximation, by using projector techniques we demonstrate
that Eqs. (1) and (3) describe the system dynamics for two
alternative kinds of system-environment couplings. On the
other hand, generalizing the results of Ref. [27], we show that,
under some particular conditions, a non-Markovian quantum
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jump approach can be consistently formulated for both non-
Markovian master equations. In fact, under specific symmetry
conditions, non-Markovian evolutions obtained from a partial
trace over a bipartite Markovian dynamics can be unraveled
in terms of a set of measurement trajectories whose dynamics
can be written in the (single) system Hilbert space [27].

We remark that in the present study the Lindblad superop-
erator (2) that defines both master equations (1) and (3) is not
a “collisional” one [28], that is,

Cs �=
∑

α

VαρV †
α − Is,

∑
α

V †
αVα = Is, (4)

where Is is the identity matrix. When Cs = ∑
α VαρV †

α − Is,

the non-Markovian dynamics (3) can be unraveled in terms of a
set of trajectories where the collisional superoperator Es[ρ] =∑

α VαρV †
α is applied at random times over the system state

[28]. As a consequence of the assumption (4), the results of
Ref. [28] do not apply in the present context.

The paper is structured as follows. In Sec. II, we present
the basic bipartite Markovian model that describes the system-
environment coupling. Both evolutions (1) and (3) are obtained
by tracing out the configurational bath fluctuations. In Sec. III,
for each equation we develop a non-Markovian quantum jump
approach that allows one to unravel the dynamics in terms
of a set of measurement trajectories. Conditions under which
these results can be formulated are found in the Appendix. In
Sec. IV we study an example that exhibits the main features of
the present approach. Furthermore, the model shows that, even
with an exponential memory kernel function, the analyzed
post-Markovian quantum master equations may lead to the
development of genuine non-Markovian effects. In Sec. V we
provide the Conclusions.

II. CLASSICAL ENVIRONMENT FLUCTUATIONS

We consider a system S interacting with an environment
that develops classical self-fluctuations between a set of
“configurational bath states” [36]. Each state corresponds to
different Hilbert subspaces of the reservoir which are able to
induce by themselves a different Markovian system dynamics.
Hence, the transitions between them modulate the system
evolution [34,35].

The transitions between the reservoir states are defined by
a classical Pauli master equation [36]

d

dt
pi

t =
∑

j

(
φijp

j
t − φjip

i
t

)
, (5)

where pi
t is the probability that at time t the environment is in

the i state (i = 0,1, . . . ,imax) while φij are the transition rates
(φij � 0, φii = 0). The system density matrix ρs

t is written as

ρs
t =

∑
i

ρi
t , (6)

where each auxiliary state ρi
t corresponds to the system state

“given” that the environment is in the i state [17]. The
weight of each bath state is encoded as pi

t = Trs[ρi
t ]. The

initial conditions read {ρi
0 = pi

0ρ
s
0}. The system dynamics is

completely defined after introducing the time evolution of the
states ρi

t . We consider models where the bath states modulate

(modify) the system dissipative dynamics. In correspondence
with Eqs. (1) and (3) two different cases are considered.

a. First case. In the first case, the evolution of the auxiliary
states is given by the “Lindblad rate equation” [17]

d

dt
ρi

t = Lsρ
i
t + (1 − δi0)Csρ

i
t +

∑
j

(φijρ
j
t − φjiρ

i
t ), (7)

where δij is the Kronecker delta function. The superoper-
ator Ls defines the system unitary evolution, but may also
include arbitrary Lindblad contributions. The action of Ls is
independent of the environment state. On the other hand, the
superoperator Cs is given by Eq. (2). Its action is modulated
by the environment states. In fact, in Eq. (7), its influence is
inhibited when the bath is in the state i = 0. In any other case
(i �= 0), the system dynamics also includes the contribution Cs .

The classical transitions between these regimes is introduced
by the last term in Eq. (7), which in turn, from pi

t = Trs[ρi
t ],

leads to the classical master equation (5).
b. Second case. The second dynamics is complementary to

the previous one. The auxiliary states evolution is

d

dt
ρi

t = Lsρ
i
t + δi0Csρ

i
t +

∑
j

(
φijρ

j
t − φjiρ

i
t

)
. (8)

Therefore, here Cs is able to modify the system dynamics only
when the environment is in the state i = 0. In any other case
(i �= 0), it is inhibited. Notice that this “complementary bath
action” is the unique difference with Eq. (7).

A. Bipartite representation

The system state (6) and the evolution defined by Eqs. (7)
and (8) completely define the (non-Markovian) system dynam-
ics. Nevertheless, their analysis is simplified if those dynamics
are embedded in a bipartite Markovian dynamics [17], where
an extra ancilla (auxiliary) system (A) takes into account
the environment fluctuations. The joint system-ancilla density
matrix is denoted as ρsa

t . From this object, the system state
follows from a partial trace,

ρs
t = Tra

[
ρsa

t

] =
∑

i

〈ai |ρsa
t |ai〉, (9)

where {|ai〉}, i = 0,1, . . . (dim Ha − 1) = imax, is a complete
normalized basis in the ancilla Hilbert space Ha. Each state
|ai〉 corresponds to each configurational bath state. Hence, the
auxiliary system states [Eq. (6)] read

ρi
t = 〈ai |ρsa

t |ai〉, (10)

while the ancilla populations

pi
t = Trs

[
ρi

t

] = 〈ai |Trs
[
ρsa

t

]|ai〉 (11)

define the probability of each configurational bath state. From
now on we denote indistinctly the bath states by their ancilla
representation.

The time evolution of ρsa
t is given by a Markovian equation

that recovers the previous Lindblad rate equations. It is written
as

d

dt
ρsa

t = L[ρsa
t ] = (Ls + La + Csa)ρsa

t . (12)
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The superoperator Ls is the same as before and only acts on
the system Hilbert space. The contribution La gives the ancilla
dynamics. It introduces the configurational bath transitions. In
correspondence with the classical evolution (5), it reads

La[ρ] = 1

2

∑
i,j

φij ([Aij ,ρA
†
ij ] + [Aijρ,A

†
ij ]). (13)

The operators are Aij = Is ⊗ |ai〉〈aj |.
The contribution Csa is defined in different ways for each

case. In the first case, it must be taken as

Csa[ρ] = 1

2

∑
i,α

′γα([Tαi,ρT
†
αi] + [Tαiρ,T

†
αi]), (14)

where the Lindblad bipartite operators are

Tαi = Vα ⊗ |ai〉〈ai |. (15)

Both the rates {γα} and system operators {Vα} are the same
as in Eq. (2). With

∑′
i we denote a sum that runs over the

states |ai〉, i = 1, . . . (dim Ha − 1), excluding the state |a0〉.
By using the definition of the auxiliary states, Eq. (10), from
the bipartite dynamics (12), jointly with the definitions (13)
and (14), it is simple to recover the Lindblad rate equation
corresponding to the first case, Eq. (7). On the other hand, the
second case, Eq. (8), follows by defining the contribution Csa

as

Csa[ρ] = 1

2

∑
α

γα([Tα0,ρT
†
α0] + [Tα0ρ,T

†
α0]), (16)

where the operators {Tα0} are

Tα0 = Vα ⊗ |a0〉〈a0|. (17)

Notice that in this case [Eq. (16)] an addition over the ancilla
states [Eq. (14)] is not necessary.

B. Non-Markovian system dynamics

By using projector techniques [2,3], from the bipartite
reformulation [Eq. (12)] it is possible to obtain the system
density matrix evolution. Let us introduce the projectors P
and Q,

Pρsa
t = Tra

[
ρsa

t

] ⊗ |a0〉〈a0|, P + Q = Isa, (18)

where Isa is the identity matrix in the bipartite system-ancilla
Hilbert space. As usual [2,3], the bipartite evolution (12) can
be projected in relevant and irrelevant contributions

d

dt
Pρsa

t = PL(P + Q)ρsa
t , (19)

d

dt
Qρsa

t = QL(P + Q)ρsa
t . (20)

On the other hand, as an initial condition we consider a
separable bipartite state

ρsa
0 = ρs

0 ⊗ �0 = ρs
0 ⊗ |a0〉〈a0|, (21)

where ρs
0 is an arbitrary system state. Hence, the ancilla begins

in the pure state �0 = |a0〉〈a0|, which in turn implies that the
initial bath state is i = 0 [pi

0 = δi0 in Eq. (5)].
Given the initial bipartite state (21), it follows that

Qρsa
0 = 0. Therefore, Eq. (20) can be integrated as Qρsa

t =

∫ t

0 dt ′ exp[QL(t − t ′)]QLPρsa
t ′ , which in turn, after replacing

in Eq. (19), leads to the convoluted evolution [3]

d

dt
Pρsa

t = PLPρsa
t + PL

∫ t

0
dt ′ exp[QL(t − t ′)]QLPρsa

t ′ .

(22)

An explicit system density matrix evolution can be obtained
from this general expression. Its structure depends on each
case.

a. First case. The bipartite superoperator L is defined by
Eq. (12). Taking into account Eq. (14) it can be written as

L[•] = (Ls + La)[•] − 1

2

∑
αi

′γα{V †
αVα ⊗ �i,•}+

+
∑
αi

′γαVα〈ai | • |ai〉V †
α ⊗ �i, (23)

where �i ≡ |ai〉〈ai |, and {·,·}+ denotes an anticommutator
operation. With this expression it is possible to evaluate all
contributions in Eq. ( 22). We get

PL[•] =
{
Ls(Tra[•]) + Cs

[∑
i

′ 〈ai | • |ai〉
]}

⊗ �0, (24)

where Cs is given by Eq. (2). Hence, it follows the re-
sult PLPρsa

t = Lsρ
s
t ⊗ �0. Furthermore, QLPρsa

t ′ = ρs
t ′ ⊗

La[�0]. Using the classicality of the ancilla dynamics,
Eq. (13), 〈ai |La[ρt ]|ai〉 = 〈ai |La[

∑
j 〈aj |ρt |aj 〉 ⊗ �j ]|ai〉

(populations are only coupled to populations), it is also possi-
ble to obtain (QL)n(ρs

t ′ ⊗ La[�0]) = (Ls + Cs + La)n(ρs
t ′ ⊗

La[�0]), with n = 1. The validity of this expression for
n = 2,3, . . . can be demonstrated by using the mathematical
principle of induction. Hence, we get

exp[QLt]QLPρsa
t ′ = exp[(Ls + Cs + La)t]

(
ρs

t ′ ⊗ La[�0]
)
.

(25)

After introducing the previous results in Eq. (22) we obtain
the non-Markovian master equation

d

dt
ρs

t =Lsρ
s
t + Cs

∫ t

0
dt ′kI(t − t ′)

{
exp[(t − t ′)(Ls + Cs)]ρ

s
t ′
}
,

(26)

where the kernel function is defined in terms of the ancilla
dynamics

kI(t) =
∑

i

′〈ai | exp(tLa)La[�0]|ai〉, (27a)

= d

dt

∑
i

′〈ai | exp(tLa)[�0]|ai〉. (27b)

The trace preservation condition
∑

i〈ai |La(•)|ai〉 = 0 is con-
sistent with (d/dt)

∑
i p

i
t = 0. Therefore,

∑
i〈ai |La(•)|ai〉 =

〈a0|La(•)|a0〉 + ∑′
i〈ai |La(•)|ai〉, which leads to the equiva-

lent expression

kI(t) = − d

dt
〈a0| exp(tLa)[�0]|a0〉 = − d

dt
p0

t . (28)

Equation (26) is one of the main results of this section. It
provides a natural extension of the Shabani-Lidar proposal.
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In fact, when the condition [Ls ,Cs] = 0 is satisfied, in an
“interaction representation” with respect to Ls it follows
Eq. (1) with k(t) → kI(t). By construction (partial trace over
a Lindblad dynamics) Eq. (26) is a completely positive
evolution, generalizing in this way the results of Ref. [14].
Notice that after defining the “system-reservoir” dynamics
[Eq. (7)], we have not introduced any extra approximation in
the derivation of this result. On the other hand, in the present
approach the kernel function is completely determined by the
dynamics of the classical environment fluctuations. In fact,
given the initial condition (21), in Eq. (28) p0

t corresponds
to the survival probability of the i = 0 bath state [pi

0 =
δi0] that follows from Eq. (5). Notice that any kernel kI(t)
arising from this classical structure guarantees the completely
positive condition of the solution map ρs

0 → ρs
t . If the bath

transition rates depend explicitly on time, {φij } → {φij (t)},
the kernel becomes nonstationary, kI(t) → kI(τ,t) [12]. The
corresponding master equation can be worked out in a similar
way.

b. Second case. In the second case, taking into account the
superoperator (16), the bipartite superoperator L [Eq. (12)]
reads

L[•] = (Ls + La)[•] − 1

2

∑
α

γα{V †
αVα ⊗ �0,•}+

+
∑

α

γαVα〈a0| • |a0〉V †
α ⊗ �0. (29)

From here, we obtain

PL[•] = {Ls(Tra[•]) + Cs[〈a0| • |a0〉]} ⊗ �0. (30)

Hence, it follows PLPρsa
t = (Ls + Cs)ρs

t ⊗ �0, and
QLPρsa

t ′ = ρs
t ′ ⊗ La[�0]. As in the previous case, us-

ing the classicality of La it is also possible to obtain
QL(ρs

t ′ ⊗ La[�0]) = (Ls + La)(ρs
t ′ ⊗ La[�0]), which by in-

duction leads to

exp[QLt]QLPρsa
t ′ = exp[(Ls + La)t]

(
ρs

t ′ ⊗ La[�0]
)
. (31)

By introducing these results in Eq. (22) we get

d

dt
ρs

t =(Ls + Cs)ρ
s
t − Cs

∫ t

0
dt ′kI(t − t ′)

{
exp[(t − t ′)Ls]ρ

s
t ′
}
,

where kI(t) is given by Eq. (28). This master equation can
trivially be rewritten as

d

dt
ρs

t = Lsρ
s
t + Cs

∫ t

0
dt ′kII(t − t ′)

{
exp[(t − t ′)Ls]ρ

s
t ′
}
,

(32)

where the kernel function is kII(t) = δ(t) − kI(t). Hence,

kII(t) = δ(t) + d

dt
〈a0| exp(tLa)[�0]|a0〉 (33a)

= δ(t) + d

dt
p0

t . (33b)

If [Ls ,Cs] = 0, in an interaction representation with respect
to Ls , from Eq. (32) it follows Eq. (3) with k(t) → kII(t).
Therefore, that equation is obtained, without introducing
any approximation, from the alternative system-environment

coupling defined by Eq. (8). This is the second main result of
this section.

Contrary to the previous case [Eq. (28)], in this one the
kernel includes a δ term, which in turn leads to a local in time
contribution in the evolution (32). The presence of this term can
be explained directly from Eq. (8). In fact, in the limit where
the bath does not fluctuate, φij → 0, taking into account the
initial condition (21), a Markovian Lindblad dynamics defined
by (Ls + Cs) is recovered.

When the condition (4) is not satisfied, Eq. (32) can also
be derived from a different underlying dynamics that gives
an alternative expression for the memory kernel [28]. As
the present approach relies on condition (4), it provides an
alternative basis for the derivation of Eq. (32), which in
consequence can be applied in a larger range of dissipative
dynamics.

C. Exponential kernels

Different analyses of Eqs. (1) and (3) were performed
after assuming an exponential kernel [13–15]. In the present
approach, this particular case arises when the environment has
only two different configurational states, that is, the ancilla
Hilbert space is defined by only two states, |a0〉 and |a1〉. The
classical master equation (5) becomes

d

dt
p0

t = −φp0
t + ϕp1

t ,
d

dt
p1

t = −ϕp1
t + φp0

t . (34)

Here, the bath transition rates are denoted by φ and ϕ. For
normalized initial conditions p0

0 + p1
0 = 1, with p0

0 = 1, and
p1

0 = 0 [Eq. (21)] the solutions are

p0
t = ϕ

φ + ϕ
+ exp[−t(φ + ϕ)]

φ

φ + ϕ
, (35a)

p1
t = φ

φ + ϕ
− exp[−t(φ + ϕ)]

φ

φ + ϕ
. (35b)

Thus, the kernel (28) reads

kI(t) = φ exp[−t(φ + ϕ)], (36)

while in the second case, Eq. (33), it follows

kII(t) = δ(t) − φ exp[−t(φ + ϕ)]. (37)

In this way, our formalism associates a very simple envi-
ronment structure to these kinds of kernels. Notice that in
the second case, Eq. (37), the exponential contribution is
accompanied by a local in time contribution. In fact, as well
known [4,5], Eq. (3) with a single exponential kernel does
not lead in general to a completely positive dynamics [13,14].
Hence, the δ contribution avoids the lack of the completely
positive condition of the solution map. On the other hand,
both kernels, as well as the underlying physical dynamics, are
well defined for any value of the parameters; in particular,
when ϕ = 0.

D. Extension to noninteracting bipartite systems

In Ref. [16] the authors analyzed a generalization of Eq. (1)
for two systems, where one of them obeys a unitary evolution.
That situation can be easily described in the present frame.
Apart from the system S, we consider another system S ′.
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The single evolution of S ′ is local in time (Markovian) and
defined by a superoperator Ls ′ . Then, we ask about the
evolution of the bipartite density matrix ρss ′

t associated with
both systems. This question can be straightforwardly answered
from Eq. (26) by taking as system the bipartite extension
S ⊗ S ′. Therefore, under the replacements ρs

t → ρss ′
t and

Ls → (Ls + Ls ′ ), Cs → Cs ⊗ Is ′ , where Is ′ is the identity
matrix, it follows

d

dt
ρss ′

t = (Ls + Ls ′ )ρss ′
t + Cs

∫ t

0
dt ′kI(t

′)et ′(Ls+Ls′ +Cs )ρss ′
t−t ′ .

(38)

Assuming a separable initial bipartite state, ρss ′
0 = ρs

0⊗ ρs ′
0 ,

the solution of Eq. (38) can be written as ρss ′
t = ρs

t ⊗ ρs ′
t ,

where ρs
t obey Eq. (26), while the evolution of ρs ′

t is local in
time and defined by the superoperator Ls ′ , that is, (d/dt)ρs ′

t =
Ls ′ρs ′

t . The evolution proposed in Ref. [16] is recovered by
taking [Ls ,Cs] = 0 in Eq. (38), that is, when exp[t(Ls + Cs)] =
exp[tCs] exp[tLs]. On the other hand, the same kind of bipartite
extension applies to Eq. (32).

III. MEASUREMENT TRAJECTORIES

In this section we analyze the situation in which the
system is subjected to a continuous-in-time measurement
action. Provided that the joint dynamics of the system and
the environment transitions admits a Markovian representation
in a bipartite Hilbert space, a standard (Markovian) quantum
jump approach [30,31] can be formulated for the description of
this problem. In fact, it is possible to define a stochastic density
matrix ρsa

st (t) whose ensemble of (measurement) realizations
recovers the dynamics of the bipartite state ρsa

t , Eq. (12);
that is, ρsa

st (t) = ρsa
t , where the overbar denotes the ensemble

average. Nevertheless, in general it is not possible to write
down a “closed dynamics” for the realizations projected over
the system Hilbert space [27], ρs

st(t) = Tra[ρsa
st (t)]. In fact,

generally the evolution of ρs
st(t) cannot be written without

involving explicitly the ancilla state. In the Appendix, “over
the basis” of the bipartite representation, we demonstrate that
Eq. (26) can be unraveled in terms of an ensemble of real-
izations with a closed evolution only when the measurement
process is a renewal one [29–33] and the ancilla Hilbert space
is bidimensional. On the other hand, for Eq. (32) the renewal
property is also necessary. Nevertheless, the ancilla Hilbert
space may be arbitrary.

Note that the previous conditions rely on two central
ingredients, that is, the system dynamics admits a Markovian
representation in a higher Hilbert space and the system
realizations have the same structure than in the Markovian
case [27]. Hence, they do not depend explicitly on the
configurational bath degrees of freedom. It is possible to
conjecture that more (unknown) general formalisms based
on different hypotheses could lead to different unraveling
conditions.

After introducing a set of system operators that lead to
renewal measurement processes, over the basis of the non-
Markovian master equations (26) and (32) we derive their
corresponding ensemble of measurement realizations.

Renewal measurement processes

In renewal measurement processes, the information about
the system state is completely lost after a detection event [29–
33]. This property is induced by the operators {Vα} that define
Cs , Eq. (2). We assume that

Vα = |rα〉〈u|, (39)

where |rα〉 and |u〉 are system states. For establishing the
subsequent notation, we rewrite Cs as

Cs = Ds + Js . (40)

The superoperator Ds reads

Ds[ρ] = −1

2

∑
α

γα{V †
αVα,ρ}+ = −1

2
γ {|u〉〈u|,ρ}+, (41)

where the rate is γ = ∑
α γα. The “jump” superoperator Js is

Js[ρ] =
∑

α

γαVαρV †
α = γ ρ̄s〈u|ρ|u〉, (42)

where the system “resetting state” ρ̄s is

ρ̄s =
∑

α

pα|rα〉〈rα|, pα = γα∑
α′ γα′

. (43)

Given the operators (39), it is simple to realize that Js can be
rewritten as

Js[ρ] = ρ̄sTrs[Jsρ]. (44)

Assuming that the measurement apparatus is sensitive to all
system transitions (|u〉 � |rα〉) introduced by the operators Vα

[Eq. (39)], the measurement transformation associated with
each detection event reads [2]

M[ρ] = Jsρ

Trs[Jsρ]
= ρ̄s . (45)

Therefore, after a detection event all information about the
premeasurement state is lost, and the system collapses to the
state ρ̄s [30–33]. Below, starting from the corresponding non-
Markovian master equations, we formulate a quantum jump
approach for each case.

a. First case. The solution of the convoluted evolution (26)
can be written in the Laplace domain [f̂ (u) ≡ ∫ ∞

0 dt e−utf (t)]
as

ρ̂s
u = Ĝ(u)

[
ρs

0

] = 1

u − Ls − Cs k̂I(u − Ls − Cs)
ρs

0. (46)

In agreement with the results of the Appendix, we assume an
exponential kernel, Eq. (36). Hence,

k̂I(u) = φ

u + φ + ϕ
. (47)

In Eq. (46) we used the consistent notation f̂ (u − O) ≡∫ ∞
0 dt e−utf (t) exp(tO), where O is an arbitrary superopera-

tor. For simplifying the next calculation steps we also introduce
the superoperators

D̂s(u) = Ds k̂I(u − Ls − Ds), (48a)

Ĵs(u) = Js k̂I(u − Ls − Ds). (48b)
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Notice that D̂s(u) + Ĵs(u) �= Cs k̂I(u − Ls − Cs). Furthermore,
the “unnormalized conditional propagator” is introduced:

T̂ (u) = 1

u − Ls − D̂s(u)
. (49)

After some tedious but standard calculation steps, Eq. (46)
can be rewritten as

ρ̂s
u = T̂ (u)ρs

0 + Ĝ ′(u)Ĵs(u)T̂ (u)ρs
0, (50)

where the additional propagator Ĝ ′(u) reads

Ĝ ′(u) = 1

u − Ls − Cs k̂
′
II(u − Ls)

. (51)

Its associated kernel k̂′
II(u) is

k̂′
II(u) = 1 − ϕ

u + φ + ϕ
. (52)

Therefore, in the time domain it reads k′
II(t) = δ(t) −

ϕ exp[−t(φ + ϕ)]. We remark that Eq. (50) was obtained
after assuming an exponential kernel. On the other hand,
Ĝ ′(u) corresponds to the propagator of the evolution (32) after
interchanging the role of the environment states |0〉 ↔ |1〉,
which implies the interchange of the corresponding transition
bath rates φ ↔ ϕ. This property is evident in the definition of
k̂′

II(u) [compare Eq. (37) in the Laplace domain with Eq. (52)].
While the derivation of Eq. (50) is only valid for exponential
kernels, the following calculation steps do not rely on that
assumption.

Using the renewal property (44), from Eq. (48) it follows
that Ĵs(u)[ρ] = ρ̄sTrs[Ĵs(u)ρ]. Hence, Eq. (50) can be rewrit-
ten as

ρ̂s
u = T̂ (u)ρs

0 + Ĝ ′(u)ρ̄sTrs
[
Ĵs(u)T̂ (u)ρs

0

]
. (53)

On the other hand, the propagator Ĝ ′(u) [Eq. (51)] can be
rewritten in terms of a series expansion as

Ĝ ′(u) = T̂ ′(u)
∞∑

n=0

[Ĵ ′
s (u)T̂ ′(u)]n, (54)

where the propagator T̂ ′(u) is

T̂ ′(u) = 1

u − Ls − D̂′
s(u),

. (55)

The superoperators D̂′
s(u) and Ĵ ′

s (u) are

D̂′
s(u) = Ds k̂

′
II(u − Ls), (56a)

Ĵ ′
s (u) = Js k̂

′
II(u − Ls). (56b)

From the property (44), the expansion (54) becomes

Ĝ ′(u)[ρ̄s] = T̂ ′(u)ρ̄s

∞∑
n=0

ŵn(u), (57)

which introduced in Eq. (53) leads to

ρ̂s
u = T̂ (u)ρs

0 + T̂ ′(u)ρ̄s

∞∑
n=0

ŵn(u)ŵin(u). (58)

Here, the “waiting time probability density” ŵ(u) is

ŵ(u) = Trs[Ĵ ′
s (u)T̂ ′(u)ρ̄s], (59)

where ρ̄s is the resetting state (43). The “initial waiting time
probability density” ŵin(u) is

ŵin(u) = Trs
[
Ĵs(u)T̂ (u)ρs

0

]
. (60)

Finally, from Eq. (58), by using the resetting property of the
measurement transformation M, Eq. (45), the system density
matrix ρs

t can be written as

ρs
t =

∞∑
n=0

ρ
(n)
t , (61)

where each contribution ρ
(n)
t reads

ρ
(n)
t =

∫ t

0
dtn · · ·

∫ t2

0
dt1 Pn

[
t,{ti}n1

]
× T ′

c (t − tn)M · · · T ′
c (t2 − t1)MT c(t1)ρs

0, (62)

(n � 1) and ρ
(0)
t = P in

0 (t)Tc(t)ρs
0. The “conditional normal-

ized propagators” Tc(t) and T ′
c (t) are

Tc(t)[ρ] = T (t)ρ

Trs[T (t)ρ]
, T ′

c (t)[ρ] = T ′(t)ρ
Trs[T ′(t)ρ]

, (63)

where T (t) and T ′(t) are defined by their Laplace transforms
(49) and (55), respectively.

As in the Markovian case [30,31], Eqs. (61) and (62)
allow us to associate the system density matrix evolution
with an ensemble of stochastic realizations that can be put
in one-to-one correspondence with the successive detections
of the measurement apparatus. This is the main result of this
section. Each state ρ

(n)
t corresponds to the realizations with

n-measurement events up to time t. In fact, ρ
(n)
t consists of

successive nonunitary dynamics interrupted by the collapses
introduced by M. Notice that until the first event the
conditional dynamics is given by Tc(t), while in the posterior
intervals it is given by T ′

c (t).
In Eq. (62), the probability density of the each realization,

Pn[t,{ti}], is given by

Pn[t,{ti}] = P0(t − tn)
n∏

j=2

w(tj − tj−1)win(t1), (64)

where 0 < t1 < · · · < tn < t, can be read as the detection
times. The “waiting time densities” w(t) and win(t) are defined
by Eqs. (59) and (60), respectively. Equation (64) explicitly
shows the renewal property of the measurement process. w(t)
gives the statistics of the time interval between successive
detection events, while win(t) gives the statistics of the first
time interval. The “survival probabilities” P0(t) and P in

0 (t)
give the probability of no measurement event happening in a
given interval.P in

0 (t) only applies in the first detection interval,
Pn[t,{ti}]|n=0 = P in

0 (t). They read

P0(t) = Trs[T ′(t)ρ̄s], P in
0 (t) = Trs

[
T (t)ρs

0

]
. (65)

Consistently, it is possible to check that the relations
(d/dt)P0(t) = −w(t) and (d/dt)P in

0 (t) = −win(t) are ful-
filled.
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As well known [27,30], the survival probabilities (65)
allow us to formulate an explicit algorithm for generating
the stochastic system state ρs

st(t). Its average over realizations
recovers the system density matrix

ρs
t = ρs

st(t). (66)

The first time interval follows from P in
0 (t1) = r, while the

successive random intervals follow by solving P0(t) = r,

where r is a random number in the interval (0,1). The
conditional dynamics between the initial time (t = 0) and
the first event at time t1 is given by Tc(t) [Eq. (63)].
Notice that the unnormalized propagator T (t) also defines the
probability density of the first event, win(t1). The posterior con-
ditional dynamics between successive events is given by T ′

c (t)
[Eq. (63)]. Their probability density w(t) is also defined by
the propagator T ′(t). Each time interval ends with the abrupt
collapse defined by M, Eq. (45).

The change of propagator T (t) → T ′(t) in the previous
algorithm can be easily understood from the underlying
Lindblad rate evolution, Eq. (7). In fact, given the initial
condition (21), after the first event the dynamics is completely
equivalent to that defined by Eq. (8) after interchanging the
role of the environment (ancilla) states |0〉 ↔ |1〉. Consistently,
notice that T ′(t) arises from G ′(t), which in fact corresponds
to the propagator of the evolution (32) under the previous
interchange. We remark that these dynamical features are not
covered by the formalism developed in Ref. [27].

b. Second case. The solution of the second non-Markovian
master evolution (32) reads

ρ̂s
u = Ĝ(u)

[
ρs

0

] = 1

u − Ls − Cs k̂II(u − Ls)
ρs

0. (67)

As demonstrated in the Appendix, in this case the formulation
of a “closed” quantum jump approach is valid for arbitrary
kernels k̂II(u), or equivalently, for an arbitrary number of
environment states.

Similarly to the previous case, we introduce the superoper-
ators

D̂s(u) = Ds k̂II(u − Ls), Ĵs(u) = Js k̂II(u − Ls), (68)

and the unnormalized conditional propagator

T̂ (u) = 1

u − Ls − D̂s(u)
. (69)

Notice that here the relation D̂s(u) + Ĵs(u) =
Cs k̂II(u − Ls) is fulfilled. By writing solution (67) as
ρ̂s

u = [Ĝ(u)T̂ −1(u)]T̂ (u)ρs
0, and using Ĝ(u)T̂ −1(u) =

1 + Ĝ(u)Ĵs(u), we get

ρ̂s
u = T̂ (u)ρs

0 + Ĝ(u)Ĵs(u)T̂ (u)ρs
0. (70)

Under the replacement Ĝ ′(u) → Ĝ(u) Eq. (50) is equivalent
to this expression. It is not difficult to check that all posterior
calculations to that equation are valid in the present case under
the replacements T̂ ′(u) → T̂ (u), Eq. (69); D̂′

s(u) → D̂s(u),
Ĵ ′

s (u) → Ĵs(u), Eq. (68); and k̂′
II(u) → k̂II(u), where k̂II(u)

is an arbitrary kernel that has the structure (33). Therefore,
under the previous replacements, the ensemble of realizations
characterized by Eqs. (61)–(66) unravels the non-Markovian

FIG. 1. Schemes corresponding to the system energy levels and
environment states. (a) First case, Eq. (7). (b) Second case, Eq. (8). In
both schemes, 
 measures the system-laser coupling, γ is the system
decay rate, while φ and ϕ are the transitions rates between the two
bath states |a0〉 and |a1〉.

dynamics defined by Eq. (32) (renewal measurement pro-
cesses).

Solution (67), jointly with definitions (68), allows us to
write uρ̂s

u − ρs
0 = [Ls + D̂s(u) + Ĵs(u)]ρ̂s

u. By using property
(44), which leads to Ĵs(u)[ρ] = ρ̄sTrs[Ĵs(u)ρ], the density
matrix evolution, in the time domain, can be rewritten as

dρs
t

dt
=Lsρ

s
t +

∫ t

0
dt ′Ds(t − t ′)ρs

t ′−ρ̄s

∫ t

0
dt ′Trs

[
Ds(t − t ′)ρs

t ′
]
.

This evolution has the structure predicted in Ref. [27] for
non-Markovian renewal measurement processes. Notice that
Eq. (26), even with an exponential kernel cannot be rewritten
with this structure. This feature follows from the change of
conditional evolution described previously.

IV. EXAMPLE

Here, we study a dynamics that shows the main features of
the developed approach. As a system we consider a two-level
optical transition whose Hamiltonian reads Hs = �ωsσz/2,

where ωs is the transition frequency between its eigenstates,
denoted as |±〉, while σz is the z-Pauli matrix. The system is
coupled to an external resonant laser field [2]. On the other
hand, the environment fluctuates between two configurational
states. Hence, the ancilla also is a two-level system, whose
states are denoted as {|a0〉,|a1〉}.

The system decay is conditioned to the bath state, Fig. 1.
Both dynamics studied in the previous sections are considered.
In the first case, Fig. 1(a), the system decay is inhibited when
the bath is in the state |a0〉, while in the second case, Fig. 1(b),
it is inhibited in the state |a1〉.

In an interaction representation with respect to Hs the
evolution of the bipartite state ρsa

t [Eq. (12)] reads

dρsa
t

dt
= −i


2

[
σx ⊗ Ia,ρ

sa
t

] + γ

2

([
T ,ρsa

t T †] + [
Tρsa

t ,T †])
+ φ

2

([
A,ρsa

t A†] + [
Aρsa

t ,A†])
+ ϕ

2

([
A†,ρsa

t A
] + [

A†ρsa
t ,A

])
. (71)

The first unitary contribution introduces the system-laser
coherent coupling. It is written in terms of the x-Pauli matrix
σx. Ia is the identity matrix in the ancilla Hilbert space. The
(ancilla) operator A reads

A = Is ⊗ |a1〉〈a0|, (72)
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where Is is the system identity matrix. With this definition,
from Eqs. (10) and (11) it is simple to check that in Eq. (71)
the Lindblad contributions proportional to the rates φ and ϕ

lead to the classical master equation (34). Hence, they take
into account the environment fluctuations.

The operator T introduces the natural decay of the system
(|+〉 � |−〉) taking into account its dependence on the bath
states. In the first case [Eq. (7)] it reads

T = σ ⊗ |a1〉〈a1|, (73)

while in the second case [Eq. (8)] it becomes

T = σ ⊗ |a0〉〈a0|. (74)

Consistently, the lowering system operator reads σ = |−〉〈+|.
The decay rate is γ.

We remark that in both cases, the evolution defined by
Eq. (71) cannot be mapped with the example worked out in
Ref. [27]. In fact, although the Lindblad contributions are
similar, in that case the system-ancilla coupling is Hamilto-
nian. Hence, the ancilla dynamics is quantum, while here it is
classical (ancilla populations and coherences are not coupled).

A. Non-Markovian density matrix evolution

In agreement with the previous analysis, the initial condi-
tion is taken as [Eq. (21)]

ρsa
0 = ρs

0 ⊗ |a0〉〈a0|, (75)

where ρs
0 is an arbitrary system state. Hence, the ancilla begins

in its lower state. Taking into account the previous definitions
and the results of Sec. II it is straightforward to write down the
non-Markovian system density matrix evolution. In the first
case, it is given by the non-Markovian master equation (26)
defined with the exponential kernel (36), while in the second
case, it is given by Eq. (32) with the kernel (37). In both cases
the superoperators Ls and Cs follow from Eq. (71). Ls reads

Ls[ρ] = −i



2
[σx,ρ], (76)

while dissipative effects are introduced by

Cs[ρ] = γ

2
([σ,ρσ †] + [σρ,σ †]). (77)

By writing (d/dt)ρs
t = (Ls + Cs)ρs

t these superoperators re-
cover the dynamics of a Markovian fluorescent two-level
system [2,31]. The dependence of the decay rate γ on the bath
states (Fig. 1) introduce the non-Markovian effects that lead
to the evolutions (26) and (32). Notice that in the first case the
Markovian dynamics is recovered for φ → ∞, ϕ = 0, while
in the second case for φ → 0, and any ϕ (see Fig. 1). It is
simple to check that these Markovian limits are achieved by
the non-Markovian evolutions (26) and (32) after taking into
account the kernel definitions, Eqs. (36) and (37), respectively.

B. Measurement realizations

In concordance with the dissipative structure (77), we
assume that the measurement apparatus detects the optical
transitions of the system. It is simple to check that Cs has the
renewal structure corresponding to Eqs. (39) and (40). The
post-measurement state [Eq. (45)] is M[ρ] = |−〉〈−|. Hence,

FIG. 2. Waiting time distributions win(t) [Eq. (60)] (solid black
line) and w(t) [Eq. (59)] (dotted black line) corresponding to
Fig. 1(a) (first case). The inset shows the associated survival
probabilities P in

0 (t) and P0(t), respectively, Eq. (65). The parameters
are 
/γ = 0.15, and φ/γ = ϕ/γ = 0.01. The initial system state is
ρs

0 = |−〉〈−|. For the same parameter values, the statistical objects
of the second case, Fig. 1(b), are given by the plots of w(t) and P0(t).

after each detection event the system collapses to its ground
state.

In the first case, the statistics of the time interval between
detection events is defined by the waiting time densities win(t)
[Eq. (60)] and w(t) [Eq. (59)]. In Fig. 2 we plotted these
objects and their associated survival probabilities P in

0 (t) and
P0(t), respectively, Eq. (65). All these statistical objects can
be obtained in an exact analytical way in the Laplace domain.
Nevertheless, contrary to the Markovian case [32,33], here
the time dependence can only be obtained with numerical
methods. In fact, Laplace inversion via Cauchy’s residue
theorem, for arbitrary parameter values, involves roots of a
sextic polynomial (degree 6) in the Laplace variable u. This
feature is induced by the underlying classical transitions of
the bath states, which in turn lead to dynamical behaviors that
depart from the Markovian case.

In the Markovian limit described previously, for ρs
0 =

|−〉〈−|, follows the analytical results win(t) = w(t) =
4γ
2 exp(−γ t/2)[sinh(t/4)/]2, with the “frequency”
 ≡

√
γ 2 − 4
2. This analytical expression was obtained

previously in Refs. [32,33]. For 
2 > γ 2/4, win(t) develops an
oscillatory behavior. Nevertheless, in the non-Markovian case
corresponding to Fig. 2, win(t) develops oscillations even when

2 < γ 2/4. This feature occurs because here the system is
able to perform Rabi oscillations before the first bath transition

happens, |a0〉 φ→ |a1〉 (see Fig. 1); that is, oscillations in win(t)
appear under the condition 
 > φ. On the other hand, in Fig. 2
w(t) does not oscillate and approach the Markovian solution
[32,33]. This last feature occurs whenever the system is able
to perform many optical transitions before the configurational
bath change |a1〉 ϕ→ |a0〉 happens. Hence, w(t) approaches the
Markovian solution when τ̄−1 > ϕ, where τ̄ is the average
time between consecutive emissions in the Markovian case,
τ̄−1 = γ
2/(γ 2 + 2
2) [30,31]. For the parameters of Fig. 2 it

012147-8



POST-MARKOVIAN QUANTUM MASTER EQUATIONS FROM . . . PHYSICAL REVIEW E 89, 012147 (2014)

FIG. 3. Stochastic realizations corresponding to the first (a) and
second (b) case. The parameters are the same as in Fig. 2.

follows τ̄−1/ϕ � 2.15 > 1. In general, for arbitrary parameter
values, w(t) cannot be related to the waiting time density of
the Markovian case.

For the chosen parameter values φ = ϕ, and initial con-
dition ρs

0 = |−〉〈−|, it is simple to realize that the statistics
corresponding to the second case is completely determined by
the waiting time density w(t) and survival probability P0(t)
corresponding to the first case (Fig. 2).

On the basis of the survival probabilities it is possible to
generate the measurement realizations corresponding to ρs

st(t),
Eq. (66). In Fig. 3, we show a realization of 〈+|ρs

st(t)|+〉.
Each detection event corresponds to the collapse to zero of
this population. In agreement with previous analysis, in the
first case [Fig. 3(a)] the conditional dynamics of the first event
[Eqs. (63) and (49)] is different from the subsequent ones
[Eqs. (63) and (55)]. In contrast, in the realizations of the
second case [Fig. 3(b)] the conditional dynamics is always
the same. Due to the chosen parameter values (φ = ϕ) it also
corresponds to the conditional dynamics of the first case after
the first event.

In Fig. 4 we plot the upper population 〈+|ρs
t |+〉 obtained

from the non-Markovian evolutions, Eqs. (26) and (32), with
the kernels (36) and (37), respectively. Furthermore, we plotted
the behavior of 〈+|ρ̄s

st(t)|+〉 obtained by averaging 3 × 102

realizations shown in Fig. 3. Consistently, in both cases the
master equations fit the average ensemble behavior. This fact
shows the consistency of the non-Markovian quantum jump
approach developed in Sec. III. Furthermore, we checked that
the same analytical (Laplace domain) and numerical results
(Figs. 2–4) are obtained by tracing out the bipartite Markovian
representation (see Appendix).

C. Environment-to-system backflow of information

In Ref. [15] it was found that dynamics (1) and (3) do
not lead to “genuine” non-Markovian effects such as an
environment-to-system backflow of information [21]. In the
present approach, that result is completely expectable. In fact,
when [Ls ,Cs] = 0, from Eqs. (7) and (8) (take Ls → 0) it is

FIG. 4. Exact solution (black full line) for the upper population
〈+|ρs

t |+〉. The dotted (noisy) line corresponds to an average over 3 ×
102 realizations of 〈+|ρs

st(t)|+〉 shown in Fig. 3. The solid gray line
corresponds to the relative entropy E(ρs

t ||ρs
∞), Eq. (78). (a) First case,

defined by the master equation (26) with the exponential kernel (36).
(b) Second case, master equation (32) with the kernel (37).

simple to realize that the different environment states only turn
on and turn off the Markovian dynamics defined by Cs . Thus, it
is impossible to get an information backflow. In the example of
this section that situation corresponds to take 
 = 0 in Fig. 1.
Nevertheless, when [Ls ,Cs] �= 0, the bath fluctuations lead to
a switching between two “different” Markovian dynamics.
Below we show that this underlying effect may lead to a
backflow of information in the generalized dynamics defined
by Eqs. (7) and (8).

For simplicity, as a witness or detector of the backflow of
information we consider the relative entropy with respect to
the stationary state [21]

E
(
ρs

t ||ρs
∞

) = Trs
[
ρs

t

(
ln2 ρs

t − ln2 ρs
∞

)]
, (78)

where ρs
∞ = limt→∞ ρs

t . Hence, the backflow of information
occurs if there exist times t2 > t1 such that E(ρs

t2
||ρs

∞) >

E(ρs
t1
||ρs

∞) [27,28].
By working in a Laplace domain, the stationary states

corresponding to the schemes of Fig. 1 can be obtained in an
exact way. As ρs

∞ does not depend on the (system-bath) initial
condition, it follows the property ρs

∞(φ,ϕ)|I = ρs
∞(ϕ,φ)|II,

where ρs
∞(φ,ϕ)|I is the stationary state of the first case

with parameters (φ,ϕ), while ρs
∞(ϕ,φ)|II is the stationary

state of the second case where the role of the parameters is
interchanged, that is, ϕ ↔ φ.
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For each case, in Fig. 4 we also plotted the relative
entropy (78) (solid gray lines). E(ρs

t ||ρs
∞) develops “revivals”

showing that in both cases the dynamics lead to a backflow
of information. Consistently with the analysis of Ref. [15]
this phenomenon only appears if 
 �= 0, that is, when the
dissipative and unitary contributions do not commutate.

V. SUMMARY AND CONCLUSIONS

In this paper we established a solid physical basis for
an alternative derivation and understanding of two exten-
sively studied non-Markovian master equations. As underly-
ing “microscopic dynamics” we utilized a system coupled
to an environment that is able to develop classical self-
fluctuations which in turn modify the system dissipative
dynamics, Eqs. (7) and (8). From a bipartite system-ancilla
representation, Eq. (12), and by means of a projector technique,
we obtained the non-Markovian master equations (26) and
(32), which represent one of the main results of this work.
If the unitary and dissipative superoperators commutate, the
Shabani-Lidar equation (1), and its associated evolution,
Eq. (3), are recovered, respectively.

In contrast with phenomenological approaches, here the
statistical behavior of the environment fluctuations completely
determine the memory functions, Eqs. (28) and (33). The
paradigmatic case of exponential kernels arises when the
environment has only two configurational states, Eqs. (36)
and (37). By construction, kernels associated with an arbitrary
number of bath states, Eq. (5), also guarantee the completely
positive condition of the solution map for any value of the
underlying characteristic parameters.

On the basis of the bipartite representation, we found the
conditions under which the system dynamics can be unraveled
in terms of an ensemble of measurement realizations whose
dynamics can be written in a closed way, that is, without
involving explicit information about the configurational bath
states. Equation (26) can be unraveled when the bath has two
configurational states, while for Eq. (32) this condition is not
necessary. Nevertheless, in both cases a renewal condition is
required. As in the standard Markovian case, the realizations
consist of periods where the evolution is smooth and nonuni-
tary, while at the detection times the system suddenly collapses
to the same resetting state. The non-Markovian features of the
dynamics are present in the conditional dynamics between
jumps, which in turn may be different from the first interval.
The unraveling of the system dynamics in terms of (closed)
measurement trajectories remains an open problem when the
previous conditions are not satisfied.

The consistence of the previous findings has been explicitly
demonstrated by studying the dynamics of a two-level system
whose decay is modulated by the environment states. This
example allowed us to show that a backflow of information
from the environment to the system appears in both master
equations. Therefore, the absence of this phenomenon for
the particular situation analyzed in Ref. [15] is not a general
property of the dynamics. In fact, we demonstrated that the
backflow of information may occur only when the system
unitary dynamics does not commutate with the dissipative
one.

In summary, the formalism presented here gives a clear
physical interpretation of some phenomenological aspects
that appear in the formulation of the studied non-Markovian
quantum master equations. These results are of help for
understanding and modeling the great variety of phenomena
emerging in presence of memory effects.
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APPENDIX: QUANTUM JUMPS FROM THE
BIPARTITE REPRESENTATION

The properties of the non-Markovian quantum jump ap-
proach developed in Sec. III can be derived from a standard
Markovian quantum jump approach formulated on the basis
of the bipartite dynamics (12).

1. Conditions for getting a closed measurement ensemble

First, we derive the conditions under which the non-
Markovian dynamics (26) and (32) can be unraveled in terms of
an ensemble of trajectories whose dynamics can be written in
a closed form, that is, without involving in an explicit way the
ancilla (bath) states. As mentioned in Sec. III, these results rely
on the bipartite representation of the non-Markovian system
dynamics.

As demonstrated in Ref. [27], a “closed quantum jump
approach” can be formulated for the system of interest if the
bipartite dynamics (12) fulfill the conditions

Tra[Mρsa] = M[Tra(ρsa)], Trs[Mρsa] = ρ̄a. (A1)

Here, M is the bipartite transformation associated with
each detection event and ρ̄a is an arbitrary ancilla state.
The first condition guarantees that each measurement event
in the bipartite space can also be read as a measurement
transformation M in the system Hilbert space. The second
condition guarantees that the conditional system dynamics
between detection events does not depend explicitly on the
ancilla state [27]. Therefore, under the previous conditions,
the system measurement dynamics has the same structure
(nonunitary conditional dynamics followed by state collapses)
than in the Markovian case.

Assuming that the measurement apparatus is sensitive to
all system transitions defined by the operators Vα [Eq. (2)], it
follows [2]

M[ρ] =
∑

α γαVαρV †
α

Trs
[∑

α γαV
†
αVαρ

] . (A2)

In the first case, from Eqs. (12) and (14), the bipartite
transformation M reads

M[ρ] =
∑′

α,i γαTαiρT
†
αi

Trsa
[∑′

α,i γαT
†
αiTαiρ

] , (A3)
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where Tαi = Vα ⊗ |ai〉〈ai |, Eq. (15). On the other hand, in the
second case, from Eqs. (12) and (16), it becomes

M[ρ] =
∑

α γαTα0ρT
†
α0

Trsa
[∑

α γαT
†
α0Tα0ρ

] , (A4)

where Tα0 = Vα ⊗ |a0〉〈a0|, Eq. (17). For arbitrary set of
operators {Vα}, neither Eq. (A3) nor Eq. (A4) fulfill the
conditions (A1).

When the operators {Vα} lead to a renewal measurement
process [Eq. (39)], Eq. (A3) becomes

M[ρ] = ρ̄s ⊗
∑′

i〈uai |ρ|uai〉�i∑′
i〈uai |ρ|uai〉

. (A5)

This structure does not satisfy condition (A1). Nevertheless,
when the ancilla Hilbert space is bidimensional, i = 0,1, given
that

∑′
i excludes the contribution i = 0, it follows

M[ρ] = ρ̄s ⊗ �1, (A6)

which evidently satisfies Eq. (A1). ρ̄s is given by Eq. (43).
Therefore, only when the kernel is an exponential one, Eq. (36),
a closed system (renewal) measurement dynamics can be
associated with the non-Markovian evolution (26).

In the second case, Eq. (A4) with the operators (39)
becomes

M[ρ] = M[〈a0|ρsa|a0〉] ⊗ �0 (A7a)

= ρ̄s ⊗ �0. (A7b)

Independently of the ancilla dimension the closure condi-
tions (A1) are satisfied. Thus, under the renewal condition the
non-Markovian evolution (32) can be unraveled independently
of the ancilla dynamics, that is, for arbitrary kernels with the
structure defined by Eq. (33).

2. Conditional dynamics

In the bipartite description, the non-Markovian conditional
system dynamic can be obtained by tracing out the joint
system-ancilla dynamics. Therefore, it is possible to obtain
alternative expressions for the system conditional propagators
written in terms of the bipartite dynamics.

In the first case, the conditional propagator T̂ (u), Eq. (49),
from Eqs. (12) and (14) can also be written as

T̂ (u)[ρ] = Tra
[ 1

u − (Ls + La + D)
(ρ ⊗ �0)

]
, (A8)

where the bipartite initial condition (21) was taken into
account. The propagator T̂ ′(u), Eq. (55), taking into account
the resetting state (A6) becomes

T̂ ′(u)[ρ] = Tra
[ 1

u − (Ls + La + D)
(ρ ⊗ �1)

]
. (A9)

Therefore, the difference between both propagators arises
from a different ancilla initial condition. In the previous two
equations, the bipartite superoperator D is defined by the
expression Csa = D + J, where Csa is given by Eq. (14) and
J defines the bipartite measurement transformation M[ρ] =
J[ρ]/Trsa[Jρ], Eq. (A3). Therefore, it reads

D[ρ] = −1

2

∑
i,α

′γα{T †
αiTαi,ρ}+ (A10a)

= −1

2

∑
α

γα{V †
αVα ⊗ �1,ρ}+. (A10b)

In the second line, as well as in the previous two equations
for T̂ (u) and T̂ ′(u), we used that the configurational bath space
is two dimensional.

In the second case, both propagators are the same, T̂ ′(u) =
T̂ (u). From Eqs. (12) and (16), T̂ (u) can be written as in
Eq. (A8) with the superoperator D defined by the expression

D[ρ] = −1

2

∑
α

γα{T †
α0Tα0,ρ}+ (A11a)

= −1

2

∑
α

γα{V †
αVα ⊗ �0,ρ}+. (A11b)

In this case, this definition is valid for an arbitrary number of
bath states.

The previous expressions for the conditional propagators
can be solved in an exact way in the Laplace domain. They
also provide an alternative and equivalent way for getting
statistical objects such as the survival probabilities, Eq. (65), or
equivalently their associated waiting time densities, Eqs. (59)
and (60).
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