
REPRINT



z Medicinal Chemistry && Drug Discovery

Conformation-Independent QSAR Study on Human
Epidermal Growth Factor Receptor-2 (HER2) Inhibitors
Pablo R. Duchowicz,*[a] Silvina E. Fioressi,*[b] Eduardo Castro,[a] Karolina Wróbel,[c]

Nnenna E. Ibezim,[d] and Daniel E. Bacelo[b]

Inhibition of HER2 (human epidermal growth factor receptor 2)
expression and function is required in several cancer treat-

ments. Numerous compounds with very different molecular

structures have been suggested as HER2 inhibitors. Here we
perform quantitative structure-activity relationship (QSAR) anal-

ysis on 444 of such compounds to investigate the molecular
properties that may influence its efficiency. Models based on

1D and 2D flexible molecular descriptors are proposed to
develop simple models based solely on constitutional and

topological molecular features. A large number of non-

conformational descriptors (17974) was used to thoroughly
explore the structural characteristics that influence the HER2

inhibitory activity. Three different approaches were explored

using: 1) Molecular Descriptors, 2) Flexible Molecular Descrip-
tors, and 3) Hybrid Descriptors. A QSAR model for HER2

inhibitors was successfully developed. Some properties such as
electronegativity, aromatic character, and the presence of

amino groups appear as molecular characteristics that may
have influence in the HER2 inhibitory activity.

Introduction

Several human cancers are categorized by elevated levels of
proteins that regulate cell cycle progression and proliferation.

HER2 are constituents of the epidermal growth factor receptor
tyrosine kinase protein family which includes HER1/EGFR,

HER2/ErbB2, HER3/ErbB3, and ErbB4.[1] This family of receptors

is among the most investigated cell signaling families in cancer
research.[2] Receptor over-production is caused by abnormalities

in HER2 gene regulation, resulting in various cancers including
breast,[3] prostate,[4] ovarian,[5] and gastric cancer[6]. In these

cases treatment of the cancer and prevention of its spread
must include inhibition of HER2 expression and function. For
breast cancer, Trastuzumab (HerceptinH)[7, 8] has proven to be

efficient in overexpression inhibition of HER2 and Lapatinib

(TykerbH)[9, 10] is a second-line treatment for patients who are
refractory to Trastuzumab and chemotherapy.

The discovery of new molecular cancer drug targets and
the development of specific agents directed to these targets is

an active area of research. At the present different families of
structures have been suggested as HER2 inhibitors and their

efficiencies reported.[11–31] The QSAR statistical approach, which

correlates quantitative response activities with numerical
descriptors from a set of training molecules, has proved to be

an essential technique in the discovery of new drugs.[32–34]

Trustworthy models can improve drastically the proficiency and

pace of detection of more effective drugs with weaker
secondary effects. Zhu and coworkers developed a 3D-QSAR
model using sets of 12 molecules of 3-substituted indolin-2-

ones and 19 compounds of benzylidene malononitriles with
low-to-high affinity for HER2.[35] Docking and 3D- QSAR analyses

were employed to explore differences in binding mode
preferences at the ATP site and the selectivity of the dihydroxy
compounds as inhibitors of HER-2 using 50 benzylidene
malonitrile tyrphostins.[36] A set of 32 C4- and C5- substituted

pyrrolotriazines showing inhibition activity toward HER2 pro-
tein tyrosine kinases were studied by 3D-QSAR comparative
molecular field analysis (CoMFA); the model found showed

good predictive ability.[37] The investigation of QSAR models
and pharmacophore features for designing HER2/HSP90 dual-

targeted inhibitors was reported by Chen and Chen. Their
models based on 48 compounds proved highly predictive, with

correlation coefficients (r2) in the range of 0.93-0.96.[38] The

same research group proposed a 3D-QSAR model of 36 protein
kinase inhibitor ligands. In this case CoMFA models and

comparative molecular similarity indices analysis yielded r2

values of 0.9547 and 0.9226, respectively.[39] They also published

multiple linear regression (MLR) and support vector machine
(SVM) models constructed from an extensive set of 298 ligands.
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The reported r2 values were 0.795 for MLR and 0.862 for SVM.[40]

Self-Organizing Molecular Field Analysis (SOMFA), a grid-based

and alignment-dependent 3D-QSAR method, was applied to a
series of 24 new quinazoline derivatives, and r2 of 0.815 was

obtained.[41] Recently 115 HER2/ErbB2 inhibitors were studied
with 3D-pharmacophoric descriptors in QSAR analysis; ligand

efficiency as the response variable was applied because the
logarithmic transformation of bioactivities failed to provide self-
consistent QSAR models.[42]

The aim of the present study is to analyze by QSAR the
inhibitory HER2 activity of compounds reported in the literature
to identify molecular properties that influence activity in order
to contribute to the design of compounds more effective in

treatment. The objective is to find simple models based on a
sizable, varied set of molecules, employing a large and

heterogeneous set of descriptors. Therefore, QSAR models
based on 1D and 2D flexible molecular descriptors are
proposed to develop simple models based solely on constitu-
tional and topological molecular characteristics.[43, 44] Exclusion
of 3D structural aspects avoids the ambiguities arising from the

existence of various conformational states. On the other hand
exclusion of quantum-chemical descriptors avoids the high

computational costs and long calculation times associated with

the calculations of optimal molecular geometries. Three differ-
ent QSAR approaches were explored to develop models for the

prediction of the inhibitory activity of HER2. In one approach
the popular freely available descriptor generators PaDEL-

Descriptor (version 2.20),[45, 46] EPI Suite,[47] and Mold2[48] were
used to generate 0D and 1D descriptors and fingerprints. In the

other approach the CORALSEA program[49, 50] was used to obtain

flexible descriptors. Finally we also explored models combining
both sets of descriptors. Using those descriptors, simple models

based on from 1–6 descriptors have been chosen as the best
predictive combinations of independently selected variables.

2. Methodology

QSAR analysis was performed on 444 HER2 inhibitors (Table 1S).
Their structures and in vitro activities were collected from

recently published literature.[11–31] The bioactivities were ex-
pressed as concentrations of the test compounds that inhibited

the activity of HER2 by 50 % (IC50). The IC50 values were
converted into molarities (M), and then the logarithmic (pIC50,

M) values were used in the QSAR analysis.

2.1 Structural representation and molecular descriptors
calculation

The structures of the compounds were generated in both
SMILES notations and 2D structures drawn with Discovery

Studio (Version 3.5) freeware,[51] without performing geomet-

rical optimizations, and saved in MDL-MOL format. The
descriptors were calculated using two different methodologies:

a) Theoretical conformation-independent molecular descriptors
and fingerprints were calculated using the freely-available

software PaDEL-Descriptor (version 2.20),[45, 46] EPI Suite,[47] and
Mold2[48]. In total, 1444 1D and 2D descriptors and 12 types of

fingerprints (16092) were obtained from Padel-Descriptor, 184
descriptors from EPI Suite, and 254 descriptors from Mold2. In
total a large number of non-conformational descriptors (17974)
were used to thoroughly explore the structural characteristics

that influence HER2 inhibitory activity. Constant values and
descriptors found to be linearly-dependent were identified and

excluded from the original matrix of variables to minimize
redundant information. b) Flexible molecular descriptors were

calculated with CORAL freeware.[49, 50] At first the SMILES
notations of the compounds were provided as input to the
CORAL program along with the experimental pIC50 values.

Three different structural representation (SR) approaches are
available in the CORAL program: i. a chemical graph, such as

hydrogen-suppressed graph (HSG), hydrogen-filled graph (HFG)
or graph of atomic orbitals (GAO); ii. SMILES; and iii. a hybrid of

chemical graph and SMILES.[50] The most appropriate combina-

tion of structural attributes (local descriptors, SA) should be
chosen for modeling because the selected SR defines the

number and types of local descriptors to be included in the
QSAR analysis. The CORAL framework searches for a QSAR

model through a one-variable linear correlation between pIC50

and a properly defined flexible descriptor (DCW). The DCW

descriptor is a linear combination of special coefficients called

correlation weights (CW). A CW value is calculated for each SA
type in the training set. The CW values for all the structural

attributes are calculated via Monte Carlo (MC) simulation,
searching for the highest correlation coefficient (r) between

pIC50 and the DCW descriptor (Table 2S). The DCW depends
upon the threshold value (T) and the number of epochs or

iterations (Nepochs) used.[52] These parameters are positive

integers from the MC method that must be specified in order
to calculate the DCW values. T defines rare (noise) SMILES

attributes that do not contribute to the predicted inhibitory
activity, so that all SMILES attributes that take place in less than

T SMILES notations of the training set are classified as rare
instead of active. In this study, T ranges from 0 to 5 and the

maximum number of iterations used is 50.

2.2 Model Validation

To verify the predictive capability of the proposed models the

dataset was split into a training set (148 compounds) for model
development, a validation set (148 compounds) for model

validation, and a test set (148 compounds) for external

validation. Randomly splitting a dataset may not lead to
rational solutions unless the generated sets have similar

structure-activity relationships. To this end the split of the
dataset is carried out by the Balanced Subsets Method

(BSM),[53–55] a technique based on k-Means Cluster Analysis (k-
MCA). The procedure of BSM ensures that the training set is

representative of the validation and test sets.

The Replacement Method (RM) technique[56–62] was applied
to generate Multivariable Linear Regression (MLR) models on

the training set. The algorithms used in our calculations were
programmed in MATLAB software.[63] The MLR models were

validated theoretically through the Leave-One-Out Cross Vali-
dation (loo) method to measure the stability of the QSAR model
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upon inclusion/exclusion of molecules. A general criterion is to
validate the model if the loo variance (R2

loo) is greater than 0.5.

Since this is merely a necessary, not sufficient, condition for

predictive power[64], more thorough validation was sought
using the external test set of 148 compounds and the training

set of 148. The Y-Randomization method[65] was used to
scramble the experimental values such that they do not

correspond to their respective compounds to check that the
model does not result from happenstance.

Mean absolute error (MAE) was the criterion applied to

evaluate the predictive error values relative to the training set
response range.[66] A MAE of 10 % of the training set range

indicates that the model is adequately predictive. Comparison
of error-based metrics values after eliminating a defined small

fraction of compounds with high residual values of the test set
avoids the effect of any rare prediction error that can diminish

the quality of predictions for the whole test set. To evaluate the

predictive capability of a model the percent of compounds
with high residual values of the test set that need to be

removed to accomplish the value of the MAE + 3s to be less
than 25 % of the training set range was also assessed (s the

standard deviation of absolute error values for the test set).
The reliability of the predictions was confirmed by the

determination of the error bias of the model.[67] This verifies the

absence of systematic error, assuring that error values lie both
above and below the null residual. The freeware XternalValida-
tionPlus v.1.2[68] and Bias-Variance Estimator[69] were utilized for
bias error determination of the models.

2.3 Applicability Domain

No QSAR model is expected to reliably predict studied activity
for the universe of molecules. The applicability domain (AD) is a

theoretically defined area that depends on the molecular
descriptor values and the experimental activity analyzed.[70, 71]

Only molecules falling within this AD are not considered model
extrapolations. The ADs for the proposed models were

determined though two methodologies: the leverage ap-

proach[72] and a simple standardization method[73]. In the
leverage approach each compound i has a calculated leverage

value hi and a warning leverage value h* (Table 2S), so that if hi

is greater than h* , the prediction is regarded as substantially a

model extrapolation and not reliable. In addition the recently
proposed method for identifying compounds outside the

applicability domain developed by Roy and coworkers was
applied.[73] The standalone application named “Applicability

domain using standardization approach” was used.[74]

3. Results and Discussion

Three different approaches were explored for the prediction of

inhibitory activity of HER2: 1) Molecular Descriptors Model, 2)
Flexible Molecular Descriptors Model, and 3) Hybrid Descriptors

Model. The corresponding statistical parameters are provided

as Supplementary Information (Tables 3S to 11S) and the results
for each model are discussed in the following sections. As a

general methodology, once the predictive ability of the
molecular descriptors has been verified, the models are used

for the experimental data in the test sets, in order to fully
exploit the available structural and response information and to

enlarge the applicability domain of the model.

3.1 Molecular Descriptors Models

Table 1 shows the results obtained for the best models found

using the molecular descriptors and fingerprints. Models

involving from one to seven descriptors were explored and the

best predictive performance is observed for the model
involving six descriptors. Figure 1 shows the calculated pIC50

versus the experimental values for this model, represented by

the equation:

Table 1. Descriptors identified for modeling inhibitory HER2 activity together with the squared correlation coefficient and the standard deviation for the
training, validation, and test sets. The best model is in bold text.

#Des. Descriptors R2
Train STrain R2

Val SVal R2
Test STest

1 PubchemFP539 0.53 0.92 0.53 0.91 0.47 0.94
2 PubchemFP192, PubchemFP539 0.60 0.84 0.60 0.84 0.54 0.88
3 GATS5c, PubchemFP192, PubchemFP539 0.64 0.81 0.64 0.79 0.57 0.85
4 minHdsCH, MIC2, PubchemFP192, PubchemFP539 0.68 0.76 0.67 0.77 0.54 0.85
5 ATSC5i, VE1_Dzs, MACCSFP28, PubchemFP192, PubchemFP539 0.72 0.72 0.70 0.74 0.66 0.76
6 ATSC5 i, VE1_Dzs, NaasC, MACCSFP28, PubchemFP539, APC2D9_N_O 0.76 0.67 0.72 0.71 0.64 0.79
7 SpMin1_Bhp, minHdsCH, MACCSFP28, VR2_D, PubchemFP192, PubchemFP435,

PubchemFP539
0.78 0.65 0.72 0.72 0.64 0.80

Table 2. The search for the best QSAR model using flexible molecular
descriptors.

Structural Attributes R2
train Strain R2

val Sval R2
test Stest

3Sk 0.85 0.51 0.85 0.53 0.68 0.75
2Sk,

3Sk 0.84 0.53 0.83 0.55 0.71 0.70
1Sk, 2Sk,

3Sk 0.85 0.52 0.84 0.54 0.71 0.70
Pt2k 0.75 0.63 0.70 0.72 0.69 0.72
Pt2k,

2ECj 0.84 0.53 0.80 0.58 0.69 0.72
Pt2k,

0ECj,
1ECj,

2ECj 0.84 0.53 0.79 0.61 0.72 0.69
1Sk,3Sk, Pt2k 0.85 0.51 0.85 0.53 0.71 0.69
1Sk, 2Sk,

3Sk, Pt2k, 0ECj,
1ECj,

2ECj 0.88 0.47 0.87 0.48 0.72 0.68
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pIC50 ¼ 3:70þ 0:0194 ATSC5i þ 0:921 VE1 Dzsþ 0:223 naasC

þ2:12 MACCSFP28þ 0:812 PubchemFP539@ 0:230 APC2D9 N O

ð1Þ

Ntrain = 148, R2
train = 0.76, Strain = 0.67, Nval = 148, R2

val = 0.72, Sval =

0.71, F = 73

Ntest = 148, R2
test = 0.64, Stest = 0.79, o(2.5S) = 1, R2

Loo = 0.73 SLoo =

0.70, Srand = 1.22,

h* = 0.071, MAE = 0.6, Train range = 5.40, Variance = 0.498,

Bias2 = 0.59
Here, F is the Fisher parameter and o(2.5S)[75] indicates the

number of outlier compounds in the training set having a

residual (difference between experimental and calculated pIC50)
greater than 2.5 times Strain and lower than 2.5 times Strain. The

two applied methodologies found that two compounds (370
and 375) fall out of the applicability domain in this model. The

MAE result including all test compounds is slightly over 10 % of
the training compounds’ value range. To meet the established

measure of MAE + 3s < 25 % it is necessary to eliminate 15 %
of the high residual values of the test set. Then, by the MAE
criterion, this model is weak though it does not present

systematic errors.[66] Figure 1S presents a dispersion plot of
predicted values. Equation 1 satisfies the external validation

conditions.[76]

The descriptors ATSC5i, and VE1_Dzs in the proposed
models are 2D-autocorrelation descriptors originating in auto-

correlation of topological structure of Broto-Moreau (ATS), and
the last eigenvector from the Barysz matrix. The autocorrelation

descriptors encode both the molecular structure and a
physicochemical property as a vector. As a result these

descriptors associate the topology of a structure with a
selected physicochemical property. The two indices following
the descriptor symbol represent the topological distance
between pairs of atoms, or lag, and the physicochemical
property considered in the weighting component for its
computation. For example, the ATSC5i descriptor represents the

Centered Broto-Moreau autocorrelation with lag 5 weighted by
first ionization potential. The VE1_Dzs is a coefficient derived
from the last eigenvector of the Barysz matrix weighted by I-
state descriptors.

In the above model the ATSC5i and the VE1_Dzs descriptors

both correlate positively to inhibitory activity. NaasC represents
the number of aromatic carbons bonded with non-H atoms,

and also presents a positive correlation. The model is
completed by the positive contribution of two fingerprints,
MACCSFP28 (MACCS keys QCH2Q), PubchemFP539 (N=C-C-[#1]),
and the negative correlation of APC2D9_N_O (count of N@O at
topological distance 9). MACCSFP28 fingerprint accounts for a

CH2 moiety bonded to heteroatoms, for example nitrogen,
whereas PubchemFP539 is indicator of a nitrogen double-

bonded to a carbon, as in an aromatic or tertiary amine.

Recently secondary and tertiary amino groups have been
reported as the most frequent moieties found in anticancer

drugs tested against NCI-60 cell lines in a QSAR study using a
dataset of 8565 molecules.[77] The molecular descriptors and

fingerprints appearing in the model of Eq. 1 suggest that the
inhibitory activity of HER2 is affected by the aromatic character

of the compounds, its ionization potential and the presence of

nitrogen atoms in the structure, particularly those forming
amino groups and not associated directly to oxygen.

3.2 Flexible Molecular Descriptors Model

The QSAR analysis was performed by searching the best linear

regression models on the training set of 148 compounds. The

most efficient structural attributes for each SR are searched by
optimizing the DCW flexible descriptor by increasingR2

trainuntil
the model begins to lose predictive capability in the validation
set. The same procedure is followed when the most predictive

model must be selected among several MRL, with the
descriptors searched in a pool of thousands.[78] The test set was

not involved in the development of the model. Table 3 contains
a summary for the statistical quality of the best QSAR models
found by trying different possible CORAL combinations. It

reveals that the best choice is an approach that includes both
graph and SMILES representations. The optimal descriptor

involves seven variable types, and 775 active attributes are
based on them (shown in Table 10S). The predicted and

experimental values for the training, validation, and test sets

follow a straight line (Figure 2), and the residuals are shown in
the Figure 2S. The resultant equation for this model using one

DCW is:

Figure 1. Predicted and experimental values for the training, validation and
test sets for the six-descriptor model (Equation 1) for 444 HER2 inhibitors.
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pIC50 ¼ 2:54 þ 0:033 * DCW ð2Þ

Ntrain = 148, R2
train = 0.88, Strain = 0.47, Nval = 148, R2

val = 0.87, Sval =

0.48, F = 1033

Ntest = 148, R2
test = 0.72, Stest = 0.68, o(2.5S) = 5, R2

Loo = 0.87 SLoo =

0.48, Srand = 1.26,

h* = 0.02, MAE = 0.53, Train range = 5.40, Variance = 0.002,

Bias2 = 0.46
All compounds are within the applicability domain accord-

ing to both methods used, and systematic error is absent. The
MAE calculated including all test compounds lower than 10%

of the training compounds’ value range. It is necessary to

exclude 9 % of the high residual compounds of the test set to
accomplish the provision of MAE + 3s < 25 % of the training

set range. We apply both Y-randomization to demonstrate that
Strain < Srand , and also the external validation criterion[76] to

ensure that a valid structure-activity relationship is achieved:

The parameters used for model building were T = 5 and
Nepochs ¼ 50. Table 11S includes an example of a DCW calcu-
lation for compound 1. The local descriptors that contribute to

the DCW calculation are listed in Table 10S and are all structural
attributes. Higher positive CW values tend to predict higher
activity values.

3.3 Hybrid Descriptors Model

Finally calculations combining PaDEL, EPI Suite, Mold2, and the

flexible CORAL descriptors and fingerprints were explored. The
combination of various flexible descriptors or flexible descrip-
tors with molecular descriptors create models with better

predictive quality, with however, significant increase in com-
plexity. Best results were achieved with five descriptors (see

Table 3). Figures 3 and 3S show the predicted and experimental

Table 3. Descriptors identified for modeling inhibitory HER2 activity together with the squared correlation coefficient and the standard deviation for training,
validation, and test sets.

#Des. Descriptors R2
Train STrain R2

Val SVal R2
Test STest

1 Coral 0.88 0.47 0.87 0.48 0.72 0.68
2 Coral, Ssl 0.88 0.46 0.87 0.48 0.73 0.68
3 Coral, ALogP, KRFP1811 0.88 0.47 0.87 0.49 0.73 0.68
4 Coral, ALogP2, AMR, KRFP2595 0.89 0.45 0.86 0.52 0.71 0.71
5 Coral, SpMax4_Bhv, SpMax3_Bhe, SpMax5_Bhi, APC2D3_C_N 0.90 0.43 0.87 0.48 0.74 0.66
6 Coral, ALogP2, SpMax4_Bhv, SpMax3_Bhe, SpMax5_Bhi, Ssl 0.91 0.42 0.88 0.48 0.75 0.66
7 Coral, SpMax3_Bhp, SpMax4_Bhp, MDEC-22, MLFER_L, SubFP17

KRFP142
0.91 0.41 0.85 0.54 0.75 0.66

Figure 2. Predicted and experimental values for the training, validation and
test sets for the one- flexible-descriptor model (Equation 2) for 444 HER2
inhibitors.

Figure 3. Predicted and experimental values for the training, validation and
test set for the five-descriptors hybrid model (Equation 3) for 444 HER2
inhibitors.
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values for the training, validation, and test sets using the best
model represented by the equation:

pIC50 ¼ 1:111-1:877 Coral þ 1:344 SpMax4 Bhv þ 0:798

SpMax3 Bheþ 0:012 SpMax5 Bhi þ 0:0320 APC2D3 C N
ð3Þ

Ntrain = 148, R2
train = 0.90, Strain = 0.43, Nval = 148, R2

val = 0.87, Sval =

0.48, F = 254

Ntest = 148, R2
test = 0.74, Stest = 0.66, o(2.5S) = 4, R2

Loo = 0.89 SLoo =

0.45, Srand = 1.22,

h* = 0.061, MAE = 0.52, Train range = 5.40, Variance = 0.006,

Bias2 = 0.42

According to the two methods used all the compounds are
within the applicability domain and no systematic error was

observed. The MAE result including all test compounds is lower
than 10 % of the training compounds’ value range and 7 % of

the test set compounds had to be removed to achieve a MAE +

3s value lower than 25 %.

The flexible descriptor of the best model found for CORAL

also appears in the most predictive hybrid model. The other
four descriptors for equation 3 are: SpMax4_Bhv (Largest

absolute eigenvalue of Burden modified matrix - n 4 weighted
by relative van der Waals volumes), SpMax3_Bhe (Largest

absolute eigenvalue of Burden modified matrix - n 3 weighted
by relative Sanderson electronegativities), SpMax5_Bhi (Largest

absolute eigenvalue of Burden modified matrix - n 5 weighted

by relative first ionization potential), and APC2D3_C_N (Count
of atom pairs C@N at topological distance 3). Analysis of the

descriptors involved in Eq 3, as in the Eq 1 model, shows that
ionization potential, electronegativity, and steric factor influ-

ence HER2 inhibitory activity. This finding agrees with those of
Chen and Chen in CoMFA analysis of 48 purine-based

molecules.[38] They propose that steric impediment and hydro-

gen bonding should be taken into account in designing
efficient HER2 inhibitors. Equation 3 also satisfies the external
validation conditions.[76]

4. Conclusions

In this work, we have developed a structure-inhibitory activity

relationship for HER2 inhibitors through a computational
technique that does not require knowing the molecular

conformation as part of the structural representation. A model

that uses traditional molecular descriptors gives slightly better
results than one involving one flexible descriptor from the

CORALSEA program, however, the former model is but poorly
validated by MAE metrics. Better performance is obtained with

a hybrid approach that combines the optimal CORAL descrip-
tor, three PaDel descriptors, and one fingerprint. This model

was validated through Y-randomization, cross-validation and
MAE criteria, and satisfies Applicability Domain analysis.

The descriptors involved in the models here proposed
suggest that ionization potential, aromatic character of the

molecules studied and the presence of amino groups seem to
have influence in HER2 inhibitory activity. This could be useful

in development of new anticancer drugs that efficiently inhibit
HER2 expression and function.
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