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Abstract. Activity-driven modelling has recently been proposed as an
alternative growth mechanism for time varying networks,displaying power-law
degree distribution in time-aggregated representation. This approach assumes
memoryless agents developing random connections with total disregard of their
previous contacts. Thus, such an assumption leads to time-aggregated random
networks that do not reproduce the positive degree-degree correlation and high
clustering coefficient widely observed in real social networks. In this paper, we
aim to study the incidence of the agents’ long-term memory on the emergence of
new social ties. To this end, we propose a dynamical network model assuming
heterogeneous activity for agents, together with a triadic-closure step as main
connectivity mechanism. We show that this simple mechanism provides some of
the fundamental topological features expected for real social networks in their
time-aggregated picture. We derive analytical results and perform extensive
numerical simulations in regimes with and without population growth. Finally,
we present an illustrative comparison with two case studies, one comprising face-
to-face encounters in a closed gathering, while the other one corresponding to
social friendship ties from an online social network.
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1. Introduction

Social networks represent the different substrates on which we develop many aspects of
our lives. Knowledge, news, rumours and diseases are transmitted through an intricate
social framework usually represented by a complex network, which explains the growing
interest of scientific community in such complex systems.

Many of the early social networks analyzed in the literature from about 15 years ago
are, in fact, the aggregated picture of some dynamical growing process. At that time, there
was almost no access to time-resolved data. Thus, researchers mainly worked on time-
aggregated networks just as if they were static objects. The efforts were mostly focused
on the study of topological features and on proposing a variety of growth mechanisms in
order to reproduce it. Different topological characteristics of complex networks, as node
degree distribution, clustering coefficient, average shortest path length, modularity and
degree-degree correlation have proved to be related with their spreading properties [1–6].
In particular, many kinds of human acquaintance networks also display heterogeneous
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degree distribution (mainly power-law), high clustering coefficient [7], strong communality
[8, 9] and positive degree-degree correlation (i.e. degree assortativity) [10] as distinctive
features. Concerning the network growth mechanisms, preferential attachment (PA)
constitutes one of the most widespread heuristic mechanisms giving rise to networks with
the ubiquitous power-law degree distribution (scale-free networks) [11–14].

The current massivity of new information technologies has enabled the availability
of huge amounts of time-resolved data from virtual social networks as well as from
real social contacts between individuals [15–18]. In the light of this new insight, the
exploration of the microscopic dynamic of social contacts is possible nowadays. Time-
varying networks have been recently raised as a dynamic variant of the original static
network representation. This new approach accounts for the changing nature of many
empirical networks, comprising evolving interactions by creating and, eventually, deleting
edges between nodes. In this context, an alternative mechanism based on the concept
of activity rate was recently proposed in order to explain the scale-free feature from a
dynamic perspective [19]. The activity rate describes the degree of participation of a
given individual in a particular social network. Participation can account for published
papers in the case of scientific collaboration networks, movies and TV series filmed in actor
networks, or messages shared in the Twitter microblogging network. For each time step δt,
a node is activated or not with probability proportional to its activity rate. Active nodes
perform random connections to other nodes chosen over the entire population. Then, while
the greater the activity rate of a given node, the greater his accumulated acquaintances
in a given time window. Similar concepts like fitness [20,21] and attractiveness [22], have
been introduced in previous growth models for static networks, in order to take account
of intrinsic nodes’ ability to acquire new social connections. These approaches can be
encompassed in a general hidden-variable model, by which nodes are tagged with some
feature that fully determines the final network topology [23].

The activity-driven model (AD) assumes memoryless agents that only perform uni-
formly random connections, properly reproducing the time dynamic of contacts and giving
place to time-aggregated random scale-free networks [19]. However, the AD model shows
a downside: it cannot replicate the high clustering coefficient and degree assortativity
characteristics of many social networks in their time-aggregated picture, as shown in [24].

Beyond their particular characteristics, every social network representation is the
result of an aggregation process over a given time window Δt at some instant T � Δt.
Every plausible network growth process should be able to reproduce the main topological
features observed in real social networks, in particular when Δt = T . The vast majority
of empirical data sets suggest the need for some local connectivity mechanism promoting
transitive ties between social agents [25–28]. This particular preference towards transitive
ties is a sign showing that agents should have records of their previous social contacts, even
after their effective social interactions have been concluded. Such behaviour is observed
in real social networks and we study two examples in section 7.

In this work we introduce a generalized stochastic growth model (GSG) assuming a
population of nodes with heterogeneous activity rates and long-term memory. Then, once
an edge emerges between two nodes at a given time, it remains in the system memory
from then on. This last characteristic allows to introduce the impact of the current social
environment of nodes on their further social development, drawing a parallel with the
former growth mechanisms for static networks.
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GSG constitutes a dynamical network model with time-varying edges. However, here
we are not focused on the dynamical features of contacts, but instead on the topological
properties of time-aggregated networks. We show that some of the topological features
observed in real social networks can be recovered also for dynamical networks by following
the prescriptions of a strictly local connectivity mechanism. For this purpose, GSG model
is based on a combination of random ties together with a triadic-closure (TC) mechanism,
the latter being well known for adding structure to the network [29–33]. In contrast with
the hidden-variable model, we show that activity rates do not fully determine the final
network topology. Instead, it is the combined action of AD and TC mechanisms that
defines this topological features in GSG model. Finally, we show that the original AD
model of [19] can be recovered as a particular case of our GSG model.

The rest of this paper is organized as follows: In section 2, we introduce the details
of the GSG model. In section 3, we present the analytical treatment for the degree
distribution. In sections 4 and 5, we present exact and approximate analytical solutions
together with extensive numerical simulations for constant and growing population,
respectively. Degree-degree correlations and clustering are studied by means of numerical
simulations in section 6. In section 7, we analyze two real social networks, the first
corresponding to face-to-face encounters in a closed gathering under constant population
and the second to a subgraph of Facebook online friendship network. In section 8, all
relevant results are summarized and discussed. Finally, in the appendix we propose a
brief review of the hidden-variable model.

2. The model

Following the traditional network representation, nodes and edges correspond respectively
to individuals and their ties in a social context. Let Gt(N ; L) represent a network, or
graph, composed of N(t) nodes and L(t) edges at time t. As in AD model, GSG assign
to each node i ∈ {1, . . . , N} an activity rate ai from a given activity pdf F (a).

First, we will remind ourselves of some aspects of AD model. It assumes that nodes
are activated for each time interval δt with probability proportional to their activity rate.
From each active node m edges arise, that will be connected to other nodes (actives or not)
chosen uniformly at random without any memory of its previous connections. Finally, all
edges are deleted after each time interval δt. This process gives rise to a time-aggregated
random network with degree distribution inherited from the corresponding activity density
function F (a). It is important to note that the same edge may be repeated for different
time steps in AD model.

In the context of GSG we assume that activity ai represents, in fact, the rate at which
new edges emerge from node i. Thus, high activity nodes are more prone to acquire new
connections. As the AD model, GSG is a model of dynamical networks with time-varying
edges. Instead of multiple random connections the edges are added one by one, remaining
in the system memory from then on (this point will be made clear later on). The edges
are introduced with a rate given by:

β(t) =
N(t)∑
i=1

ai. (1)
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Alternatively, each added edge lj will be deleted with rate μj from a pdf FD(μ), so that
the total edges’ deletion rate η(t) results

η(t) =
L(t)∑
j=1

μj. (2)

However, every edge will remain in the memory of the involved nodes, even after having
been deleted, thus influencing their further connections.

In any case, here we are focused on studying the topological features of time-aggregated
networks coming from GSG model1. As a consequence, all edges will remain in the time-
aggregated representation as if they were static. Subsequently, the results that we show
in the following sections apply to any deletion mechanism of edges.

2.1. Memory effects: triadic-closure mechanism

In GSG model, edges are added following a mixed connectivity mechanism. For each
edge, the source node is selected proportionally to its activity rate, while the target node
is chosen by the following procedure: (a) with probability q a second-neighbour of the
source node is chosen in order to ‘close a triangle’(TC mechanism), or (b) a random target
node is selected with probability (1 − q).

Triadic-closure mechanism has been observed in many real social networks and is
widely recognized as one of the most direct and natural ways to introduce transitivity
(or clustering) in network growth models [25, 30–35]. It can also be understood as a way
to replicate what we often experience in our social relations, namely, that usually new
acquaintances are introduced to us through our current social environment. It is in this
sense that we refer to long-term memory in agents, since everyone has an internal record
of their previous contacts. In this work, we assume ideal agents with infinite memory.

Agents’memory may also suggest the recurrence of previous contacts giving place to
weighted edges. Nevertheless, here we are focused on addressing the network development
under a parsimonious approach with unweighted edges (see [36] for the relation of long-
term memory with a reinforcement process). An example of the connectivity evolution
for GSG model is shown in figure 1. The impact of TC mechanism is clearly evidenced
in this sequence.

In the next sections, we present a detailed analytical formulation of the time-
aggregated representation of the model, in order to obtain the degree distribution under
two regimes: (i) with constant population (γ = 0) and (ii) with population growth (γ > 0).

3. Analytical formulation

We begin by defining the elements of GSG analytical formulation for time-aggregated
representation on a general framework. We represent this time-aggregated picture as the
final outcome of a continuous time stochastic process {Lt}t∈R�0 with edges’ birth rate β(t).
In order to simplify the subsequent analysis, we define an embedded discrete stochastic
1 Dynamical aspects of GSG model such as contacts duration and frequency (reinforcement process) will be
discussed in a future paper.
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(a) (b) (c)

Figure 1. (a) � = 100 (b) � = 400 (c) � = 1000 An example of three
network growth stages (in terms of �) are shown for GSG model under constant
population with N = 200 and triadic-closure probability q = 0.7.

process {L�}�∈N with � the aggregated number of added edges. In this way, we also define
the nodes’ population growth rate γ in terms of the edges’ population growth rate (now
formally equal to 1). Hence, the evolution of the total number of edges and nodes are
respectively given by L(�) = L0 + (1 + γ)�, where γ� comes from those edges associated
with added nodes and N(�) = N0 + γ�, with L0 and N0 the initial values.

Let Pk|a(�, �0) be the probability that a node introduced at step �0 with activity rate
a has degree k for a subsequent algorithm step � > �0. Now we can define N̄k|a(�), the
mean number of nodes with degree k within those with activity rate a, as

N̄k|a(�) =
�∑

�0=1

Pk|a(�, �0). (3)

Thus, N̄k|a(�) is equivalent to the propagator for hidden-variable model [23]. The evolution
of N̄k|a(�) can be described from a continuum approach through a system of coupled rate
equations [12,37] as follows:

dN̄k|a
d�

= q
(
Θ(k − 1, a, �)N̄k−1|a − Θ(k, a, �)N̄k|a

)
+

1 − q

N(�)

(
a

〈a〉 + 1
) (

N̄k−1|a − N̄k|a
)

+
γ

N(�)
(
N̄k−1|a − N̄k|a

)
+ γδk1, (4)

where the first term in the right-hand-side of (4) is associated with the TC mechanism
contribution to N̄k|a(�) (with Θ(k, a, �) the TC kernel), while the second one corresponds
to random edges contribution. This last term can be decomposed into the contribution
of the source node chosen with probability proportional to its activity,

1 − q

N(�)

(
a

〈a〉
) (

N̄k−1|a − N̄k|a
)

(5)

which is added to the contribution of the random connected target node, given by
1 − q

N(�)
(
N̄k−1|a − N̄k|a

)
. (6)

Continuing with our description of equation (4), the third term in its right-hand-side is
the contribution of the remaining end of the edge added together with every a-activity
new node (also tied uniformly at random). Finally, the last term γδk1 comes from the
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initial degree (k = 1) of each a-activity new node itself. The TC kernel Θ(k, a, �) in (4)
is defined as:

Θ(k, a, �) =
a

〈a〉N(�)
+

k

2L(�)
. (7)

Every TC edge is tied to a source node chosen at random with probability proportional
to its activity rate a,leading to the first term in right-hand-side of (7), whereas the last
one represents the preferential attachment term arising from TC target [31, 32]. After
regrouping terms, equation (4) can be rewritten as

dN̄k|a
d�

= N̄k−1|aΦγ,q(k − 1, a, �) − N̄k|aΦγ,q(k, a, �) + γδk1 (8)

being Φγ,q(k, a, �) the generalized connectivity kernel given by

Φγ,q(k, a, �) =
1

N(�)

(
a

〈a〉 + 1 − q + γ

)
+

k

2L(�)
q. (9)

Finally, the resulting expression for the mean population of nodes with degree k (N̄k(�))
comprising all possible activity rates with pdf F (a) is given by

N̄k(�) =
∫

Ω
F (a)N̄k|a(�)da (10)

being Ω the domain of F (a). Now we can formally define the degree distribution function
for a given quantity of aggregated edges � as P�(k) = N̄k(�)/N(�).

GSG allows a broad flexibility in both activity distribution and population growth
regimes. In the next sections, we will solve (8) under constant population (γ = 0) and
population growth (γ > 0) regimes, in order to bring out a detailed analysis of P�(k) in
these cases. On the other hand, we will focus on two paradigmatic cases for activity
pdf: (i) constant activity (F (a) = δ(a − a0)) as the most frequent assumption and
(ii) power-law activity pdf (F (a) ∝ a−ξ) recently found in some real social networks [38].

4. Constant population

In the particular case of constant population, network growth takes place only through
the addition of new edges between existing nodes. Thus, the coupled system of ordinary
differential equations governing the evolution of N̄k|a(�) can be obtained by substituting
γ = 0 in (8) that, after replacing Φ0,q(k, a, �), reads

dN̄k|a
d�

= N̄k−1|a

[
1

N0

(
a

〈a〉 + 1 − q

)
+

(k − 1)q
2L(�)

]
−N̄k|a

[
1

N0

(
a

〈a〉 + 1 − q

)
+

kq

2L(�)

]
(11)

where N(�) = N0 ∀� � 0 and L(�) = L0 + �. There is a natural constraint imposed to k
in (11), that is k � (N0 − 1). Moreover, the asymptotic solution to (11) adopt the trivial
form N̄k|a = N0δk,(N0−1) ∀a � 0. However, here we are interested only in the non-trivial
transient solution.

Equation (11) can be solved in general by means of an iterative scheme as follows:

N̄k|a(�) =
(

N̄k|a(0) +
∫ �

0

N̄k−1|a(�′)
Πk|a(�′)

Φ0,q(k − 1, a, �′) d�′
)

Πk|a(�) (12)
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where Πk|a(�) = A (L0 + �)−kq/2 exp (− (a/〈a〉 + 1 − q) �/N0) is solution of
dΠk|a(�)

d�
= −Πk|a(�)Φ0,q(k, a, �). (13)

Closed form solutions to (11) are only reached in some particular cases. For instance,
it can be easily shown that if q = 0, the solution to (11) is

N̄k|a(�) = N0 × Pois (k; λ = �(a + 〈a〉)/(〈a〉N0)) , (14)

where Pois(k; λ) = (λk/k!) exp(−λ) is the Poisson distribution with mean λ. Replacing
(14) in (10), we can recover the following asymptotic form for the degree distribution

P�(k) =
N̄k(�)
N0

∼ 1
�
F

(
N0

�
k − 1

)
, (15)

in accordance with previous results for AD model (see [24] for a detailed derivation of
(15) for AD model). Nevertheless, we will acquire some insight about exact behaviour of
N̄k|a by analyzing approximate solutions to (11) under extreme conditions. To this end,
we assume the condition

a.
1

N0

(
a

〈a〉 + 1 − q

)
� q

k

2(L0 + �)
. (16)

By virtue of condition a., the approximate solution to (11) results

N̄k|a(�) ∼ 1
k!

(
a/〈a〉 + 1 − q

N0
�

)k

e− a/〈a〉+1−q
N0

� (17)

i.e. a Poisson distribution with mean λ = �(a/〈a〉 + 1 − q)/N0.
On the other hand, the opposite condition to (16) corresponds to assume

b.
1

N0

(
a

〈a〉 + 1 − q

)
	 q

k

2(L0 + �)
, (18)

yielding another approximate extreme solution to (11) satisfying

N̄k|a(�) ∼ (L0 + �)−q/2

[
1 −

(
L0 + �

L0

)−q/2
]k−1

≈ (L0 + �)−q/2 e−(k−1)
(

L0+�
L0

)−q/2

, (19)

showing a clear exponential decay with independence of the activity rate a. We shall
see that another activity-independent solution is obtained again for large-k values under
population growth regime.

Finally, N̄k(�) is obtained by performing the integral of (10) between N̄k|a(�) for
constant population and the activity pdf F (a).

We perform numerical simulations of GSG in time-aggregated representation for
constant population with N = 105 nodes,together with a numerical integration of
equations (11) and (10), in order to obtain the corresponding degree distribution
P�(k) = N̄k(�)/N(�). We analyze two particular activity regimes: (i) constant activity
F (a) = δ(a − a0) and (ii) power-law activity pdf F (a) ∝ a−1.5. We show the very good
agreement between simulations and theoretical predictions for constant population in
figure 2. For constant and homogeneous activity, figure 2(a) shows the expected behaviour
for P (k), i.e. Poisson-like for small-k with a marked exponential decay when condition
(18) is satisfied (see inset in figure 2(a)). Under power-law activity pdf, P (k) is dominated
by F (a) power-law decay for mid-range k-values as shown in figure 2(b), while the limit
cases are similar to those of the previous scenario.
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(a) (b)

Figure 2. Degree distribution function P�(k) = N̄k(�)/N0 under constant
population regime. (a) Activity pdf F (a) = δ(a − a0) on time-aggregated
networks with N = 105 and 〈k〉 = 20 and (b) Activity pdf F (a) ∝ a−1.5 on
networks with N = 105 and 〈k〉 = 200. In both cases, symbols correspond to
averages over 100 numerical simulations for: q = 0.1 (black circles), q = 0.3
(red squares) and q = 0.9 (green triangles). For the sake of clarity, the plots
for different q values have been shifted in all cases. Solid lines correspond to
numerical solutions to (12) subsequently integrated in (10), in order to obtain
P�(k) = N̄k(�)/N(�). (Inset in (a)) Enlarged detail of high-k values behaviour in
order to compare the exponential decay constant for exact solutions (solid lines)
with those corresponding to the approximate formulation of (19) (dashed lines).

5. Population growth

Now we study the population growth regime considering γ > 0 in equation (8). This
case is very relevant because growth constitutes one of the fundamental assumptions to
obtain scale-free networks from preferential attachment mechanism. We will show here
that this feature is also present for GSG mechanisms in time-aggregated representation
under population growth.

Regrouping terms in (8), we can rewrite it now for γ > 0 as
dN̄k|a

d�
= N̄k−1|a

[
1

N(�)

(
a

〈a〉 + 1 − q + γ

)
+

(k − 1)q
2L(�)

]

−N̄k|a

[
1

N(�)

(
a

〈a〉 + 1 − q + γ

)
+

kq

2L(�)

]
+ γδk1 (20)

where now N(�) = N0 + γ� and L(�) = L0 + (1 + γ)�. Unlike the previous case, now is
possible to obtain non-trivial asymptotic solutions to (20). These kinds of solutions have
the general form N̄k|a(�) = nk|a�, with nk|a an unknown function of degree k and activity
rate a [12]. Then, solving equation (20) for nk|a under asymptotic condition (� → ∞), we
obtain

nk|a = n1|a
k−1∏
j=1

2(γ + 1)(a/〈a〉 + 1 − q + γ) + qγ j

2(γ + 1) (a/〈a〉 + 1 − q + 2γ) + qγ (j + 1)
(21)
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where n1|a is the solution for k = 1 given by

n1|a =
2γ2(γ + 1)

2(γ + 1) (a/〈a〉 + 1 − q + 2γ) + qγ
. (22)

Beyond its rigorous expression, nk|a takes very simple forms under approximate scenarios.
The idea behind these approximations is to obtain a simplified framework where solutions
have a more evident meaning than under its exact form.

The first approximate scenario corresponds to neglect preferential attachment terms
in (20), assuming that

a.

(
a

〈a〉 + 1 − q + γ

)
〈k〉� � qk (23)

being 〈k〉� = 2L(�)/N(�) the mean degree after � aggregated edges.
Introducing approximation a. into (20) and substituting again N̄k|a(�) = nk|a� we

obtain the asymptotic solution under this approximate framework,

nk|a ∼
(

1 +
γ

a/〈a〉 + 1 − q + γ

)−(k−1)

(24)

which shows a pure exponential decay. Let us now analyze the alternative extreme
condition

b.

(
a

〈a〉 + 1 − q + γ

)
〈k〉� 	 qk. (25)

This last condition is satisfied when k and q are large enough, thus (21) takes the form

nk|a ∼ k−1− 2(γ+1)
q . (26)

showing that nk|a has power-law behaviour with exponent α = 1 + 2(γ+1)
q

, resulting α > 3
when 0 < q � 1 and γ > 0. An important fact is that nk|a becomes absolutely independent
of a. Accordingly, N̄k(�) from (10) adopt the same asymptotic power-law behaviour of nk|a,

N̄k ∼ k−1− 2(γ+1)
q . (27)

As a consequence of (27), the asymptotic large-k behaviour of N̄k is sustained only on
TC mechanism with total disregard of any particular activity distribution. Once again,
the combination of population growth with a preferential attachment term (in this case
coming from TC mechanism) gives place to power-law behaviour, just as in the original
PA model [11]. Unfortunately, this kind of behaviour seems to be hard to detect in real
social networks because condition (25) is only fulfilled for very large values of k, which
are rarely achieved or are perturbed by finite size effects.

We perform again extensive numerical simulations for GSG model in time-aggregated
representation, but this time with population growth. In figure 3, we show the good
agreement between the results of numerical simulations and theoretical predictions from
(21) for the particular case of constant activity rate. Extreme solutions corresponding
to both conditions analyzed in the text are represented in figures 3(a) and (b) by shifted
dashed lines. A very good agreement between theory and simulations is shown again in
figure 4, now for power-law F (a).
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(a) (b)

Figure 3. Degree distribution function P�(k) = N̄k(�)/N(�) under population
growth regime and F (a) = δ(a − a0) for time-aggregated networks with final
population N = 105 and 〈k〉 = 20. Symbols correspond to averages over 100
numerical simulations for: (a) q ∈ {0.1, 0.2, 0.3} and (b) q ∈ {0.8, 0.9, 1.0}.
Solid lines correspond to numerical solutions of (20) properly normalized in order
to obtain P (k). Asymptotic extreme solutions of (24) and (26) are plotted in
shifted dashed lines. For the sake of clarity, the plots for different q values have
been shifted.

(a) (b)

Figure 4. Degree distribution function P�(k) = N̄(�)k/N(�) under population
growth regime and F (a) ∝ a−1.5 for time-aggregated networks with final
population N = 105 and 〈k〉 = 200. Symbols correspond to averages over 100
numerical simulations for: (a) q ∈ {0.1, 0.2, 0.3}, and (b) q ∈ {0.8, 0.9, 1.0}.
Solid lines correspond to numerical solutions of (20) averaged through (10) and
properly normalized in order to obtain P (k). Asymptotic extreme solutions of
(24) and (26) are plotted in shifted dashed lines. (Inset in (b)) Enlarged detail of
higher k behaviour in order to compare the power-law decay for exact solutions
(solid lines) with those corresponding to the approximate formulation of (27)
(dashed lines). For the sake of clarity, the plots for different q values have
been shifted.
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6. Degree-degree correlation and clustering

6.1. Degree-degree correlation

As we have said before, social networks are usually characterized by strong degree-degree
correlation and strong transitivity (i.e. high probability that the friends of my friends are
also my friends). An indirect measure of degree-degree correlation can be obtained from
the average degree of the neighbours of the nodes with degree k, k̄nn(k), formally defined
as [39]:

k̄nn(k) =
∑
k′

k′P (k′|k) (28)

where P (k′|k) is the conditional probability that a node of degree k is connected to another
of degree k′. Thus, when k̄nn(k) grows with k, we say the network has degree assortativity.
GSG model yields networks with degree assortativity under population growth regime,
both for constant and power-law activity pdf F (a), as shown in figures 5(b) and (d).

In contrast, networks yielded by GSG model under constant population and constant
activity pdf F (a) = δ(a − a0), show a flat plot for k̄nn(k), as would be expected in the
case of Erdös-Rényi (ER) networks (random networks with Poisson degree distribution)
for which k̄nn(k′) = 〈k〉 ∀k′ (see figure 5(a)). The model show a very mild disassortative
behaviour also under constant population but now for power-law activity pdf F (a) ∝ a−1.5

(see figure 5(c)).
The k̄nn(k) for the time-aggregated network yielded by AD model has been thoroughly

studied in [24]. There, the authors propose a mapping to a hidden-variable network model
in order to obtain analytical expressions for some topological observables, in particular
for k̄nn(k). Here, we will follow the same path for the GSG model in the case of q = 0
and γ = 0, where it matches the conditions of the AD model. In this case, the following
scaling function can be derived for the rescaled average degree of neighbours of nodes
with degree k (see the appendix for a derivation),

2〈a〉
〈k〉

(
k̄nn(k) − 1

) − 2〈a〉 
 (〈a2〉 − 〈a〉2)
(

2〈a〉
〈k〉 k

)−1

. (29)

In figure 6(a), we show the collapse predicted by the scaling law of (29) for solutions
corresponding to different values of 〈k〉, with q = 0 and γ = 0. An equivalent
expression of this scaling function for q > 0 is hard to be derived because of the local
correlations induced by the TC mechanism. Nevertheless, in figure 6(b) we have plotted
(2〈a〉/〈k〉) (

k̄nn(k) − 1
) − 2〈a〉 as a function of 2〈a〉k/〈k〉 for q > 0, showing that if this

scaling function exists (as the inset in figure 6(a) for q = 0.5 suggest), it will have a
dependence with q such that (2〈a〉/〈k〉) (

k̄nn(k) − 1
) − 2〈a〉 
 F q

scal (2〈a〉k/〈k〉).

6.2. Clustering coefficient

Another practical measure associated with transitivity can be given by the average
clustering coefficient as a function of the degree k, C̄(k), defined as:

C̄(k) =
1

Nk

∑
i∈Deg(k)

Ci, (30)
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(a) (b)

(c) (d)

Figure 5. Average degree of the neighbours of degree k, k̄nn(k), for networks
obtained by GSG model, with final population N = 105 and 〈k〉 = 20 in (a)
and (b) while N = 104 and 〈k〉 = 20 in (c) and (d). Symbols correspond
to averages over 100 numerical simulations under the following conditions: (a)
constant population and constant activity pdf F (a) = δ(a − a0), (b) population
growth and constant activity pdf F (a) = δ(a − a0) (c) constant population
and power-law activity pdf F (a) ∝ a−1.5, (d) population growth and power-law
activity pdf F (a) ∝ a−1.5.

where Deg(k) is the set of all nodes of degree k, with Nk its cardinal. In (30), Ci represent
the local clustering for node i, defined as the fraction of edges between neighbours of node
i relative to its maximum number ki(ki − 1)/2 and reads

Ci =
∑

j,k∈Nnn(i)

ajk

ki(ki − 1)
, (31)

being Nnn(i) the set of neighbours of node i and ajk the elements of adjacency matrix A,
such that ajk = 1 (ajk = 0) if there is (not) an edge between nodes i and j. Clustering Ci

is related to the probability of triangles occurrence with node i as one of its vertices.
Real social networks usually exhibit a scaling law for the average clustering as a

function of the degree k

C̄(k) ∼ k−β (32)

where the observed exponents meet β � 1 [28].
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(a) (b)

Figure 6. Rescaled average degree of the neighbours of degree k, for time-
aggregated networks obtained by GSG model with power-law activity pdf F (a) ∝
a−1.5 and constant population N = 104. Symbols correspond to averages over
100 numerical simulations. (a) Collapse of solutions for q = 0 and 〈k〉 = 100,
200 and 400 (the inset corresponds to q = 0.5). The dashed line represents the
prediction of the scaling function of (29). (b) Rescaled k̄nn(k) for different values
of q � 0.

This scaling law behaviour is also captured by GSG model as shown in figure 7, where
we have plotted,in all cases, a dashed line with slope −1 in log–log scale as reference. This
fact also shows that time-aggregated networks obtained by GSG model under constant
population are far from being ER random networks as figures 5(a) and (c) might have
suggested. If that had been the case, C̄(k) would be independent of node degree k, as
can be seen from its exact expression for random networks [40]:

C̄(k) =
(〈k2〉 − 〈k〉)2

N〈k〉3 . (33)

Finally, from the total average clustering coefficient definition:

C̄ =
1
N

N∑
i=1

Ci =
∑

k

P (k)C̄(k), (34)

we can confirm the expected growing nature of C̄ with the TC probability q, as shown in
figure 8.

7. Study cases

In order to illustrate the correspondence with GSG model, we analyze two experimental
datasets reflecting human relationships networks in very different context: face-to-face
encounters in a closed gathering and friendship relations in an online social network. For
the first case, individual face-to-face contacts are detected with a time resolution of 20 s
and within a distance of ∼1 m, through wearable active radio-frequency identification
devices (RFID) placed on the chest of participants [16]. Here we analyze the publicly
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(a) (b)

(c) (d)

Figure 7. Average local clustering C̄(k) as a function of the degree k for time-
aggregated networks obtained by GSG model, with final population N = 105

and 〈k〉 = 20 in (a) and (b) while N = 104 and 〈k〉 = 20 in (c) and (d). Symbols
correspond to averages over 100 numerical simulations under the following
conditions: (a) constant population and constant activity pdf F (a) = δ(a − a0),
(b) population growth and constant activity pdf F (a) = δ(a − a0) (c) constant
population and power-law activity pdf F (a) ∝ a−1.5, (d) population growth and
power-law activity pdf F (a) ∝ a−1.5. Dashed lines corresponding to the scaling-
law C̄(k) ∼ k−1 are plotted as reference.

available dataset for ACM Hypertext 2009 (HT) conference held in Turin, Italy, with
N = 113 nodes and L = 2196 unweighted edges [17,18] (we only consider time-aggregated
face-to-face contacts between participants along the first meeting day). The second case
corresponds to a Facebook subgraph (FG) comprising N = 63731 users from New Orleans
(with larger connected component of size Ncc = 63392 ≈ 0.995 × N), interconnected by
L = 817090 undirected edges2 representing friendship relations between users, as collected
in [15]. As in the previous case, this dataset also provides time-resolved information
through the birth times of new edges. In contrast to HT FG exhibit population growth
due to the introduction of new users, in a context without spatial constraints.

2 Edges on Facebook can be considered as undirected because friendship requests must be explicitly accepted by
the other party.
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Figure 8. Average clustering coefficient C̄ in terms of TC probability. All results
correspond to averages over 100 realizations of GSG with N = 104, 〈k〉 = 20 and
F (a) ∝ a−1.5. Inset: results for GSG model with the previous parameters but
constant activity F (a) = δ(a − a0).

7.1. Topological properties

As can be seen in figures figure 9(a), P (k) for HT results narrow and short-tailed with
small-k Poissonian-like behaviour (see figure 9(a)) as obtained for GSG model under con-
stant population with the same N and 〈k〉 (see figure 9(b)). Instead, FG network exhibit
a heavy-tailed degree distribution with large-k power-law behaviour P (k) ∼ k−α with
α ≈ 3.4 as shown figure 10(a), also compatible with a network generated by GSG model
but now under population growth regime (see figure 10(b)). Additionally, the average
clustering C̄(k) and the neighbours average degree k̄nn(k) for HT and FG also exhibit the
same qualitative behaviour of those generated by GSG model under constant and popu-
lation growth regimes, respectively, as shown in figures 9(c)–(e) and figures 10(c)–(e).

In figures 9(b), (d) and (f) we present a semi-qualitative comparison with P (k), C̄(k)
and k̄nn(k), respectively, for a time-aggregated network obtained by the GSG model with
power-law activity. For the comparison with the HT network, we assume a constant
population with N = 113 and L = 2196 (〈k〉 = 38.9), i.e. the values obtained from the
original dataset. The triadic-closure probability was fixed in q = 0.8 for both comparisons
with HT and FG an appropriate value considering the analysis presented in section 7.2.
Thus, the exponent ξ of F (a) ∼ a−ξ becomes the only free parameter. We have performed
runs of GSG model for ξ ∈ [0.5, 3] with variable step δξ = 0.01−0.1 in order to obtain the
best fit (MLE method) of the degree distribution P (k). We proceeded in the same way
with the comparison of figure 10, but now assuming a growing population with N = 63731
and L = 817090 as final values. In the latter case, the selected growth rate was γ = N/L
with an initial population Ni = 100.

7.2. Growth pattern: Triadic closure

Both HT and FG provide time-resolved information through the birth times of added
edges. By virtue of this particular feature, we can address the problem of edges growth
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(a) (b)

(c)

(e) (f)

(d)

Figure 9. Degree distribution P (k), average clustering C̄(k) and neighbours
average degree k̄nn(k) for (a),(c) and (e) HT time-aggregated contacts network
and (b),(d) and (f) GSG model under constant population with N = 113, 〈k〉 =
38.9, TC probability q = 0.8 and power-law activity pdf with exponent ξ = 0.79.

mechanism. Let lt = (i, j)t define an edge between nodes i = lt(1) and j = lt(2)
emerged at time t and let d(lt, t) be the distance between nodes lt(1) and lt(2) at time t,
immediately before the occurrence of lt. Those edges lt for which dt(lt, t) = 2, called
transitive edges, are the product of a TC mechanism (or cyclic closure for d(lt, 2) > 2 [25]).

Then, we record d(lt, t) for each edge and define Nd(T ) as the aggregated number of
edges lt with d(lt, t) = d for t < T . Let d(lt, t) = 0 when node lt(1) or lt(2) is a newcomer
and d(lt, t) = ∞ when there is no path between lt(1) and lt(2) previous to lt. Obviously
Nd=1(T ) = 0 because multiple edges between nodes are forbidden.

The distance distribution PT (d) is formally defined as

PT (d) = lim
L→∞

Nd(T )
L

(35)

with L =
∑

i∈N0
Ni(T ) the total number of edges.

Clearly, PT (d) depends on the temporal ordering of {lt}t�T and this is why it provides
valuable information about edges growth mechanism. In order to verify this statement, we
compare PT (d) for the actual edges succession {l1, l2, . . . , lT}, with the average 〈PT (d)〉rand

over 100 random permutation {lσt}t=1,...,T , where σt ∈ Perm(T ) is a random permutation
function belonging to the group of all permutation of T index Perm(T ). At this point,
it is important to note that all succession {lσt}t=1,...,T gives exactly the same final
time-aggregated network at time T .
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Degree distribution P (k), average clustering C̄(k) and neighbours
average degree k̄nn(k) for (a),(c) and (e) FG time-aggregated contacts network
and (b),(d) and (f) GSG model under population growth with N = 63731,
〈k〉 = 25.6, TC probability q = 0.8 and power-law activity pdf with exponent
ξ = 1.5.

Statistically significant differences are observed between PT (d) and 〈PT (d)〉rand for
both HT and FG as shown in figure 11. In particular, both plots in figure 11 show
PT (d) < 〈PT (d)〉rand for d > 2 but PT (2) > 〈PT (2)〉rand. The strong deviation for d = 2
can be quantified through the z-score value, in this case defined as

z =
PT (2) − 〈PT (2)〉rand

σrand
, (36)

resulting in zHT = 32 and zFG = 185. On the other hand, we have obtained a large fraction
of transitive edges with PT (2) = 0.91(2) for HT and PT (2) = 0.77(4) for FG. These
facts state a strong memory effect in the mechanism of edges growth with a significant
predominance of transitive edges.

8. Summary and discussion

In this work, we have introduced a stochastic growth model (GSG) for dynamical
social networks assuming agents with heterogeneous activity rate. As a distinctive
characteristic, the model assumes non-Markovian agents performing connections through
a mixed mechanism, including a TC connectivity process. As a main contribution, the
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Figure 11. Distance probability distribution PT (d) as a function of distance d
(blue circles) and its average calculated over 100 random permutations of the
actual time-ordered edges succession (red squares) for: (a) HT face-to-face data
set, and (b) FG online friendship relations subgraph. Standard error bars are
smaller than symbols.

GSG model gives rise to a time-aggregated representation with the topological features
expected for real social networks. In the particular case with q = 0 and γ = 0, GSG recover
some of the topological properties of the time-aggregated networks for AD model [24].

We have obtained the degree distribution from a general analytical framework based
on a rate equation approach, for both constant population and population growth regimes.
In particular, we have shown explicitly that the TC mechanism not only allows one
to increase the average clustering coefficient but also shapes the degree distribution.
Additionally, we have traced a parallel with the hidden-variable approach performed in [24]
for AD model.

Recently, Karsai et al [36] have shown that the addition of long-term memory in agents
affect their contacts dynamic. In the same vein, we have shown that the agent’s memory
also leaves its mark on the topology of time-aggregated networks.
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Appendix A. A brief comparison with hidden-variable model

The class of models with hidden variables assume an intrinsic feature of the nodes that
completely determines the topological properties of the network [23]. The model start with
N disconnected nodes tagged with a hidden variable h from a probability distribution ρ(h).
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Then, the edges are added with a symmetric connection probability r(hi, hj). Thus, both
functions ρ(h) and r(hi, hj) fully determine the topological properties of a Markovian ran-
dom network. These topological properties are obtained in terms of the hidden variable h,
then a propagator g(k|h) provides the transformation from h to the usual degree k. In fact,
the propagator g(k|h) represents the conditional probability that a node with a hidden
variable h ends up with degree k. In this way, the degree distribution can be written as:

P (k) =
∑

h

g(k|h)ρ(h). (A.1)

It is also possible to obtain the average degree of the neighbours of a node with degree k
as [23]

k̄nn(k) = 1 +
1

P (k)

∑
h

g(k|h)ρ(h)k̄nn(h), (A.2)

where k̄nn(h) is defined as

k̄nn(h) =
N

k̄(h)

∑
h′

ρ(h′)k̄(h′)r(h, h′), (A.3)

with k̄(h′) the average degree of a h′-node given by

k̄(h) = N
∑
h′

ρ(h′)r(h, h′). (A.4)

Finally, the average clustering as a function of the degree k is written as

C̄(k) =
1

P (k)

∑
h

ρ(h)g(k|h)C̄(h) (A.5)

where C̄(h) is defined as

C̄(h) =
∑
h′,h′′

P (h′|h)r(h′, h′′)P (h′′|h), (A.6)

with P (h′|h) the conditional probability of connection between a h-node with a h′-node,
given by

P (h′|h) =
Nρ(h′)r(h, h′)

k̄(h)
. (A.7)

In the GSG model, the activity a plays the role of hidden variable, with the activity pdf
F (a) taking the place of ρ(h) in a continuous formulation. However, the time-aggregated
networks from GSG model are not a Markovian random network because of the local
correlations induced by the TC mechanism (except for the case with q = 0). We have
been able to obtain N̄k|a as an equivalent to the propagator of the hidden-variable model
for any q � 0. Nevertheless, in this case it is not possible, in general, to derive all the
degree correlations only from the connection probability r(a, a′) of the hidden-variable
model. This is because the introduction of the TC connection mechanism adds degree
correlations beyond those imposed by the activity-driven model only. However, we can
still completely describe the topological properties of the network from F (a) and r(a, a′)
if q = 0.

Finally, we will give a sketch for the derivation of the scaling function of (29). In this
particular case, we have q = 0 and, for this reason, we are able to obtain an approximate
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expression for the probability r�(i, j) that two nodes i and j with activities ai and aj,
respectively, become connected after � added edges. Let s�(i, j) = 1 − r�(i, j) be the
probability that no connection has been created between this two nodes up to � added
edges. Thus, we can write s�(i, j) as [24]

s�(i, j) =
∑
zi,zj

P�(zi)P�(zj)

[
zi∏

n=1

(
1 − 1

N − n

)] [
zj∏

m=1

(
1 − 1

N − m

)]
, (A.8)

with P�(zi) (P�(zj)) the probability that zi (zj) connections have been emerged from i (j)
after � added edges, given by

P�(zi) =
(

�

zi

) (
ai

N〈a〉
)zi

(
1 − ai

N〈a〉
)�−zi

, (A.9)

being ai/(N〈a〉) the probability to choose the node i with activity ai from the population.
Assuming zi, zj 	 N in (A.8), we have

zi,j∏
n=1

(
1 − 1

N − n

)



(
1 − 1

N

)zi,j

. (A.10)

Then, substituting (A.9) in (A.8) together with the approximation of (A.10), we obtain
r�(ai, aj) as

r�(ai, aj) = 1 − s�(ai, aj) 
 1 −
(

1 − ai

N2〈a〉
)� (

1 − aj

N2〈a〉
)�

, (A.11)

that can be approximated as

r�(ai, aj) 
 1 − exp
(

− �

N2〈a〉(ai + aj)
)

. (A.12)

Mapping ρ(h) → F (a), r(h, h′) → r�(a, a′), g(k|h) → N̄k|a and replacing (A.12) in (A.3)
and (A.4), we arrive to the scaling function of (29) by the same way as described in [24].
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