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Motor control of sound frequency in birdsong involves the interaction between air sac pressure
and labial tension
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Frequency modulation is a salient acoustic feature of birdsong. Its control is usually attributed to the activity of
syringeal muscles, which affect the tension of the labia responsible for sound production. We use experimental
and theoretical tools to test the hypothesis that for birds producing tonal sounds such as domestic canaries
(Serinus canaria), frequency modulation is determined by both the syringeal tension and the air sac pressure.
For different models, we describe the structure of the isofrequency curves, which are sets of parameters leading
to sounds presenting the same fundamental frequencies. We show how their shapes determine the relative roles
of syringeal tension and air sac pressure in frequency modulation. Finally, we report experiments that allow us
to unveil the features of the isofrequency curves.
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I. INTRODUCTION

Motor control of complex behaviors requires integration of
muscle-generated movements with the biomechanical proper-
ties of effector organs to achieve the desired behavioral output
[1–3]. Effector organs frequently introduce nonlinearities,
which give rise to complex relationships between different
coordinated muscle systems and biomechanics. These rela-
tionships generate a highly complex multivariate parameter
space from which control strategies for a behavioral output
must be selected. At the same time, the nonlinear relationships
introduce the need for high precision, because small variation
in motor instructions can cause large variability in the
behavioral output.

Investigation of how the brain selects motor control
strategies and whether or not the selection depends on the
context of motor sequences in which it is embedded requires
a comprehensive understanding of the complex parameter
space at the level of the target organs for motor control.
Production of voiced sounds, such as in human speech and
birdsong, is an example for such a highly complex motor
control task for which spatially separated motor systems must
directly and indirectly control multiple nonlinear biomechan-
ical relationships in the effector organs. Sound production
involves respiratory control for generating airflow, control of
the vocal organ to position the vibrating tissues and regulate
their tension, as well as control of upper vocal tract structures
to adjust filter properties. Precise motor control is required
for generating specific acoustic features, and their stereotyped
production is critical for effective communication [4].

One such acoustic feature is sound frequency, which is
determined by the oscillation rate of the sound generating
tissue (e.g., vocal folds in mammals, labia in songbirds). The
rate of tissue oscillation depends on four main physiological
parameters: the viscoelastic properties of the vibrating tissue,
the aerodynamic forces (i.e., pressure), direct control of
tension through muscle activity, and source-filter interactions.
These different variables influence sound frequency to varying
degrees and encompass nonlinearities, thus creating a complex
parameter space for its neural control [5,6].
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Song development in songbirds occurs during a limited pe-
riod for sensorimotor refinement, at the end of which the song
becomes highly stereotyped. In canaries (Serinus canaria),
the song is composed of a series of different trills, each of
which consists of a repeated syllable type. Most syllables are
frequency modulated (up- or down-sweeps) and fall within a
frequency range between 2 and 7 kHz. This song organization
offers the opportunity to investigate how the same frequency
is controlled in the different contexts of different syllables.
Because sound frequency is dependent on a complex interplay
between the neural control of different motor systems and the
nonlinear biomechanical effects of syringeal morphology and
aerodynamic effects on the vibrating tissues, the answer to this
question will offer insight into the general issue of whether
or not motor control strategies make use of the complex
landscape of parameters. Here we address this question by
first theoretically exploring the parameter space for frequency
control to predict control strategies and then testing these
predictions with experimental data.

II. PHYSIOLOGY OF BIRDSONG PRODUCTION

The avian vocal organ is the syrinx, which is located at
the juncture between the bronchi and the trachea. Studies of
subsyringeal air sac pressure, bilateral airflow, and the EMG
activity of several syringeal muscles revealed a general pattern
of vocal control [6–8], but many details, including differences
between species, are still unknown [6]. For example, a strong
correlation between the EMG activity of the ventral syringeal
muscle (vS) (the largest syringeal muscle) and the fundamental
frequency of the vocalization exists in brown thrashers, but the
relationship is very different in zebra finches [6,7]. Syringeal
muscles are also involved in the gating of the vocalizations.
The activity of the ventral tracheobronchial muscle (vTB)
is correlated with an active opening of the syringeal lumen
(abduction) that would help to stop the vocalizations, allowing
brief inspirations in between syllables. Activity in the dorsal
tracheobronchial muscle (dTB) causes adduction of the syrinx
[7–9]. Thus, vocal control involves delicately orchestrated
syringeal motor gestures and large expiratory events that
establish airflow between the labia at the syrinx. At the right
phonatory position, labial oscillations are induced, and it is
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these modulations of the airflow that constitute the origin of
sound. In this paradigm, the modulation of the fundamental
frequency of the vocalizations is caused by varying the tension
of the oscillating labia. Tension can be actively controlled
by syringeal muscles. Additional support for this mechanism
comes from simulations of simple computational models
describing the biomechanics of the labial oscillations. Using
recorded EMG activity from vS muscles as time-dependent
parameters representing the elastic restitution of the labia, syn-
thetic sounds could be generated with frequency modulations
qualitatively similar to those in the recorded song [10].

Interestingly, the study of the suboscine Great Kiskadee
(Pitangus sulfuratus) provided a clear example of an alterna-
tive mechanism of frequency control in birdsong production.
In that species, the modulations of the fundamental frequency
were highly correlated to air sac pressure. Moreover, after
denervation of the syringeal muscles, the strong correlation
between fundamental frequency and air sac pressure patterns
remained unchanged. In this species, a nonlinear restitution
force for the oscillating membrane folds was found to be
essential to reproduce the frequency modulations of the
observed vocalizations [11]. This surprising lack of frequency
control by syringeal muscles in Kiskadees is in strong contrast
to songbirds (e.g., [6,12,13]), and, thus, posed the general
question of to what degree air sac pressure contributes to the
regulation of sound frequency.

Song production in the zebra finch (Taeniopygia guttata)
constitutes another example for how air sac pressure con-
tributes to frequency control. The song of this species consists
of many syllables that are spectrally very rich (i.e., sounds that
are made up of many equally spaced harmonics) interspersed
with a few tonal elements. Moreover, there is a very precise
relationship between the harmonic content and fundamental
frequency of the uttered sounds; low-frequency sounds are
harmonically very rich, while the higher-frequency sounds
are more tonal. This relationship was investigated in many
syllables uttered by different birds, and the functional form
relating those acoustic features was the same for all of them
[13,14]. Remarkably, it is precisely what can be expected
if a periodic signal is born in a saddle node in a limit
cycle bifurcation [15]. In this mechanism, when the periodic
oscillation is born, the phase space is left with the ghost of the
two fixed points that were annihilated in the bifurcation, which
slows down the passing trajectory. According to this paradigm,
the frequency of the labial oscillations is very sensitive to how
much air sac pressure (control parameter) deviates from the
value at which the bifurcation takes place.

In both examples, nonlinear effects are needed to account
for the role of air sac pressure in modulating the phonation
frequency. If the labial motion could be described in terms of a
linear oscillation, the restitution constant of the tissue would be
the only factor determining the frequency of the oscillations.
But nonlinear effects are unavoidable in a description of
labial motion: even the bounding of the labial motion requires
a nonlinear dissipation. This raises the question of how
nonlinearities link the respective contributions of muscle
activity and air sac pressure in the process of determining the
frequency of the labial oscillations. To explore this issue, we
investigated a simple model for labial oscillation that includes
nonlinearities in the dissipation and in the restitution. By

means of both analytical and numerical work, we explored how
muscle activity and air sac pressure synergistically contribute
to frequency modulation.

III. A MODEL FOR BIRDSONG PRODUCTION

We explore the dynamics of a physical model for a
syringeal labium, where different forces drive a unitary mass
representing the labium [10,14,16–18,20,21]. The forces are
(i) the elastic restitution, which depends on the displacement
of the labium from its equilibrium position, (ii) the linear
dissipation (proportional to the labial velocity), which includes
a negative contribution accounting for the transfer of energy
from the airflow to the mass as a mucosal wave propagates
along the labium, (iii) the nonlinear dissipation, which is
responsible for bounding the oscillations and represents either
labia collapsing against containing walls or against each other,
and (iv) forces representing active adduction and abduction.
The model reads

dx

dt
= y,

dy

dt
= −κ(t)γ 2(x + εx3) + [β(t) − β0]γy − cx2γy

+ γ 2fadd(t) − γ 2fabd(t).

In this set of equations, x stands for the midposition of a
labium, κ(t) for the elastic restitution coefficient, and β(t) − β0

for the negative dissipation coefficient. The model includes
a cubic term in the restitution (εx3), a nonlinear dissipation
term (cx2y), and two forces independent of either x or dx/dt :
the adducting force (fadd) and the abducting force (fabd). The
coefficient γ is a time scaling factor. In this model, there
are two well-separated time scales. The parameters κ(t) and
β(t) − β0 fluctuate in the time scales of the syllables (in the
order of 100 ms), while x = x(t) will present oscillations with
frequencies in the kHz range.

The analysis of the linear part of the previous model
allows integrating the experimental results mentioned in the
Introduction. The negative dissipation term provided by the
airflow to the labia is proportional to the subsyringeal pressure
[21] and has to overcome a threshold for oscillations to start.
On the other hand, increasing the value of the elastic restitution
increases the frequency of the oscillations. Since the elastic
restitution will depend on the tension of the oscillating labia,
and those are stretched as the ventral syringeal muscle is
contracted, one is inclined to think of its activity as an analog
control of the vocalization frequency, just as the level of the
air sac pressure can be thought of as a digital on-off switch
for the vocalization onset.

Nonlinearities, on the other hand, are unavoidable in an
operational model for birdsong production. Once the equilib-
rium position loses stability, labial oscillations are bounded.
The lateral and medial labia might collide with each other or
with their containing walls, losing energy, as the departure
of the equilibrium position is large enough. The nonlinear
dissipation term in our model is the lowest-order term capable
of describing that effect [21,22]. There are other nonlinearities
that can play a role in the functioning of the syrinx. In the
model presented above, a nonlinear term for the restitution is
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considered. Restitution is to be modeled as an odd function of
the variable describing the departing of the oscillating body
from equilibrium. Therefore, we include nonlinear terms in
the restitution up to the same order used to account for the
saturation of the oscillations.

Once that nonlinearity is included in our model, it is not
possible to separate the roles of the air sac pressure and the
tension in the determination of the fundamental frequency of
phonation. Both participate synergistically in order to achieve
a given acoustic feature.

IV. ISOFREQUENCY CURVES

To unveil how tension κ and pressure β participate in the de-
termination of the frequency, we plotted isofrequency curves:
curves in the parameter space (κ ,β) such that the model,
integrated for parameters in the curve, led to oscillations of
a given frequency. Starting with the case ε = 0, c = 1, it
is possible to find a regime in which the isofrequencies can
be computed analytically. If neither the active adduction nor
abduction are present, our model can be written as

d2x

dt
+ κγ 2x − βγ

dx

dt
+ γ x2 dx

dt
= 0. (1)

For βγ � 1 and κγ /β � 1, the equation describes a
relaxation oscillation dynamics. Writing ν = dx

dt
+ βγ ( x3

εβ
−

x), the system above reads

dx

dt
= βγ

[
ν

βγ
−

(
x3

3β
− x

)]
, (2)

d

dt

(
ν

βγ

)
= −κγ

β
x. (3)

Defining V ≡ ν/(βγ ), the dynamics of the system is
determined by the structure of the null cline V = ( x3

3β
− x).

Any initial condition (except the origin) will rapidly converge,
almost horizontally onto the null cline. Then, it will slowly
crawl close to the null cline until it reaches one of its two
knees, to rapidly jump to the other branch of the cubic null
cline. Neglecting the times necessary for the jumps, the period
of oscillation can be approximated as twice the time the system
crawls close to either of the branches, which leads to an
approximation of the period of the oscillations [15],

T = β

κγ
(3 − 2 ln2), (4)

or that the frequency of the oscillation is � ≈ κ
β

.
In other words, within the range of applicability of the

derivation, the isofrequency curves in the (β, κ) space are
straight lines with positive slope. Notice that in this way, the
gesture pressure and tension necessary for achieving a given
acoustic feature need to be coordinated in a precise manner.
For example, a syllable of constant fundamental frequency
that is uttered while the pressure decreases will need a labial
tension that decreases accordingly in order for the vocal device
to operate within an isofrequency curve.

The above analysis is valid for high values of pressure,
since the separation of slow and fast time scales requires
that κγ /β � 1. The limit of low-pressure values, which are

important for understanding the behavior of the system close to
the bifurcations, requires a different approach. For a dynamical
system close to bifurcation, it is possible to perform a series
of changes of variables, which eliminate all the nonresonant
terms. This procedure is called normal form reduction.

For the dynamical system (1), we can perform a scaling of
the time t = �τ , with � = 1/(γ

√
κ), leading to

dx

dτ
= y,

dy

dτ
= −(x + εx3) + β√

κ
y − 1√

κ
x2y. (5)

Defining the following new complex variables (z,z∗) by(
x

y

)
=

(
1 1
i −i

)(
z

z∗

)
, (6)

we can perform a change of variables, and keep only the
resonant terms, which leads to

dz

dτ
=

(
β√
κ

+ i

)
z +

(
3

2
εi − 1

2
√

κ

)
z|z2|, (7)

which in terms of the modulus and phase reads as follows:

dρ

dt
= γβρ − 1

2
γρ3,

(8)
dφ

dt
= γ

√
κ

(
1 + 3

2
ερ2

)
.

This allows us to describe the isofrequency curves. Oscil-
latory dynamics occurs as ρ2 = β, and therefore for a given
value of the frequency w, the corresponding isofrequency will
read

w = γ
√

κ(1 + 3εβ).

This implies that close to the bifurcation at which the
oscillations start, in the (β,κ) space, the isofrequencies start
with negative slope as long as ε �= 0; the larger the frequency
value, the larger the slope in absolute value.

The two regimes discussed above are qualitatively different.
In the first case, the slopes of the isofrequency curves are
positive, while in the second case, the slopes are negative.
This change in slope requires important differences in motor
control. For example, if the tension is kept constant during
phonation, in the first case the frequency of the vocalizations
will decrease as the pressure increases. In the second case, the
fundamental frequency of the vocalizations will be positively
correlated with the pressure. The different nonlinearities
present in the system are responsible for different effects at
different regions of the parameter space, and the bird has to
delicately coordinate the motor instructions to achieve a given
acoustical feature.

V. DESCRIBING THE ISOFREQUENCIES

As we described in the Introduction, a nonlinearity that is
present in every model of phonation is a dissipative one capable
of bounding the labial oscillations. On the other hand, a model
for suboscine phonation required a nonlinear restitution to
account for the correlation between fundamental frequency
and pressure, even under a nerve cut that implied that no
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modulation could be attributed to syringeal muscle activity
[11]. A nonlinear restitution was also included in the modeling
of zebra finch vocalizations. In that case, it was a requirement
for having a saddle node in limit cycle bifurcations, which
were used to explain the relationship that exists between the
spectral content and fundamental frequency [13]. Yet it is not
known whether this nonlinearity is present in other species
presenting more tonal sounds.

To unveil the nature of the isofrequencies structuring the
parameter space of a model for phonation, we explored
the variations present in the acoustic features of repeating
syllables. Many species sing songs that consist of repeated
elements. A paradigmatic example is the domestic canary
(Seriuns canaria), whose song consists of a series of different
syllables that are repeated and grouped in sets that constitute
phrases. During the repetition of a syllable, the bird repeats
the same syllable in a stereotyped manner, but with small
variations in the physiological instructions. Assuming that the
variations of different instructions are uncorrelated, we can
use them to unveil the organization of the isofrequency curves
by exploring areas of the parameter space around specific
values. The generation of song with repeating syllables implies
changing periodically the parameters of the model. Yet the map
of isofrequency curves is a useful tool for understanding the
dynamics of the problem since the labial oscillations are in the
order of kHz, while the parameter modulation occurs at most
in the order of 30 Hz [18,19].

The diversity of syllables present in canary song is
characterized by a variety of frequency modulations (up-
sweeps, down-sweeps, constant frequency sounds, etc.). It was
proposed that such diversity could be generated by different
phase differences between the air sac pressure and the labial
tension during phonation [18]. In Fig. 1, we illustrate three sets
of trajectories in the parameter space. Each set is composed of
six subsets of 19 trajectories. Each subset assumes an average
phase difference between the tension and the pressure (i.e.,
an elliptical trajectory in the parameter space), and the 19
trajectories of the subset are generated as noise is added to the
pressure and the tension components of the basic ellipse.

We generated synthetic syllables with each of the trajec-
tories in the parameter space. We then identified, for each
syllable, the time at which the parameter β (representing
the air sac pressure) reached its maximum and inspected the
spectral properties of the sound segment of 1024 points around
a chosen time to record its fundamental frequency. Due to the
introduced noise, the maxima of the pressure will be different
for different trajectories within a subset. That (together with the
fluctuations of the tension) simulates the biological variation
of physiological parameters in the process of repeating a
syllable type. Under the hypothesis that the fluctuations of
the tension are random, plotting the frequency of the segments
as a function of the maximum pressure reflects the nature of the
isofrequencies. In a region of the parameter space where the
isofrequencies present a negative slope in the (β,κ) space,
the correlation between frequency and pressure should be
positive, since larger explorations in the pressure will intersect
isofrequencies corresponding to larger values. Similarly, in a
region of the phase space presenting isofrequencies of positive
slope, the correlation between frequency and pressure should
be negative.
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FIG. 1. (Color online) Isofrequency curves in the parameter
space (β,κ) together with three sets of trajectories used to synthesize
syllables. Notice that each set pierces into qualitatively different re-
gions of the parameter space where the isofrequencies have negative,
zero, or positive slopes. The isofrequencies and trajectories were
computed using the model introduced previously (see Sec. III) with
ε = 0.3 and c = 2. For every set we generate six different paths with
19 repetitions apiece which lead to the same βmax and κmax. Each path
is generated using periodic functions with a phase difference between
β(t) and κ(t) of 0, −π/4, −π/2, π/2, π , and 3/4π , respectively.
Within each path, random fluctuations (up to 20% of their amplitude)
were added to β(t) and κ(t). To produce synthetic syllables with
large β values such as sets (b) and (c), we added a periodic step
function of fadd = 1.0 for values of β below 0.6 and 1.8, respectively.
This parameter represents the action of muscles involved in active
gating, which prevent phonation by adducting the labia. Trajectory
parameters: (a) β = 0.3 + 0.7 cos(20π ), κ = κ0a + 0.05 cos(20π +
θ ); (b) β = 0.6 + 0.7 cos(20π ), κ = κ0b + 0.05 cos(20π + θ );
(c) β = 1.8 + 0.7 cos(20π ), κ = κ0c + 0.05 cos(20π + θ ). κ0a , κ0b,
and κ0c are slightly different within subsets to reach the same
βmax,κmax.

In Fig. 2, we display the frequencies as a function of
the maximum pressure for the three sets of trajectories
displayed in Fig. 1. For each set, the six subsets were analyzed
independently. We found that the slopes obtained as the 19
pairs (frequency, maximum pressure) of each of the six subsets
were linearly fitted presented little variation (see the figure
caption for details). This means that regardless of the average
time evolution of the tension, the slopes were determined by
the structure of the isofrequencies.

We tested this paradigm by recording sound and air sac
pressure from canaries. The recording setup consisted of a
microphone (TAK-STAR SGC 568) placed in front of each
cage. Sound was recorded using a microphone preamplifier
(PR4V SM pro audio) and a multichannel sound card (MAYA
1010, 44.1 kHz sample rate) directly onto a computer.
Air sac pressure was monitored through a flexible cannula
(Silastic tubing, o.d. 1.65 mm), which was inserted through
the abdominal wall into the anterior thoracic air sac under
Ketamine/Xylazine anesthesia. The free end of the cannula was
connected to a miniature piezoresistive pressure transducer
(Fujikura model FPM-02PG), which was mounted on the
bird’s back, following methods described in detail [7,8].
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FIG. 2. (Color online) Theoretical results. Fundamental fre-
quency vs βmax from three sets of trajectories displayed in Fig. 1.
Linear regressions: (a) f (x) = 379.03x + 4992.66, σ = 47.781;
(b) g(x) = 27.61x + 3310.85, σ = 43.24; (c) h(x) = −69.79x +
2586.43, σ = 62.55.
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FIG. 3. (Color online) Two examples of experimental data from
simultaneous recordings of air sac pressure and song in a domestic
canary (Serinus canaria). (a) (First panel) Sonogram from up-sweep
syllable. (Second panel) Air-sac pressure of the uttered vocalization.
Green lines highlight the natural fluctuations of pressure maxima.
(b) Schematic representation of experimental methods. (Third panel)
Sonogram for a down-sweep syllable. (Fourth panel) Air-sac pressure.
The red dot indicates one pressure maximum; the red box represents
the temporal window from which the fundamental frequency was
computed (1024 points around the chosen time, for song and air sac
pressure sampled at 44.1 kHz).
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FIG. 4. (Color online) Experimental results. Pressure maxima vs
fundamental frequency. (a) Bird 1, (b) bird 2, and (c) bird 3. Statistical
parameters are displayed in Table I.

The voltage signal from the transducer was amplified and
modulated to make it suitable for recording with a sound card
(MAYA 1010).

Once we got simultaneous recordings of pressure and song
for a bird, we selected repeated syllables within phrases
that presented a constant number of pressure maxima. The
reason for restricting our analysis to these patterns is that
pressure patterns in canaries present a richer structure than
a simple harmonic oscillation. In fact, it has been shown
that they possess the same topological features as those of
a driven nonlinear system [23,24]. Therefore, in some cases
the variability can be translated into the disappearance of a
maximum in the pressure gesture. By requiring the number of
maxima in a pressure pattern to remain constant, we ascertain
that we are exploring the vicinity of a specific region of the
parameter space. In Fig. 3, we summarize the experimental
methods revealing the isofrequency curves.

In Fig. 4, we show the results from three canaries. For
each bird, we have used pressure and sound recordings of
the complete syllabic repertoire, recorded on the same day.
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TABLE I. Linear regression of experimental data.

Bird 1 Syllable Color and Symbol Slope Significance R2 n

1 Black circle 9140 0.0086 0.14 49
2 Cyan square 25094 <0.0001 0.35 61
3 Red triangle 19021 0.0003 0.44 25
4 Light green hexagon 19553 0.0065 0.07 99
5 Blue diamond 11784 <0.0001 0.15 101
6 Dark green triangle 22047 <0.0006 0.24 45
7 Dark red hexagon 22776 0.0556 0.13 19
8 Dark blue square 4790 0.0055 0.13 29
9 Dark cyan triangle −7991 0.36 0.07 14

10 Gray hexagon 2608 0.74 0.01 14
11 Dark yellow triangle 45633 0.23 0.43 5
12 Violet hexagon 39344 0.19 0.91 3
13 Yellow square 8151 0.095 0.17 17

Bird 2
1 Black circle 1359 0.0088 0.11 63
2 Cyan square 1040 0.163 0.05 39
3 Red triangle 2085 <0.0001 0.78 137
4 Light green hexagon −4.9 0.978 0 111
5 Blue diamond 297.9 0.0008 0.06 174
6 Dark green triangle −513.4 0.70 0.02 11
7 Dark red circle 306.3 0.043 0.28 15
8 Dark yellow square 1368 0.0059 0.68 9
9 Gray triangle 814 <0.0001 0.18 159

10 Pink hexagon 921 0.33 0.05 21
Bird 3

1 Black circle −2.5 <0.0001 0.45 71
2 Cyan square 1.42 0.0005 0.21 55
3 Red triangle −0.21 0.66 0.006 33
4 Light green hexagon −1.83 0.0526 0.13 29
5 Blue diamond −1.14 0.011 0.1 64
6 Dark green square 0.44 0.6 0.008 34
7 Dark red diamond −0.53 0.61 0.006 43
8 Dark green triangle 0.6 0.74 0.03 6

Within each file, syllables were characterized in terms of the
initial frequency, final frequency, and syllabic rate. As for
the synthetic data discussed before, we selected the times in
which air sac pressure presented maxima. Then, we selected
sound segments (1024 points) around those times, and we
analyzed them spectrally. Finally, for each syllable type, we
used linear regression analysis to describe the relationship
between pressure and fundamental frequency. The results are
summarized in Table I.

We analyzed 1555 syllables, corresponding to 31 syllable
types, sung by three birds. We found that for high frequencies,
there was a systematic positive slope in the relationship be-
tween the fundamental frequency and the peak air sac pressure,
consistent with the signature of negative slopes of the isofre-
quency curves in that region of the parameter space. In bird
number 1 [Fig. 4(a)], there was no syllable type presenting a
fitting with a significant negative slope (5%). The same occurs
for bird 2 [Fig. 4(b)], where the two syllable types with negative
slope correspond to nonsignificant fittings. Bird 3 [Fig. 4(c)]
does present two syllables with significant fittings with nega-
tive slopes, both of which are of low fundamental frequency.

Inspecting the isofrequencies in Fig. 1, we can see that
for comparable frequencies the slopes can be different. For

example, at 4 kHz, we find negative slopes for β < 2, while
for larger values of β the slopes are near zero. The slopes
can be positive for small values of the frequency if the values
of β are large enough (that is the case for the isofrequency
line corresponding to 2 kHz if β > 0.5). In terms of our data,
one of the birds analyzed (bird 1) presented syllables at high
frequency and low pressure values, as well as a syllable at
a small frequency and high pressure, thus covering a wide
range of slopes. This allows us to test the hypothesis that the
slopes correlate positively with the average pressure. In Fig. 5,
we display for bird 1 the slopes as a function of the average
frequency. The values of the fitting are described in the caption.

For canaries, it has been suggested that sounds are generated
as labia start to oscillate in a Hopf bifurcation. We have seen
that a simple model of phonation with nonlinear dissipation
and nonlinear restitution can be taken to a Hopf normal form.
Its analysis allows us to characterize the isofrequency curves
in the vicinity of the bifurcations, and, asymptotically close
to the bifurcation, the slopes are negative. Notice that for
finite values of the bifurcating parameter (β), for κ sufficiently
low, the isofrequency slopes are positive, reflecting the relative
importance of the nonlinear terms in the problem (see Fig. 1).
Since negative (positive) slopes of the isofrequency curves
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FIG. 5. (Color online) Positive correlation between slope and
average frequency for vocalizations of Bird 1. Vertical axes display
the slopes (frequency/pressure) from linear fit presented in Fig. 4(a)
(see Table I for details). Horizontal axes: average fundamental
frequency of the syllables. Each red dot corresponds to a particular
syllable. The green line illustrates the linear regression. Fitting
parameters: f (x) = 18.42x − 41 304.8, R2 = 0.4319.

imply positive (negative) slopes in the fittings of the frequency
versus pressure plots, we conclude that our data from canaries
are consistent with a nonlinear phonation mechanism in which
a nonlinear restitution is present.

VI. CONCLUSIONS

In most animals that vocalize, fundamental frequency is
an important acoustic feature for effective communication,
and physiological regulation of sound frequency is therefore
important for our understanding of vocal motor control. In the
case of oscine birds, the activity of specific syringeal muscles
[7,8] and the regulation of air sac pressure [9,10,24,25] play an
intertwined role in frequency control. Dissecting the respective
roles of each physiological parameter remains challenging,
especially if one considers the remarkably diverse vocal reper-
toires of birds. In this work, we introduced the isofrequency
curves in order to describe this synergistic interaction.

In a model containing both nonlinear dissipation and
nonlinear restitution, each factor intervened in a specific

manner, enriching the structure of the parameter space and the
shapes of the isofrequency curves. The nonlinear restitution
was found to be responsible for the negative slope of the
isofrequency curves in the pressure-tension parameter space.
This relationship was found to leave its fingerprint in the
acoustic features of the syllables uttered by canaries.

How does this complex array of simultaneous activation
patterns arise during vocal ontogeny? The parameter space
might be systematically explored during the sensorimotor
phase of song development, and, guided by acoustic feedback,
birds may arrive at the effective activation patterns of all motor
systems. The rapid dynamics of aerodynamic variables, as
reflected in the shape of the expiratory pressure pulses, may
provide the guiding trajectory in parameter space, which may
in turn dictate the appropriate activation of the tension control-
ling syringeal muscles. At the conclusion of the sensorimotor
phase, these effective patterns become stereotyped. However,
small variation in respiratory and syringeal motor gestures
between repetitions of the same syllable type generates
variation in the behavioral output (i.e., sound frequency)
[26].

The fact that frequency is allowed to vary according to
the variation in air sac pressure and ventral syringeal muscle
activity clearly shows that birds do not compensate fully (or
perhaps not at all) for these small variations. This result has
major implications for other research areas. First, it shows
that for some syllables, singing more loudly results in an
increase in sound frequency, whereas for others it can result in
a decrease. Increasing sound amplitude is typically achieved
by increased airflow, which is generated with increased
subsyringeal pressure [27,28]. The various effects on sound
frequency that result from increased air sac pressure indicate
that this occurs naturally within a repeated sequence of
syllables of a trill, and the same relationship can be expected
for singing trills at different amplitude. Such increases in
air sac pressure may occur in response to high levels of
background noise (Lombard effect), and associated changes
in sound frequency could, therefore, be a passive byproduct
of singing more loudly rather than an adaptive change
[28,29].
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