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The interaction between solid-state qubits and their enviromental degrees of freedom produces
non-unitary effects like decoherence, dissipation, and fluctuations. Uncontrolled decoherence is one
of the main obstacles that must be overcommed in quantum information processing. It depends on
the interaction between the qubit and its environment and the spectral composition of the noise.
If the spectral density is well known, it is possible to successfully fight against decoherence, for
example, applying sequences of inversion pulses to the qubit system. We study the dynamically
decay of coherences in solid-state qubits coupled to arbitrary environments by means of the use of
a Markovian master equation. We analyze the effect introduced by thermal Ohmic enviromments
including the case of a zero-temperature bath, in which noise fluctuations also induce decoherence.
We also analyze low-frequency 1/f noise as coming from spin-fluctuator baths. We focus on the
effect of longitudinal and transversal noise on the superconducting qubit’s dynamics. Our results
can be used to design experimental future setups when manipulating superconducting qubits.

PACS numbers: 03.65.Yz, 03.67.Hk, 75.10.Jm, 74.50.+r

I. INTRODUCTION

The scaling-down of microelectronics into the nanome-
ter range will inevitably make quantum effects such as
tunneling and wave propagation important. The use of
these quantum devices in gate operations enhances the
need of controlling decoherence. Noise from the environ-
ment may cause fluctuations in both qubit amplitude and
phase, leading to relaxation and decoherence. External
perturbations can influence a two-level system in typi-
cally two ways: either shifting the individual energy lev-
els (which changes the transition energy and therefore,
the qubit’s phase) or inducing energy levels transitions
(which changes the level populations). Decoherence is a
major hurdle in realizing scalable quantum technologies
in the solid state.

Decoherence in qubit systems falls into two general
categories. One is an intrinsic decoherence caused by
constituents in the qubit system, and the other is an ex-
trinsic decoherence caused by the interaction with uncon-
trolled degrees of freedom, such as an environment. Un-
derstanding the mechanisms of decoherence and achiev-
ing long decoherence times is crucial for many fields of
science and applications including quantum computation
and quantum information [1]. Most theoretical investi-
gations of how the system is affected by the presence of
an environment have been done using a thermal reser-
voir, usually assuming Markovian statistical properties
and defining bath correlations [2, 3]. However, there has
been some growing interest in modeling more realistic
environments, sometimes called composite environments,
or environments out of thermal equilibrium [4–6].

Lately, there have been many studies focusing in de-
coherence in solid state-qubit. The same physical struc-
tures that make these superconducting qubits easy to
manipulate, measure, and scale are also responsible for
coupling the qubit to other electromagnetic degrees of

freedom that can be a source of decoherence via noise
and dissipation. Thus, a detailed mechanism of deco-
herence and noise due to the coupling of Josephson de-
vices to external noise sources is still required. In [7]
authors reviewed the effect of 1/f noise in nano-devices
with emphasis on implications for solid-state quantum
information. It has been shown that low frequency noise
is an important source of decoherence for superconduct-
ing qubits. Generally, this noise is described by fluctu-
ations in the effective magnetic field which are directed
either in the z axis -longitudinal noise- or in a trans-
verse direction -transversal noise. Both types of noise
have been phenomenologically modeled by making differ-
ent assumptions on these fluctuations, such as being due
to a stationary, Gaussian and Markovian process [8]. In
Ref. [9], the influence of 1/f noise by random telegraph
processes was modeled, also showing that depending on
the parameters of the environment, the model can de-
scribe both Gaussian and non-Gaussian effects of noise.
Ref. [10] presented a phenomenological model for super-
conducting qubits subject to noise produced by two-state
fluctuactors whose coupling to the qubit are all roughly
the same. In [11] has been studied the influence of an en-
vironment and an adiabatically changing external field,
where temperature effects are also considered. However,
they resorted to a secular approximation to solve the
master equation, which seems to have controversial re-
sults, namely that decoherence is null at zero tempera-
ture. Decoherence at zero temperature does occur con-
trary to what is most commonly believed. There are
simple examples in Literature which demonstrate that
decoherence is induced even by a reservoir at zero tem-
perature [12–15]. In general, a small system coupled to
an environment fluctuates even in the zero-T limit. These
fluctuations can take place without generating an energy
trace in the bath. The fluctuations in energy of the small
system are a peculiar fact of the entanglement with the
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quantum environment. However, the suppression of the
interferences is not as fast as it is at high temperature
limit. In the latter case, it is expected to happen, for
a quantum Brownian particle of mass M , at times of
O(1/2Mγ0kBTL) while it occurs at times smaller than
O(1/γ0) when the environment is at zero temperature
[12] (where γ0 is the dissipation constant, T is the en-
vironmental temperature, and L the distance between
classical trajectories of the particle).
In this manuscript, we consider a two-level system cou-

pled to a general enviroment. We develop an unified
frame for studying the dynamically decay of coherences
in a solid-state qubit coupled to an arbitrary environ-
ment by means of the use of a Markovian master equa-
tion. We analyze the effect induced in the system by
thermal Ohmic environment, through a non-purely de-
phasing process, including the case of a zero-temperature
bath. We also analyze low-frequency 1/f noise as com-
ing from a fluctuator environment, by defining the cor-
responding spectral density. The comprehension of the
decoherence and dissipative processes should allow their
further suppression in future qubits designs or experi-
mental setups. In section II we describe the model used
for the analysis of a superconducting qubit coupled to an
environment. In Sec. III we present the master equation
approach by considering different spectral densities to de-
scribe the environment. By means of a general master
equation for the reduced density matrix of the qubit, we
follow the nonunitary evolution characterized by fluctu-
ations, dissipation and decoherence. In Sec.IV, we study
the decoherence process due to an Ohmic environment
both at high and low temperature. In Sec.V we study
the decoherence induced by an 1/f noise. In both cases,
we particularly study the difference between the longi-
tudinal and transversal couplings and provide analytical
estimations of decoherence time when possible. Finally
in Sec.VI, we summarize our final remarks.

II. MODEL FOR A SOLID-STATE QUBIT

Experimental observation of Rabi oscillations in driven
quantum circuits have shown several periods of coher-
ent oscillations, confirming the validity of the two-level
approximation and possibility of coherently superimpose
the computational two states of the system. Neverthe-
less, the unavoidable coupling to a dissipative environ-
ment surrounding the circuit represents a source of relax-
ation and decoherence that limit the performances of the
qubit for quantum computation tasks. Therefore, for the
implementation of superconducting circuits as quantum
bits, it is necessary to understand the way the system
interacts with the environmental degrees of freedom, and
to reduce their effect, if possible.
When the two lowest energy levels of a current bi-

ased Josephson junction are used as a qubit, the qubit
state can be fully manipulated with low and microwave
frequency control currents. Circuits presently being ex-

plored combine in variable ratios the Josephson effect
and single Cooper-pair charging effects. In all cases the
Hamiltonian of the system can be written as,

H =
~
2
ωaσz + ~ΩR cos(ωt+ φR)σx, (1)

where ~ΩR is the dipole interaction amplitude between
the qubit and the microwave field of frequency ω and
phase φR. ΩR/2π is the Rabi frequency. This Hamil-
tonian can be transformed to a rotating frame at the
frequency ω by means of an unitary transformation and,
after the rotating wave approximation, resulting in a new
effective Hamiltonian of the form

Heff =
~
2
(∆σz +Ωxσx +Ωyσy) , (2)

where Ωx = ΩR cosφR and Ωy = ΩR sinφR. Then, we
shall consider the dynamics of a generic two-level system
steered by a system’s Hamiltonian of the type (where we
have set ~ = 1 all along the paper)

HTotal = Hq +Hint +HE , with (3)

Hq =
1

2
(Ωσx +∆σz) (4)

where we have defined a qubit Hamiltonian Hq similar
to that of a solid-state qubit Eq.(2) - setting φR = 0 for
simplicity-, and HE is the Hamiltonian of the bath. The
interaction Hamiltonian is thought as some longitudinal
and transverse noise coupled to the main system:

Hint =
1

2

(
ˆδω1σx + ˆδω0σz

)
. (5)

By considering this interaction Hamiltonian we are im-
plying that the superconducting qubit is coupled to the
environment by a coupling constant in the ẑ direction,
called longitudinal direction, and in x̂, the transverse di-
rection. This type of bidirectional coupling has been re-
cently used in [16] to compute the geometric phase of a
supercomputing qubit. It is important to note that the
derivation of a master equation has not been done before
for a Hamiltonian of the form of Eq.(3).

III. MASTER EQUATION APPROACH

We shall derive the master equation in the Born-

Markov approximation, for general noise terms ˆδω1 and
ˆδω0. We will consider a weak coupling between system

and environment and the bath sufficiently large to stay
in a stationary state. In other words, the total state ρSE
(system and environment) can be split as ρSE ≈ ρ(t)×ρE ,
for all times. It is important to stress that due to the
Markov regime, we will restrict to cases for which the
self-correlation functions generated at the environment
(due to the coupling interaction) would decay faster than
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typical variation scales in the system [17]. In the inter-
action picture, the evolution of the total state is ruled by
the Liouville equation

ρ̇SE = −i [Hint, ρSE ] , (6)

where we have denoted the state ρSE in the interaction
picture in the same way than before, just in order to sim-
plify notation. A formal solution of the Liouville equation
can be obtained perturbatively using the Dyson expan-
sion. From this expansion, one can obtain a perturbative
master equation, up to second order in the coupling con-
stant between system and environment for the reduced
density matrix ρ = TrEρSE . In the interaction picture
the formal solution reads as

ρ(t) ≈ ρ(0)− i

∫ t

0

dsTrE ([Hint(s), ρSE(0)]) (7)

−
∫ t

0

ds1

∫ s1

0

ds2TrE ([Hint(s), [Hint(t), ρSE(0)]]) .

In order to obtain the full master equation for a super-
conducting qubit, it is necessary to perfom the temporal

derivative of the previous equation and assume that the
system and the environment are not initially correlated.

In addition, we consider that the ˆδωi of the Hint (Eq.(5))
are operators acting only on the Hilbert space of the en-
vironment (and the Pauli matrices applied on the system
Hilbert space). Finally, the master equation explicitely
reads,

ρ̇ = −i [Hq, ρ]− dxx(t) [σx, [σx, ρ]]− fxy(t) [σx, [σy, ρ]]

− fxz(t) [σx, [σz, ρ]]− fzx(t) [σz, [σx, ρ]]

− fzy(t) [σz, [σy, ρ]]− dzz(t) [σz, [σz, ρ]]

+ iγxy [σx, {σy, ρ}] + iγxz [σx, {σz, ρ}]
+ iγzx [σz, {σx, ρ}] + iγzy [σz, {σy, ρ}] , (8)

where the noise effects are included as the normal (dxx
and dzz) and anomalous diffusion coefficients (fab with
a, b = x, y, z). The dissipative effects are included in
the corresponding coefficients (γab with a, b = x, y, z).
Eq.(8) is the first master equation derived that considers
both diffusion and dissipation effects for a superconduct-
ing qubit.

dxx(t) =

∫ t

0

ds ν1(s)X1(−s), dzz(t) =

∫ t

0

ds ν0(s)Z0(−s), fxy(t) =

∫ t

0

ds ν1(s)Y1(−s),

fxz(t) =

∫ t

0

ds ν1(s)Z1(−s), fzx(t) =

∫ t

0

ds ν0(s)X0(−s), fzy(t) =

∫ t

0

ds ν0(s)Y0(−s)

γxy(t) =

∫ t

0

ds η1(s)Y1(−s), γxz(t) =

∫ t

0

ds η1(s)Z1(−s)

γzx(t) =

∫ t

0

ds η0(s)X0(−s), and γzy(t) =

∫ t

0

ds η0(s)Y0(−s). (9)

These coefficients are defined in terms of the noise and
dissipation kernels, ν(t) and η(t), respectively. These
kernels are generally defined, for unspecified operators
ˆδω0(t) and ˆδω1(t), as

ν0,1(t) =
1

2
⟨
{

ˆδω0,1(t), ˆδω0,1(0)
}
⟩, (10)

η0,1(t) =
1

2
⟨
[

ˆδω0,1(t), ˆδω0,1(0)
]
⟩. (11)

The functions X0,1, Y0,1, and Z0,1 appearing in Eq.(9)
are derived by obtaining the temporal dependence of the
Pauli operators σi in the Heisenberg representing through
the differential equations. Their explicit forms can be
found in Ref.[16]. It is easy to check that if the Rabi
frequency is zero and δω̂1 = 0, we recover the dynamics
of a spin-1/2 precessing a biased field vector R.
The intention is to study environmental-induced

decoherence by means of the use of the master equation.
In this equation there are dissipation, diffusion, and

possible driven (unitary) effects, all consistently included
within the Markov approximation to the dynamics of the
environment. We will mainly concentrate on two types
of decoherence sources. On one side, we shall consider
that the environment is characterized by an Ohmic
spectral density, as the one commonly used in models
of Quantum Brownian Motion (QBM) or in the well
known spin-boson model [18, 19]. In these examples, the
environment is represented by an infinite set of harmonic
oscillators at thermal equilibrium. On the other side, we
shall analyze decoherence induced effects coming from
spin-environments, for example spin-fluctuator models,
that give us the possibility to study 1/f noise-effects
via the master equation approach, without resorting
to classical statistical evolutions or phenomenological
models. Once the coefficients in Eqs.(9) are defined, we
can numerically solve the master equation and obtain
the evolution in time of the reduced density matrix.



4

IV. OHMIC ENVIRONMENT

A relevant contribution to decoherence in solid-state
qubits, is introduced by the electromagnetic noise of the
control circuit, typically Ohmic noise at low frequencies.
In this Section, we model this kind of environments by
means of an infinite set of harmonic oscillators with an
Ohmic spectral density. An environment composed by
harmonic oscillators at thermal equilibrium at temper-
ature T is commonly introduced in order to take into
account dissipative effects, additionally to noise or fluc-
tuations effects.
It is easy to see that in the case that the environment

is modeled by a set of harmonic oscillators, the noise (Eq.
(10)) and dissipation (Eq.(11)) kernels become

ν0,1(t) =
1

2

∑
n

λ20,1,n⟨{qn(t), qn(0)}⟩, (12)

η0,1(t) =
1

2

∑
n

λ20,1,n⟨[qn(t), qn(0)]⟩, (13)

where qn are the position operators for the environmental
degrees of freedom.
The noise correlations can be defined by their spectral

density Ja(ω) = 1/(2π)
∫
dteiωt⟨ ˆδωa(0) ˆδωa(−s)⟩E with

a = 0, 1. If we assume the environment is composed by
an infinite set of harmonic oscillators, it is useful to use
the relation

N∑
n

λ2n
2mnωn

f(ωn) =

∫ ∞

0

J(ω)f(ω)dω, (14)

in order to express kernels in terms of integrals in fre-
quency. For example, using Eqs. (12) and (13), the noise
and dissipation kernels can be written as

νa(t) =

∫ ∞

0

Ja(ω) cos(ωt) coth(
βω

2
)dω, (15)

ηa(t) =

∫ ∞

0

Ja(ω) sin(ωt)dω, (16)

where β = 1/kBT is the equilibrium temperature of the
environment.
In this model, we use Ja(ω) = γaω exp[−ω/Λ] as the

spectral density of the environment. This definition al-
lows to calculate the noise and dissipation kernels from
Eqs. (15) and (16) [19]. In the definition of J(ω), Λ is a
physical ultraviolet cutoff, which represents the biggest
frequency present in the environment. Starting with
an arbitrary initial superposition state, parametrized by
|ψ⟩ = cos(θ/2)|0⟩ + sin(θ/2)|1⟩ (where with the angle θ
we localize the state in the Bloch sphere), we numeri-
cally solve the master equation at different environmen-
tal temperatures. In the high temperature limit, one can
expand the coth(βω/2) for small β, and obtain the noise
kernel (the one that depends on temperature) as νa(t) =

γakBTδ(t) (where, with the sub-index a = 0, 1 we denote
the longitudinal and transversal noise, respectively). In
this limit, it is trivial to evaluate the diffusion terms in
Eq.(9), to obtain that dxx = 2γ1kBT , dzz = 2γ0kBT , and
all fij = 0 (there is no anomalous diffusion terms). In
the opposite case, when T → 0, the diffusion kernel yields
νa(t) = γa(tΛ sin(Λt) + cos(Λt)− 1)/t2. With this kernel
all the diffusion coefficients in Eq.(9) can be obtained. It
is important to remark that they are all different from
zero and contribute to the master equation We do not
present here the explicit expression of them since their
form is not relevant. The dissipative coefficients for the
Ohmic environment, can be all calculated from the dis-
sipation kernel Eq.(16). Thus, these kernels are given
by ηa(t) = γaδ

′(t), which are independent on tempera-
ture. Therefore, dissipation coefficients (in Eq. (9)) are
γxx = 0, γxy = −2∆γ1, γzx = 0, and γzy = 2Ωγ0 for all
temperature.
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FIG. 1. (Color online) Temporal evolution of the Bloch vec-
tor for different environments coupled to the superconducting
qubit. The red dashed line represents an ohmic environment
in the high temperature limit while the blue solid line repre-
sents an ohmic environment a zero temperature. It is easy to
note that the state vector of the system is more affected by
the influence of the high temperature environment. However,
we must note that the initially pure state looses purity even at
zero temperature for the same values of γ. Parameters used:
Ω = 0.5∆, γ1 = 0.03 = γ0, Λ = 100∆, T =.

In Fig.1 we present the module of the Bloch vector
of the state system as a function of time for more than
one period τ = 2π/Ω̃, with Ω̃ = ∆/(∆2 + Ω2). Qualita-
tively, decoherence can be thought of as the deviation of
probabilities measurements from the ideal intended out-
come. Therefore, decoherence can be understood as fluc-
tuations in the Bloch vector R induced by noise. Since
decoherence rate depends on the state of the qubit, we
will represent decoherence by the change of |R| in time,
starting from |R| = 1 for the initial pure state, and de-
creasing as long as the quantum state losses purity. The
red dashed line is the evolution of the Bloch vector of
a qubit evolving under a high temperature ohmic envi-
ronment. This kind of environment is very destructive
and the state vector is soon removed from the surface
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of the sphere (where purity states lie). The blue solid
line represents the behavior of the Bloch vector when the
qubit is evolving under the influence of a zero temper-
ature Ohmic environment. It is easy to note that the
state losses purity even at zero temperature, though the
influence of the environment is not as drastic as when the
temperature is high.
The reduced density matrix can be represent as

ρr(t) =

(
a11(t) a12(t)F(t)

a21(t)F(t)∗ a22(t)

)
,

where F(t) can be called decoherence factor. Indepen-
dently of its expression, we know it must be a decaying
function by which after some time bigger than the deco-
herence time t > tD, the coherences of the density matrix
can be neglected. Therefore, we shall look the behavoir
of the coherences ρr01(t) = a12(t)F(t) to study the influ-
ence of the environment on the system’s evolution.
In Fig.2 we present the evolution in time of the co-

herence of the qubit-system (ρr01(t)) as a function of di-
mensionless time (∆t), in the case of high and zero tem-
perature and for different dissipation constants in the
weak coupling limit. The red dotted line is the solu-
tion of the master equation in the limit of high tempera-
ture (for dimensionless parameter T = 50). As expected,
off-diagonal terms in the reduced density matrix decay
quickly to their minimum value, reaching a steady state
of minimum coherence. A relevant result is the one ob-
tained in the limit of T = 0 environmental temperature
represented by the black dashed line γi = 0.003 and the
blue solid one γi = 0.03. In this case, we can see that,
after a few large amplitude oscillations, the coherences in
the system decay (more slowly than in the case of high
temperature) with time, reaching an asymptotic value of
minimum coherence, different from the value correspond-
ing to the high-T limit. This is mainly due to the pres-
ence, in the master equation for T = 0, of diffusion and
dissipation coefficients, which are absent in the case of
high-T. Nevertheless, we show that fluctuations at zero-
T also induce decoherence in the solid-state qubit, with
a lower efficiency than in the thermal case, but strong
enough to destroy the unitary evolution. If we set the de-
coherence timescale as the time at which coherence reach
its asymptotic value, it is easy to see that decoherence
time in the case of high-T environment is shorter than
the timescale associated to the decay of the coherence in
the presence of a zero-T environment.
In order to have a rough analytical estimation of deco-

herence times, we consider that the qubit is solely coupled
in the longitudinal direction, and that there is no anoma-
lous and dissipation terms in the master equation. This
means that for the moment we neglect the effect of the
tunneling term (proportional to σx) in the main system
Hamiltonian. Thus, we may follow the result given in
Refs.[12, 19] for the purely dephasing model. There, de-
coherence time in the high temperature approximation
can be estimated as tD ∼ 1/(kBTγ0), which does not
depend on the frequency cutoff Λ. Using parameters in
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FIG. 2. (Color online) Temporal evolution of the coherence
(a12(t)) of the qubit system. The red dotted line is the evo-
lution of the coherences in the case the qubit is coupled to
a high-T environment (γ0 = γ1 = 0.03 and T = 50 in di-
mensionless units). In this case, the system losses coherence
quickly and with no possibility of re-coherence. The blue
solid line, shows the evolution of the coherence in the limit
of zero environmental temperature (with cutoff in frequencies
Λ = 100∆ and γ0 = γ1 = 0.03). Finally, the blach dashed
oscilatory line representes the evolution of the coherence for
a smaller value of γi at zero temperature (γ0 = γ1 = 0.003).
Even there are oscillations in the evolution, the system also
losses coherence when the environment is at zero tempera-
ture. The final value of the off-diagonal term differs from the
one in the high-T case, due to the presence of difussion and
other dissipative coefficients in the master equation. We have
considered Ω = 0.5∆.

Fig. 2, one can estimate decoherece time be ∆tD ∼ 0.7
(in units of ∆), in good agreement with the correspond-
ing plot in Fig. 2. For the Ohmic case at zero temper-
ature, the decoherence time scales as tD ∼ e1/γ0/Λ for
times Λt ≥ 1. In this case, decoherence is delayed as γ0
decreases.

As we are considering a bidirectional coupling in our
model, it is interesting to see if there is a direction in
which decoherence becomes more important. As the
value of γ0 and γ1 imply the coupling with the environ-
ment, we can turn off one of the couplings to study the
effect of noise in the longitudinal and transverse direc-
tions. In Fig.3 we show three curves corresponding to
each of the cases considered: only longitudinal coupling,
only transversal coupling and both couplings. The red
dashed line is the evolution of the coherences in the case
the qubit is coupled to a high-T environment only in
the longitudinal direction, i.e. through δω0. This means
γ1 = 0 and for example, γ0 = 0.03. The red solid line rep-
resents the evolution of the coherence when the qubit is
coupled only in the transverse direction, namely through
δω1. In this case, we use γ1 = 0.03 and γ0 = 0. Finally,
the black dotted line is the evolution of the coherence
when the qubit is equally coupled in both directions, i.e.
γ0 = 0.03 and γ1 = 0.03. It is easy to see that decoher-
ence is mainly ruled by the longitudinal direction which
means that noise in the ẑ-direction affects more the uni-
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tary dynamics of the system than noise in x̂ direction.
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FIG. 3. (Color online) Temporal evolution of the coherence
(a12(t)) of the qubit system coupled to a high temperature
ohmic environment. The red dashed line is the evolution of
the coherences in the case the qubit is coupled to a high-T
environment only in the longitudinal direction, i.e. through
δω0. This means γ1 = 0 and for example, γ0 = 0.03. The
red solid line represent the evolution of the coherence when
the qubit is coupled only in the transverse direction, namely
through δω1. In this case, we use γ1 = 0.03 and γ0 = 0.
Finally, the black dotted line is the evolution of the coherence
when the qubit is equally coupled in both directions, i.e. γ0 =
0.03 and γ1 = 0.03. It is important to mention that this
behavior can not be seen in the zero-T environment. We
have considered Ω = 0.5∆.

V. 1/F NOISE

Much effort has been spent recently to understand how
noise at low frequencies affects the dynamics of supercon-
ducting qubit, both from a theoretical and an experimen-
tal point of view. In solid-state systems decoherence is
potentially strong due to numerous microscopic modes.
Noise is dominated by material-dependent sources, such
as background-charge fluctuations or variations of mag-
netic fields and critical currents, with given power spec-
trum, often known as 1/f . This noise is difficult to sup-
press and, since the dephasing is generally dominated by
the low-frequency noise, it is particularly destructive.
The 1/f noise is frequently modeled by an ensemble

of two-level systems or fluctuators and describes both
Gaussian or non-Gaussian effects [21, 22]. Then, the
noise is described as coming from N uncorrelated fluc-

tuators, that we call here ˆδωN =
∑N

i χi(t), where χi(t)
is a random telegraph process. The variable χi(t) takes
the values −ξi or ξi. Thus, χi(t)

2 = ξ2i = const.
By assuming a random process, there is no dissipation

contribution. In order to obtain the diffusion coefficients
of the master equation, we need to evaluate the noise
correlation functions from Eq.(10), for each of the inter-
action terms -the longitudinal and the transversal-, char-
acterized by the subindex 0 and 1, respectively. We refer

to these as

⟨δω̂N,0(t)δω̂N,0(s)⟩ =
N∑
i=1

ξ2i,0e
−2ζi,0|t−s|,

⟨δω̂N,1(t)δω̂N,1(s)⟩ =
N∑
i=1

ξ2i,1e
−2ζi,1|t−s|.

Following Ref.[? ], we define the effective random tele-

graph process for N ≫ 1, as ˆδωa(t) = limN→∞ ˆδωN,a(t),
considering a continuous distribution of amplitudes (ξ)
and switching rates (ζ). Assuming that for an individual
fluctuator, the correlation relations are given by

⟨χi(t)⟩ = 0,

⟨χi,a(t)χj,a(s)⟩ =
σ2
a

N
δije

−2ζa|t−s|, (17)

where σ2
a = limN→∞Nξ

2
a. For N → ∞, the effective

random process becomes a Gaussian Markovian process
with an exponential correlation function

Finally, we consider that the noise correlation is de-
fined by

⟨ ˆδωa(t) ˆδωa(s)⟩ = σa
2e−2ζa|t−s|, (18)

where index a = 0, 1, indicates longitudinal and transver-
sal couplings between the fluctuator and the qubit. By
using the noise correlation functions of Eq.(18), we com-
pute the diffusion coefficients Eq. (9) of the master equa-
tion and solve it numerically to obtain the qubit dynam-
ics.

5 10 15
t

0.2

0.4

0.6

0.8

1.0

mod RHtL

FIG. 4. (Color online) Temporal evolution for the Bloch vec-
tor in time for the case of 1/f noise. We consider an amplitude
σ2
0 = σ2

1 = 1∆, and switching rates ζi = 0.001∆ for the dotted
black line, ζi = 0.01∆ for the blue solid line and ζi = 0.1∆
for the red dashed curve (i = 0, 1).

In Fig.4 we present the temporal evolution of the Bloch
vector while the qubit is evolving under the presence of
1/f noise. We consider ζi = 0.001∆ for the dotted black
line, ζi = 0.01∆ for the blue solid line and ζi = 0.1∆ for
the red dashed curve (i = 0, 1). We can see that as the
value of ζi becomes bigger sooner is purity lost.

In Fig.5 we show the behaviour of the coherence ρr01(t)
of the reduced density matrix as a function of time (in
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FIG. 5. (Color online) Coherence decay in time for the case
of 1/f noise. We consider amplitudes σ2

0 = σ2
1 = 1∆, and

switching rates ζi = 0.001 for the dotted black line, ζi =
0.01∆ for the blue solid line and ζi = 0.1∆ for the red dashed
curve (i = 0, 1).

units of ∆) in the large amplitude limit (i.e. when
σ2
a = 1∆), for switching rates given by ζ0 = ζ1 = 0.001∆

in the dotted black line, ζ0 = ζ1 = 0.01∆ in the blue solid
line, and ζi = 0.1∆ for the red dashed curve (i = 0, 1).
Similar to the case of an Ohmic environment at high-T,
the system losses coherence well before any oscillation
when the value of ζi is bigger. The final state keeps a
small amplitude oscillatory behaviour but not compara-
ble at all to the unitary evolution. The 1/f noise is very
efficient in inducing decoherence on the system.

Considering just longitudinal coupling and no anoma-
lous difussion terms, makes it possible to obtain a deco-
herence time through a rough estimation. Then, assum-
ing that ζat ≤ 1, to obtain that tD ∼

√
2/σa, indepen-

dent of the switching rate. With the parameters used in
the figures, it is possible to check that decoherence time
scales as ∆tD ∼ 1.4 (in units of ∆), which is in agree-
ment with the numerical results. It is worthy to note that
this is the temporal scale in which coherences abruptly
decay from the pure-case value. This estimation sets a
bound on the decoherence time. The asymptotic value is
reached in a longer time. On the contrary, when ζt ≥ 1,
decoherence time scales as tD ∼ 1/ζa, independently of
the value of σa.

Finally, we consider the effect of noise in both direc-
tions. It is important to note that in the case of 1/f
noise, the coupling constant is included in parameter σi
of the model. Here, we will study the behavior of the co-
herence to infer how is decoherence induced in each case.
In Fig.6 we present the coherence decay for different cou-
pling situations. The red dashed line represents a qubit
coupled to the environment in a longitudinal direction
only σ0 = 0.5∆ while the black dotted line is the qubit
coupled to the environment in the transverse direction
only σ1 = 0.1∆. The blue solid line is a bidirectional
coupling of the same value. As expected, it is easy to
see that coherences decay faster as when the coupling to
the system is bigger, i.e a bidirectional coupling of the

5 10 15
t
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0.3

0.4

CoherencesHtL

FIG. 6. (Color online) Coherence decay in time for the case of
1/f noise. We consider different couplings. The blue solid line
is a bidirectional coupling of the same value (σ1 = σ0 = 1∆
and ζ0 = 0.5∆ = ζ1). The red dashed line represents a qubit
coupled to the environment in a longitudinal direction only
ζ0 = 1∆ while the black dotted line is the qubit coupled to
the environment in the transverse direction only ζ1 = 0.1∆.
In both cases ζ0 = 0.5∆ = ζ1.

qubit induces more decoherence on the system. The red
dashed line shows that having a coupling in the ẑ direc-
tion induces more decoherence in the system that having
a coupling only in the x̂ direction. This is due to the
fact that in the latter case, the transverse noise induces
transition between the qubit states.

VI. FINAL REMARKS

The interaction of solid-state qubits with environmen-
tal degrees of freedom strongly affects the qubit dynam-
ics, and leads to decoherence. In quantum information
processing with solid-state qubits, decoherence signifi-
cantly limits the performances of such devices. These
degrees of freedom appear as noise induced in the param-
eters entering the qubit Hamiltonian and also as noise in
the control currents. These noise sources produce deco-
herence in the qubit, with noise, mainly, at microwave
frequencies affecting the relative population between the
ground and excited state, and noise or low-frequency fluc-
tuations affecting the phase of the qubit. It is important
to study the physical origins of decoherence by means of
noise spectral densities and noise statistics. Therefore,
it is necessary to fully understand the mechanisms that
lead to decoherence.

Superconducting devices show quantum behavior at
low temperatures, and the qubit is encoded in the two
lowest energy levels of a superconducting circuit. We
have derived a master equation for a superconducting
qubit coupled to an external source of noise, including the
combined effect of noise in the longitudinal and transver-
sal directions. We considered different types of noise by
defining their correlation function in time.

For an Ohmic environment, we have considered ther-
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mal effects. We have solved the master equation and pre-
sented the dynamics of the superconducting qubit in the
presence of a high temperature environment and a zero
temperature one. In both cases, we have presented the
corresponding diffusion and dissipation coefficients and
derived some analytical rough estimation of the decoher-
ence time when possible. Decoherence can be understood
as fluctuations in the Bloch vector R induced by noise.
Since decoherence rate depends on the state of the qubit,
we have represented decoherence by the change of |R|
in time, starting from |R| = 1 for the initial pure state,
and decreasing as long as the quantum state losses pu-
rity. As expected, an environment at high temperature
is an effective coherence destructor and pure state vector
is soon removed from the surface of the Bloch sphere. In
addition, we have shown that decoherence is still induced
in the qubit when the environment is at zero tempera-
ture. This process is less drastic and takes longer times
compered to the high temperature limit. However, it is
important to remark that the decoherence process exists
induced by the vacuum fluctuactions of the environment
and can be seen for example, in the loss of purity of the
state vector. This result is in contrast to some recent
publications [11], where the effect of the environment at
zero temperature is neglected. We have also focused on
the effect of longitudinal and transversal noise. As ex-
pected, when the qubit is coupled to both directions,
namely longitudinal and transverse, the influence of the
environment is bigger as observed in the destruction of
the coherences. However, it is important to note that
having a transverse coupling only, does not imply a de-
coherence process as important as the one induced by
the system when the coupling is longitudinal. This re-

sult is novel and should help in future qubits designs or
experimental setups.

For a noise 1/f , modeled herein by an ensemble of
two-level fluctuators, we have also presented a master
equation approach. From the definition of the noise cor-
relation function of the environment, we have computed
the diffusion coefficients and solve numerically the dy-
namics of the qubit. We have studied how this type of
noise affects the coherences of the reduced density ma-
trix and how the state vector is removed from the sur-
face of the Bloch sphere. We have seen that this noise
can be very destructive, depending on the value of the
free parameter ζ. We have provided some rough analyt-
ical estimations of the decoherence timescale that agree
with the numerical solutions presented here. As for the
effect of longitudinal and transversal noise, when the cou-
pling is bidirectional the effect of noise is bigger on the
coherences of the qubit. However, the behavior of the
couplings separately is observed to be opposite to the
one observed in the Ohmic environments. This may be
adduced to the fact that the real coupling constant be-
tween the qubit and environment does not have a crucial
role in the model.

The analysis of the decoherence timescales may provide
additional information about the statistical properties of
the noise. The comprehension of the decoherence and
dissipative processes should allow their further suppres-
sion in future qubits designs or experimental setups.
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