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a b s t r a c t

A simple urban air quality model [MODelo de Dispersi�on Atmosf�erica Ubana e Generic Reaction Set
(DAUMOD-GRS)] was recently developed. One-hour peak O3 concentrations in the Metropolitan Area of
Buenos Aires (MABA) during the summer estimated with the DAUMOD-GRS model have shown values
lower than 20 ppb (the regional background concentration) in the urban area and levels greater than
40 ppb in its surroundings. Due to the lack of measurements outside the MABA, these relatively high
ozone modelled concentrations constitute the only estimate for the area. In this work, a methodology
based on the Monte Carlo analysis is implemented to evaluate the uncertainty in these modelled con-
centrations associated to possible errors of the model input data. Results show that the larger 1-h peak
O3 levels in the MABA during the summer present larger uncertainties (up to 47 ppb). On the other hand,
multiple linear regression analysis is applied at selected receptors in order to identify the variables
explaining most of the obtained variance. Although their relative contributions vary spatially, the un-
certainty of the regional background O3 concentration dominates at all the analysed receptors (34.4
e97.6%), indicating that their estimations could be improved to enhance the ability of the model to
simulate peak O3 concentrations in the MABA.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Ozone (O3) is known among the air pollutants to have great
potential to cause adverse effects on human health and the envi-
ronment (WHO, 2014). Ground-level O3 concentrations are
increasing inmany cities of theworld and their surroundings due to
eda Rojas).
changing emissions of nitrogen oxides (NOx ¼ NO þ NO2) and
volatile organic compounds (VOCs) from human activities and
other environmental factors such as temperature (e.g., Lee et al.,
2014; Paoletti et al., 2014; Wang et al., 2012). The typical horizon-
tal distribution of ozone concentration shows a relative minimum
in the urban areas (due to O3 titration by NO in zones of large NOx

emissions) and a maximum several kilometres downwind of cities
(as a consequence of an “optimal” VOCs/NOx concentration ratio for
ozone formation (Calfapietra et al., 2013)). In order to assure that its
levels remain relatively low, the spatio-temporal distribution of
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ozone concentrations in urban areas should be evaluated. In places
where this is not satisfied, pollution mitigation actions must be
taken to reduce ozone concentrations. This type of air quality
assessment is achieved through the combined use of observations
providing precise information at specific monitoring sites and air
quality models which allow the estimation of the concentration
distribution in a given area. Since these models provide a link be-
tween emissions, meteorology and concentrations, they are also
widely used by researchers to study a number of air quality issues
such as process analysis (e.g., Wang et al., 2012), source appor-
tionment (e.g., Strong et al., 2013) and the possible impact of
climate change on O3 levels (e.g., Athanassiadou et al., 2010), to
name a few.

When modelled concentrations are used either for policy deci-
sion making or for scientific purposes, a measure of their reliability
can be required. This is given by the model performance evaluation
which involves different steps of varying complexity depending on
the model type and specific purpose. Three common fundamental
aspects of the performance evaluation of an air quality model are:
the scientific evaluation, the statistical evaluation and the proba-
bilistic evaluation (e.g., Chang and Hanna, 2005; Derwent et al.,
2010). The former examines model algorithms and model as-
sumptions in detail. The statistical evaluation refers to the com-
parison between modelled and observed concentrations, and plays
an essential role since it provides a measure of the “total error” of
the model. Finally, the probabilistic sensitivity/uncertainty evalu-
ation aims to capture the uncertainty in model results introduced
by variabilities of a specific parameter, variable, parameterisation,
or a combination of them, etc. In air quality models applications,
the uncertainty of the model input data is considered to be the
dominant source of error (Russell and Dennis, 2000). Uncertainty
and sensitivity analysis offers a tool through which the uncertainty
of modelled pollutant concentrations associated to input data un-
certainties can be evaluated. This is critical for policy decision
makers since air quality management must be based on a range of
probable results rather than on a single value whose occurrence is
subject to error. On the other hand, a good understanding of the key
variables associated with model output uncertainties is funda-
mental. This allows modellers and scientists to gain insight into
model strengths and weaknesses, as well as into the variables or
parameters whose estimations should be improved in order to
enhance model capabilities. There are different methodologies
available throughout the literature to apply uncertainty and
sensitivity analysis with air qualitymodels (see Borrego et al., 2008;
Refsgaard et al., 2007), where the Monte Carlo (MC) analysis
combined with multiple linear regression (MLR) analysis is one of
the most widely used methods to study the uncertainty of
modelled pollutant concentrations (e.g., Bergin et al., 1999; Hanna
et al., 1998, 2007; Moore and Londergan, 2001; Rodriguez et al.,
2007; Tang et al., 2010). Other applications of the Monte Carlo
analysis include the uncertainty assessment of the impact of
different pollution mitigation strategies on peak O3 levels (e.g.,
Derwent and Murrells, 2013) and the use of different sets of ob-
servations to estimate representative average pollutant concen-
trations (e.g., Tan et al., 2014).

The DAUMOD-GRS (MODelo de Dispersi�on Atmosf�erica Urbana
eGeneric Reaction Set) model (Pineda Rojas and Venegas, 2013a) is
a simple atmospheric dispersion model that allows estimation of
ground-level O3 concentrations resulting from area source emis-
sions of NOx and VOCs in urban areas. It is based on the bidimen-
sional equation of diffusion and employs a simplified
photochemical scheme of the NOx-VOCs-O3 interactions. The
model has been statistically evaluated using observations of ni-
trogen dioxide and ozone concentrations from twenty monitoring
sites of the Metropolitan Area of Buenos Aires (MABA), Argentina,
and has shown an acceptable performance (Pineda Rojas and
Venegas, 2013b; Pineda Rojas, 2014). A series of features of the
MABA (3830 km2, ~13 million inhabitants), such as its flat terrain
location or that it is surrounded by non-urban areas, support the
use of simple models. The aim of the present work is to perform a
probabilistic evaluation to analyse the uncertainty in modelled O3
concentrations in the MABA associated to possible errors of the
DAUMOD-GRS input variables. It is worth noting that previously
simulated 1-h peak O3 levels in the region during summer for the
first time (Pineda Rojas and Venegas, 2013b) were found to be
below the air quality standard for the region (120 ppb); however,
values above 40 ppb [i.e., the threshold used in other parts of the
world to protect vegetation (Paoletti and Manning, 2007)] were
simulated for the surroundings of the MABA. Since there are no
measurements outside theMABA to compare these potentially high
modelled O3 concentrations with, a probabilistic evaluation of
these concentrations becomes critical. In this work, we implement
a methodology based on the MC and MLR techniques to perform an
uncertainty and sensitivity analysis of the DAUMOD-GRS model.
The objectives of the present paper are 1) to evaluate the uncer-
tainty of modelled 1-h peak O3 concentrations at each receptor in
the MABA region during the summer associated to uncertainties in
the input variables, and 2) to determine the subset of variables
explaining most of the obtained variance.

2. Methodology

The Monte Carlo (MC) analysis consists of performing a rela-
tively large number of simulations (called MC runs) using different
combinations of alternative values for model input variables, which
are randomly obtained from their probability density functions and
uncertainty ranges. As a result, a set of probable values of the
modelled pollutant concentration is obtained, from which a num-
ber of statistics can be computed. The main advantages of the MC
analysis are its general applicability and the relatively few as-
sumptions that it needs. Common drawbacks are that probability
density functions and uncertainty ranges of the input variables are
often unknown, and that the method generates a huge amount of
data that is usually difficult to analyse. The multiple linear regres-
sion (MLR) analysis offers a way of characterising the input-output
transformations (i.e., the relationship between the perturbed input
variables and the pollutant concentrations obtained from the MC
runs) so that the uncertainty contribution of each input variable to
the total uncertainty of the modelled concentration can be easily
estimated. Here, the MC analysis is implemented to evaluate the
uncertainty of modelled 1-h peak O3 concentrations at each re-
ceptor in the MABA during the summer (Cmax) associated to
possible errors in the input variables; while MLR analysis is per-
formed to estimate their relative contributions. The implementa-
tion of these techniques with DAUMOD-GRS is based on their
previous applications with other air quality models (Bergin et al.,
1999; Hanna et al., 1998, 2007; Moore and Londergan, 2001;
Rodriguez et al., 2007), with slight modifications as described in
the following sections. Section 2.1 comments on the main features
of the DAUMOD-GRS model. Section 2.2 describes the imple-
mentation of the Monte Carlo analysis with the DAUMOD-GRS
model and Section 2.3 the application of the multiple linear
regression analysis to estimate the contribution of the uncertainty
of input variables to the modelled Cmax uncertainty.

2.1. Model characteristics

The DAUMOD-GRS model couples the MODelo de Dis-
persi�onAtmosf�erica Urbana (DAUMOD) with the Generic Reaction
Set (GRS). The DAUMOD model (Mazzeo and Venegas, 1991) is
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based on the bidimensional diffusion equation and allows the
estimation of baseline urban pollutant concentrations (i.e., con-
centrations that result from all urban emission sources at a given
area). This model and successive versions have been used exten-
sively to study several air quality issues in the MABA (e.g., Mazzeo
and Venegas, 2008; Pineda Rojas and Venegas, 2009; Venegas and
Mazzeo, 2006; Venegas et al., 2011). The GRS (Azzi et al., 1992) is a
simplified photochemical scheme that simulates O3 formation in
the urban atmosphere with only seven reactions and which has
been included in the algorithms of several air quality models (e.g.,
Kim et al., 2005; Hurley et al., 2005; Venkatram et al., 1994). A key
input variable for the GRS is the initial O3 concentration. In the
DAUMOD-GRS model, this is given by the sum of the regional
background O3 level and the O3 concentration remaining from the
previous time step, computed at each receptor and time, and rep-
resenting the “memory effect”. A detailed description of the
DAUMOD-GRS model can be found in Pineda Rojas and Venegas
(2013a). The performance of the model to simulate hourly nitro-
gen dioxide and ozone concentrations at twentymonitoring sites in
the MABA has been shown to be acceptable (Pineda Rojas, 2014). In
particular, the comparison of modelled and observed daily 1-h
maximum O3 concentrations showed a normalised mean square
error of 0.11, a fractional bias of �0.139 and a fraction of 0.86 of
model results that fall within ±50% of the observed values (Pineda
Rojas and Venegas, 2013b).

Based on the features of the two original models, the coupled
model DAUMOD-GRS allows the estimation of O3 concentrations
resulting from urban area source emissions of NOx and VOCs at high
spatial and temporal resolutions (1 km2, 1 h), long-term periods
(e.g., 1 year), and from relatively little input data. These are its main
advantages to apply the Monte Carlo analysis. In particular, its
relatively lowcomputational demand allows a large number of high
resolution simulations for the whole metropolitan area and an
entire summer period.

2.2. Implementation of the Monte Carlo analysis

The DAUMOD-GRS model input variables are: wind speed (U),
wind direction (DIR), air temperature (T), sky cover (SC), atmo-
spheric stability class (KST), total solar radiation (TSR), emission
rate of nitrogen oxides (QNOx), emission rate of volatile organic
compounds (QVOC), and regional background ozone concentration
([O3]r). Due to the lack of available data, their probability density
functions and uncertainty ranges are approximations based on data
available from the literature (see Table 1). Note that these uncer-
tainty values were obtained for other places and therefore may not
Table 1
Considered probability density functions (PDF) and uncertainty ranges of DAUMOD-
GRS input variables (U: wind speed, DIR: wind direction, T: air temperature, SC: sky
cover, KST: atmospheric stability class, TSR: total solar radiation, QNOx: NOx emis-
sion rate, QVOC: VOC emission rate, [O3]r: regional background O3 concentration). N:
normal distribution (uncertainty of 2s), LN: log-normal distribution (uncertainty
given in %).

Input variable PDF 2s/E(%)

U (%) (1) LN 30
DIR (�) (1) N 30
T (�C) (1) N 3
SC (okta) (3) N 1
KST (1) N 1
TSR (%) (2) LN 12.5

QNOx (%) (1) LN 40
QVOC (%) (1) LN 80

[O3]r (%) (1) LN 30

Uncertainty ranges and PDF from Hanna et al., 1998(1), 2005(2), 2007.(3)
be fully representative of the MABA conditions. For example, the
[O3]r uncertainty (30%) is taken from a study of Hanna et al. (1998)
in which it was estimated for a larger domain. In the MABA, the
uncertainty of this variable could be in fact greater than the value
considered in this work due to upwind mesosescale source areas.

The Simple Random Sampling method (Moore and Londergan,
2001) is then applied to obtain N sets of uncertainty values for
each of the nine input variables from their probability distributions.
Apart from the input files for a standard run (base case), N addi-
tional files containing these sets of perturbations are generated. For
simplicity, the randomly sampled perturbation of a given variable is
assumed to be constant for the entire simulation period and
modelling domain. In order to avoid an excessive generation of
input files, a few code modifications are performed to let the model
perturb the variables during the MC runs. On the other hand, cor-
relations between input variables uncertainties are not considered.
For normally and log-normally distributed variables (see Table 1)
the sampled perturbation is added to and multiplied by its corre-
sponding nominal value, respectively.

From the MC simulations, N alternative Cmax values are obtained
for each receptor, which are then used to evaluate the horizontal
distribution of mean Cmax. This technique is considered to give
reliable results when N is sufficiently large so that the mean Cmax

values converge to those obtained from the base case run
[Cmax(BC)]. In this kind of Monte Carlo applications, a sample size of
N ¼ 100 is expected to capture the main aspects of the Cmax un-
certainty (Hanna et al., 2007). Once convergence is achieved,
different statistical measures are usually calculated to quantify
uncertainty [e.g., standard deviation (s), coefficient of variation
(COV¼ sx100/mean), interquartile range, 95% confidence interval].
In this work, the 95% confidence interval is considered as a measure
of the Cmax uncertainty.

The simulations are performed for an entire summer period
(Dec, Jan, Feb), in a domain covering theMABA (3830 km2) at a high
spatial (1 km2) and temporal (1 h) resolutions. The input data of the
base case consists of hourly meteorological surface information and
sounding data, measured at the Domestic and International air-
ports respectively during the summer of 2007. Anthropogenic NOx
and VOCs area source emission data belong to the emissions in-
ventory developed for the MABA (Venegas et al., 2011). On the
other hand, the regional background O3 concentration (the con-
centration that would exist if the MABA was not present) is
considered to be a single constant value of 20 ppb based on results
from two previous air quality monitoring campaigns carried out in
the city of Buenos Aires (Bogo et al., 1999; Mazzeo et al., 2005). The
regional background concentrations of other chemical species are
considered to have “clean air” values based on the fact that the
MABA is mainly surrounded by non-urban areas. The spatial dis-
tribution of Cmax(BC) values estimated using the DAUMOD-GRS
model in the MABA under these conditions was presented and
discussed in Pineda Rojas and Venegas (2013b).

2.3. Application of multiple linear regression analysis

Multiple linear regression (MLR) analysis allows the model
output variable (Cmax) to be expressed as a linear function of the
perturbed input variables (U, DIR, T, SC, KST, TSR, QNOx, QVOC,
[O3]r) using the results obtained from the MC runs. At a specific
receptor, the pollutant concentration (normalized by the standard
deviation) obtained in the simulation j can be expressed as:

Cj ¼
Xm

i¼1

bixij þ ej (1)



Fig. 1. Mean 1-h O3 peak during the summer (Cmax), calculated by averaging the re-
sults of 100 MC simulations.

Fig. 2. 95% confidence interval of the 1-h peak O3 concentration during the summer
(Cmax), obtained from the 100 MC simulations.
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where bi is the standardised multiple regression coefficient of the
perturbed input variable xi (i ¼ 1, …, m), xij is the normalised per-
turbed value of xi in the simulation j (j ¼ 1, …, N), and ej is the
adjustment error. Coefficients bi give a measure of the sensitivity of
C to xi, and they are commonly used to estimate the relative con-
tributions of the input variables errors to the uncertainty of the
modelled pollutant concentrations (e.g., Bergin et al., 1999; Hanna
et al., 2007). Eq. (1) considers that only first order effects are sig-
nificant, which is an acceptable assumption in the uncertainty and
sensitivity analysis of air quality models. The major limitation of
first-order sensitivities is that these describe the model response
over a limited range of input parameters (Dunker et al., 2002) and
do not account for nonlinear effects.

In order to make a good selection of the input-output variables
to be analysed, it is important to emphasize that the purpose of
using Eq. (1) is to quantify the effect of the input variables uncer-
tainty on the Cmax uncertainty. At a specific receptor, if Cmax is found
at different days in the different MC runs, then the variation of Cmax
(and hence its uncertainty) will depend not only on the perturba-
tions of the input variables xi but also on this change, in whose case
erroneous conclusions could be inferred regarding the interpreta-
tion of the bi values.

Most studies on the uncertainty and sensitivity analysis of peak
O3 concentrations are developed for episodes of a few days inwhich
the Cmax values obtained from different MC runs often occur at
different hours but on the same day (e.g., Hanna et al., 2005), and
therefore the change of conditions of the Cmax occurrence is not
expected to affect the results considerably. In this work, Cmax refers
to the 1-h peak O3 concentration at each receptor in the MABA
during the summer, and some preliminary tests have shown that at
a given receptor it occurs at different days of the summer through
the different MC simulations. To overcome this, the MLR analysis is
performed considering the hourly O3 concentration (Ch) modelled
at the time of the occurrence of Cmax(BC) as the output variable.
This is done at selected receptors which are chosen aiming at
covering different atmospheric and emission conditions associated
to the occurrence of Cmax(BC). The obtained standardised multiple
regression coefficients (bi) are then used to estimate the uncer-
tainty contribution (UCi) of the input variable xi to the total un-
certainty of Ch at each receptor.

3. Results

3.1. Uncertainty of Cmax in the MABA

The DAUMOD-GRS model is applied to obtain N ¼ 100 high
resolution (1 km2) distributions of the 1-h peak O3 concentration at
each receptor in the MABA during the summer (Cmax). At each re-
ceptor, its mean, coefficient of variation, and 95% confidence in-
terval are calculated.

Fig. 1 presents the spatial distribution of the mean Cmax values
(i.e., the average of Cmax over the 100 MC simulation results). They
vary between 15.3 and 50.9 ppb, with the lower values in the most
urbanised zones (due to the highest NOx emission rates). The mean
Cmax values obtained at each receptor of the MABA area are similar
to those estimated previously for the base case (BC) run (Pineda
Rojas and Venegas, 2013b), indicating that convergence is ach-
ieved with this number of simulations, as expected. Note that the
highest mean Cmax value of the modelling domain (50.9 ppb) is
quite below the air quality standard for the MABA (120 ppb) which
is expected based on the previous campaigns carried out in the city
which showed relatively low (<50 ppb) O3 hourly concentration
levels (Bogo et al., 1999; Mazzeo et al., 2005).

The uncertainty of Cmax (considered as the 95% confidence in-
terval) varies between 9.3 and 47.0 ppb (see Fig. 2) and shows a
spatial pattern that indicates that the larger Cmax values are asso-
ciated to larger uncertainties. On the other hand, the horizontal
distribution of the coefficient of variation of Cmax (not shown)
varies between 13.1 and 30.0%, which is within the range of results
obtained in other modelling studies (Bergin et al., 1999; Hanna
et al., 1998, 2005; Rodriguez et al., 2007; Russell and Dennis, 2000).

From Table 2, Cmax(BC) values can occur under a wide range of
conditions of wind speed (calme 10.3 m/s) and wind direction (see
Fig. 3), temperature (17.8e30.1 �C) and solar radiation
(84.8e918.5 W/m2). At receptors presenting relatively high emis-
sion rates (P1-P3), these values are found to be below the assumed
regional background ozone level (20 ppb) and occur around
midday hours. This means that, according to the model results,
there is a net removal of ozone at these receptors (as expected). At
receptors in the suburbs (P6-P8), Cmax occurs at 7e8 h or 19 h
during lowwind conditions and it is found to be larger than 20 ppb,



Table 2
One-hour peak O3 concentration at the selected receptors shown in Fig. 3 during the summer, obtained from the base case simulation [Cmax(BC)]. Atmospheric conditions (U:
wind speed, DIR: wind direction, T: air temperature, SC: sky cover, KST: atmospheric stability class, TSR: total solar radiation) and local emission conditions (QNOx: NOx
emission rate, QVOC: VOC emission rate) at the time of occurrence of Cmax(BC) (M: month, D: day, H: hour).

Receptor Cmax(BC) (ppb) M D H U (m/s) DIR T (�C) SC (Okta) KST TSR (W/m2) QNOx (mg/m2s) QVOC (mg/m2s)

P1 16.3 1 17 14 10.3 NW 30.1 0 3 878.6 10.12 2.71
P2 16.7 12 30 14 7.7 SE 30.1 0 2 918.5 4.05 2.69
P3 18.8 12 29 11 4.6 SW 26.2 2 2 854.0 2.41 1.29
P4 19.9 12 2 13 2.1 NE 27.3 2 1 915.9 1.11 0.59
P5 20.2 1 14 14 2.6 NNE 18.9 0 1 882.8 0.12 0.05
P6 23.1 1 15 7 1.0 WSW 17.8 0 5 155.8 0.11 0.04
P7 25.2 2 2 8 <1.0 NNW 25.1 0 5 319.4 0.09 0.04
P8 26.2 1 26 19 <1.0 ESE 25.1 2 3 84.8 0.00 0.00

Fig. 3. Total variance explained (%) by each category of input variables (MET: atmospheric variables, EMIS: local emission rates of NOx and VOC, BC: regional background ozone
concentration) at eight selected receptor in the MABA (¼CBA þ GBA). Wind direction at the time of occurrence of Cmax(BC) is indicated by the blue arrow. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

A.L. Pineda Rojas et al. / Atmospheric Environment 141 (2016) 422e429426
which suggests a production of ozone compared to the regional
level. A closer inspection at the GRS equations (Azzi et al., 1992)
shows that a net production of ozone can occur when the ratio of
the reaction constant of the NO2 photolysis (k3) to that of the O3
titration (k4) is maximum and/or the conversion of NO to NO2 is
maximum. Since the ratio k3/k4 increases with the solar radiation, it
maximises around midday hours. Therefore, only a maximum ratio
of NO2/NOx can explain a peak of O3 at early morning or late eve-
ning hours. At suburban receptors, a larger conversion NO/NO2 is
expected. This, combined with higher emission rates from upwind
sources and greater atmospheric stability at these hours, may lead
to enough NO2 to generate some O3.

3.2. The relative contributions of the input variables at selected
receptors

Fig. 4 shows that the diurnal variation of the uncertainty of Ch
(i.e., its 95% confidence interval) during the day of occurrence of
Cmax(BC) may differ considerably at different receptors. Among the
eight selected receptors, the maximum-to-minimum diurnal ratio
of the Ch uncertainty varies between 1.2 (P1) and 13.7 (P2) without
an identifiable spatial pattern. The maximum uncertainty of Ch
occurs mainly at 6e7 h or 19 h, when atmospheric photochemistry
plays a minor role. Therefore, this uncertainty may probably result
from errors related with the emissions and the physical module
(DAUMOD) rather than with the chemical scheme (GRS). Results
obtained by other authors for other urban areas using more com-
plex models have some similarities. For example, Chen and Brune
(2012) have also estimated a larger uncertainty at rush hours in
the morning but mostly related to the chemistry. On the other
hand, Rodriguez et al. (2007) have also found that the hours of
largest uncertainty do not match those of peak ozone concentra-
tions. The mean values of Ch at the time of occurrence of Cmax(BC)
(not shown) tend to those of Table 2 (i.e., they converge). The



Fig. 4. Diurnal variation of the uncertainty (95% confidence range) of hourly O3 concentrations (Ch) at receptors P1 (a), P2 (b), P7 (c) and P8 (d) during the day of occurrence of their
corresponding Cmax(BC) values. The times of occurrence and uncertainty values are indicated.
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uncertainty of Ch at the hour of occurrence of Cmax(BC) at these
receptors varies between 10.6 and 22.7 ppb, which approximates
quite well to their corresponding Cmax uncertainty values (Fig. 2).

At each of the selected receptors shown in Fig. 3, the multiple
linear regression analysis is applied using the set of Ch values ob-
tained from the MC runs at the hour of occurrence of Cmax(BC).

Considering the possible effects of the input variables on O3
concentrations may be useful to anticipate what kind of correla-
tions (positive or negative) can be expected. The complex nature of
ozone makes its concentration behave differently under different
environmental conditions (e.g., Clapp and Jenkin, 2001; Sillman
and Samson, 1995). For example, wind speed (U) and atmo-
spheric stability class (KST) only affect transport and dispersion of
pollutants. Enhanced dispersion may result from a positive
perturbation of U or a negative perturbation of KST, leading tomore
diluted precursor species concentrations, which in turn can in-
crease or decrease O3 levels depending on other environmental
conditions. Air temperature (T), sky cover (SC) and total solar ra-
diation (TSR) can affect both atmospheric dispersion and photo-
chemistry. Increased Tor TSR values, or decreased SC can favour any
of the two processes; therefore, the correlations between these
variables and Ch will also depend upon which processes are
dominating. In the case of wind direction (DIR), the significance of
its correlationwill depend on the specific receptor (i.e., whether the
site presents a homogeneous pollution rose or if it is located where
an abrupt spatial change of emissions exists, like a costal site), and
its sign will be determined by the distribution of emission sources
around it. Emission rates of nitrogen oxides (QNOx) and volatile
organic compounds (QVOC) can also present positive or negative
correlations with ozone hourly concentrations. For example, a
positive correlation between O3 and QNOx is expected under a NOx-
limited regime (typical of rural areas); while a negative correlation
can occur under a VOC-limited regime (commonly found in urban
areas).

Tables 3 and 4 present the standardised multiple regression
coefficients (bi) of each input variable xi and its uncertainty
contribution (UCi) to the total uncertainty of Ch at the hour of
occurrence of Cmax(BC), respectively. The sign of bi determines if the
correlation between xi and Ch is positive or negative (correlations
that are significant at the 95% level are indicated by bold numbers).
As expected, the uncertainties of Ch at all receptors are found to be:
positively correlated with uncertainties of [O3]r, under a VOC-
limited regime and almost uncorrelated with uncertainties of
local QVOC. On the other hand, no significant correlation is ob-
tained between the uncertainties of Ch and those of T, SC, TSRwhich
is consistent with the hypothesis of Bogo et al. (1999) who suggest
that the urban atmosphere of Buenos Aires has a low oxidative
capacity. At receptors with high emission rates (P1-P3), a positive
bU and a negative bKST are obtained (i.e., increased O3 levels are
favoured by enhanced dispersion conditions). The opposite effect,
but at a less significant level, is observed at suburban receptors (P6-
P8). As hypothesised above, this difference could be due to the fact
that Cmax may be controlled by different reactions. In the first case,
enhanced atmospheric dispersion reduces NO concentrations



Table 3
Standardisedmultiple regression coefficients (bi) for the DAUMOD-GRS input variables (U: wind speed, DIR: wind direction, T: air temperature, SC: sky cover, KST: atmospheric
stability class, TSR: total solar radiation, QNOx: local NOx emission rate, QVOC: local VOC emission rate, [O3]r: regional background O3 concentration) at the selected receptors
shown in Fig. 3. Bold numbers are significant at the 95% level.

Receptor U DIR T SC KST TSR QNOx QVOC [O3]r

P1 0.292 0.059 �0.081 �0.010 ¡0.345 0.067 ¡0.348 �0.032 0.652
P2 0.103 0.093 0.073 �0.016 ¡0.356 �0.015 ¡0.261 0.059 0.847
P3 0.044 ¡0.053 0.036 �0.005 ¡0.228 0.004 ¡0.173 0.021 0.937
P4 0.005 ¡0.047 �0.004 �0.007 0.028 0.010 ¡0.159 0.001 0.986
P5 �0.004 �0.019 �0.008 �0.004 0.001 0.009 ¡0.095 0.014 0.988
P6 ¡0.082 ¡0.213 0.010 0.031 0.101 �0.023 ¡0.298 �0.030 0.896
P7 0.298 0.007 0.031 0.154 �0.066 ¡0.256 �0.056 0.828
P8 0.522 0.012 �0.015 0.225 0.065 0.586

Table 4
Uncertainty contribution (%) of each input variable (UCi) shown in Table 3. Bold
numbers are significant at the 95% level.

Receptor U DIR TA SC KST TSR QNOx QVOC [O3]r

P1 8.5 0.4 0.7 0.0 11.9 0.5 12.1 0.1 42.6
P2 1.1 0.9 0.5 0.0 12.7 0.0 6.8 0.4 71.8
P3 0.2 0.3 0.1 0.0 5.2 0.0 3.0 0.0 87.8
P4 0.0 0.2 0.0 0.0 0.1 0.0 2.5 0.0 97.2
P5 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 97.6
P6 0.7 4.5 0.0 0.1 1.0 0.1 8.9 0.1 80.3
P7 e 8.9 0.0 0.1 2.4 0.4 6.5 0.3 68.6
P8 e 27.3 0.0 0.0 5.1 0.4 e e 34.4
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which in turn reduces O3 tritation; while in the second, decreased
dispersion increases NO2 concentrations which increases those of
O3.

The relative contributions from the input variables vary spatially
as shown in Table 4, with Ch uncertainties being dominated by
uncertainties in different variables at different receptors, as also
obtained in previous studies at other cities (e.g., Hanna et al., 1998;
Kioutsiouski et al., 2005). The uncertainty contribution from the
wind speed (UCU) is usually low (<1%), except at receptor P1 (8.5%)
which presents relatively high NOx and VOC emission rates and
wind speed at the time of occurrence of Cmax(BC) (see Table 2). This
higher UCU value could be reflecting that Ch is more sensitive to U
for higher wind speeds (regardless the emission conditions of the
receptor), which would be probably more related to the physical
module of the DAUMOD-GRS than to the chemical one; however,
more numerical experiments are needed to confirm this hypothe-
sis. On the other hand, the greatest UCDIR values (up to 26.6%) occur
near the boundary of the MABA. This is expected since in the pre-
sent work, only the emissions from the MABA are considered and a
small change of wind direction can lead to a large change in the
emission sources that affect these receptors.UCQNOx varies between
0.9 and 12.1% but no clear spatial pattern is observed.

Finally, by summing the UCi values by category of input variable
(atmospheric, emission and regional background concentration
data), it is found that the uncertainty in regional background con-
ditions dominates at all receptors (see Fig. 3). Its relative contri-
bution varies considerably between 34.4 and 97.6%, being greater
(>80%) at receptors of moderate NOx and VOC emission rates (P3-
P6). The uncertainty in the input meteorological data makes the
secondmost important contribution (withmore than 10%) to the Ch

uncertainty at P1, P2, P7 and P8. At receptors of relatively high
emission rates and wind speeds (P1 and P2), such contribution is
dominated by the uncertainty contributions fromU and KST (due to
a greater sensitivity of Ch to atmospheric dispersion); while at re-
ceptors near the boundary of the MABA (P7 and P8), possible errors
in DIR become more significant (as a consequence of a greater
sensitivity of Ch to wind direction, as described above).
4. Conclusions

A methodology based on the Monte Carlo analysis is imple-
mented to assess the uncertainty of 1-h peak O3 concentrations at
each receptor in the Metropolitan Area of Buenos Aires (MABA)
during the summer (Cmax) modelled with the DAUMOD-GRS due to
uncertainties in the model input data. High resolution (1 km2)
spatial distributions of mean and uncertainty Cmax values in the
MABA are obtained. Mean Cmax varies spatially between 15.3 and
50.9 ppb, while Cmax uncertainty (taken as the 95% confidence in-
terval) is in the range 9.3e47.0 ppb. Results show that the poten-
tially high (>40 ppb) peak O3 levels previously simulated for the
surroundings of the MABA are subject to the greatest model
uncertainty.

At different receptors of the MABA, the values of Cmax obtained
from the base case run [Cmax(BC)] occur not only at different hours
but also at different days of the summer. The diurnal variation of
the uncertainty of the O3 hourly concentration (Ch) during the day
of occurrence of Cmax(BC) varies considerably among eight selected
receptors, showing that despite being a simple model, DAUMOD-
GRS gives acceptable responses. Multiple linear regression anal-
ysis is applied at these receptors to evaluate the relative contribu-
tions of the input variables uncertainties to that of Ch at the time of
occurrence of Cmax(BC). The results obtained show that, although
their relative contributions vary spatially, the uncertainty in the
regional background ozone concentration dominates at all the
analysed receptors, accounting for 34.4e97.6% of modelled con-
centration uncertainty. The meteorological input variables play a
second role at receptors with high emission rates (where Ch is more
sensitive to atmospheric dispersion) and at those near the bound-
ary of the MABA (through a greater effect of wind direction).
Therefore, the greatest uncertainties obtained for the greatest Cmax
values outside the MABA could be reduced by improving the esti-
mations of the regional background O3 concentrations. In the
absence of ozone observations at rural monitoring stations upwind
the MABA, the second most adequate approach to improve such
estimations would be using a larger scale air quality model which
allows the evaluation of the contribution from remote emission
sources.
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