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Abstract: We studied sexual size dimorphism (SSD) and
testes size allometry in 97 natural populations, includ-
ing 39 nominal species and 19 unnamed or undescribed
forms, of tuco-tucos (Ctenomys) from Argentina, Bolivia,
Chile, Paraguay, and Uruguay in order to gain insight on
the existence of sperm competition in these solitary, ter-
ritorial, and possibly polygynic subterranean rodents.
Our results indicated that sex-biased SSD occurs within
the genus and also within lower taxa. SSD conforms
to Rensch’s rule. Testes size showed a strong negative
allometry when compared with male body mass both
across and within species, clearly suggesting the opera-
tion of sperm competition in this genus. Thus, within a
Ctenomys population, small males would invest more
than larger males in testes growth and thus in ejaculate
quality, which would counterbalance their presumably
lower chances of accessing females due to their smaller
body size.
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Introduction

Sexual size dimorphism (SSD), the existence of con-
spicuous differences in body size between males and
females, is very common in animals (Andersson 1994,
Blanckenhorn et al. 2007a, b, Kupfer 2007, Lindenfors
et al. 2007, Székely et al. 2007). In mammals, it is usually
male-biased (MSSD) although many female-biased
cases of SSD (FSSD) are known (Ralls 1976, Andersson

1994, Schulte-Hostedde et al. 2002, Lindenfors et al.
2007, Schulte-Hostedde 2007). Ever since Darwin (1871),
SSD has been considered a result of sexual selection,
although other explanations such as natural selec-
tion for different ecological roles or niche utilization in
males and females have been put forward for special
cases (Selander 1966, Andersson 1994, Butler et al.
2000, Mysterud 2000).

Rensch’s rule (Rensch 1950, 1960) states that the
degree of SSD tends to increase with increasing average
body size in taxa in which males are the larger sex,
and decreases with body size in those where females
are larger (Abouheif and Fairbairn 1997, Blanckenhorn
etal. 2007a). Although these two patterns seem to conflict,
it has been suggested that they may be part of the same
trend (Fairbairn and Preziosi 1994, Fairbairn 1997) that
involves greater evolutionary change in males and strong
covariation of size between the sexes because of genetic
correlations (Lindenfors 2002). That trend has been well
documented across species; however, it also occurs within
species of vertebrates and invertebrates (Fairbairn 2005,
Bidau and Marti 2007, 2008a,b).

The size of testes in mammals and other organisms is
revealing of reproductive strategies; thus, the study of the
allometric relation between testes size or mass, and body
size is relevant within the context of evolutionary biology
and sexual selection theory (Mgller 1989, Heske and Ostfeld
1990, Stockley and Purvis 1993, Hosken 1998, Breed and
Taylor 2000, Gage and Freckleton 2003, Schulte-Hostedde
et al. 2003, 2005, Schulte-Hostedde and Millar 2004). In
mammals, an allometric relation between testes mass and
body mass has been demonstrated, although the range of
relative testes size is large, especially for small mammals
(Kenagy and Trombulak 1986). Furthermore, intraspe-
cific size variation in testes mass has been observed in a
number of mammals, usually associated to sperm compe-
tition (SC) and a series of morphological and life history
characteristics (Breed and Taylor 2000, Schulte-Hostedde
et al. 2003, 2005, Schulte-Hostedde and Millar 2004).

Tuco-tucos (genus Ctenomys de Blainville, 1826)
constitute an excellent model to test predictions about
SSD and sexual selection. First, the genus includes >60
Linnean species, showing a wide variation in body size
and, a large geographic distribution spanning across 45°
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of southern latitude (from ca. -10° in the Peruvian high-
lands to almost -55° in Tierra del Fuego). Species can
be found between 0 and >5000 m above sea level from
the Pacific to the Atlantic oceans (Contreras and Bidau
1999, Bidau 2006, 2012, Parada et al. 2011). Second, these
rodents are fully subterranean and spend >95% of their
lives underground (Nevo 1999), and it is possible that
reproductive strategies and thus, the operation of sexual
selection, might differ from those of surface-dwelling
rodent species. Third, although Ctenomys includes ca. 63
named extant species (Bidau 2006, 2012), these are mor-
phologically homogeneous and show the same adapta-
tions for living underground but vary greatly in body size
(Medina et al. 2007).

Finally, tuco-tucos inhabit an enormous variety of
habitats and climates and although localized popula-
tions may be subjected to intense environmental selection
resulting from differences in soil texture and depth, avail-
able food plants, intensity of predation, etc., their burrows
maintain fairly constant temperature and humidity inde-
pendently of geographic location (Reig et al. 1990, Nevo
1999, Busch et al. 2000, Bidau 2006, Medina et al. 2007).
This characteristic probably isolates them quite effectively
from the external environment.

The main objectives of this study were (1) to analyze
the extent and direction of SSD in tuco-tucos at the
inter- and intraspecific levels; (2) to verify the applica-
tion of Rensch’s rule to this genus; (3) to study the allo-
metric relation between testes size and body size; and
(4) to investigate the possible relation between SSD,
testes allometry, and geographic body size variation in
Ctenomys.

Materials and methods

Study species and characters

This study is based on 611 specimens of Ctenomys belong-
ing to 97 natural populations, including 39 nominal
species and 19 unnamed or undescribed forms from
Argentina, Bolivia, Chile, Paraguay, and Uruguay sampled
by the authors and collaborators (Medina et al. 2007) or
obtained from the literature (Appendix). Sources of data
were Thomas and St. Leger (1926), Osgood (1943, 1946),
Barlow (1965), Pine et al. (1979), Lessa and Langguth
(1983), Pearson (1984), Pearson and Christie (1985), Kelt
and Gallardo (1994), and Anderson (1997).

External measurements of all specimens included total
body (TBL) and head plus body (HBL) lengths. Tail (TL),
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hind foot (HFL), and ear (EL) lengths were also recorded
for specimens of the Ctenomys perrensi Thomas, 1896
superspecies (see below). In most individuals, body mass
(BM) was also measured or obtained from the literature
(Appendix).

Length and width of both testes were measured in all
male individuals captured by us. We estimated testicular
volume by the formula for a prolate spheroid (Hoyt 1979):
testis volume=0.51x(width)>x(length). Testis density is
nearly 1.0; thus, testis volume was equaled to testis weight
(Franca and Godinho 2003, Franca et al. 2006).

Statistical methods

SSD was calculated for each population as the ratio
between the arithmetic mean of each measured char-
acter of males, and the corresponding mean of females
(Smith 1999). The scaling of SSD with body size was
described by regressing log,  (male size) on log, (female
size) for all studied characters (Fairbairn and Preziosi
1994, Abouheif and Fairbairn 1997, Fairbairn 1997, 2005).
Rensch’s rule is said to occur when the slope of the
regression line is >1.0, while slopes significantly smaller
than 1.0 signal its reversion (Fairbairn 1997). Ordinary
least-squares regression (OLS) is not adequate for these
analyses because x (in this case, female body size) is not
fixed and estimated with error; thus, the slope b, and its
confidence interval, are estimated with error (Fairbairn
1997). In these cases, type II regression has been recom-
mended (Sokal and Rohlf 1995). We used reduced major
axis (RMA) regression to estimate slopes for the relation
between log, (male size) and log,, (female size), using
the software of Bohonak and van der Linde (2004) (Java
version). Clarke’s T statistic with adjusted degrees of
freedom (df) was used for testing the null hypothesis
that b, =1.0 (Clarke 1980).

Testes allometry in males was also investigated by
regressing the trait (volume/mass of both testes) on body
length or body mass using the same statistical procedures
described above. Testes asymmetry was calculated as
directional asymmetry (DA) [DA=log, left testis volume
(LTV)-log,, right testis volume (RTV)] and relative asymme-
try (RA) [RA=log , LTV-log,  RTV/0.5(log, LTV+log, RTV)]
(Graves 2004). OLS was employed for the analysis of tes-
ticular allometry on an individual basis using SPSS v.13.

All log, -transformed variables were tested for nor-
mality using the Kolmogorov-Smirnov one-sample test
with the Liliefors correction. Coefficients of variation
for each analyzed trait were calculated as CV=sx100/%
(Zar 1999).
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Research on live animals followed the American
Society of Mammalogists guidelines (Gannon et al. 2007)
and was approved by local faunal authorities.

Results

Variation of size and SSD in Ctenomys

Ctenomys shows a wide variation in body size. Among
the populations studied by us, adult body mass ranged
between 43 g in a female Ctenomys sp. 29 from Puerto
Madryn (Argentina) and 1200 g in a male Ctenomys cono-
veri Osgood, 1946 from Carandayti (Bolivia). The total
length ranged from 146 mm in a female Ctenomys sp. 12
from Pago Alegre (Argentina) to 680 mm in the same C.
conoveri male. Females were consistently smaller than
males in all species, and their respective size ranges were
as follows: females, body weight, 43-420 g; total length,
146-374 mm; males, body weight, 49-1200 g; total length,
149-680 mm. Male body size showed, on the whole, a
higher variability than that of females. The coefficients of
variation of head and body length for the whole sample
were 20.58 for males and 14.53 for females. In the case of
body mass, the values were 67.99 and 50.73, respectively,
and for total body length, 18.22 and 13.99, respectively
(Medina et al. 2007). The Appendix shows the amount of
SSD for the studied characters in all population samples.

Rensch’s rule in Ctenomys

SSD in body mass was analyzed in 58 populations of tuco-
tucos by means of RMA regression. Male and female mean
weights were highly significantly correlated across species
and populations (Table 1). The calculated RMA slope was
significantly different from 1.0, showing an increase of
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SSD with increasing general body size (Table 1). Similar
results were obtained from the analyses of three linear
measurements (TBL, HBL, and TL) of Ctenomys popula-
tions (Table 1).

Rensch’s rule within the Ctenomys perrensi
superspecies

We studied the trends in SSD of six morphological traits
of 24 populations of the Ctenomys perrensi superspecies
(Table 2). In this group of populations, Rensch’s rule was
verified for BM, TBL, and TL, while the RMA slope was not
significantly different from 1.0 for other linear measure-
ments such as HBL (marginal significance), E, and HF.
Highly significant correlations were, however, obtained
for all analyzed characters.

Testes volume/mass allometry in Ctenomys

Testes mass as inferred from testes volume (see Materials
and methods) was regressed against TBL, HBL, and weight
(Wt) using the RMA procedure. The results of the statistical
tests are shown in Table 3. Although positive allometry was
observed when testes mass was regressed against TBL, and
a similar non-significant relation was observed with HBL,
a highly significant negative allometric trend was observed
when the independent variable was body mass (Table 3).

Testes volume/mass allometry in the
Ctenomys perrensi superspecies

Within this group of populations, a comparable allomet-
ric trend in testes mass was observed as in the general
sample (Table 4). However, in this case, highly significant

Correlation coefficient RMA slope RMA intercept
Trait r t df p-Value B (SE) T df* p-Value 95% Cl a (SE) 95% Cl
TBL 0.762 11.28 92 <10¢ 1.217(0.082) 3.23 74.09 0.0018 1.054-1.380 -0.497(0.196) -0.885--0.108
HBL 0.769 11.48 91 <10°¢ 1.223(0.082) 3.33 73.02 0.0014 1.061-1.386 -0.477(0.182) -0.840--0.115
TL 0.665 8.50 95 <10°¢ 1.164(0.089) 2.15 80.62 0.0341 0.986-1.341 -0.286(0.165) -0.614-0.042
BM 0.832 11.22 56 <10°¢ 1.184(0.088) 2.50 44.35 0.0162 1.007-1.360 -0.335(0.195) -0.728-0.057

Table1 Results of RMA regression of log (male size) on log (female size) for population means of four morphometric traits from Ctenomys

populations.

For abbreviations of traits, see Materials and methods. r=Pearson’s correlation coefficient; t=Student’s t statistic; =slope of the RMA
regression line; T=Clarke’s T statistic; df=degrees of freedom; *df=Clarke’s adjusted degrees of freedom for T; a=intercept of the RMA
regression line; 95% Cl=95% confidence interval; SE=standard error; p=probability.
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Correlation coefficient RMA slope RMA intercept
Trait r t df p-Value B (SE) T dft  p-Value 95% Cl a (SE) 95% CI
TBL 0.446 2.34 22 0.0288 1.438(0.274) 2.35 2291 0.0278 0.869-2.007 -1.031(0.659) -2.3978-0.3350
HBL 0.476 2.54 22 0.0187 1.320(0.247) 1.75 22.66 0.0944 0.807-1.833  -0.699 (0.555) -1.8509-0.4522
TL 0.602 3.54 22 0.0018 1.450(0.247) 2.70 21.48 0.0132 0.938-1.963  -0.826(0.465) -1.7899-0.1374
HFL 0.577 3.31 22 0.0032 1.095(0.191) 0.56 21.72 0.5812 0.699-1.490 -0.121(0.285) -0.7117-0.4699
E 0.572 3.27 22 0.0035 1.182(0.207) 1.06 21.77 0.3008 0.753-1.610 -0.144(0.183) -0.5221-0.2347
BM 0.561 3.18 22 0.0044 2.780(0.491) 10.31 21.87 <10°¢ 1.762-3.797 -3.967 (1.109) -6.267—-1.666

Table 2 Results of RMA regression of log (male size) on log (female size) for population means of six morphometric traits from the

Ctenomys perrensi complex populations from Corrientes Province.

For abbreviations of traits, see Materials and methods. r=Pearson’s correlation coefficient; t=Student’s t statistic; f=slope of the RMA
regression line; T=Clarke’s T statistic; df=degrees of freedom; *df=Clarke’s adjusted degrees of freedom for T; a=intercept of the RMA
regression line; 95% Cl=95% confidence interval; SE=standard error; p=probability.

RMA slopes were obtained for linear measurements (TBL
and HBL), while the negative allometric trend with respect
to body size was not as statistically significant as for the
whole Ctenomys sample (Table 4).

Testicular asymmetry
Testicular asymmetry was initially studied on an individ-

ual basis, independent of species or population. Testicu-
lar volume varied widely within left and right testis in our

sample: mean LTV=168.19+97.1 mm?, range=11.36-572.35
mm? mean RTV=168.86+105.4 mm? range=8.87-571.69
mm’. However, a paired-samples t-test revealed no sig-
nificant difference between left and right testis (t=0.91;
df=140; p=0.365). Mean values of asymmetry variables
were as follows: DA=-0.0093 and RA=-0.0064. Both
were strongly positively correlated (Spearman’s p=0.996;
p<10¢), and the regression of LTV on RTV produced a
linear relation with a positive slope close to 1.0 (log,,
LTV=-0.0104+1.0005><10g10 RTV; F=871.42, df=1.139,
p<10%; R?>=0.862).

Correlation coefficient RMA slope RMA intercept
Trait r t df p-vValue B (SE) T dft  p-Value 95% Cl a (SE) 95% Cl
TBL 0.459 4.23 67 0.0001 1.252(0.136) 2.34 63.51 0.0224 0.980-1.523  -2.375(0.326) -3.0270-1.7230
HBL 0.435 3.96 67 0.0002 1.197(0.132) 1.80 64.13 0.0766 0.934-1.461 -2.060(0.296) -2.6520—-1.4680
BM 0.414 3.25 51 0.0020 0.349(0.045) 5.15 49.09 5%10¢ 0.260-0.439 -0.157 (0.101) -0.3591-0.0461

Table 3 Results of RMA regression of log (testes volume) on log (male size) for population means of three morphometric traits from

Ctenomys populations.

For abbreviations of traits, see Materials and methods. r=Pearson’s correlation coefficient; t=Student’s t statistic; f=slope of the RMA
regression line; T=Clarke’s T statistic; df=degrees of freedom; *df=Clarke’s adjusted degrees of freedom for T; a=intercept of the RMA
regression line; 95% Cl=95% confidence interval; SE=standard error; p=probability.

Correlation coefficient RMA slope RMA intercept
Trait r t df p-value B (SE) T df*  p-Value 95% ClI a (SE) 95% ClI
TBL 0.793 5.21 16 8.6x10° 1.867(0.284) 5.87 14.93 3.1x10° 1.264-2.470 -3.917(0.691) -5.381--2.453
HBL 0.837 6.11 16 1.5x10° 1.527(0.209) 4.29 14.59 6.8x10* 1.084-1.971 -2.853(0.475) -3.861--1.845
BM 0.440 3.36 16 0.0040 0.535(0.073) 2.86 14.57 0.0122 0.381-0.688 -0.632(0.170) -0.9915--0.2717

Table 4 Results of RMA regression of log (testes volume) on log (male size) for population means of three morphometric traits from

Ctenomys perrensi populations.

For abbreviations of traits, see Materials and methods. r=Pearson’s correlation coefficient; t=Student’s t statistic; f=slope of the RMA
regression line; T=Clarke’s T statistic; df=degrees of freedom; *df=Clarke’s adjusted degrees of freedom for T; a=intercept of the RMA
regression line; 95% Cl=95% confidence interval; SE=standard error; p=probability.
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Individual analyses of testicular allometry

To test the allometry of testes with respect to body size
measurements using individual males and not population
means, we performed two kinds of analyses. First, OLS
regressions of log testes mass on logBM and logTL were
calculated for all males for which testes data were avail-
able, independently of species and population. Results
shown in Table 5 indicate negative allometry of testes size
with respect to body size in both cases. Thus, at the indi-
vidual level, larger males showed relatively smaller testes
than smaller ones.

The second analysis involved males of Ctenomys per-
rensi. In this case, testes size showed negative allometry
with respect to BM but positive allometry when TL was the
independent variable (Table 5). Thus, heavier males had
relatively smaller testes than lighter ones.

Geographic variation of testicular volume

As the log,, of total testicular volume departed from nor-
mality (Kolmogorov-Smirnov’s D=0.114, df=141, p<0.001),
testing of absolute testicular volume trends against geo-
graphic independent variables was performed through
non-parametric correlation (Spearman’s p). Significant
trends were observed for longitude (p=0.188, p=0.025) and
altitude (p=0.187, p=0.026) but not for latitude (p=-0.066,
p=0.435). However, the log-transformed proportion of
total testicular volume/mass in relation to body mass
did show significant positive correlations with latitude
(Spearman’s p=0.296, p=0.003), longitude (Spearman’s
p=0.373, p<0.001), and altitude (Spearman’s p=0.200,
p<0.046). The proportion of testes volume to head and
body length also increased significantly with longitude
(Spearman’s p=0.267, p=0.001) and altitude (Spearman’s
p=0.187, p=0.027), but not with latitude (Spearman’s
p=0.046, p=0.589) (Figure 1).

Correlation coefficient
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Expected percentage of testes mass relative
to body mass

On the basis of the results of OLS and RMA regressions
performed for Ctenomys, we estimated the expected testes
mass for the range of tuco-tucos body masses found and
the percentage of the body mass represented by the testes.
It is clear that the larger the body size is, the smaller the
proportion of testes (Table 6). A comparison with results
from other large mammalian and rodent databases
showing body and testes masses (Kenagy and Trombu-
lak 1986, Breed and Taylor 2000) is also shown in Table
6. In the case of Kenagy and Trombulak’s (1986) data, the
published equations were used for the estimations; nega-
tive allometry, although much less pronounced than in
Ctenomys, was observed. Breed and Taylor (2000) used
independent contrasts for their regression analysis;
however, for the present study, we performed OLS regres-
sion of the whole dataset to allow the comparisons. We
obtained an isometric relation between testes masses and
body masses (Table 6). In their original publication, Breed
and Taylor (2000) also found a nearly isometric trend
using the phylogenetic method.

Discussion

It is accepted that sexual selection is a major determinant
of size differences between males and females (Darwin
1871, Andersson 1994), although SSD may also result from
ecological selective pressures relating to differences of
niche utilization in males and females (Selander 1966,
Mysterud 2000, Pérez-Barberia et al. 2002).

Contest competition for the mate that represents the
scarcer reproductive resource is the usual explanation of
SSD. For example, if males compete for territories and/
or females’ preference, increased male body size may be
selected for, resulting in MSSD. Thus, MSSD is certainly

Linear regression and ANOVA

Trait r t df p-Value a b F df p-Value
Whole sample BM 0.508 5.83 98 10° 0.167 0.203 34.03 1.98 <10
TBL 0.457 6.04 140 <10° -0.845 0.611 36.44 1.138 <10°¢
C. perrensi BM 0.928 13.45 31 <10° -0.666 0.550 181.20 1.29 <10°
TBL 0.774 7.92 42 <10° -0.293 1.459 62.74 1.42 <10°

Table 5 Analyses of testes allometry at the individual level in the whole Ctenomys sample and in Ctenomys perrensi males.
OLS regressions of log (testis volume) against log (morphometric trait) were performed. For abbreviations of traits, see Materials and

methods. r=Pearson’s correlation coefficient; t=Student’s t statistic;
p=probability.

a=0LS intercept; b=0LS slope; F=F statistic; df=degrees of freedom;
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correlated with mating system: more pronounced MSSD
should be associated more to polygynic systems than
to monogamy or overtly promiscuous systems (Alexan-
der et al. 1979, Heske and Ostfeld 1990). Alternatively, if
there is a positive correlation between female size and
fecundity, FSSD is expected (Darwin 1871). Although it
is sometimes not easy to distinguish between the dif-
ferent hypotheses, there exist a number of indirect evi-
dences that could help decide between alternative pos-
sibilities. There is no evidence in tuco-tucos that niche
utilization is different in males and females. Both sexes
inhabit the same type of subterranean environment
with very narrow margins of microenvironmental varia-
tion (although female burrows tend to be smaller) and
consume the same food items (Busch et al. 2000, Medina
et al. 2007). As in other subterranean rodents, most
tuco-tuco species are solitary, territorial, and aggressive,
and males normally engage in contests for the access to
females (Busch et al. 1989, Bennett et al. 2000, Zenuto
et al. 2002). Thus, sexual selection is a plausible cause
for the increase in size of males with respect to females.
However, as demonstrated in this article, because of
Rensch’s rule, smaller species of tuco-tucos show less
MSSD than larger ones.

A further indication of sexual selection would be the
existence of SC among males. SC is said to occur when
the ejaculates of two or more males compete for fertiliza-
tion of the same set of ova (Parker 1970, 1984, 1998) and
is characteristic of polygynic mating systems. Very few
studies on SC have been performed in the ca. 63 species
of tuco-tucos, with the exception of Ctenomys talarum
Thomas, 1898 and Ctenomys haigi Thomas, 1919 (Zenuto
et al. 1999a,b, Graziani and Lacey 2004). In both species,
the use of microsatellite markers to determine paternity

Ctenomys* Mammals? Rodents? Murine rodents?

oLS RMA oLs oLS oLs

BM (g) ™ (g) %TM/BM ™ (g) %TM/BM ™ (g) %TM/BM ™ (g) %TM/BM ™ (g) %TM/BM
50 3.25 6.50 2.73 5.46 0.63 1.26 0.59 1.17 0.71 1.42
100 3.74 3.74 3.48 3.48 1.07 1.07 0.96 0.96 1.42 1.42
200 4.31 2.16 4.43 2.21 1.83 0.92 1.59 0.70 2.84 1.42
300 4.68 1.56 5.10 1.70 2.50 0.84 2.12 0.71 4.26 1.42
500 5.19 1.54 6.09 1.22 3.71 0.74 3.07 0.61 7.10 1.42
100 5.97 0.58 7.76 0.78 6.33 0.63 5.06 0.51 14.19 1.42
1500 6.48 0.43 8.94 0.60 8.65 0.58 6.77 0.45 21.28 1.42

Table 6 A comparison of expected testes masses (TM), and testes/body percentage (%TM/BM) for a range of body masses (BM) found in

Ctenomys, with other published databases.

For Ctenomys, the results of OLS and RMA regressions were used for the calculations. All other data represent results of OLS regressions.

This paper. 2Kenagy and Trombulak (1986). >Breed and Taylor (2000).
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strongly suggested that both species are polygynous, and
this is probably true of most tuco-tuco species.

An indirect clue to the existence of SC is the relation
between testes mass and body mass (Harvey and Harcourt
1984, Kenagy and Trombulak 1986, Mgller 1989, Heske
and Ostfeld 1990, Breed and Taylor 2000). In species with
polygynous mating systems, intrasexual selection among
males is expected to be stronger than in monogamous or
promiscuous systems; thus, SSD should be also greater.
Regarding testes size, in cases of promiscuous or polygy-
nous (multi-male) breeding systems, which exhibit great
copulatory frequency and a number of males copulate
with every female at estrous, SC is intense; thus, relatively
larger testes than in single-male systems have evolved
(Harvey and Harcourt 1984, Kenagy and Trombulak 1986,
Mgller 1989).

We have shown that in Ctenomys, the relation between
testes mass and body mass is negatively allometric: rela-
tive testes size decreases as male body size increases at
the interspecific, intrapopulational, and individual levels
(Tables 3-5). The interspecific and interpopulational
negative allometry is very pronounced, and relative testes
mass is much higher than that observed in other mammal
or rodent species (Table 6). This large relative testes size
strongly suggests that tuco-tucos are polygynous and SC
is an important component of their mating systems as sug-
gested by paternity studies (Zenuto et al. 1999a,b, Grazi-
ani and Lacey 2004).

It is worth noting that in the case of male tuco-tucos,
although body mass of individuals for which testes
measurements were available (n=100) ranged between
69.5 and 642.0 g (mean=204.4 g) with a coefficient of varia-
tion of CV=44.91, total testes mass as estimated from testes
volume (mean=4.32 g) showed CV=15.74. Testes size shows
a very restricted range of variation as compared with body
size, and it is clear that this variation reflects an allomet-
ric pattern where larger tuco-tucos have proportionally

C.J. Bidau and A.l. Medina: Sexual dimorphism and testis size in Ctenomys = 7

smaller testes than smaller individuals. The allometric
pattern of testes size is also reflected in their geographic
variation: as the body size of Ctenomys decreases toward
higher latitudes (the converse to Bergmann’s rule; Medina
et al. 2007) and longitudes, testes mass increases propor-
tionally although maintaining a relatively constant size.

A further suggestion that SC is operating in tuco-
tucos came from the result of relative testes size within
the Ctenomys perrensi superspecies, a group of chromo-
somally differentiated populations with low genetic diver-
gence and more or less continuous gene flow (Giménez
et al. 2002, Bidau 2006, Mirol et al. 2010). Within this
monophyletic group, the relation between testes mass
and body mass showed the same trend as in the general
analyses: smaller males have relatively larger testes than
larger ones. This “intraspecific” trend is also not unusual
in polygynic species (Stockley and Purvis 1993, Pochron
and Wright 2002, Schulte-Hostedde et al. 2003, Schulte-
Hostedde and Millar 2004) and is an empirical indica-
tion that testis size is associated with the strength of SC.
Thus, within a Ctenomys population, small males would
invest more than larger males in testes growth and thus in
ejaculate quality, which would counterbalance their pre-
sumably lower chances of accessing females due to their
smaller body size.
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