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Abstract
Double field theory (DFT) is a proposal to incorporate T-duality, a distinctive
symmetry of string theory, as a symmetry of a field theory defined on a
double configuration space. The aim of this review is to provide a pedagogical
presentation of DFT and its applications. We first introduce some basic ideas on
T-duality and supergravity in order to proceed to the construction of generalized
diffeomorphisms and an invariant action on the double space. Steps towards the
construction of a geometry on the double space are discussed. We then address
generalized Scherk–Schwarz compactifications of DFT and their connection
to gauged supergravity and flux compactifications. We also discuss U-duality
extensions and present a brief parcours on worldsheet approaches to DFT.
Finally, we provide a summary of other developments and applications that are
not discussed in detail in the review.

PACS numbers: 11.25.−w, 11.10.Kk

(Some figures may appear in colour only in the online journal)
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1. Introduction

Double field theory (DFT) is a proposal to incorporate T-duality, a distinctive symmetry of
string (or M-)theory, as a symmetry of a field theory [1, 2, 3]. At first sight, such attempt could
appear to lead to a blind alley since the very presence of T-duality requires extended objects
like strings which, unlike field theory particles, are able to wrap non-contractible cycles. It is
the very existence of winding modes (associated with these wrappings) and momentum modes
that underlies T-duality, which manifests itself by connecting the physics of strings defined on
geometrically very different backgrounds. Then, a T-duality symmetric field theory must take
information about windings into account.

A way to incorporate such information is suggested by compactification of strings on
a torus. In string toroidal compactifications, there are compact momentum modes, dual to
compact coordinates ym, m = 1, . . . , n, as well as string winding modes. Therefore, it appears
that a new set of coordinates ỹm, dual to windings, should be considered for the compactified
sector in the field theory description. It is in this sense that DFT is a ‘doubled’ theory: it doubles
the coordinates of the compact space. Formally, the non-compact directions xμ, μ = 1, . . . , d,
are also assigned duals x̃μ for completion, although this is merely aesthetical since nothing
really depends on them. The DFT proposal is that, for a D-dimensional space with d non-
compact spacetime dimensions and n compact dimensions, i.e. D = n+d, the fields depend on
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coordinates XM = (x̃μ, ỹm, xμ, ym), where xμ are spacetime coordinates, x̃μ are there simply
for decoration and Y

A = (ỹm, ym) are 2n compact coordinates, with A = 1, . . . , 2n.
When the compactification scale is much bigger than the string size, it is hard for strings

to wrap cycles and winding modes are ineffective at low energies. In the DFT framework,
this corresponds to the usual situation where there is no dependence on dual coordinates.
Oppositely, in the T-dual description, if the compactification scale is small, then the momentum
(winding) modes are heavy (light), and DFT only depends on dual coordinates. Either way,
these (de)compactification limits typically amount on the DFT side to constrain the theory to
depend only on a subset of coordinates. In particular, when all the coordinates are non-compact,
one finds complete correspondence with supergravity in D = 10 dimensions.

The T-duality group associated with string toroidal compactifications on T n is O(n, n).
The doubled internal coordinates Y

A mix (span a vector representation) under the action of
this group. However, it proves useful to formulate the theory in a double space with a full
duality group O(D, D), where all D coordinates are doubled, mimicking a string theory where
all dimensions are compact5.

The next step in the construction of DFT is to choose the defining fields. In the simplest
formulation of DFT, the field content involves the D-dimensional metric gi j, a 2-form field
bi j and a scalar dilaton field φ. From a string perspective, they correspond to the universal
gravitational massless bosonic sector, present in the bosonic, heterotic and Type II string
theories as well as in the closed sector of Type I strings, in which case bi j would be a Ramond–
Ramond (R-R) field. However, since we are looking for an O(D, D) invariant theory, the
fundamental fields should be O(D, D) tensors with 2D-dimensional indices. In fact, in DFT the
gi j and bi j fields are unified in a single object: a generalized O(D, D) symmetric metric HMN ,
with M, N = 1, . . . , 2D, defined in the double space. Then, based on symmetries, DFT unifies
through geometrization, since it incorporates the 2-form into a generalized geometric picture.
There is also a field d, which is a T-scalar combining the dilaton φ and the determinant of the
metric g. The first part of this review will be dedicated to discuss the consistent construction
of a DFT action as a functional of these generalized fields on a doubled configuration space.

In the decompactification limit (taking for example D = 10 so as to make contact with
string theory), when the dual coordinates are projected out, the DFT action reproduces the
action of the universal massless bosonic sector of supergravity

S =
∫

dx
√

ge−2φ

(
R + 4(∂φ)2 − 1

12
Hi jkHi jk

)
,

where Hi jk = 3∂[ib jk] is the field strength of the 2-form. This limit action is invariant under
the usual diffeomorphisms of General Relativity and gauge transformations of the 2-form.
Following with the unification route, we then expect to combine these transformations into
‘generalized diffeomorphisms’ under which the DFT action should be invariant. They should
then reduce to standard general coordinate and gauge transformations in the decompactification
limit. In section 3, we will define these transformations and discuss constraint equations
required by the gauge consistency of the generalized diffeomorphisms. Generically, these
constraints restrict the space of configurations for which DFT is a consistent theory, i.e. DFT
is a restricted theory.

The constraints of the theory are solved in particular when a section condition or strong
constraint is imposed. This restriction was proposed in the original formulations of DFT,
inspired by string field theory constraints. It implies that the fields of the theory only depend
on a slice of the double space parameterized by half of the coordinates, such that there always

5 Time is treated here at the same level of other space coordinates for simplicity, but it can be restored by a standard
Wick rotation.
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exists a frame in which, locally, the configurations do not depend on the dual coordinates.
Since the strong constraint is covariant under the global symmetries, the theory can still be
covariantly formulated, but it is actually not truly doubled after it is solved.

Nevertheless, one can also find other solutions to the constraints that violate the strong
constraint. In particular, Scherk–Schwarz (SS)-dimensional reductions of DFT, where the
spacetime fields are twisted by functions of the internal coordinates, have proven to be
interesting scenarios where consistent strong-constraint violating configurations are allowed.
Interestingly enough, the SS reduction of (bosonic) DFT on the doubled space leads to an action
that can be identified with (part of) the action of the bosonic sector of four-dimensional half-
maximal gauged supergravities. Recall the fact that gauged supergravities are deformations
of ordinary Abelian supergravity theories, in which the deformation parameters (gaugings)
are encoded in the embedding tensor. DFT provides a higher dimensional interpretation of
these gaugings in terms of SS double T-duality twists. Moreover, the quadratic constraints
on gaugings are in one to one correspondence with the closure constraints of the generalized
diffeomorphisms.

Gauged supergravities describe superstring compactifications with fluxes, where the
gaugings correspond to the quantized fluxes. Therefore it is instructive to look at the
connection between SS reductions of DFT and string flux compactifications. This connection
is subtle. It is known that orientifold compactifications of D = 10 effective supergravity
actions, corresponding to the low-energy limit of string theories, lead to four-dimensional
superpotentials in which the coefficients are the fluxes. However, by looking at flux
compactifications of string theories, expected to be T-duality related (for instance, type IIA
and type IIB theories), the effective superpotentials turn out not to be T-dual. Namely, these
compactifications are gauged supergravities but with different orbits of gaugings turned on,
not connected by T-duality. By invoking symmetry arguments, it has been suggested that new
fluxes should be included in order for the full superpotentials to be T-duals, so as to repair
the mismatch. Similarly, more fluxes are required by invoking type IIB S-duality, M-theory or
heterotic/type I S-duality, etc. Then, by imposing duality invariance at the level of the four-
dimensional effective theory, the full (orientifold truncated) supergravity theory is obtained
with all allowed gaugings.

Hence, we can conclude that four-dimensional gauged supergravity incorporates stringy
information that, generically, is not present in the reduction of a ten-dimensional effective
supergravity action. Compactification of DFT contains this stringy information from the start
and provides a geometric interpretation for fluxes, even for those that are non-geometric from
a supergravity point of view.

There have also been different proposals to extend DFT ideas to incorporate the full stringy
U-duality symmetry group. Take E7(7) as an example, which includes T-dualities and strong–
weak duality. The symmetrization now requires an extended geometry on which one can define
an extended field theory (EFT). Interestingly enough, from a string theory perspective such
formulation automatically incorporates information on NS-NS and R-R fields. While in DFT
with O(n, n) symmetry a doubled 2n compactified space is needed, in EFT coordinates span
a mega-space with more dimensions, where SS compactifications lead to four-dimensional
gauged maximal supergravity.

Closely related to DFT (or EFT) is the framework of generalized geometry (GG) (or
exceptional generalized geometry), a program that also incorporates duality as a building block.
In GG, the tangent space, where the vectors generating diffeomorphisms live, is enlarged to
include the 1-forms corresponding to gauge transformations of the 2-form. The internal space
is not extended, but the notion of geometry is still modified. DFT and GG are related when
the section condition (which un-doubles the double space) is imposed.

4
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To summarize, DFT is a T-duality invariant reformulation of supergravity which appears
to offer a way to go beyond the supergravity limits of string theory by introducing some
stringy features into particle physics. DFT is all about T-duality symmetries, unification and
geometry. It is a rather young theory, still under development, but it has already produced
plenty of new perspectives and results. There are still many things to understand, and the
number of applications is increasing. Here we intend to review this beautiful theory and some
of its applications, in as much a pedagogical fashion as we can.

2. Some references and a guide to the review

In this review we intend to provide a self-contained pedagogical introduction to DFT. We
will introduce the basics of the theory in lecture-like fashion, mostly intended for non-experts
who are willing to know more about this fascinating theory. We will mainly review the recent
literature on the formulation and applications of the theory. The field is undergoing a quick
expansion, and many exciting results are still to appear. Given the huge amount of material in
this active area of research, we are forced to leave out many developments that are as important
and stimulating as those that we consider here. With the purpose of reducing the impact of this
restriction, we provide an updated list of references, where the reader can find more specific
information. We apologize if, unintentionally, we have omitted important references.

Let us first start with a brief list of books on string theory [4]. There are already some very
good and complete reviews and lectures on this and related topics that we strongly suggest.
In [5, 6], the reader will find a complete exposition on T-duality. Flux compactifications are
nicely reviewed in [7]. Comprehensive reports on non-geometric fluxes and their relation to
gauged supergravities are those in [8] and [9], respectively. DFT has also been reviewed in
[10] and GG in [11]. A review on duality symmetric string and M-theory will be found in [12].

Historically, the idea of implementing T-duality as a manifest symmetry goes back to
Duff [13] and Tseytlin [1], where many of the building blocks of DFT were introduced. In
[13] one can identify already the double coordinates and the generalized metric among other
things, and in [1] the idea of DFT was essentially present. Soon after, Siegel contributed his
pioneer work [2], in which a full duality symmetric action for the low-energy superstring was
built in superspace formalism. More recently, Hull and Zwiebach combined their expertise on
double geometry [14] and string field theory [15] to build DFT [3]. Later, together with Hohm,
they constructed a background independent [16] and generalized metric [17] formulation of
the theory. The relation of their work to Siegel’s was analyzed in [18]. Closely related to DFT
is the GG introduced by Hitchin and Gualtieri [19] and related to string theory in the works
by Graña et al [20].

The inclusion of heterotic vector fields in the theory was discussed in [21] (see also [22]).
R-R fields and a unification of Type II theories were included in [23–25], while the massive
Type II theory was treated in [26]. The inclusion of fermions and supersymmetrization was
performed in [27, 24]. There are many works devoted to explore the geometry of DFT
[24, 28–30]. A fully covariant supersymmetric Type II formulation was constructed by Jeon
et al in [31]. The gauge symmetries and equations of motion were analyzed by Kwak [32],
and the gauge algebra and constraints of the theory were discussed in [33, 34]. The connection
with duality symmetric nonlinear sigma models was established by Berman et al in [35–37].
Many of these studies were inspired by Siegel’s construction [2].

Covariant frameworks extending T-duality to the full U-duality group were built as well.
These include works by Hull [38], Pacheco and Waldram [39], Berman and Perry [40], the
E11 programme by West et al [41] and [42, 43]. More recent DFT-related developments can
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be found in [44–51]. Also, in this direction, but more related to non-geometry and gauged
supergravities we have [52–55].

The ideas introduced in [56–58] led to the development of non-geometry, and T-dual
non-geometric fluxes were named as such in [59] (see also [60]). Later, S-dual fluxes
were introduced in [61], and finally the full U-dual set of fluxes was completed in [52].
Fluxes were considered from a generalized geometrical point of view in [20], and also from a
double geometrical point of view in [14, 62, 63]. The relation between DFT, non-geometry and
gauged supergravities was explored in [64–69]. Different worldsheet perspectives for fluxes
were addressed in [70–72].

Some other developments on DFT and related works can be found in [73]. In the final
section, we include more references, further developments and applications of DFT.

The present review covers the following topics.

• Section 3 provides a general introduction to DFT. Starting with some basics on T-duality
as a motivation, double space and generalized fields are then defined. A generalized
Lie derivative encoding usual diffeomorphisms and 2-form gauge transformations is
introduced, together with its consistency constraints. We then present the DFT action,
its symmetries and equations of motion.

• Section 4 reviews the construction of an underlying double geometry for DFT. Generalized
connections, torsion and curvatures are discussed, and their similarities and differences
with ordinary Riemannian geometry are examined.

• Section 5 is devoted to a discussion of dimensional reductions of DFT. After a brief
introduction of usual SS compactifications, the procedure is applied to deal with
generalized SS compactifications of DFT. The notions of geometric and non-geometric
fluxes are addressed and the connection with gauged supergravity is established.

• Section 6 considers the U-duality extension of DFT, extended geometries, EFTs and their
relation to maximal gauged supergravity.

• Section 7 reviews the various attempts to construct O(D, D) invariant nonlinear sigma
models and their relation to DFT.

• Section 8 provides a brief summary of different developments related to DFT (and guiding
references), together with open problems, that are not discussed in detail in the review.

3. Double field theory

Strings feature many amazing properties that particles lack, and this manifests in the fact that
string theory has many stringy symmetries that are absent in field theories like supergravity.
Field theories usually describe the dynamics of particles, which have no dimension. Since the
string is one dimensional, closed strings can wind around non-contractible cycles if the space
is compact. So clearly, if we aimed at describing the dynamics of strings with a field theory,
the particles should be assigned more degrees of freedom, to account for their limitations
to reproduce stringy dynamics like winding. DFT is an attempt to incorporate some stringy
features into a field theory in which the new degrees of freedom are introduced by doubling
the space of coordinates.

DFT can be thought of as a T-duality invariant formulation of the ‘low-energy’ sector of
string theory on a compact space. The reason why low-energy is quoted here is, although it is
O(D, D) symmetric, DFT keeps the levels that would be massless in the decompactification
limit of the string spectrum. In some sense, DFT can be thought of as a T-duality symmetrization
of supergravity. Our route will begin with the NS-NS sector, and later we will see how these
ideas can be extended to the other sectors. As a starting point, we will briefly introduce the

6
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basic notions of T-duality and supergravity, mostly in an ‘informal’ way, with the only purpose
of introducing the fundamental concepts that will then be applied and extended for DFT. A
better and more complete exposition of these topics can be found in the many books on string
theory [4].

3.1. T-duality basics

T-duality is a symmetry of string theory that relates winding modes in a given compact
space with momentum modes in another (dual) compact space. Here we summarize the basic
ingredients of T-duality. For a complete and comprehensive review see [5].

Consider the mass spectrum of a closed string on a circle of radius R,

M2 = (N + Ñ − 2) + p2 l2
s

R2
+ p̃2 l2

s

R̃2
, (3.1)

where ls is the string length scale and R̃ = l2
s
R , the dual radius. The first terms contain the infinite

mass levels of the string spectrum, and the last two terms are proportional to their quantized
momentum p and winding p̃. The modes are constrained to satisfy the level matching condition
(LMC)

N − Ñ = pp̃, (3.2)

reflecting the fact that there are no special points in a closed string.
If we take the decompactification limit R � ls, the winding modes become heavy, and

the mass spectrum for the momentum modes becomes a continuum. On the other hand, if we
take the opposite limit R � ls, the winding modes become light and the momentum modes
heavy. These behaviors are very reasonable: if the compact space is large, it would demand a
lot of energy to stretch a closed string around a large circle, so that it can wind, but very little
if the space were small.

Note that for any level, the mass spectrum is invariant under the following exchange:

R

ls
↔ R̃

ls
= ls

R
, p ↔ p̃, (3.3)

so if we could only measure masses, we would never be able to distinguish between a closed
string moving with a given momentum k on a circle of radius R, and a closed string winding k
times on a circle of radius l2

s /R. This symmetry not only holds for the mass spectrum, but it is
actually a symmetry of any observable one can imagine in the full theory!

DFT is currently restricted to the modes of the string that are massless in the
decompactified limit, i.e. with N + Ñ = 2, but it considers them on a compact space (actually,
some or all of these dimensions can be taken to be non-compact). These modes correspond to
the levels6 N = Ñ = 1 (note that the LMC forbids the possibilities (N, Ñ) = (2, 0) and (0, 2)

when pp̃ = 0) corresponding to a symmetric metric gi j, an antisymmetric 2-form bi j and a
dilaton φ.

The T-duality symmetry of circle compactifications is generalized to O(D, D, Z) in
toroidal compactifications with a constant background metric and an antisymmetric field.
The elements of the infinite discrete group O(D, D) (we will drop the Z in this review because
it is irrelevant for our purposes of introducing DFT at the classical level) can be defined as the
set of 2D × 2D matrices hMN that preserve the O(D, D) invariant metric ηMN :

hM
P ηPQ hN

Q = ηMN, (3.4)

6 For the cases (N, Ñ) = (1, 0) and (0, 1) there is a particular enhancement of the massless degrees of freedom at
R = ls, which has not been contemplated in DFT so far.
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where

ηMN =
(

0 δi
j

δi
j 0

)
, ηMN =

(
0 δi

j

δi
j 0

)
, ηMPηPN = δM

N , (3.5)

raises and lowers all the O(D, D) indices M, N = 1, . . . , 2D.
The momentum and winding modes are now D-dimensional objects pi and p̃i respectively.

They can be arranged into a larger object (a generalized momentum)

PM =
(

p̃i

pi

)
, (3.6)

in terms of which the mass operator becomes

M2 = (N + Ñ − 2) + PPHPQPQ, (3.7)

where

HMN =
(

gi j −gikbk j

bikgk j gi j − bikgklbl j

)
(3.8)

is called the generalized metric [74, 75]. The LMC now takes the form

N − Ñ = 1

2
PMPM (3.9)

and implies that, for the DFT states N = Ñ = 1, the generalized momenta must be orthogonal
with respect to the O(D, D) metric pi p̃i = 0.

Any element of O(D, D) can be decomposed as successive products of the following
transformations:

Diffeomorphisms : hM
N =

(
Ei

j 0
0 Ei

j

)
, E ∈ GL(D)

Shifts : hM
N =

(
δi

j 0
Bi j δi

j

)
, Bi j = −Bji (3.10)

Factorized
T − dualities :

h(k)
M

N =
(

δi
j − ti

j t i j

ti j δi
j − ti j

)
, t = diag(0 . . . 0 1 0 . . . 0).

If the antisymmetric D × D matrix Bi j in the shifts were written in the North–East block, the
resulting transformation is usually called β-transformation, for reasons that will become clear
later. The diffeomorphisms correspond to basis changes of the lattice underlying the torus,
and the factorized T-dualities generalize the R

ls
↔ R̃

ls
symmetry discussed above. The 1 in the

D × D matrix t is in the kth position. It is therefore common to find statements about T-duality
being performed on a given k-direction, in which case the resulting transformations for the
metric gi j and 2-form bi j are named Buscher rules

gkk → 1

gkk
, gki → bki

gkk
, gi j → gi j − gkigk j − bkibk j

gkk
,

bki → gki

gkk
, bi j → bi j − gkibk j − bkigk j

gkk
. (3.11)

These transformation rules were first derived by Buscher from a worldsheet perspective in
[76, 77], and they rely on the fact that the T-duality is performed in an isometric direction
(i.e., a direction in which the fields are constant). Note that g and g−1 get exchanged in the
kth direction, just as it happens in the circle with the inversion R/ls and ls/R. Also note that
the metric (3.5) corresponds to a product of n successive T-dualities, and for this reason this
matrix is usually called the inversion metric (as we will see, it inverts the full generalized
metric (3.8)).

8
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Summarizing, the T-duality symmetry of the circle compactification is generalized in
toroidal compactifications to O(n, n) acting as

HMN ↔ hM
P HPQ hN

Q, PM ↔ hM
N PN, h ∈ O(n, n), (3.12)

on constant backgrounds. More generally, T-duality in DFT is allowed in non-isometric
directions, as we will see.

Let us now consider the dilaton, on which T-duality acts non-trivially. The closed string
coupling in D-dimensions, g(D)

s = e−2φ , is related to the (D − 1)-dimensional coupling when
one dimension is compactified on a circle as g(D−1)

s = √
R/ls g(D)

s . Given that the scattering
amplitudes for the dilaton states are invariant under T-duality, so must be the (D − 1)-
dimensional coupling. Therefore, the dilaton of two theories compactified on circles of dual
radii R and l2

s /R must be related. When the compact space is n-dimensional, the T-duality
invariant d is given by the following combination:

e−2d = √
ge−2φ. (3.13)

This intriguing symmetry of string theory is not inherited by the fully decompactified low-
energy effective theory (supergravity), because all the winding modes are infinitely heavy and
play no role in the low-energy dynamics. Therefore, decompactified supergravity describes
the ‘particle limit’ of the massless modes of the string. However, it is likely that a fully
compactified supergravity in D-dimensions (i.e. where all dimensions are compact, and then
D = n) can be rewritten in a T-duality, or more generally O(D, D) covariant way, such that the
symmetry becomes manifest at the level of the field theory. Then, DFT can be thought of as a
T-duality invariant formulation of supergravity with compact dimensions. Actually, as we will
see, DFT is more general than just a compactification of a fully decompactified theory (where
the winding modes have been integrated out). The generalization relies on the fact that the
winding dynamics is kept from the beginning, and at low-energy winding modes only decouple
when the corresponding directions of the fully compactified theory are decompactified.

In order to begin with the construction of DFT, it is instructive to first introduce
supergravity in D decompactified dimensions.

3.2. Supergravity basics

Before trying to assemble the NS-NS sector of supergravity in a T-duality invariant formulation,
let us briefly review the bosonic sector of the theory that we will then try to covariantize. The
degrees of freedom are contained in a D-dimensional metric (of course, we always keep in mind
that the relevant dimension is D = 10) gi j = g(i j), with i, j, . . . = 1, . . . , D, a D-dimensional
2-form bi j = b[i j] (also known as the b-field or the Kalb–Ramond field) and a dilaton φ. All
these fields depend on the D coordinates of spacetime xi.

There is a pair of local gauge transformations under which the physics does not change.

• Diffeomorphisms, or change of coordinates, parameterized by infinitesimal vectors λi:

gi j → gi j + Lλgi j, Lλgi j = λk∂kgi j + gk j∂iλ
k + gik∂ jλ

k,

bi j → bi j + Lλbi j, Lλbi j = λk∂kbi j + bk j∂iλ
k + bik∂ jλ

k,

φ → φ + Lλφ, Lλφ = λi∂iφ. (3.14)

Here, Lλ is the Lie derivative, defined as follows for arbitrary vectors V i:

LλV i = λ j∂ jV
i − V j∂ jλ

i = [λ,V ]i. (3.15)

In the last equality we have defined the Lie Bracket, which is antisymmetric and satisfies
the Jacobi identity. It is very important to keep the Lie derivative in mind, because it will be

9
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generalized later, and the resulting generalized Lie derivative is one of the building blocks
of DFT. The action of the Lie derivative amounts to diffeomorphic transformations, and
the invariance of the action signals the fact that the physics remains unchanged under a
change of coordinates.

• Gauge transformations of the 2-form, parameterized by infinitesimal 1-forms λ̃i:

bi j → bi j + ∂iλ̃ j − ∂ jλ̃i. (3.16)

The supergravity action takes the following form:

S =
∫

dDx
√

ge−2φ

[
R + 4(∂φ)2 − 1

12
Hi jkHi jk

]
, (3.17)

where we have defined the following 3-form with the corresponding Bianchi identity (BI):

Hi jk = 3∂[ib jk] , ∂[iHjkl] = 0, (3.18)

and R is the Ricci scalar constructed from gi j in the usual Riemannian sense. It is an instructive
warm-up exercise to show that this action is invariant under diffeomorphisms (3.14) and the
2-form gauge transformations (3.16).

The equations of motion derived from the supergravity action take the form

Ri j − 1
4 Hi

pqHjpq + 2∇i∇ jφ = 0, (3.19)

1
2∇ pHpi j − Hpi j∇ pφ = 0, (3.20)

R + 4(∇ i∇iφ − (∂φ)2) − 1
12 H2 = 0. (3.21)

From the string theory point of view, they imply the Weyl invariance of the theory at the
one-loop quantum level.

We have described in this section the bosonic NS-NS sector of supergravity. This sector
is interesting on its own because it determines the moduli space of the theory. Given that the
fermions are charged with respect to the Lorentz group, for any given configuration the vacuum
expectation value (VEV) of a fermion would break the Lorentz invariance. In order to preserve
this celebrated symmetry, one considers vacua in which the fermions have vanishing VEV. For
this reason, and also for simplicity, in this review we will restrict ourselves to bosonic degrees
of freedom.

3.3. Double space and generalized fields

So far, we have introduced the basic field-theoretical notions of supergravity and explained the
importance of T-duality in string theory. It is now time to start exploring how the supergravity
degrees of freedom can be rearranged in a T-duality invariant formulation of DFT [3]. For
this to occur, we must put everything in T-duality representations, i.e., in objects that have
well-defined transformation properties under T-duality.

Let us begin with the fields. As mentioned, we consider on the one hand a metric gi j and
a 2-form bi j which can be combined into a symmetric generalized metric HMN given by

HMN =
(

gi j −gikbk j

bikgk j gi j − bikgklbl j

)
. (3.22)

Note that this metric has the same form as the one defined in (3.8), but here the fields are
non-constant. This is an O(D, D) element, and its inverse is obtained by raising the indices
with the O(D, D) metric ηMP introduced in (3.5):

H ∈ O(D, D), HMN = ηMPHPQηQP, HMPHPN = δN
M. (3.23)
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Actually, all the indices in DFT are raised and lowered with the O(D, D) invariant metric
(3.5). On the other hand, the dilaton φ is combined with the determinant of the metric g in an
O(D, D) scalar d:

e−2d = √
ge−2φ. (3.24)

Before showing how these objects transform under local and global symmetries, let us
mention where these generalized fields are defined. Since everything must be organized in
T-duality representations, the coordinates cannot be an exception. Paradoxically, we only have
D of them: xi, while the lowest dimensional representation of O(D, D) is the fundamental,
which has dimension 2D. We therefore face the question of what should we combine the
supergravity coordinates with, in order to complete the fundamental representation. It turns
out that there are no such objects in supergravity, so we must introduce new coordinates x̃i.
We can now define a generalized notion of coordinates,

XM = (x̃i, xi), (3.25)

and demand that the generalized fields depend on this double set of coordinates:

HMN (X ), d(X ). (3.26)

From the point of view of compactifications on tori, these coordinates correspond to the Fourier
duals to the generalized momenta PM (3.6). However, here we will consider more generally a
background-independent formulation [16] in which the generalized metric [17] can be defined
on more general backgrounds.

It is important to recall that here the coordinates can either parameterize compact or non-
compact directions indistinctively. Even if non-compact, one can still formulate a full O(D, D)

covariant theory. In this case, the duals to the non-compact directions are just ineffective, and
one can simply assume that nothing depends on them. This will become clear later, when
we consider DFT in the context of four-dimensional effective theories. For the moment, this
distinction is irrelevant.

Being in the fundamental representation, the coordinates rotate under O(D, D) as follows:

XM → hM
N XN, h ∈ O(D, D), (3.27)

so they mix under these global transformations. Given that xi and x̃i are related by T-duality,
the latter are usually referred to as dual coordinates. Under O(D, D) transformations, the fields
change as follows:

HMN (X ) → hM
P hN

Q HPQ(h X ), d(X ) → d(h X ). (3.28)

In the particular case in which h corresponds to T-dualities (3.10) in isometric directions
(i.e. in directions in which the fields have no coordinate dependence), these transformations
reproduce the Buscher rules (3.11) and (3.13) for gi j, bi j and φ. It can be shown that the
different components of (3.28) are equivalent to (3.11), which were derived assuming the fact
that T-duality is performed along an isometry. More generally, the transformation rules (3.28)
admit the possibility of performing T-duality in non-isometric directions [14], the reason being
that DFT is defined on a double space, so, contrary to what happens in supergravity, if a T-
duality hits a non-isometric direction, the result is simply that the resulting configuration will
depend on the T-dual coordinate.

The reader might be quite confused at this point, wondering what these dual coordinates
correspond to in the supergravity picture. Well, they simply have no meaning from a
supergravity point of view. Then, there must be some mechanism to constrain the coordinate
dependence, and moreover since we want a T-duality invariant formulation, such constraint
must be duality invariant. The constraint in question goes under many names in the literature,
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the most common ones being strong constraint or section condition. This restriction consists
of a differential equation

ηMN∂M∂N (· · ·) = 0, (3.29)

where ηMN is the O(D, D) invariant metric introduced in (3.5). For later convenience, we
recast it as

Y M
P

N
Q ∂M∂N (· · ·) = 0, (3.30)

where we have introduced the tensor

Y M
P

N
Q = ηMNηPQ (3.31)

following the notation in [45], which is very useful to explore generalizations of DFT to more
general U-duality groups, as we will see in section 6. The dots in (3.30) represent any field
or gauge parameter and also products of them. Note that since the tensor Y is an O(D, D)

invariant, so is the constraint. This means that if a given configuration solves the strong
constraint, any T-duality transformation of it will also do. When written in components, the
constraint takes the form

∂̃ i∂i(· · ·) = 0, (3.32)

so a possible solution is ∂̃ i(· · ·) = 0, or any O(D, D) rotation of this. Actually, it can be
proven that this is the only solution. Therefore, even if formally in this formulation the fields
depend on the double set of coordinates, when the strong constraint is imposed the only
possible configurations allowed by it depend on a D-dimensional section of the space. When
this section corresponds to the xi coordinates of supergravity (i.e., when all fields and gauge
parameters are annihilated by ∂̃ i), we will say that the strong constraint is solved in the
supergravity frame.

When DFT is evaluated on tori, a weaker version of the strong constraint can be related
to the LMC (3.9). In this case, the generalized fields must be expanded in the modes of the
double torus exp(iXMPM ), such that when the derivatives hit the mode expansion, the LMC
contraction PMPM makes its appearance. Here we will pursue background independence, and
moreover we will later deal with twisted double-tori only up to the zero mode, so the LMC
should not be identified with the strong constraint (or any weaker version) in this review. We
will be more specific on this point in section 5.

Throughout this review we will not necessarily impose the strong constraint, and in many
occasions we will explicitly write the terms that would vanish when it is imposed. The reader
can choose whether he/she wants to impose it or not. Only when we intend to compare with
supergravity in D dimensions, we will explicitly impose the strong constraint and choose
the supergravity frame (in these cases we will mention this explicitly). The relevance of
dealing with configurations that violate the strong constraint will become apparent when we
get to the point of analyzing dimensional reductions of DFT, and the risks of going beyond
supergravity will be properly explained and emphasized. Let us emphasize that DFT is a
restricted theory though, so one cannot just relax it and consider generic configurations:
the consistency constraints of the theory are imposed by demanding closure of the gauge
transformations, as we will discuss later. These closure constraints are solved in particular by
the solutions to the strong constraint, but other solutions exist, and then it is convenient to stay
as general as possible.

3.4. Generalized Lie derivative

We have seen that the D-dimensional metric and 2-form field transform under diffeomorphisms
(3.14) and that the 2-form also enjoys a gauge symmetry (3.16). These fields have been unified
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into a single object called the generalized metric (3.22), and then one wonders whether
there are generalized diffeomorphisms unifying the usual diffeomorphisms (3.14) and gauge
transformations (3.16). Since the former are parameterized by a D-dimensional vector, and the
latter by a D-dimensional 1-form, one can think of considering a generalized gauge parameter

ξM = (λ̃i, λ
i). (3.33)

Then, the generalized diffeomorphisms and gauge transformations of the 2-form can be
unified as

Lξ e−2d = ∂M(ξM e−2d ), (3.34)

LξHMN = LξHMN + Y R
M

P
Q ∂QξP HRN + Y R

N
P

Q ∂QξP HMR, (3.35)

where Lξ is the Lie derivative (3.15) in 2D dimensions, and Y , already defined in (3.31),
measures the departure from the conventional Riemannian geometry. We see here that e−2d

transforms as a density, and as such it will correspond to the integration measure when we
deal with the action. When the generalized metric is parameterized as in (3.22) in terms of gi j

and bi j, and the strong constraint is imposed in the supergravity frame (i.e., when ∂̃ i = 0), the
different components of (3.35) yield

Lξ gi j = Lλgi j, (3.36)

Lξ bi j = Lλbi j + 2 ∂[iλ̃ j], (3.37)

and then the local transformations of supergravity (3.14)–(3.16) are recovered. The
generalization of the usual Lie derivative with the addition of the term with Y is not only
essential in order to recover the standard transformations of the bosonic NS-NS sector of
supergravity, but also to preserve the O(D, D) metric

Lξ ηMN = 0. (3.38)

To end this discussion, we present the general form of the generalized Lie derivative with
respect to a vector ξ acting on a tensorial density V M with weight ω(V ), which is given by the
following gauge transformation:

LξV M = ξP∂PV M + (∂MξP − ∂PξM )V P + ω(V )∂PξP V M. (3.39)

This expression is trivially extended to other tensors with a different index structure. In
particular, when this is applied to e−2d with ω(e−2d ) = 1 and HMN with ω(H) = 0, the
transformations (3.34) and (3.35) are respectively recovered. As we will discuss in the
following section, the closure of these generalized diffeomorphisms imposes differential
constraints on the theory.

Let us finally highlight that the action of these generalized diffeomorphisms has been
defined when transforming tensorial quantities. Note however that, for example, the derivative
of a vector ∂MV N is non-tensorial. It is then instructive to denote its transformation as

δξ (∂MV N ) = ∂M(δξV N ) = ∂M(LξV N ), (3.40)

where we have used the fact that the transformation of a vector is dictated by the generalized Lie
derivative (3.39). One can however extend the definition of the generalized diffeomorphisms
Lξ to act on non-tensorial quantities as if they were actually tensorial. Since δξ represents the
actual transformation, one can define the failure of any object to transform covariantly as

�ξ ≡ δξ − Lξ , (3.41)

such that when acting on tensors, say V M , one finds

�ξV M = δξV M − LξV M = 0, (3.42)
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or equivalently, for any non-tensorial quantity, say W M , we have

δξW M = LξW M + �ξW M. (3.43)

This notation is very useful for the analysis of the consistency constraints of the theory, to
which we now move.

3.5. Consistency constraints

Given the structure of generalized diffeomorphisms (3.35), one must check that they
actually define a closed group [33]. This requires, in particular, that two successive gauge
transformations parameterized by ξ1 and ξ2, acting on a given field ξ3, must reproduce a new
gauge transformation parameterized by some given ξ12(ξ1, ξ2) acting on the same vector

�123
M = −�ξ1

(
Lξ2ξ

M
3

) = ([Lξ1 , Lξ2 ] − Lξ12 )ξ
M
3 = 0, (3.44)

where we have defined �ξ as in (3.41). In other words, the generalized Lie derivative must
send tensors into tensors. The resulting parameter is given by

ξ12 = Lξ1ξ2, (3.45)

provided the following constraint holds:

�123
M = Y P

R
Q

S
(
2∂PξR

[1 ∂QξM
2] ξ S

3 − ∂PξR
1 ξ S

2 ∂QξM
3

) = 0. (3.46)

This was written here for vectors with vanishing weight, for simplicity. The parameter ξ12

goes under the name of the D-bracket, and its antisymmetric part is named the C-bracket:

ξM
[12] = [[ξ1, ξ2]]M = 1

2

(
Lξ1ξ

M
2 − Lξ2ξ

M
1

) = [ξ1, ξ2]M + Y M
N

P
Q ξ

Q
[1∂PξN

2] . (3.47)

It corresponds to an extension of the Lie bracket (3.15), since it contains a correction
proportional to the invariant Y , which in turn corrects the Lie derivative. The D- and
C-brackets, respectively, reduce to the Dorfman and Courant brackets [78] when the strong
constraint is imposed in the supergravity frame. Under the constraint (3.46), the following
relation holds:

[Lξ1 , Lξ2 ] = L[[ξ1, ξ2]]. (3.48)

Note also that symmetrizing (3.44), we find the so-called Leibniz rule (which arises here as a
constraint)

L((ξ1, ξ2 )) = 0, ((ξ1, ξ2)) = ξ(12). (3.49)

The D-bracket, which satisfies the Jacobi identity, then contains a symmetric piece that must
generate trivial gauge transformations. This fact is important because, on the other hand, the
C-bracket, which is antisymmetric, has a non-vanishing Jacobiator

J(ξ1, ξ2, ξ3) = [[[[ξ1, ξ2]], ξ3]] + cyclic. (3.50)

However, using (3.48) and (3.49), one can rapidly show that [45]

J(ξ1, ξ2, ξ3) = 1
3 (([[ξ1, ξ2]], ξ3)) + cyclic, (3.51)

and then the Jacobiator generates trivial gauge transformations by virtue of (3.49).
Condition (3.44) poses severe consistency constraints on the generalized diffeomorphisms

(i.e. their possible generalized gauge parameters). Therefore, DFT is a constrained or restricted
theory. The generalized gauge parameters cannot be generic, but must be constrained to
solve (3.44). Supergravity is safe from this problem, because the usual D-dimensional
diffeomorphisms and 2-form gauge transformations do form a group. It is then to be expected
that under the imposition of the strong constraint, (3.44) is automatically satisfied. This is
trivial from (3.46) because all of its terms are of the form (3.30), but more generally these
equations leave room for strong constraint-violating configurations [65, 66, 34], as we will see
later.
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3.6. The action

The NS-NS sector of DFT has an action from which one can derive equations of motion.
Before showing its explicit form, let us introduce some objects that will be useful later. The
generalized metric can be decomposed as

HMN = EĀ
M SĀB̄ EB̄

N, (3.52)

with an O(D, D) generalized frame

ηMN = EĀ
M ηĀB̄ EB̄

N, (3.53)

where ηĀB̄ raises and lowers flat indices and takes the same form as ηMN (3.5). Under
generalized diffeomorphisms, the generalized frame EĀ

M transforms as follows:

Lξ EĀ
M = ξP∂PEĀ

M + (∂MξP − ∂PξM ) EĀ
P, (3.54)

and can be parameterized in terms of the vielbein of the D-dimensional metric gi j = eā
isāb̄ eb̄

j,
where sāb̄ = diag(− + · · · +) is the D-dimensional Minkowski metric, as

EĀ
M =

(
eā

i eā
jb ji

0 eā
i

)
, SĀB̄ =

(
sāb̄ 0
0 sāb̄

)
. (3.55)

Since the Minkowski metric is invariant under Lorentz transformations O(1, D−1), the metric
SĀB̄ is invariant under double Lorentz transformations

H = O(1, D − 1) × O(1, D − 1) (3.56)

which correspond to the maximal (pseudo-)compact subgroup of G = O(D, D). Therefore,
the generalized metric is invariant under local double Lorentz transformations, and thus it
parameterizes the coset G/H. The dimension of the coset is D2, and this allows us to
accommodate a symmetric D-dimensional metric gi j and an antisymmetric D-dimensional
2-form bi j, as we have seen. Technically, the triangular parametrization of the generalized
frame would break down under a T-duality, and then one has to restore the triangular gauge
through an H-transformation. From the generalized frame EĀ

M and dilaton d, one can build
the generalized fluxes

FĀB̄C̄ = EC̄MLEĀ
EB̄

M = 3�[ĀB̄C̄], (3.57)

FĀ = − e2dLEĀ
e−2d = �B̄

B̄Ā + 2EĀ
M∂Md, (3.58)

out of the following object:

�ĀB̄C̄ = EĀ
M∂MEB̄

NEC̄N = −�ĀC̄B̄, (3.59)

that will be referred to as the generalized Weitzenböck connection.
Since all these objects are written in planar indices, they are manifestly O(D, D) invariant,

so any combination of them will also be. The generalized fluxes (3.57) and (3.58) depend on
the fields and are therefore dynamical. Later, when we will analyze compactifications of the
theory, they will play an important role, as they will be related to the covariant quantities in
the effective action, and will moreover reduce to the usual constant fluxes, or gaugings in the
lower dimensional theory, hence the name generalized fluxes.

The generalized frame and dilaton enter in the action of DFT only through the dynamical
fluxes (3.57) and (3.58). Indeed, up to total derivatives, the action takes the form

S =
∫

dX e−2d R, (3.60)
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with

R = FĀB̄C̄ FD̄ĒF̄

[
1
4 SĀD̄ηB̄ĒηC̄F̄ − 1

12 SĀD̄SB̄ĒSC̄F̄ − 1
6ηĀD̄ηB̄ĒηC̄F̄

] + FĀFB̄

[
ηĀB̄ − SĀB̄

]
.

(3.61)

In this formulation, it takes the same form as the scalar potential of half-maximal supergravity
in four dimensions. We will be more specific about this later, but for the readers who are
familiar with gauged supergravities, note that identifying here the dynamical fluxes with
gaugings and the SĀB̄ matrix with the moduli scalar matrix, this action resembles the form of
the scalar potential of [79]. This frame formulation was introduced in [2], later related to other
formulations in [18], and also discussed in [68].

Written in this form, the O(D, D) invariance is manifest. However, some local symmetries
are hidden and the invariance of the action must be explicitly verified. Under generalized
diffeomorphisms, the dynamical fluxes transform as

δξFĀB̄C̄ = ξ D̄∂D̄FĀB̄C̄ + �ξ ĀB̄C̄,

δξFĀ = ξ D̄∂D̄FĀ + �ξ Ā, (3.62)

where

�ξ ĀB̄C̄ = 4ZĀB̄C̄D̄ξ D̄ + 3∂D̄ξ[Ā�D̄
B̄C̄],

�ξ Ā = ZĀB̄ξ B̄ + F B̄∂B̄ξĀ − ∂ B̄∂B̄ξĀ + �C̄
ĀB̄∂C̄ξ B̄, (3.63)

and we have defined

ZĀB̄C̄D̄ = ∂[ĀFB̄C̄D̄] − 3
4F[ĀB̄

ĒFC̄D̄]Ē = − 3
4�Ē[ĀB̄�Ē

C̄D̄],

ZĀB̄ = ∂C̄FC̄ĀB̄ + 2∂[ĀFB̄] − FC̄FC̄ĀB̄ = (
∂M∂ME[Ā

N
)

EB̄]N − 2�C̄
ĀB̄∂C̄d. (3.64)

The vanishing of (3.63) follows from the closure conditions (3.44), precisely because the
dynamical fluxes are defined through generalized diffeomorphisms (3.57) and (3.58)

�ξFĀB̄C̄ = �ξ ĀB̄C̄ = EC̄M�ξ (LEĀ
EB̄

M ) = 0,

�ξFĀ = �ξ Ā = −e2d�ξ (LEĀ
e−2d ) = 0. (3.65)

Therefore, the dynamical fluxes in flat indices transform as scalars under generalized
diffeomorphisms.

Let us now argue that due to the closure constraints (3.65), the action of DFT is invariant
under generalized diffeomorphisms. In fact, since e−2d transforms as a density (recall (3.34))

δξ e−2d = ∂P(ξP e−2d ), (3.66)

for the action to be invariant under generalized diffeomorphisms, R must transform as a scalar.
Using the gauge transformation rules for the generalized fluxes (3.62) together with (3.65),
one arrives at the following result:

δξR = LξR = ξP∂PR. (3.67)

Combining (3.66) with (3.67), it can be checked that the Lagrangian density e−2d R transforms
as a total derivative, and then the action (3.60) is invariant.

We have seen that in addition to generalized diffeomorphisms, the theory must be invariant
under local double Lorentz transformations (3.56) parameterized by an infinitesimal 
Ā

B̄. This
parameter must be antisymmetric 
ĀB̄ = −
B̄Ā to guarantee the invariance of ηĀB̄ and it must
also satisfy SĀ

C̄
C̄B̄ = 
ĀC̄SC̄
B̄ to guarantee the invariance of SĀB̄. The frame transforms as

δ
EĀ
M = 
Ā

B̄EB̄
M, (3.68)
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and this guarantees that the generalized metric is invariant. The invariance of the action is,
however, less clear, and a short computation shows that

δ
S =
∫

dX e−2d ZĀC̄ 
B̄
C̄ (ηĀB̄ − SĀB̄), (3.69)

with ZĀB̄ defined in (3.64). Then, the invariance of the action (3.60) under double Lorentz
transformations (3.68) is also guaranteed from closure, since

ZĀB̄ = �EĀ
FB̄ = 0. (3.70)

As happens with all the constraints in DFT, which follow from (3.44), they are solved by the
strong constraint but admit more general solutions (this can be seen especially in (3.46) where
cancelations could occur without demanding each contribution to vanish independently).

This flux formulation of DFT is a small extension of the generalized metric formulation
introduced in [17]. It incorporates terms that would vanish under the imposition of the strong
constraint in a covariant way. After some algebra, it can be shown that the action (3.60) can
be recast in the form

S =
∫

dX e−2d

(
4HMN∂M∂Nd − ∂M∂NHMN − 4HMN∂Md∂Nd + 4∂MHMN∂Nd

+ 1

8
HMN∂MHKL∂NHKL − 1

2
HMN∂MHKL∂KHNL + �(SC)R

)
, (3.71)

up to total derivatives. Here, we have separated all terms in (3.60) that vanish under the
imposition of the strong constraint �(SC)R to facilitate the comparison with the generalized
metric formulation [17].

To conclude this section, we recall that in order to recover the supergravity action (3.17),
the strong constraint must be imposed in the supergravity frame. Then, when ∂̃ i = 0 is imposed
on (3.71), and the generalized metric is parameterized in terms of the D-dimensional metric
and 2-form as in (3.22), the DFT action (3.71) reproduces (3.17) exactly.

3.7. Equations of motion

The equations of motion in DFT were extensively discussed in [32] for different formulations
of the theory. For the flux formulation we have just presented, the variation of the action with
respect to EĀ

M and to d takes the form

δES =
∫

dX e−2d GĀB̄δEĀB̄, (3.72)

δdS =
∫

dX e−2d Gδd, (3.73)

where

δEĀB̄ = δEĀ
MEB̄M = −δEB̄Ā, (3.74)

to incorporate the fact that the generalized bein preserves the O(D, D) metric (3.5). It can
easily be checked that the variations of the generalized fluxes are given by

δEFĀB̄C̄ = 3
(
∂[ĀδEB̄C̄] + δE[Ā

D̄FB̄C̄]D̄

)
, (3.75)

δEFĀ = ∂ B̄δEB̄Ā + δEĀ
B̄FB̄, (3.76)

δdFĀ = 2∂Āδd. (3.77)
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We then obtain

G[ĀB̄] = 2(SD̄[Ā − ηD̄[Ā)∂ B̄]FD̄ + (FD̄ − ∂D̄)F̌ D̄[ĀB̄] + F̌C̄D̄[ĀFC̄D̄
B̄], (3.78)

G = − 2R, (3.79)

where

F̌ ĀB̄C̄ = 3
2FD̄

B̄C̄SĀD̄ − 1
2FD̄ĒF̄ SĀD̄SB̄ĒSC̄F̄ − F ĀB̄C̄. (3.80)

The equations of motion are then

G[ĀB̄] = 0, G = 0. (3.81)

Upon decomposing these equations in components, and standing in the supergravity frame
of the strong constraint, one recovers the equations of motion of supergravity (3.19)–(3.21),
provided the generalized frame is parameterized as in (3.55).

For completeness, let us also mention that had we varied the action in the generalized
metric formulation (3.71) with respect to the generalized metric (and setting to zero the
strong-constraint-like terms), we would have found [17, 32]

δHS =
∫

dX e−2dδHMNKMN, (3.82)

with

KMN = 1
8∂MHKL∂NHKL − 1

4 (∂L − 2(∂Ld))(HLK∂KHMN ) + 2∂M∂Nd

− 1
2∂(M|HKL∂LH|N)K + 1

2 (∂L − 2(∂Ld))(HKL∂(MHN)K + HK
(M|∂KHL|N)).

(3.83)

Note, however, that the variations δHMN are not generic, but must be subjected to constraints
inherited from (3.23). This implies that only some projections of KMN give the equations of
motion, through a generalized Ricci flatness equation:

R̂MN = P̂(M
PP̌N)

QKPQ = 0, (3.84)

where we introduced some projectors that will be useful in the following section:

P̂MN = 1
2 (ηMN − HMN ), P̌MN = 1

2 (ηMN + HMN ). (3.85)

Finally, imposing the strong constraint to (3.81), they can be taken to the form (3.84).
These equations of motion will be revisited in the following section from a geometrical

point of view.

4. Double geometry

We have explored the basics of the bosonic NS-NS sector of DFT, starting from its degrees
of freedom, the double space on which it is defined, its consistency constraints, the action
and equations of motion, etc. In particular, the action was tendentiously written in terms of a
generalized Ricci scalar and the equations of motion were cast in a generalized Ricci flatness
form. But, is there some underlying geometry? Can DFT be formulated in a more fundamental
(generalized) geometrical way? It turns out that there is such a formulation, but it differs from
the Riemannian geometry out of which General Relativity is constructed. We find it instructive
to begin this section with a basic review of the notions of the Riemannian geometry that will
then be generalized for DFT.
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4.1. Riemannian geometry basics

Even though General Relativity follows from an action of the form

S =
∫

dx
√

g R, (4.1)

where R is the Ricci scalar and g is the determinant of the metric, we know that there exists an
underlying geometry out of which this theory can be obtained. The starting point can be taken
to be the Lie derivative (3.15)

LξV i = ξ k∂kV
i − ∂kξ

iV k. (4.2)

The derivative of a vector is non-tensorial under the diffeomorphisms (4.2), so one starts by
introducing a covariant derivative

∇iV
j = ∂iV

j + �ik
jV k, (4.3)

defined in terms of a Christoffel connection �, whose purpose is to compensate the failure of
the derivative to transform as a tensor. Therefore, the failure to transform as a tensor under
diffeomorphisms parameterized by ξ , denoted by �ξ , is given by

�ξ�i j
k = ∂i∂ jξ

k. (4.4)

The torsion can be defined through

Ti j
kξ iV j = (L∇

ξ − Lξ )V
k = 2�[i j]

kξ iV j. (4.5)

The superscript ∇ is just notation to indicate that, in the Lie derivative, the partial derivatives
should be replaced by covariant derivatives. A condition to be satisfied in the Riemannian
geometry is covariant constancy of the metric gi j. It receives the name of metric compatibility

∇ig jk = ∂ig jk − �i j
lglk − �ik

lg jl = 0. (4.6)

This fixes the symmetric part of the connection

�(i j)
k = 1

2 gkl(∂ig jl + ∂ jgil − ∂lgi j) − gm(iTj)l
mglk. (4.7)

When the connection is torsionless

Ti j
k = 2�[i j]

k = 0, (4.8)

it is named Levi-Civita. Note that the Levi-Civita connection is symmetric and completely
fixed by metric compatibility (4.7) in terms of the degrees of freedom of General Relativity,
namely the metric gi j:

�i j
k = 1

2 gkl(∂ig jl + ∂ jgil − ∂lgi j). (4.9)

Let us note that the Levi-Civita connection satisfies the partial integration rule in the presence
of the measure

√
g:∫

dx
√

g U∇iV
i = −

∫
dx

√
g V i∇iU, (4.10)

given that its trace satisfies

�ki
k = 1√

g
∂i

√
g. (4.11)

In a vielbein formulation, one also introduces a spin connection Wiā
b̄, so that

∇ieā
j = ∂ieā

j + �ik
jeā

k − Wiā
b̄eb̄

j, (4.12)
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and compatibility with the vielbein, ∇ieā
j = 0, relates the Christoffel connection to the

Weitzenböck connection

�āb̄
c̄ = eā

i ∂ieb̄
j ec̄

j, (4.13)

through

Wiā
b̄ = �c̄ā

b̄ ec̄
i + �i j

keā
j eb̄

k. (4.14)

For future reference, we also introduce the notion of dynamical Scherk–Schwarz flux, defined
by the Lie derivative as

ec̄
iLeā eb̄

i = fāb̄
c̄ = 2�[āb̄]

c̄. (4.15)

Notice the analogy with the generalized fluxes (3.57) defined in terms of the generalized Lie
derivative (3.39). Then, the projection of the torsionless spin connection to the space of fluxes
(i.e., its antisymmetrization in the first two indices) is proportional to the fluxes, given that the
projection of the Levi-Civita connection to this space vanishes. In fact, it can be shown that,
in general,

eā
iWib̄

c̄ = 1
2

(
fāb̄

c̄ + sād̄sc̄ē fēb̄
d̄ + sb̄d̄sc̄ē fēā

d̄
)
. (4.16)

Then, the spin connection is fully expressible in terms of dynamical Scherk–Schwarz fluxes.
Having introduced the connections and their properties, we now turn to curvatures. The

commutator of two covariant derivatives reads

[∇i, ∇ j]V
k = Ri jl

k V l − Ti j
l ∇lV

k, (4.17)

with

Ri jl
k = ∂i� jl

k − ∂ j�il
k + �im

k� jl
m − � jm

k�il
m (4.18)

the Riemann tensor, which is covariant under Lie derivatives. It takes the same form when it
is written in terms of the spin connection

Ri jā
b̄ = Ri jk

leā
k eb̄

l = ∂iWjā
b̄ − ∂ jWiā

b̄ + Wic̄
b̄Wjā

c̄ − Wjc̄
b̄Wiā

c̄, (4.19)

and it has the following properties in the absence of torsion:

Ri jlk = Ri jl
mgmk = R([i j][lk]), R[i jl]

k = 0, (4.20)

the latter known as BI. The Riemann tensor is a very powerful object in the sense that it dictates
how tensors are parallel-transported, and for this reason it is also known as the curvature tensor.
Tracing the Riemann tensor, one obtains the (symmetric) Ricci tensor

Ri j = Rik j
k = Rji, (4.21)

and tracing further leads to the Ricci scalar

R = gi jRi j. (4.22)

The later defines the object out of which the action of General Relativity (4.1) is built, while
the vanishing of the former gives the equations of motion

Ri j = 0. (4.23)

This equation is known as Ricci flatness, and the solutions to these equations are said to be
Ricci flat. Note that the Riemann and Ricci tensors and the Ricci scalar are completely defined
for a torsionless and metric compatible connection in terms of the metric.

Before turning to the generalizations of these objects needed for DFT, let us mention that
combining the above results, the action of General Relativity can be written purely in terms
of dynamical Scherk–Schwarz fluxes as

S = 1

4

∫
dx

√
g fāb̄

c̄ fd̄ē
f̄
[
4δā

c̄ δ
d̄
f̄
sb̄ē − 2δb̄

f̄
δē

c̄ sād̄ − sād̄sb̄ēsc̄ f̄

]
. (4.24)

This is also analogue to the situation in DFT (3.61).
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4.2. Generalized connections and torsion

Some of the ingredients discussed in the last subsection already found their generalized
analogues in previous sections. For example, the Lie derivative (4.2) has already been extended
to its generalized version in the double geometry in (3.39). The Weitzenböck connection (4.13)
has also been generalized in (3.59), and out of it, so have the fluxes (3.57) been extended to
(4.15). Moreover, the actions (4.24) and (3.61) were both shown to be expressible in terms of
fluxes. So, how far can we go? The aim of this section is to continue with the comparison, in
order to find similarities and differences between the usual Riemannian geometry and double
geometry. This is mostly based on [2, 18, 28, 24, 29].

Having defined a generalized Lie derivative, it is natural to seek a covariant derivative.
We consider one of the forms

∇MVĀ
N = ∂MVĀ

N + �MP
NVĀ

P − WMĀ
B̄ VB̄

N, (4.25)

with trivial extension to tensors with more indices. Here we have introduced a Christoffel
connection � and a spin connection W whose transformation properties must compensate the
failure of the partial derivative of a tensor to transform covariantly both under generalized
diffeomorphisms and double Lorentz transformations.

We can now demand some properties on the connections, as we did in the Riemannian
geometry construction. Let us analyze the implications of the following conditions.

• Compatibility with the generalized frame

∇MEĀ
N = 0. (4.26)

As in the conventional Riemannian geometry, this simply relates the Christoffel connection
to the spin connection through

WMĀ
B̄ = EC̄

M �C̄Ā
B̄ + �MN

P EĀ
N EB̄

P, (4.27)

where we have written the Weitzenböck connection defined in (3.59), which is totally
determined by the generalized frame. Then, this condition simply says that if some
components of the spin (Christoffel) connection were determined, the corresponding
components of the Christoffel (spin) connection would also be.

• Compatibility with the O(D, D) invariant metric

∇MηPQ = 2�M
(PQ) = 0. (4.28)

This simply states that the Christoffel connection must be antisymmetric in its two last
indices

�MNP = −�MPN . (4.29)

Note that, since we have seen in (3.59) that the Weitzenböck connection satisfies this
property as well, due to (4.27), so does the spin connection

WMĀB̄ = −WMB̄Ā. (4.30)

• Compatibility with the generalized metric

∇MHPQ = ∂MHPQ + 2�MR
(PHQ)R = 0. (4.31)

Its planar variant ∇MSĀB̄ = 0 is then automatically guaranteed if compatibility with the
generalized frame (4.26) is imposed.
The implications of the combined O(D, D) and generalized metric compatibilities are
better understood through the introduction of the following two projectors (3.85):

P̂MN = 1
2 (ηMN − HMN ), P̌MN = 1

2 (ηMN + HMN ), (4.32)
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which satisfy the properties

P̂M
QP̂Q

N = P̂M
N, P̌M

QP̌Q
N = P̌M

N, P̂M
N + P̌M

N = δM
N . (4.33)

Compatibility with both metrics then equals compatibility with these projectors

∇MP̂N
Q = 0, ∇MP̌N

Q = 0, (4.34)

which in turn implies

P̌N
R P̂S

Q �MR
S = P̂R

Q∂MP̌N
R. (4.35)

Then, compatibility with the generalized metric and O(D, D) metric combined implies
that only these projections of the connection are determined.

• Partial integration in the presence of the generalized density e−2d (3.66):∫
e−2dU∇MV M = −

∫
e−2dV M∇MU ⇒ �PM

P = −2∂Md. (4.36)

Note that if the generalized frame were compatible, this would imply in turn that

EC̄
N WNĀ

C̄ = −FĀ. (4.37)

This requirement can also be considered as compatibility with the measure e−2d , provided
a trace part in the covariant derivative is added when acting on tensorial densities.

• Vanishing torsion. The Riemannian definition of torsion (4.5) is tensorial with respect
to the Lie derivative, but not under generalized diffeomorphisms. In order to define a
covariant notion of torsion, one can mimic its definition in terms of the Lie derivative, and
replace it with the covariant derivative [24]

(L∇
ξ − Lξ )V

M = TPQ
MξPV Q, TPQ

M = 2�[PQ]
M + Y M

Q
R

S�RP
S. (4.38)

This defines a covariant generalized torsion, which corrects the usual Riemannian
definition through the invariantY defined in (3.31), which in turn corrects the Lie derivative.
Vanishing generalized torsion has the following consequence on the Christoffel connection:

2�[PQ]
M + �M

PQ = 0. (4.39)

If this is additionally supplemented with the O(D, D) metric compatibility (4.28), one gets
that the totally antisymmetric part of the Christoffel connection vanishes

�[MNP] = 0 ⇔ 3W[ĀB̄C̄] = FĀB̄C̄, (4.40)

where the implication assumes generalized frame compatibility.
• Connections determined in terms of physical degrees of freedom. Typically, under the

imposition of the above constraints on the connections, only some of their components get
determined in terms of the physical fields. In [28], the connections were further demanded
to live in the kernel of some projectors, allowing for a full determination of the connection.
The price to pay is that under these projections, the derivative is ‘semi-covariant’, i.e. only
some projections of it behave covariantly under transformations.

As we reviewed in the previous section, compatibility with the O(D, D) metric is absent
in the Riemannian geometry. There, metric compatibility and vanishing torsion determine
the connection completely, and moreover guarantee partial integration in the presence of
the measure

√
g. Here, the measure contains a dilaton-dependent part, and then one has

to demand in addition, compatibility with the generalized dilaton. Agreement between the
Riemannian geometry and double geometry is that vanishing (generalized) torsion implies
that the projection of the spin connection to the space of fluxes is proportional to the fluxes
(4.15) and (4.40).
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Table 1. A list of conditions is given for objects in the Riemannian and double geometries, with
their corresponding implications on the connections. Every line assumes that the previous ones
hold.

Riemannian geometry Double geometry

Frame compatibility W = � + � W = � + �

O(D, D) compatibility – �MNP = −�MPN

WMĀB̄ = −WMB̄Ā

Metric compatibility ∂ig jk = 2�i( j
lgk)l ∂MHPQ = 2�M(P

NHQ)N

Vanishing torsion �[i j]
k = 0 �[MNP] = 0

W[āb̄]
c̄ = 2 fāb̄

c̄ W[ĀB̄C̄] = 3FĀB̄C̄

Measure compatibility �ki
k = 1√

g∂i
√

g �PM
P = e2d∂M e−2d

Wb̄ā
b̄ = fb̄ā

b̄ WB̄Ā
B̄ = −FĀ

Determined part Totally fixed Only some
�i j

k = 1
2 gkl (∂ig jl + ∂ jgil − ∂lgi j) projections

Covariance failure �ξ�i j
k = ∂i∂ jξ

k �ξ�MNP = 2∂M∂[NξP] + �RNP�R
MSξ

S

Despite many coincidences between the Riemannian geometry and double geometry, there
is a striking difference. While in the former demanding metric compatibility and vanishing
torsion determines the connection completely, in the latter these requirements turn out to leave
undetermined components of the connection. Only some projections of the connections are
determined, such as the trace (4.37) and its full antisymmetrization (4.40), among others.

To highlight the differences and similarities between the Riemannian and double
geometries, we list in table 1 some of the quantities appearing in both frameworks.

4.3. Generalized curvature

In this section, we will assume that the generalized Christoffel and spin connections satisfy all
the conditions listed in table 1. We would now like to seek a generalized curvature. The first
natural guess would be to consider the conventional definition of the Riemann tensor (4.18)
and extend it straightforwardly to the double space, namely

RMNP
Q = 2∂[M�N]P

Q + 2�[M|RQ�|N]P
R. (4.41)

However, this does not work because this expression is non-covariant under generalized
diffeomorphisms:

�ξ RMNP
Q = 2�ξ�[MN]

R�RP
Q + strong constraint. (4.42)

In the Riemannian geometry, this would be proportional to the failure of the torsion to be
covariant, which is zero. Here however �[MN]

P is not the torsion, because as we have seen,
it is non-covariant. This in turn translates into the non-covariance of the Riemann tensor. As
explained above, one has to resort to a generalized version of torsion (4.38)

TPQ
M = 2�[PQ]

M + Y M
Q

R
S�RP

S = 0. (4.43)

In addition, even if the first term in (4.42) were zero, we would have to deal with the other
terms taking the form of the strong constraint if we were not imposing it from the beginning.
For the moment, let us ignore them, and we will come back to them later. Note that vanishing
torsion (4.43) implies

�ξ RMNPQ = −�ξ�RMN�R
PQ + strong constraint, (4.44)
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and then it is trivial to check that the following combination

RMNPQ = RMNPQ + RPQMN + �RMN�R
PQ + strong constraint (4.45)

is tensorial up to terms taking the form of the strong constraint:

�ξRMNPQ = strong constraint. (4.46)

Taking the strong constraint-like terms into account, the full generalized Riemann tensor
is given by

RMNPQ = RMNPQ + RPQMN + 1

2D
Y R

L
SL(�RMN�SPQ − �RMN�SPQ), (4.47)

and is now covariant up to the consistency constraints of the theory discussed in section 3.5.
Since the connection has undetermined components, so does this generalized Riemann

tensor. This combination of connections and derivatives does not project the connections to
their determined part, so we are left with an undetermined Riemann tensor. The projections of
the Riemann tensor with the projectors (4.32) turn out to be either vanishing or unprojected as
well. This situation marks a striking difference with the Riemannian geometry.

We can now wonder whether some traces (and further projections) of this generalized
Riemann tensor lead to sensible quantities, such as some generalized Ricci tensor related to
the equations of motion of DFT (3.81) or some generalized Ricci scalar related to (3.61). For
this to occur, the traces must necessarily project the connections in the Riemann tensor in such
a way that only their determined part survives.

Tracing the generalized Riemann tensor with the projector P̂ (4.32), one can define a
generalized notion of Ricci tensor

RMN = P̂PQRMPNQ, (4.48)

from which the action of DFT and its equations of motion can be obtained from traces and
projections. Taking another trace one recovers the (already defined) generalized Ricci scalar

R = 1
4 P̂MNRMN (4.49)

that defines the action of DFT (it actually gives this tensor up to terms that constitute total
derivatives when introduced in the action (3.60)). On the other hand, the following projections
of this new generalized Ricci tensor contain the information on the equations of motion (3.81)

G[MN] = P̂[M
PP̌N]

Q RPQ = 0. (4.50)

It might be quite confusing that the projections of the generalized Ricci tensor yielding the
equations of motion correspond to the vanishing of an antisymmetric tensor. However, there
is a remarkable property of matrices of the form (4.50)

P̂M
RP̌N

SRRS = 0 ⇒ P̂[M
RP̌N]

SRRS = 0 ⇒ P̂Q
MP̂[M

RP̌N]
SRRS = 0

⇑ � ⇓
P̂Q

MP̂(M
RP̌N)

SRRS = 0 ⇐ P̂(M
RP̌N)

SRRS = 0 ⇐ P̂M
RP̌N

SRRS = 0
. (4.51)

Therefore, the vanishing of the antisymmetric part of P̂M
RP̌N

SRRS contains the same
information as the vanishing of the symmetric part. Then, one can alternatively define a
symmetric generalized Ricci tensor whose vanishing yields the equations of motion as well:

R̂MN = P̂(M
RP̌N)

S RRS = 0. (4.52)

We summarize some differences between the geometric quantities in the Riemannian and
double geometries in table 2.

An alternative to this approach was considered in [30], where only the Weitzenböck
connection is non-vanishing and the spin connection is set to zero. The Weitzenböck connection
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Table 2. A list of definitions of curvatures is given for Riemannian and double geometry.

Riemannian geometry Double geometry

Torsion Ti j
k = 2�[i j]

k TMN
P = 2�[MN]

P + �P
MN

Riemann tensor Determined Undetermined
Ri jl

k = 2∂[i� j]l
k + 2�[i|mk�| j]l

m RMNPQ = RMNPQ + RPQMN + �RMN�R
PQ

−�RMN�R
PQ

Ricci tensor Determined Undetermined
Ri j = Rik j

k RMN = P̂P
QRMQN

P

EOM Ri j = 0 P̂(M
RP̌N)

S RRS = 0

Ricci Scalar R = gi jRi j R = 1
4 P̂MNRMN

is torsionful, and the torsion coincides with the generalized fluxes (3.57). This connection is
flat, and then the Riemann tensor vanishes, but the dynamics is encoded in the torsion and one
can still build the DFT action and equations of motion from it, by demanding H-invariance
(3.56). Since the connection and torsion are fully determined, this approach has the advantage
of the absence of unphysical degrees of freedom. This also has a General Relativity analogue
with its corresponding similarities and differences.

4.4. Generalized Bianchi identities

The generalized Riemann tensor satisfies the same symmetry properties as in the Riemannian
geometry (4.20):

RMNPQ = R([MN][PQ]), (4.53)

plus a set of generalized BI

R[ĀB̄C̄D̄] = ZĀB̄C̄D̄ = ∂[ĀFB̄C̄D̄] − 3
4F[ĀB̄

ĒFC̄D̄]Ē , (4.54)

which under the strong constraint in the supergravity frame simply become the BI of
supergravity (3.18) and (4.20), as we will see later. Note that due to the consistency constraints
(3.44) this vanishes as in the usual Riemannian case

ZĀB̄C̄D̄ = �EĀ
FB̄C̄D̄ = ED̄M�ĀLEB̄

EC̄
M = 0. (4.55)

BI in DFT were extensively discussed in [29].

5. Dimensional reductions

In order to make contact with four-dimensional physics, we have to address the dimensional
reduction of DFT. Strictly speaking, we were already assuming that some directions were
compact, but now make the distinction between compact and non-compact directions precise,
and evaluate the dynamics around particular backgrounds. We begin this section with a brief
review of Scherk–Schwarz (SS) compactifications of supergravity [80], and then extend these
ideas to dimensionally reduce DFT to four dimensions, following [65, 66]. We show that the
resulting effective action corresponds to the electric bosonic sector of half-maximal gauged
supergravity [79] containing all duality orbits of electric fluxes, including the non-geometric
ones [67].
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5.1. Scherk–Schwarz compactifications

Let us briefly recall how geometric fluxes emerge in SS compactifications of supergravity,
along the lines of [81].

Consider the NS-NS sector of supergravity containing a D-dimensional metric gi j =
ei

āsāb̄e j
b̄, a 2-form field bi j and a dilaton φ, all depending on D spacetime coordinates xi (we

are thinking of D = 10). We will refer to the D-dimensional theory as the parent theory. When
dimensionally reduced to d = D − n dimensions, the resulting lower dimensional theory will
be referred to as the effective theory.

SS reductions can be introduced as the following set of steps to be performed in order to
obtain the effective theory.

• Split coordinates

xi = (xμ, ym). (5.1)

The coordinates ym, m = 1, . . . , n correspond to the compact space directions, while xμ,
μ = 1, . . . , d are the spacetime directions of the effective theory. The former (latter) are
called internal (external).

• Split indices in fields and parameters. The original D-dimensional theory enjoys a
set of symmetries and the fields belong to representations of these symmetries. Upon
compactification, the parent symmetry groups will be broken to those of the effective
theory. The fields then must be decomposed into the representations of the symmetry
group in the lower dimensional theory:

gi j =
(

gμν + gpqAp
μAq

ν Ap
μgpn

gmpAp
ν gmn

)
, (5.2)

bi j =
(

bμν − 1
2 (Ap

μVpν − Ap
νVpμ) + Ap

μAq
νbpq Vnμ − bnpAp

μ

−Vmν + bmpAp
ν bmn

)
, (5.3)

i.e. into internal, external and mixed components. Note that here there is an abuse of
notation in that gμν are not the μν components of gi j.

Also, the parameters of gauge transformations must be split

λi = (εμ, 
m), λ̃i = (εμ, 
m). (5.4)

• Provide a reduction ansatz. The particular dependence of the fields on the external and
internal coordinates is of the form

gμν = ĝμν (x), bμν = b̂μν (x),

Am
μ = ua

m(y)Âa
μ(x), Vmμ = ua

m(y)V̂aμ(x), (5.5)

gmn = ua
m(y)ub

n(y)̂gab(x), bmn = ua
m(y)ub

n(y)̂bab(x) + vmn(y),

and similarly for the dilaton φ = φ̂(x). The procedure even tells you what form this ansatz
should have. If there is a global symmetry in the theory, such as a shift in the 2-form
b → b + v, then one simply ‘gauges’ the global symmetry by making it depend on the
internal coordinates v → v(y). The y-dependent elements u(y) and v(y) are called twists.
Once the procedure is over, the dependence on internal coordinates will disappear, but
the information on the twists will remain in the form of structure-like constants that will
parameterize the possible deformations of the effective action. For this reason, the twist
matrices are taken to be constant in the external directions, because otherwise Lorentz
invariance would be explicitly broken by these constants in the effective action. The
hatted fields on the other hand depend only on the external coordinates, and will therefore
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correspond to the dynamical degrees of freedom in the effective action. These are a d-
dimensional metric ĝμν and a 2-form b̂μν , plus 2n vectors (Âa

μ, V̂aμ), plus n2 + 1 scalars
(̂gab, b̂ab, φ̂).
The gauge parameters must be twisted as well

λi = (̂εμ(x), ua
m(y)
̂a(x)), λ̃i = (̂εμ(x), um

a(y)
̂a(x)). (5.6)

• Identify residual gauge transformations. The gauge transformations of the parent
supergravity theory are given by the Lie derivatives (3.14)

LλV i = λ j∂ jV
i − V j∂ jλ

i, (5.7)

plus gauge transformations of the 2-form (3.16). Plugging the fields and gauge parameters
with the SS form into these, one obtains the resulting gauge transformations of the effective
theory. For example, taking V i = (̂vμ(x), ua

m(y)̂va(x)), one obtains

LλV μ = ε̂ν∂ν v̂
μ − v̂ν∂ν ε̂

μ ≡ L̂ε̂ v̂
μ, (5.8)

and then the d-dimensional Lie derivative of the effective action is obtained. Similarly,

LλV m = ua
m L̂̂λV̂ a, (5.9)

where the resulting transformation is gauged

L̂̂λV̂ a = L̂λV̂ a + fbc
a
̂bv̂c, (5.10)

since it receives the contribution from the following combination of twist matrices:

fab
c = ua

m ∂mub
n uc

n − ub
m ∂mua

n uc
n, (5.11)

which takes the same form as the SS flux (4.15). Even if these objects are defined in terms of
the twist ua

m, which is y-dependent, given that they appear in the residual transformations
and we look for a y-independent theory, one must impose the constraint that they are
constant. In the literature, these constants are known as metric fluxes, since they correspond
to the background fluxes of the metric (notice that the twist ua

m(y) corresponds to the
internal coordinate dependence of the metric (5.5)).

Pursuing this procedure with all the components of all the gauge transformations, we
find the gauge transformations for all the fields in the effective action. To render the result
readable, let us rearrange things in a compact language. The gauge parameters are taken
to be of the form

ξ̂ = (̂εμ, ε̂μ, 
̂A), 
̂A = (̂λa, λ̂a), (5.12)

and similarly the vector fields

ÂA
μ = (V̂aμ, Âa

μ) (5.13)

and the scalars

M̂AB =
(

ĝab −ĝaĉbcb

b̂acĝcb ĝab − b̂acĝcd b̂db

)
. (5.14)

Then, the different gauge transformations, parameterized by the different components of
ξ̂ are inherited from the parent gauge transformations, and take the form

δξ̂ ĝμν = Lε̂ ĝμν, (5.15)

δξ̂ b̂μν = Lε̂ b̂μν + (∂με̂ν − ∂ν ε̂μ), (5.16)

δξ̂ ÂA
μ = Lε̂ ÂA

μ − ∂μ
̂A + fBC
A
̂BÂC

μ, (5.17)

δξ̂ M̂AB = Lε̂ M̂AB + fAC
D
̂CM̂DB + fBC

D
̂CM̂AD. (5.18)
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Hence, we can readily identify the role of the different components of ξ̂ : ε̂μ are the
diffeomorphism parameters, ε̂μ generate gauge transformations of the 2-form and 
̂A are
the parameters of the gauge transformations for vectors. While here we have made a great
effort to unify all these transformations, in DFT this unification is there from the beginning,
as we will see later.

Here, we have introduced the ‘gaugings’ or ‘fluxes’ fAB
C, which have the following

non-vanishing components:

fabc = 3(∂[avbc] + f[ab
dvc]d ),

fab
c = ua

m ∂mub
n uc

n − ub
m ∂mua

n uc
n, (5.19)

while the rest of them vanish

fa
bc = 0, f abc = 0. (5.20)

This compact way of writing the results assumes that indices are raised and lowered with
an O(n, n) metric

ηAB =
(

0 δa
b

δa
b 0

)
. (5.21)

When written in the form of fABC = fAB
DηDC, they are totally antisymmetric fABC = f[ABC].

• Obtain the d-dimensional effective action. When the SS ansatz is plugged in the
supergravity action, the result is

S =
∫

dx
√

ĝe−2φ̂

(
R + 4∂μφ̂∂μφ̂ − 1

4
M̂ABFAμνFB

μν

− 1

12
GμνρGμνρ + 1

8
DμM̂ABDμM̂AB + V

)
. (5.22)

Here R is the d-dimensional Ricci scalar, and we have defined the field strengths as

FA
μν = ∂μÂA

ν − ∂ν ÂA
μ − fBC

AÂB
μÂC

ν,

Gμρλ = 3∂[μ̂bρλ] − fABCÂA
μÂB

ρÂC
λ + 3∂[μÂA

ρÂλ]A, (5.23)

and a covariant derivative for scalars as

DμM̂AB = ∂μM̂AB − fAD
CÂD

μM̂CB − fBD
CÂD

μM̂AC. (5.24)

Also, due to the gaugings, a scalar potential arose

V = − 1
4 fDA

C fCB
DM̂AB − 1

12 fAC
E fBD

FM̂ABM̂CDM̂EF − 1
6 fABC f ABC, (5.25)

which strongly resembles the form of the DFT action (3.61). Let us mention that we have
actually considered a simplified ansatz. Lorentz invariance is also preserved if a warp factor
is included in the reductions ansatz, which would turn on additional flux backgrounds of the
form fA, in which case the effective action would exactly coincide with the DFT action.

This concludes the introduction to the basic notions of SS compactifications
of supergravity. We should say that there exist different related Scherk–Schwarz
compactifications, and their distinction goes beyond the scope of this review. Also, the
consistency of these reductions is subtle and by no means automatic, and we refer to the
literature for detailed discussions on these points (see for example [9, 82]).
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5.2. Geometric fluxes

In the SS reduction defined in (5.5), we restricted ourselves to the zero modes and truncated
all the states of the infinite tower of Kaluza–Klein (KK) modes. Had we conserved them, the
effective action would have been more involved and would have had towers of KK degrees
of freedom. Typically, these modes are neglected because their masses scale proportionally to
the order of each mode. If they were kept, other stringy states with comparable masses should
be kept as well, and the effective theory would have to be completed with the corresponding
contributions.

This can be more clearly seen in a toroidal compactification. Indeed, notice that a
compactification on a torus with vanishing background of the 2-form corresponds to taking
ua

m = δa
m and vab = 0 in the SS procedure. In this case, (5.19) would give fABC = 0, i.e.

we obtain an ungauged theory. Recalling the mass spectrum of closed strings on tori (3.1)
and the fact that the winding modes decouple in the field theory limit, we see that the zero
mode of such a compactification is massless for the fields considered in supergravity (with
N = Ñ = 1). Had we kept states with p �= 0 to be consistent, we should have also taken into
account other string excitations with comparable masses. Since all the fluxes vanish in this
case, no masses can be generated in the effective theory.

These compactifications on tori with vanishing form fluxes (i.e., configurations with
fABC = 0) present many phenomenological problems.

• The scalar potential vanishes, so any configuration of scalars corresponds to a possible
minimum of the theory. The moduli space is then fully degenerate, and all scalars are
massless. This poses a problem because, on the one hand, there are no massless scalars in
nature, and, on the other hand, the theory loses all predictability since one has the freedom
to choose any vacuum of the effective theory.

• Since the scalar potential vanishes, there is no way to generate a cosmological constant in
the lower dimensional theory. This is contrary to experimental evidence, which indicates
that our universe has a tiny positive cosmological constant, i.e. it is a de Sitter (dS) universe.

• The gravitinos of the supersymmetric completion of the theory are massless as well. If we
start with N = 1 theory in D = 10, we would end with N = 4 theory in d = 4. This is
too much supersymmetry and we have no possibility of breaking it.

• Since the fluxes play the role of structure constants, their vanishing implies that the gauge
symmetries are Abelian. Then, Standard-Model-like interactions are not possible.

It is then clear that a torus compactification is not interesting from a phenomenological
point of view. The situation changes when the twists ua

m(y) and vab(y) are such that fABC �= 0.
We have seen that they allow us to turn on metric fluxes fab

c (through ua
m) and 2-form fluxes

fabc (through vab) in (5.19). The appearance of these fluxes now generates a scalar potential
(5.25) that classically lifts the moduli space. This in turn generates masses for scalars and
gravitinos, renders the gauge symmetries non-Abelian and allows for the possibility of a
cosmological constant. However, although the phenomenological perspectives improved, it
turns out that geometric fluxes seem not to be enough for moduli stabilization and dS vacua,
and then one has to go beyond them. There are a number of no-go theorems and evidence [83]
pointing in this direction.

In the literature, the 2-form and metric fluxes both go under the name of geometric fluxes,
and are denoted

Habc ≡ fabc = 3(∂[avbc] + f[ab
dvc]d ),

ωab
c ≡ fab

c = ua
m ∂mub

n uc
n − ub

m ∂mua
n uc

n,
(5.26)
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respectively. Since T-dualities exchange metric and 2-form components (3.11), they exchange
these fluxes as well

Habc
h(c)←→ ωab

c. (5.27)

Let us now devote a few lines to give an interpretation of the SS procedure in terms
of a compactification. The SS ansatz (5.5) can be interpreted as follows. The twists ua

m(y)

correspond to the metric background in the compact space and ĝab amount to perturbations.
The full internal metric reads

gmn = ua
m(y)̂gab(x)ub

n(y). (5.28)

When plugging this in the supergravity action, one obtains an effective theory for the
perturbations ĝmn, which is deformed by parameters that only depend on the background.
Then, freezing the perturbations as

ĝab(x) = δab ⇒ gmn = ua
m(y)δabub

n(y) (5.29)

gives the background on which one compactifies, and the effective action dictates the dynamics
of the perturbations around the background. Similarly, the perturbations of the 2-form are given
by b̂ab, and freezing them gives the corresponding 2-form background

b̂ab(x) = 0 ⇒ bmn = vmn(y). (5.30)

The twist matrices ua
m and vmn can then be interpreted as the backgrounds associated with the

vielbein and the 2-form of the compact space. From now on, when referring to backgrounds
we shall assume that the perturbations are frozen.

Let us now explore a very simple setting that gives rise to a flux for the 2-form, Habc

(later, we will consider all its T-duals). This is the canonical example in the literature on
(non-)geometric fluxes, and it is nicely discussed in [8]. Most of the terminology related to
(non-)geometric fluxes is taken from this example, so we find it instructive to revisit it here.
For simplicity, we consider a three-dimensional internal space, which can be embedded in the
full internal six-dimensional space. Consider a compactification on a 3-torus with a non-trivial
2-form:

gmn = δmn, b23 = Ny1 ⇔ um
a = δa

m, v23 = Ny1. (5.31)

Plugging this into (5.26), we obtain

H123 = N, ω12
3 = ω23

1 = ω31
2 = 0, (5.32)

so a compactification on a torus with a non-trivial 2-form field turns on a H-flux in the effective
action.

Since this background has isometries in the directions y2, y3, we can perform a T-duality
in one of these directions, let us say h(3), through the Buscher rules (3.11). Then, we obtain
the background

ds2 = gmn dym dyn = (dy1)2 + (dy2)2 + (dy3 + Ny1 dy2)2, bmn = 0. (5.33)

This corresponds to

ua
m =

⎛⎝1 0 0
0 1 0
0 Ny1 1

⎞⎠ , vmn = 0. (5.34)

Plugging this into (5.26), we find that the fluxes turned on in the effective action are now

H123 = ω23
1 = ω31

2 = 0, ω12
3 = N, (5.35)
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in agreement with the T-duality chain (5.27). The background (5.33) is called twisted torus,
and it generates metric fluxes ωab

c upon compactifications. In more general backgrounds, SS
compactifications allow us to turn on form and metric fluxes simultaneously, provided the
compactification is done on a twisted torus with a non-trivial 2-form background. Examples of
different Scherk–Schwarz compactifications in different scenarios, and their relation to gauged
supergravity can be found in [84].

5.3. Gauged supergravities and duality orbits

The effective action (5.22), obtained by means of an SS compactification, is a particular
gauged supergravity. For a review of gauged supergravity see [9]. These kinds of dimensional
reductions preserve all the supersymmetries of the parent theory and are therefore highly
constrained. When the starting point is D = 10 supergravity with N = 1 supersymmetries
(16 supercharges), the d = 4 effective theory preserves all the supercharges and has
therefore N = 4 supersymmetries. This corresponds to the half of the maximal allowed
supersymmetries, and so they are called half-maximal gauged supergravities. These theories
have been widely studied irrespective of their stringy higher dimensional origin, and the full
set of possible deformations have been classified in [79]. Let us here review the basics of
the bosonic sector of d = 4 half-maximal gauged supergravity, so that we can then identify
particular gaugings as specific reductions in different backgrounds.

The bosonic field content of half-maximal gauged supergravity in four dimensions consists
of a metric ĝμν , 12 vector fields ÂA

μ and 38 scalars, arranged in two objects: a complex
parameter τ = e−2φ̂ + iB̂0 and a scalar matrix M̂AB with 36 independent components
parameterizing the coset O(6, 6)/O(6) × O(6).

There is an additional freedom to couple an arbitrary number N of vector multiplets but,
for simplicity, we will not consider this possibility (otherwise the global symmetry group
would have to be extended to O(D, D + N) [65]). Also, the global symmetry group contains
an SL(2) factor as well, related to S-duality, which mixes the electric and magnetic sectors.
This is not captured by DFT (unless the global symmetry group is further extended to include
S-duality), and then one can only obtain the electric sector.

The ungauged theory is invariant under an O(6, 6) global symmetry group, and by
‘ungauged’ we mean that the gauge group is the Abelian U (1)12. This group can however be
rendered non-Abelian by gauging a subgroup of O(6, 6). Given the O(6, 6) generators (tα )A

B,
with α = 1, . . . , 66; A = 1, . . . , 12, there is a powerful object named embedding tensor �A

α

that dictates the possible gaugings of the theory. The gauge group generators are given by
�A

α(tα )B
C, so �A

α establishes how the gauge group is embedded in the global symmetry
group. The 12 ⊗ 66 components of �A

α are restricted by a linear constraint that leaves only
12 + 220 components, parameterized by

ξA, fABC = f[ABC], (5.36)

and these are further restricted by quadratic constraints

ξAξA = 0, (5.37)

ξC fABC = 0 (5.38)

fE[AB f E
CD] = 1

3 f[ABCξD], (5.39)

necessary for the gauge invariance of the embedding tensor (and closure of the algebra). The
O(6, 6) indices are raised and lowered with the invariant metric (5.21).
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In four dimensions, 2-forms are dual to scalars. Dualizing the scalar B̂0 → b̂μν , the action
of the electric bosonic sector of half-maximal gauged supergravity takes the form (5.22) when
ξA = 0. We then see that the SS compactification of D = 10 supergravity on a twisted
torus with 2-form flux leads to a particular half-maximal gauged supergravity in d = 4. The
only possible deformations in that theory are given by (5.26). From now on, we will restrict
ourselves to the gaugings fABC and set the rest of them to zero, i.e. ξA = 0, for simplicity.

The global symmetries of the ungauged theory amount to O(6, 6) transformations

ÂA
μ → hB

A ÂB
μ, M̂AB → hA

C M̂CD hB
D, (5.40)

where the elements h ∈ O(6, 6) were introduced in section 3.1. When the gaugings are turned
on, the global symmetry group is broken by them. However, O(6, 6) transformations do not
change the physics. In fact, given a configuration of gaugings fABC with their corresponding
action (5.22), any O(6, 6) rotation of them,

fABC → hA
DhB

EhC
F fDEF , (5.41)

would yield a different configuration with a corresponding different action. However, through
a field redefinition of the form (5.40), this action can be taken to the original form. In other
words, we have the relation

S
[
hA

DhB
EhC

F fDEF , ÂA
μ, M̂AB

] = S
[

fABC, hB
AÂB

μ, hA
CM̂CDhB

D
]
, (5.42)

and so an O(6, 6) transformation of the gaugings just amounts to a field redefinition. Then, it
corresponds to the same theory. For this reason, it is not convenient to talk about configurations
of gaugings, but rather of orbits of gaugings. An orbit is a set of configurations related by
duality transformations, so that different theories correspond to different duality orbits of
gaugings.

An intriguing feature of gauged supergravities is that they admit more deformations than
those that can be reached by means of geometric compactifications on twisted tori with 2-form
flux. In fact, for generic configurations, the embedding tensor has components

Qa
bc = fa

bc, Rabc = f abc, (5.43)

that cannot be turned on through the canonical SS compactification (5.20). Since the other
set of gaugings fabc, f a

bc were identified with the geometrical fluxes, these are said to be
non-geometric gaugings. Here we have named them Q and R to match the standard parlance
in the literature of flux compactifications. One then wonders to what kind of backgrounds or
compactifications these gaugings would correspond to. As we will see, T-duality has a very
concrete answer to this question.

Before moving to a discussion on non-geometric fluxes, let us briefly review the arguments
of [59, 61] to invoke non-geometric fluxes from a string theory perspective. In [59, 61], all
supergravities in D = 10 and 11 dimensions are compactified in a geometric sense to four
dimensions. These higher dimensional supergravities are the low-energy limit of duality-
related string theories, like for instance Types IIA and Type IIB strings. Each compactification
gives rise to a fluxed effective action containing only geometric fluxes.

When duality transformations are applied at the level of the four-dimensional effective
action, one finds that, although the parent theories are connected by dualities, the effective
theories are not [59, 61]. Thus, new non-geometric fluxes have to be invoked, so that the theories
match. In this process, gaugings (or fluxes) that look geometric in one picture (duality frame)
are non-geometric in others, and all of them should be included in string compactifications
in order to preserve all the stringy information at the level of the effective action.
Moreover, when all the gaugings are considered together in the effective action, the resulting
(super-)potential includes all the possible deformations (gaugings) of gauged supergravity. All
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the T-dual deformations are captured by generalized geometric compactifications of DFT, as
we will see.

We have seen in section 5.2 that starting with a toroidal background with a 2-form flux
H123 (5.31), an h(3) T-duality can be performed in the direction y3 leading to a twisted torus
with the metric flux ω12

3 (5.33). The latter still has an isometry in the direction y2, so nothing
prevents us from doing a new T-duality, namely h(2). At the level of fluxes, the chain would
go as

Habc
h(c)←→ ωab

c h(b)←→ Qa
bc, (5.44)

and so a compactification on the resulting background would turn on a Q1
23 flux in the

effective action. Instead of using the Buscher rules, we find it more instructive to T-dualize via
the construction of a generalized metric. For the twisted torus (5.33), it takes the form

HMN =
(

gmn −gmpbpn

bmpgpn gmn − bmpgpqbqn

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 −Ny1 0 0 0
0 −Ny1 1 + (Ny1)2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 + (Ny1)2 Ny1

0 0 0 0 Ny1 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Now acting on this twisted torus background with a T-duality in the direction y2:

HMN → h(2)
M

Ph(2)
N

QHPQ, h(2) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.45)

we obtain

h(2)
M

Ph(2)
N

QHPQ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 + (Ny1)2 0 0 0 Ny1

0 0 1 + (Ny1)2 0 −Ny1 0
0 0 0 1 0 0
0 0 −Ny1 0 1 0
0 Ny1 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.46)

and from here we can obtain the background metric

ds2 = gmn dym dyn = (dy1)2 + 1

1 + (Ny1)2
[(dy2)2 + (dy3)2] (5.47)

and the 2-form

b23 = − Ny1

1 + (Ny1)2
(5.48)

associated with the Q1
23 flux. This background only depends on y1 in the directions orthogonal

to y1, so this corresponds to a base coordinate. When undergoing a monodromy y1 → y1 + 1,
the solution does not come back to itself, but rather to an O(2, 2) ∈ O(3, 3) rotation of it.
Since this duality element mixes the metric and the 2-form in a non-trivial way, it is called
a T-fold [14]. From a supergravity point of view, these backgrounds are globally ill-defined
because the T-duality element needed to ‘glue’ the two different coordinate patches is not an
element of the geometric (i.e. diffeos + shifts (3.10)) subgroup of O(3, 3). This background
is then said to correspond to a globally non-geometric flux Qa

bc. Note however that from the
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Figure 1. We picture the logic of DFT compactifications [65]. While standard SS reductions from
supergravity in D = d + n dimensions (solid line) give rise to gauged supergravity involving
only geometric fluxes in d dimensions, invoking duality arguments at the level of the effective
action one can conjecture the need for dual fluxes [59, 61] to complete all the deformations
of gauged supergravity (waved line). More fundamentally, DFT is the O(D, D)-covariantization
of supergravity (dashed line), and generalized SS compactifications of DFT give rise to gauged
supergravities with all possible deformations (dotted line).

double-space point of view, there is no such global issue provided one allows transitions with
the full O(3, 3) symmetry group (including T-dualities (3.10)). In this case, the identifications
between the coordinates under monodromies involve the dual ones, and the generalized bein
is globally well defined on the double space.

If we intended to do a further T-duality [59], say in the direction y1,

Habc
h(c)←→ ωab

c h(b)←→ Qa
bc h(a)←→ Rabc, (5.49)

we would face the problem that we ran out of isometries. Therefore the resulting background
would have to depend on a ‘dual’ coordinate and we would lose any notion of locality in
terms of the usual coordinates on which supergravity is defined. For this reason, the fluxes
Rabc are usually named locally non-geometric. Clearly, again, this form of non-geometry is
not a problem in the double space either.

Note that the chain (5.49) connects different configurations of gaugings via T-duality. By
definition, they all correspond to the same orbit, so the four-dimensional theory really does
not distinguish between compactifications on tori with 2-form flux, twisted tori or T-folds, that
are connected by T-dualities. In this sense, the orbit itself is basically geometric: if we were
given an action with a single flux, either H, ω, Q or R, we would always find a geometric uplift
and face its corresponding phenomenological problems. A different situation would be that
of an action containing both geometric and non-geometric fluxes simultaneously turned on.
T-duality would exchange geometric with non-geometric fluxes, and it would never be able
to get rid of the non-geometric ones. These kinds of configurations are said to belong to a
duality orbit of non-geometric fluxes [67], and they cannot be reached by means of a standard
SS compactification of supergravity. They are actually the most interesting orbits since they
circumvent all the no-go theorems preventing moduli fixing, dS vacua, etc [83].

As we will see, being T-duality invariant and defined on a double space, DFT is free
from global and local issues. Generalized SS compactifications of DFT will be the topic of
the forthcoming subsections. We will see that DFT provides a beautiful geometric uplift of all
duality orbits, including the non-geometric ones. We anticipate the final picture in figure 1.

5.4. Generalized Scherk–Schwarz compactifications

Here, we generalize the SS procedure in a duality covariant way by applying it
to DFT. This and the following sections are mostly based on [65, 66, 34]. Let us
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then follow the steps introduced in section 5.1, although in a different order for
convenience.

• In the double space, we have coordinates XM = (x̃i, xi), so we split them as follows:
x̃i = (x̃μ, ỹm) and xi = (xμ, ym). As before, m = 1, . . . , n are indices denoting internal
directions and μ = 1, . . . , d are spacetime indices. Then, we have a double external space
and a double internal one with coordinates X = (x̃μ, xμ) and Y

A = (ỹm, ym), respectively.
• Next, we propose a reduction ansatz for the fields and gauge parameters in the theory,

inspired in the global symmetries of DFT. For the generalized bein and dilaton, we have

EĀ
M(X ) = ÊĀ

I(X) UI
M(Y), d(X ) = d̂(X) + λ(Y), (5.50)

and for the gauge parameters, we have

ξM(X ) = ξ̂ I(X) UI
M(Y). (5.51)

Here, M, N = 1, . . . , 2D are curved indices in the parent theory and I, J = 1, . . . , 2D
are curved indices in the effective theory. Again, we use the notation that hatted objects
are X-dependent, and all the (double) internal Y-dependence enters through the twists
UI

M ∈ O(n, n) and λ.
• We plug this ansatz in the generalized fluxes, and obtain

FĀB̄C̄ = F̂ĀB̄C̄ + fIJK ÊĀ
I ÊB̄

JÊC̄
K, (5.52)

FĀ = F̂Ā + fI ÊĀ
I, (5.53)

where we have split the coordinate dependence in X-dependent quantities

F̂ĀB̄C̄ = 3�̂[ĀB̄C̄], �̂ĀB̄C̄ = ÊĀ
I∂I ÊB̄

JÊC̄J, (5.54)

F̂Ā = �̂B̄
B̄Ā + 2ÊĀ

I∂I d̂, (5.55)

and Y-dependent ones

fIJK = 3�̃[IJK], �̃IJK = UI
M∂MUJ

NUKN, (5.56)

fI = �̃J
JI + 2UI

M∂Mλ. (5.57)

This splitting is possible provided one imposes the following constraint on the duality
twist UI

M:

UI
M∂Mĝ = ∂I ĝ, ∂MUI

N ∂Mĝ = 0. (5.58)

This restriction on the duality twist implies that it must be trivial in the X-directions. There
is a very important physical reason for this constraint to hold. The quantities fIJK and fI

are named gaugings, and we take them to be constant

fIJK = constant, fI = constant. (5.59)

This is due to the fact that they appear in the action through the generalized fluxes FĀB̄C̄
and FĀ, and since we look for a Y-independent effective Lagrangian, they must be Y-
independent because their dependence comes only through the gaugings, which were
requested to be constant. This in turn implies that the internal space is parallelizable,
namely the twist must be globally defined. The constraint (5.58) can be recast as

fIJ
K∂Kĝ = 0, f I∂I ĝ = 0. (5.60)

Its role is to protect Lorentz invariance in the reduced theory. Note that ∂I ĝ is only non-
vanishing in the external directions, and then if the gaugings had legs in these directions,
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they would explicitly break Lorentz symmetry. Therefore, fIJK and fI can only be non-
vanishing along the double internal space. For simplicity, here we will only analyze the
case fI = 0, since consistency of the theory would otherwise require a slightly modified
reduction ansatz. A discussion on how to turn the gaugings on in the usual supergravity
picture can be found in [85], and in a duality covariant way in DFT in [66].

• We next plug (5.52) and (5.53) into the action of DFT (3.60) to obtain the effective theory

SGDFT = v

∫
dX e−2d̂

[
−1

4

(
F̂IK

L + fIK
L
)(

F̂JL
K + fJL

K
)
ĤIJ

− 1

12

(
F̂IJ

K + fIJ
K
)(

F̂LH
G + fLH

G
)
ĤILĤJHĤKG

− 1

6
(F̂IJK + fIJK )(F̂ IJK + f IJK ) + (ĤIJ − ηIJ )F̂IF̂J

]
. (5.61)

The internal coordinate dependence factorizes and it just amounts to an overall constant
factor

v =
∫

dY e−2λ. (5.62)

If the gaugings vanish fIJK = 0, one recovers the usual DFT action (3.60) in less
dimensions. This then corresponds to a gauged DFT (GDFT) [21, 34], which has been
obtained through a generalized SS compactification of a higher dimensional parent DFT.

• The symmetries of the GDFT are inherited from those of the parent DFT. For instance, the
generalized Lie derivative induces the gauge transformations in the effective action

LξV M = UI
M L̂ξ̂V̂ I, (5.63)

namely

L̂ξ̂V̂ I = Lξ̂V̂ I − f I
JK ξ̂ JV̂ K . (5.64)

The first term is the usual generalized Lie derivative and the second one amounts to a
deformation due to the gaugings. These induced transformations now close (in the sense
of (3.46)) when the following quadratic constraints are imposed on the gaugings

fH[IJ fKL]
H = 0, (5.65)

and the strong constraint holds in the external space

∂IV̂ ∂ IŴ = 0 (5.66)

for any hatted quantity, such as effective fields or gauged parameters. The action of GDFT
(5.61) is invariant under (5.64) up to these constraints. Moreover, it can be checked that
compactifying the constraints of the parent DFT gives the same result that one would
obtain by directly computing the consistency conditions of the effective GDFT. These
amount to even more relaxed versions of (5.65) and (5.66).

5.5. From gauged DFT to gauged supergravity

Now that we have built a covariant formulation of the effective theory, we can choose to
solve the effective strong constraint (5.66) in the usual frame of a gauged supergravity
∂IV̂∂ IŴ = 0 → ∂̃μV̂ = 0, i.e. we solve the strong constraint in the effective action by
demanding that the effective fields and gauged parameters only depend on xμ. Due to the
coordinate splitting X → X, Y, a convenient re-parameterization of the effective generalized
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metric ĤIJ is in order. The O(D, D) group is now broken to O(d, d) × O(n, n), and then it is
convenient to rotate the group metric to the form

ηIJ =
⎛⎝ δμ

ν

δμ
ν

ηAB

⎞⎠ , (5.67)

where ηAB has been defined in (5.21). This amounts to a re-parameterization of the generalized
bein

ÊĀ
I =

⎛⎜⎝êā
μ −êā

ρ ĉρμ −êā
ρ ÂAρ

0 êā
μ 0

0 �̂Ā
BÂB

μ �̂Ā
A

⎞⎟⎠ , (5.68)

which is now associated with the following generalized metric:

ĤIJ =

⎛⎜⎝ ĝμν −ĝμρ ĉρν −ĝμρ ÂAρ

−ĝνρ ĉρμ ĝμν + ÂC
μM̂CDÂD

ν + ĉρμĝρσ ĉσν M̂ACÂC
μ + ÂAρ ĝρσ ĉσμ

−ĝνρ ÂBρ M̂BCÂC
ν + ÂBρ ĝρσ ĉσν M̂AB + ÂAρ ĝρσ ÂBσ

⎞⎟⎠ . (5.69)

Here, we have introduced the combination ĉμν = b̂μν + 1
2 ÂB

μÂBν . Also, ÂA
μ are the vectors

(5.13) and �̂Ā
A is the scalar bein for the scalar metric M̂AB defined in (5.14). Note that we

have run out of indices, so we are denoting with the same letter Ā the full flat index and the
internal one, and the distinction should be clear from the context. Also, due to the splitting,
now the gaugings are only non-vanishing in the internal components

fIJK =
{

fABC (I, J, K) = (A, B,C)

0 otherwise
. (5.70)

Then, plugging (5.68) and (5.70) into (5.54), and taking into account that the indices are
now raised and lowered with (5.67), we can readily identify some of the components of the
compactified generalized fluxes with covariant quantities in the effective action (5.23)–(5.24),
namely

Fāb̄c̄ = êā
μêb̄

ν êc̄
ρ Gμνρ, (5.71)

Fāb̄
C̄ = êā

μêb̄
ν�̂C̄

C FC
μν, (5.72)

FāB̄
C̄ = êā

μ�̂C̄
C Dμ�̂B̄

C, (5.73)

where

Dμ�̂B̄
C = ∂μ�̂B̄

C − fAB
CÂμ

A�̂B̄
B (5.74)

is the covariant derivative of the scalar bein. Finally, plugging (5.68) and (5.70) in the action
(5.61) of GDFT, one recovers the effective action of gauged supergravity (5.22). Therefore,
gauged supergravities are particular examples of GDFT.

5.6. Duality orbits of non-geometric fluxes

Even if it looks like that the generalized SS procedure discussed in sections 5.4 and 5.5 leads to
the same action (5.22) obtained from the usual geometric SS compactification of section 5.1,
this is not correct. The difference resides in the gaugings. While the geometric SS reduction
only allows to turn on the fluxes (5.19) and the others (5.20) vanish, the generalized SS
reduction of DFT allows, in principle, to turn on all the gaugings simultaneously.

We have defined the gaugings or fluxes in (5.56) in terms of a duality-valued twist matrix
U (Y) ∈ O(n, n). This generalizes the usual SS gaugings in two ways.
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• Global extension. The geometric SS gaugings are generated through ua
m and vmn in (5.19),

which respectively correspond to the metric and 2-form background. They can both be
combined into the O(n, n) duality twist matrix in the form

UA
M =

(
ua

m ua
nvnm

0 ua
m

)
. (5.75)

A T-duality transformation would break the triangular form of this matrix into a new
element of O(n, n) containing a South–West component. Therefore, the only backgrounds
that are allowed in the usual SS compactification of supergravity are those that come
back to themselves under monodromies, up to u and/or v-transformations only, i.e. the
geometric subgroup of the full O(n, n). In a generalized SS compactification, we now
allow the duality twist to be a generic element of O(n, n). This includes, in addition to the
elements ua

m and v[mn], a new component usually dubbed β[mn]:

UA
M =

(
ua

m ua
nvnm

ua
nβ

nm ua
m + ua

nβ
npvpm

)
. (5.76)

The effect of this extension is now to allow for backgrounds that come back to themselves
under monodromies, up to a generic O(n, n) transformation. This is the case of the T-folds
discussed before. Then, the generalized SS compactification allows for new backgrounds
that are globally ill defined from the usual (geometric) supergravity point of view.

• Local extension. The fluxes (5.56) are now not only defined in terms of an extended duality
twist, but also in terms of a generalized derivative with respect to all coordinates. This
would allow for more richness in the space of gaugings, if the duality twist violated the
strong constraint. In this case, the dual coordinate dependence would make no sense from
a supergravity point of view, altering the standard notion of locality.

Let us now show that the quadratic constraints (5.65) are weaker than the strong constraint.
For the duality twist, the strong constraint implies

�̃EAB�̃E
CD = 0, (5.77)

where �̃ABC has been defined in (5.56). On the other hand, similar to the BI (3.64), one can
show that

∂[A fBCD] − 3
4 f[AB

E fCD]E = − 3
4 �̃E[AB�̃E

CD]. (5.78)

For constant gaugings, the first term drops out, and then we see that the quadratic constraints
correspond to a relaxed version of the strong constraint (5.77), because they only require the
totally antisymmetric part of (5.77) to vanish.

This is, however, not the end of the story. One has to show that there exist solutions
to the quadratic constraints that violate the strong constraint. As we explained, the gauged
supergravities we are dealing with are half-maximal. Half-maximal gauged supergravities split
into two different groups: those that can be obtained by means of a truncation of a maximal
supergravity, and those that cannot (in d = 4, see [86]). The former inherit the quadratic
constraints of the maximal theory, which in the language of the electric half-maximal gaugings
take the form (for simplicity we take λ = 0 in (5.50))

fABC f ABC = 3�̃ABC�̃ABC = 0. (5.79)

Therefore, the genuine half-maximal theories, which violate the above constraint, must be
necessarily generated through a truly doubled duality twist [67]. On the other hand, when the
strong constraint holds, the only reachable theories are those that admit an uplift to a maximal
supergravity. In figure 2, we have pictured the kind of orbits that one finds in half-maximal
supergravities (the case d = 4 should be analyzed separately due to the extra SL(2) factor
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Figure 2. We picture the space of gaugings (or fluxes) in half-maximal supergravities in d = 7, 8
[67]. A point in this diagram corresponds to a given configuration. If two points lie in the same
diagonal line (orbit), they are related by a duality transformation. Different theories are classified
by orbits (lines) rather than configurations (points). The configuration space splits in a subgroup
of geometric (i.e. only involving fluxes like Habc and ωab

c) and non-geometric (involving fluxes
Qa

bc and Rabc) configurations. The space of orbits then splits into two: (1) non-geometric orbits
(truly half-maximal) and (2) geometric orbits (basically maximal) that intersect the geometric
space (between A and B).

[86]). Let us stress that the notion of non-geometry discussed in [67] is local, and then a duality
orbit of non-geometric fluxes contains all fluxes simultaneously turned on Habc, ωab

c, Qa
bc and

Rabc. However, one could also define a notion of globally non-geometric orbit, which could
admit a representative without Rabc-flux.

The idea of combining geometric with non-geometric fluxes simultaneously is usually
considered with some precaution. It is common to find objections against these configurations
mostly based on scaling arguments. The non-geometric fluxes are sometimes associated with
windings (since they are mostly generated through dual coordinate dependence), while the
geometric ones are related to momentum. A quick look at the mass formula (3.1) shows that,
for a given radius R, when momentum (winding) modes are heavy, the winding (momentum)
modes are light. Considering both of them simultaneously then leads to unavoidable heavy
modes in the spectrum. This enters in conflict with the fact that one is truncating the heavy
mass levels of the string from the beginning. The conclusion of this argument is that one
should then impose the strong constraint, so as to truncate the heavy part of the spectrum, and
this in turn only permits geometric orbits.

Notice however that these arguments are purely based on the KK-mode expansions of
fields on tori. The relation between (winding) momentum and (dual) coordinates, is given by
the Fourier transforms of the KK-modes of the torus. Moreover, the mass formula (3.1) only
holds for tori. In this section, we do not consider tori, and, moreover, we do not consider KK
excitations. We only consider the zero-modes of the fields on twisted-double tori. The only
connection between these two situations is when the duality twist is taken to be constant,
in which case we would be dealing with the (massless) zero-modes on a torus, as discussed
in section 5.2. When the twist matrix is non-constant, the effective theory becomes massive,
but these masses are corrections to the massless modes on the torus through a twist. We are
then correcting massless modes, through a procedure that truncates all the problematic (KK)
modes. When dealing with moduli fixing, one has to make sure that for a given non-geometric
orbit, the masses of the scalar fields (which are totally unrelated to (3.1)) in a given vacuum
are small compared to the scales of the modes that we are neglecting.

A similar reasoning prevents us from relating the strong constraint (or a weaker version
of it) to the LMC condition (3.9), as we explained in section 3.3. If we had considered tori
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compactifications, and kept the tower of excited states, whenever the derivatives in strong-
constraint like terms acted on the mode expansion they would form contractions like PMPM

related to the LMC. Here, we are considering the zero-modes, for which PMPM = 0 is trivially
satisfied because PM = 0. Then, in SS compactifications in which the tower of KK modes
is truncated, it does not seem to be correct to identify the LMC with strong-like constraints.
Instead, the consistency constraints are given by the quadratic constraints for gaugings (5.65).

Combining fluxes and their derivatives, it is possible to construct three quantities that
vanish upon imposition of the strong constraint [68]:

∂[A fBCD] − 3
4 f[AB

E fCD]E = ZABCD, (5.80)

∂E fEAB + 2∂[A fB] − f E fEAB = ZAB, (5.81)

∂E fE − 1
2 f E fE + 1

12 fABC f ABC = Z. (5.82)

They correspond to duality orbits of generalized BI for all the dual fluxes. The first two, (5.80)
and (5.81), are related to the constraints of the theory, and are obtained from compactifications
of (3.64). The last one (5.82) was associated with the embedding of the theory into a maximal
theory (5.79).

The fluxes fABC encode the standard T-dual fluxes, as we reviewed. This can be seen by
splitting the indices as

fabc = Habc, f a
bc = ωbc

a, f ab
c = Qc

ab, f abc = Rabc. (5.83)

Through T-dualities they are related according to the chain (5.49). Recall that we are only
dealing here with the case fA = 0. Splitting in components equation (5.80), we find

∂[aHbcd] − 3
2 He[abωcd]

e = Zabcd,

3∂[aωbc]
d − ∂dHabc + 3ω[ab

eωc]e
d − 3Q[a

deHbc]e = Zabc
d,

2∂[aQb]
cd + 2∂ [cωab

d] − ωab
eQe

cd − HabeRecd + 4Q[a
e[cωb]e

d] = Zab
cd,

3∂ [aQd
bc] − ∂dRabc + 3Qe

[abQd
c]e − 3ωde

[aRbc]e = Zabc
d,

∂ [aRbcd] − 3
2 Re[abQe

cd] = Zabcd . (5.84)

These reduce to those of [59] for constant fluxes under the strong constraint, and to those of
[87] for non-constant fluxes. Equation (5.82), on the other hand, reads in components

1
6 HabcRabc + 1

2ωab
cQc

ab = Z. (5.85)

This corresponds to an orthogonality condition between geometric (Habc, ωab
c) and non-

geometric (Qa
bc, Rabc) fluxes, as expected. And this is the reason why the failure of this

equation to vanish requires non-geometric fluxes. Therefore, (5.85) can be used to classify
duality orbits of non-geometric fluxes.

Using the extended parameterization of the twist matrix (5.76)

UA
M =

(
ua

m ua
nvnm

ua
nβ

nm ua
m + ua

nβ
npvpm

)
, (5.86)

and inserting this into the definition of the fluxes (5.56) and (5.70)

fABC = 3 U[A|M ∂MU|BNUC]N, (5.87)

we find in components

Habc = 3[∇[avbc] − vd[a∇̃dvbc]],

ωab
c = 2�[ab]

c + ∇̃cvab + 2�mc
[avb]m + βcmHmab,

Qc
ab = 2�[ab]

c + ∂cβ
ab + vcm∂̃mβab + 2ωmc

[aβb]m − Hmncβ
maβnb,

Rabc = 3[β[am∇mβbc] + ∇̃ [aβbc] + vmn∇̃nβ[abβc]m + β[amβbn∇̃c]vmn] + βamβbnβclHmnl,

(5.88)
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where we have used the following relations and definitions:

ua
mua

n = δm
n , ua

mub
m = δb

a, vab = ua
mub

nvmn, βab = ua
mub

nβ
mn,

∂a = ua
m∂m, ∂̃a = ua

m∂̃m,

∇avbc = ∂avbc − �ab
dvdc − �ac

dvbd, ∇̃avbc = ∂̃avbc + �ad
bvdc + �ad

cvbd,

∇aβ
bc = ∂aβ

bc + �ad
bβdc + �ad

cβbd, ∇̃aβbc = ∂̃aβbc − �ab
dβ

dc − �ac
dβ

bd,

and

�ab
c = ua

m∂mub
nec

n , �ab
c = ua

m∂̃mub
nuc

n. (5.89)

Expressions (5.88) are very useful to explore the uplifting of fluxes to higher dimensional
theories. Note that while Habc and ωab

c can be generated through geometric twists ua
m and vmn,

the non-geometric fluxes Qa
bc and/or Rabc require β-twists and/or dual coordinate dependence.

This also serves to show that the distinction between ‘globally’ and ‘locally’ non-geometric
fluxes is just a terminology inherited from the toy example discussed before, since Qa

bc

can arise from dual coordinate dependence, and Rabc can arise from globally non-geometric
compactifications with non-trivial β-twist. Setting β i j = 0 and ∂̃ i = 0, expressions (5.88)
reduce to (5.26).

6. U-duality and extended geometry

The compactification of D = 11 supergravity and M-theory on an n-dimensional torus enjoys
a U-duality symmetry En(n) (see for example [88–90]). The idea of extending the spacetime
and/or the tangent space so as to accommodate such symmetries was introduced in [38, 39] and
more recently considered in [40, 44, 46]. In this section, we review some of the approaches to
replace the T-duality group by the U-duality group, in order to incorporate all the extra fields
(like R-R in Type II theories or the three-form of M-theory) in a duality covariant manner,
much under the same philosophy as that of DFT.

6.1. Generalized diffeomorphisms and the section condition

We have seen that the generalized diffeomorphisms of DFT (3.39) discussed in the previous
sections enjoy the following properties.

• They preserve the duality group invariant, in that case the O(D, D) metric ηMN .
• They are defined in terms of an invariant Y -tensor related to the definition of the strong

constraint.
• They reproduce the gauge transformations of the D-dimensional metric and 2-form, upon

application of the strong constraint.
• When ‘twisted’, they give rise to fluxes or gaugings in the representations allowed by

supersymmetry.
• Their closure imposes a set of constraints that, on the one hand are solved by the strong

constraint, and on the other, reproduce the quadratic constraints of the supergravity
gaugings upon ‘twisting’.

Clearly, the inclusion of other fields, like R-R sector in Type II string theory or the more
general 3-form of M-theory, requires an enlargement and further generalization of the already
generalized Lie derivative, to be compatible now with U-duality. All the transformation
properties of gravitational and tensorial degrees of freedom, which mix under U-duality,
must now be accommodated (and unified) in a new generalized Lie derivative. We will see
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Table 3. Some relevant representations of U-duality groups [45].

R1 R2

E4(4) = SL(5) 10 5
E5(5) = SO(5, 5) 16 10
E6(6) 27 27
E7(7) 56 133

that such a generalized transformation enjoys the U-duality extension of the properties listed
above.

This generalization is a little more involved since the U-duality group jumps with
dimension. For the n internal dimensions of M-theory, it corresponds to exceptional groups
En(n), and in n > 8 one encounters the complication of infinite-dimensional Kac–Moody-
type algebras. Given the disconnected structure of the groups for different dimensions, it is
convenient to work case by case. As in DFT, where the space is doubled to account for the
winding degrees of freedom of the string, here the space is further enlarged to account for
the wrapping states of M-branes. The internal space is then replaced by an extended mega-
space with extended dimensions, and here for simplicity we neglect the external spacetime.
Relevant representations for the different U-duality groups are given in table 3. The mega-space
associated with each of them is dim(R1) dimensional.

The generalized diffeomorphisms [47, 44] formally preserve the structure of those
analyzed before for DFT (we are using the notation of [45])

LξV M = LξV M + Y M
N

P
Q ∂PξQ V N, (6.1)

where Y is a U-duality invariant tensor ‘measuring’ the departure from the usual Lie derivative.
It can be generically decomposed as

Y M
N

P
Q = δM

Q δP
N − αP(adj)

M
N

P
Q + βδM

N δP
Q, (6.2)

where P(adj) is a projector to the adjoint representation of the U-duality group, α is a group-
theoretical quantity that depends on the dimension and β is a weight for tensorial densities that
also depends on the group. Indices M and N are in the R1 reps of table 3, and P(adj) corresponds
to the adjoint projection contained in the tensor product R1 ⊗ R1. It can be checked that these
generalized Lie derivatives preserve the invariants of each group. The appearance of the last
β-term is due to the fact that in the U-duality case one usually considers En(n) × R

+ tensorial
densities rather than just tensors (we will be more specific later).

Before showing the general results, to warm up let us first see how the DFT O(n, n) case
fits in this language. The projector to the adjoint representation is given by

O(n, n): P(adj)
M

N
P

Q = 1
2

(
δM

Q δP
N − ηMPηNQ

)
, (6.3)

and then, introducing this in (6.2) and comparing with (3.31), we find that the correct value
of the proportionality constants is given by (α, β) = (2, 0) for unweighted tensors. More
generally, the expression for Y in the different duality groups is given in table 4.

In the U-duality case, there is also an analogue of the strong constraint, also known as the
section condition [47, 44]:

P(R2 )MN
PQ∂P∂Q(· · ·) = 0, (6.4)

which again acts on any product of fields and gauge parameters. Generically, any solution to
this condition picks out an n-dimensional subspace of the mega-space, which can be associated
with the physical space in M-theory compactifications. Again, when analyzing the closure of
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Table 4. Invariant Y -tensor and proportionality constants for different dimensions. Here ηMN

is the O(n, n) invariant metric, εiMN is the SL(5) alternating tensor, (γ i)MN are 16 × 16 MW
representations of the SO(5, 5) Clifford algebra, dMNR and KMNPQ are the symmetric invariant
tensors of E6(6) and E7(7), respectively, and εMN is the symplectic invariant in E7(7). These results
were taken from [45]; we refer to that paper for more details.

Y M
Q

N
P α β

O(n, n) ηMNηPQ 2 0
E4(4) = SL(5) εiMNεiPQ 3 1

5

E5(5) = SO(5, 5) 1
2 (γ i)MN (γi)PQ 4 1

4

E6(6) 10dMNRd̄PQR 6 1
3

E7(7) 12KMN
PQ + δ

(M
P δ

N)

Q + 1
2 εMNεPQ 12 1

2

these generalized diffeomorphisms, one finds that the closure is achieved automatically when
restricted to configurations satisfying the section condition.

Analogous to the DFT case, when a duality twist reduction of these generalized Lie
derivatives is performed, they induce an effective gauge transformation giving rise to the
embedding tensor components of the different maximal gauged supergravities for different
dimensions. The analogies do not stop here, since it is also possible to construct an extended
geometrical formalism, introducing generalized connections, torsion and covariant Ricci-like
tensors for these generalized transformations. Let us now review how this works, specializing
to the E7(7) case for a detailed exposition.

The cases n � 7 were studied in [44] and [45]. The cases n � 2 just reduce to the
ordinary Riemannian geometry. The case n = 4 was studied in [53] in the context of gauged
supergravities, and a geometry for it was considered in [49]. The cases n = 5 and 6 were
related to SS compactifications in [54], and n = 7 in [55], where an extended geometry was
also formulated. A unified geometric description for n � 7 was considered in [50]. The case
n = 8 was explored in [51], and for n > 8 the groups are much more involved. An ambitious
programme intended to encompass all formulations under E11 can be found in [41].

6.2. The E7(7) case and maximal gauged supergravity

E7(7) is the U-duality group of gauged maximal supergravity in four dimensions [91], the
ungauged theory being obtained through compactifications of M-theory on a 7-torus [92]. The
idea here is to replace the internal 7-space by a 56-dimensional mega-space, and accommodate
the internal degrees of freedom in a generalized metric HMN defined on the mega-space. This
idea was first considered in [62], and here we will present the results of [55]. Since we are
ignoring the four-dimensional spacetime, the generalized metric should be identified with
the scalar degrees of freedom of the gauged supergravity. The generalized metric transforms
covariantly under G = E7(7) × R

+ and is invariant under the maximal compact subgroup
H = SU (8). It can be written in terms of a generalized bein EĀ

M taking values in the quotient
G/H:

EĀ
M = e−�ẼĀ

M, (6.5)

where we have separated a conformal factor � corresponding to the R
+ components. Here the

flat indices Ā, B̄, . . . take values in H and the curved ones M, N, . . . in G. Then, ẼĀ
M lives in

the quotient E7(7)/SU (8), and the tilde refers to the E7(7) part of G only. G has a (weighted)
symplectic invariant ωMN that raises and lowers indices, and a quartic invariant KMNPQ which
is totally symmetric. The fundamental representation of E7(7) is 56 and the adjoint is 133.
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Given a tensorial density V M , the generalized Lie derivative (or equivalently the exceptional
Dorfman bracket) reads

LξV M = ξP∂PV M − 12P(adj)
M

N
P

Q ∂PξQ V N − 1
2∂PξP V M. (6.6)

Here, P(adj)((MN)(PQ)) is the projector to the adjoint representation, defined in terms of the E7(7)

invariants:

P(adj)MNPQ = (tα )NM(tα )PQ = 1
12ωM(PωQ)N + KMNPQ. (6.7)

As we did before in the DFT case, here we can compute the closure of these transformations

�123
M = −�ξ1Lξ2ξ

M
3 = ([Lξ1 , Lξ2 ] − LLξ1 ξ2 )ξ

M
3 = 0 (6.8)

and obtain

�[12]3
M = Y Q

L
O

I ∂Oξ I
[2 ξL

1] ∂QξM
3 + AM

N
J

LY Q
J

O
I ∂Qξ I

[2 ∂OξL
1] ξN

3 + QM
N

QO
LI ∂Q∂Oξ I

[2 ξL
1] ξN

3

= 0,

�(12)3
M = −Y Q

L
O

I ∂Qξ I
(1 ξL

2) ∂OξM
3 + QM

N
QO

LI∂Q(ξL
(1 ∂Oξ I

2)) ξN
3 + 1

4ωLIω
QO ∂QξL

1 ∂Oξ I
2 ξM

3

= 0, (6.9)

where we have defined

QM
N

QO
LI = Y Q

J
O

(LAJ
I)

M
N + 1

2ωILY QMO
N − 1

2Y Q
L

O
Iδ

M
N . (6.10)

Note that all derivatives are contracted as

Y M
P

N
Q∂M∂N = (

1
2ωMNωPQ − 12P(adj)PQ

MN
)
∂M∂N . (6.11)

As we mentioned in the previous section, when the so-called section condition (6.4)

P(adj)PQ
MN∂M∂N (· · ·) = 0 (6.12)

is imposed, the closure condition �123
M = 0 is automatically satisfied. In fact, it can be

seen that any solution to this condition selects a seven-dimensional subspace of the full 56-
dimensional mega-space, permitting us to make contact with the physical internal compact
directions. When (6.12) holds, it can also be proven that ωMN∂M∂N (· · ·) = 0, and therefore
also Y M

P
N

Q∂M∂N (· · ·) = 0, in analogy with DFT (3.30).
Following the DFT logic (3.57), we can now define a dynamical flux

LEĀ
EB̄ = FĀB̄

C̄EC̄, (6.13)

with

FĀB̄
C̄ = �ĀB̄

C̄ − 12P(adj)
C̄

B̄
D̄

Ē�D̄Ā
Ē + 1

2�D̄Ā
D̄δC̄

B̄
, (6.14)

where

�ĀB̄
C̄ = EĀ

M∂MEB̄
N (E−1)N

C̄ (6.15)

is the G-generalized Weitzenböck connection. Rotating these expressions with the bein, we
can define the fluxes with curved indices

FMN
P = �MN

P − 12P(adj)
P

N
R

S�RM
S + 1

2�RM
RδP

N, (6.16)

and the corresponding Weitzenböck connection in curved indices takes values in the algebra
of G:

�MN
P = −∂M� δP

N + �̃MN
P = �M

0(t0)N
P + �̃M

α(tα )N
P. (6.17)

Here, (t0)N
P = −δP

N is the generator of R
+. The 56 × 133 part

�̃MN
P = (Ẽ−1)N

B̄∂MẼB̄
P (6.18)
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contains the irreducible representations 56 × 133 = 56 + 912 + 6480. The projectors onto the
first two representations in this product are given by [93]

P(56)M
α,N

β = 56
133 (tαtβ )M

N,

P(912)M
α,N

β = 1
7δα

βδN
M − 12

7 (tβtα )M
N + 4

7 (tαtβ )M
N . (6.19)

Equations (6.16)–(6.19) imply that the fluxes are in the 912 and 56 representations only.
More precisely,

FMN
P = XMN

P + DMN
P, (6.20)

with

XMN
P = �M

α(tα )N
P with �M

α = 7P(912)M
α,N

β �̃N
β, (6.21)

and

DMN
P = −ϑMδP

N + 8P(adj)
P

N
Q

MϑQ, ϑM = − 1
2 (�̃PM

P − 3∂M�). (6.22)

The fluxes F involve therefore a projection onto the 912 given by the gaugings XMN
P

plus contributions from the gaugings ϑM . As in the DFT case, in the language of gauged
supergravity, they correspond to the gauge group generators, i.e. they are contractions of the
embedding tensor with the generators of the global symmetry group. For this reason, we will
sometimes call them ‘gaugings’. The XMN

P piece in (6.20) corresponds to the 912 component
of the fluxes, satisfying the properties

XM[NP] = XMP
P = X(MNP) = XPM

P = 0, (6.23)

which are the well-known conditions satisfied by gaugings in maximal supergravity. The DMN
P

piece (6.22), on the other hand, contains two terms: one belongs to the 56 associated with R
+

and the other one belongs to the 56 in 56 × 133. Note, however, that both terms contain the
same degrees of freedom in terms of ϑM and are therefore not independent. With these results,
we are able to express the gauge group generators (FM )N

P as in [94]

FM = ϑMt0 + (�M
α + 8ϑP(tα )M

P)tα. (6.24)

In terms of FĀB̄
C̄, the closure conditions (6.9) evaluated on frames read

�ĀB̄C̄
D̄ = −

(
[FĀ, FB̄] + FĀB̄

ĒFĒ

)
C̄

D̄

−2∂[ĀFB̄]C̄
D̄ − 12PD̄

(adj)C̄
Ē

F̄∂ĒFĀB̄
F̄ + 1

2∂ĒFĀB̄
ĒδD̄

C̄
= 0. (6.25)

When the fluxes are constant, we recover the quadratic constraints of maximal gauged
supergravity. Note that, as it happens in DFT, these constraints can be satisfied through
configurations that violate the section condition. This implies necessarily going beyond
supergravity, and then gives rise to a novel description of non-geometry in maximal
supergravity. This might be useful, for instance, to find an extended geometrical uplift of
the new SO(8) gaugings [96], which seem to find obstructions when it comes to uplifts to
D = 11 supergravity [97]. Conditions (6.25), in turn, imply that the dynamical fluxes in flat
indices behave as scalars under the following generalized diffeomorphisms with respect to
frame vectors:

δξ FĀB̄
C̄ = ξ D̄∂D̄FĀB̄

C̄ + ξ D̄�D̄ĀB̄
C̄. (6.26)

We can now proceed as in the DFT case and look for a geometric construction that gives
the action from traces of some generalized Ricci tensor. Of course, since we only deal with
scalars here, the action will be the scalar potential of the maximal theory. Having defined the
generalized notion of the Lie derivative in (6.6), it is natural to look for derivatives that behave
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covariantly under such transformations. We begin by defining the covariant derivative of a
bein EĀ

M as

∇MEĀ
N = ωMĀ

B̄EB̄
N = ∂MEĀ

N + �MP
NEĀ

P, (6.27)

in terms of a Christoffel connection � or alternatively a spin connection ω. They are related
to the Weitzenböck connection defined in (6.15), which takes values in the algebra of G. In
addition, one can relate the gaugings to the Weitzenböck connection through projections, as
in equation (6.14). These connections must also transform properly so as to compensate the
failure of the derivative to transform as a tensor. Given the fact that the covariant derivative is
requested to transform covariantly, so must the spin connection.

We can define the generalized torsion through [44]

TĀB̄
C̄ ≡ (E−1)M

C̄(L∇
EĀ

− LEĀ
)EB̄

M, (6.28)

where L∇ is defined as in (6.6), but with a partial replaced by a covariant derivative. Using
(6.27), we arrive at

TĀB̄
C̄ = ωĀB̄

C̄ − 12P(adj)
C̄

B̄
P̄

Q̄ωP̄Ā
Q̄ + 1

2ωD̄Ā
D̄δC̄

B̄
− FĀB̄

C̄. (6.29)

Since
√
H does not transform as a density under the generalized diffeomorphisms (6.1),

the proper measure is given by (
√
H)−1/28 = e−2�, since

δξ e−2� = ∂P(e−2�ξP). (6.30)

This can be used to impose compatibility with the determinant of the generalized metric, and
together with vanishing torsion they determine the spin connection (which lives in 56 × 133)
up to a 6480 piece. This piece remains undetermined under these conditions, but a part of it
(corresponding to the 63 in 133 = 63 + 70) can be fixed through metric compatibility.

It can then be shown that a torsionless and metric compatible spin connection has in
particular the following determined components:

WPM
P = −2ϑM

P(912)QR
S,MN

P WMN
P = 1

7 XQR
S

P(56)QR
S,MN

P WMN
P = − 16

19 P(adj)
S

R
T

Q ϑT , (6.31)

where the projectors are those of (6.19) contracted with the E7(7) generators. This is analogous
to (4.37) and (4.40) in DFT, where the projections there simply amounted to tracing and
antisymmetrizing the spin connection.

Finally, following the DFT geometrical construction, a generalized Ricci tensor can be
constructed [44] (unlike the DFT case, the definition of a Riemann tensor is less clear)

RMN = 1
2

(
RMN + RNM + �RM

PY R
P

S
Q�SN

Q − �RM
PY R

P
S

Q�SN
Q
)

(6.32)

which is covariant for solutions to the closure constraints. When tracing it with the generalized
metric, we can then define a generalized Ricci scalar

R = 1
4H

MNRMN (6.33)

which, for any torsionless and metric compatible connection, can be cast in the form

R = 1
672

(
XMN

PXQR
SHMQHNRHPS + 7HMNXMP

QXNQ
P
)

(6.34)

provided the gaugings ϑM = 0. Remarkably, this is exactly the scalar potential of maximal
supergravity with the very exact overall factor. The relative factor 7 is related to that in (6.31)
and can be traced back to the fact that the generalized Lie derivatives are consistent with
supersymmetry, in that they generate fluxes in accordance with the linear constraints of the
maximal theory.
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Finally, note that the Ricci scalar (6.34) can be combined with the measure (6.30) to
render a gauge invariant action

S =
∫

dX e−2�R. (6.35)

We have left some important points uncovered here. One of them is the coupling between
this ‘scalar’ internal sector with the rest of the theory, i.e. the external spacetime, its metric
and vectors (plus the p-form hierarchy of maximal supergravities [95]). The other one is
the relation between this setup with string or M-theory degrees of freedom. To establish the
correspondence, one then has to provide a proper parameterization of the generalized bein of
the generalized metric. Work in this direction was addressed in [40, 44, 46].

7. Worldsheet motivations and approaches to DFT

As discussed in the previous sections, DFT was formulated with the purpose of incorporating T-
duality, an essentially stringy effect, into a particle field theory. Clearly, it would be interesting
to deduce DFT from a worldsheet action, much in the same way as supergravity is obtained
as the low-energy effective field theory from the two-dimensional description of the string
dynamics. In this section, we briefly review some of the attempts that have been followed to
construct an O(D, D) covariant two-dimensional worldsheet theory, from which DFT might
be explicitly derived.

Before proceeding to DFT, we briefly recall the process leading from the worldsheet
theory to supergravity. We refer the reader to the string theory books [4] and references therein
for a more detailed and complete discussion of this issue. We then discuss how the procedure
has been implemented for DFT.

7.1. The string spacetime action

Strings propagating in backgrounds of massless closed string states are described by an
interacting two-dimensional field theory, obtained by exponentiating the vertex operators
creating those states. The action is given by

S = 1

4πα′

∫
d2σ

√
h

[(
habgi j(x) + iεabbi j(x)

)
∂axi∂bx j + α′Rφ(x)

]
. (7.1)

This is a nonlinear sigma model where α′ is the square of the string length scale, σ a, a = 0, 1
refer to the worldsheet coordinates τ and σ , respectively, gi j is the spacetime metric, bi j is the
antisymmetric tensor, the dilaton involves φ and the trace of gi j, and R is the curvature scalar
of the worldsheet.

A consistent string theory requires the two-dimensional quantum field theory to have
a local Weyl and Lorentz invariance. This implies that the trace and εab contraction of the
energy–momentum tensor, respectively, should vanish on-shell, which imposes rather non-
trivial conditions on the admissible background fields. Actually, to regulate divergences in a
quantum theory, one has to introduce a UV cut-off, and therefore, physical quantities typically
depend on the scale of a given process after renormalization. Conformal invariance is achieved
if the coupling constants do not depend on the scale of the theory. In this case, the couplings
are g, b and φ and the scale dependence is described by the β-functions of the renormalization
group.

The β-functions are computed perturbatively. One first expands the fields xi(τ, σ ) around
a classical solution xi = xi

cl + π i, where π i is the quantum fluctuation. The expansion of the
Lagrangian then gets quadratic kinetic terms plus interactions of the fluctuations. The theory
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has an infinite number of coupling constants: all order derivatives of the background fields
evaluated at xi

cl . When all the couplings are small, the theory is then weakly coupled. Assuming
the target space has a characteristic length scale Rc, the effective dimensionless couplings are
of the order α′1/2R−1

c , and then perturbation theory makes sense if Rc is much greater than the
string scale. Up to terms involving two spacetime derivatives, the β-functions are given by

β
g
i j = α′Ri j + 2α′∇i∇ jφ − α′

4
HiklH

kl
j + O(α′),

βb
i j = − α′

2
∇kHki j + α′Hki j∇kφ + O(α′2),

βφ = D − Dcrit

4
− α′

2
∇2φ + α′∇kφ∇kφ − α′

24
Hi jkHi jk + O(α′2), (7.2)

where Ri j is the spacetime Ricci tensor, to be distinguished from the worldsheet Ricci tensor
Rab. Terms with more derivatives are of higher order in α′1/2R−1

c . Combining (7.2), one then
recovers (3.19). The term D − Dcrit in βφ is the classical Weyl anomaly, which vanishes in the
critical dimension Dcrit = 26 (Dcrit = 10) in (super)string theory in flat spacetime, ensuring
that the negative norm states decouple.

The vanishing β-function equations, determining the Weyl invariance and UV finiteness of
the theory, can be interpreted as the equations of motion derived from the following spacetime
action:

S =
∫

dDx
√

ge−2φ

[
−2(D − Dcrit)

3α′ + R − 1

12
Hi jkHi jk + 4∂iφ∂ iφ + O(α′)

]
. (7.3)

We recognize here the action for the bosonic universal gravity sector introduced in (3.17).7

This action can alternatively be obtained from the low-energy limit of scattering
amplitudes of massless string modes. Low energies here refer to energies much smaller than
the string scale, i.e. E � (α′)−

1
2 , which is equivalent to fixing E and taking the limit α′ → 0.

Recalling the mass spectrum of closed strings

M2 = 2

α′ (N + Ñ − 2), (7.4)

where N and Ñ are the number operators for the left and right moving string modes, we see
that it is in this regime that massive modes decouple and backgrounds of massive string states
can be consistently neglected.

The T-duality symmetry of string scattering amplitudes suggests that a T-duality covariant
formulation of the string worldsheet action should exist, from which one could derive a T-
duality covariant effective action, following a procedure analogous to the one we have just
described for conventional string theory. In the rest of this section, we review various proposals
that have been worked out in the literature in order to obtain such formulation and we then
discuss their connection with DFT.

7.2. Double string sigma model

Originally, T-duality on the worldsheet was implemented in two-dimensional nonlinear sigma
models in backgrounds with n compact dimensions in which the metric and 2-form fields have
an isometry along the compact directions [76, 77, 98]. By gauging the isometry through a
gauge connection and adding to the action a Lagrange multiplier constraining it to be pure
gauge, so that the number of worldsheet degrees of freedom remains the same, one obtains the
dual theory.

7 The equation of motion (3.21) combined with the trace of (3.19) reproduces βφ here when D = Dcrit.
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Specifically, suppose the nonlinear sigma model (7.1) describing the string dynamics in a
metric and a 2-form background

S = 1

2π

∫
d2z(gi j + bi j)∂xi∂̄x j (7.5)

is invariant under an isometry acting by the translation of xκ and the fields gi j and bi j are
independent of xκ (here xκ refers to one or more spacetime coordinates). Here, we disregard
the dilaton and use complex coordinates z = σ + iτ, z̄ = σ − iτ on a flat worldsheet in units
in which α′ = 1/2. The dual theory can be found from the extended action

S′ = 1

2π

∫
d2z[(gi j + bi j)DxiD̄x j + x̃κ (∂Āκ − ∂̄Aκ )], (7.6)

where Dxκ = ∂xκ + Aκ , and the Lagrange multiplier x̃κ enforces the pure gauge condition
∂Āκ − ∂̄Aκ = 0. Gauge fixing xκ = 0, one obtains the dual model

S̃ = 1

2π

∫
d2z(g̃i j + b̃i j)∂ x̃i∂̄ x̃ j (7.7)

by integrating out the gauge fields. In this new theory, g̃i j and b̃i j are given by Buscher’s rules
(3.11):

g̃κκ = 1

gκκ

, g̃κi = bκi

gκκ

, g̃i j = gi j − gκigκ j − bκibκ j

gκκ

,

b̃κi = gκi

gκκ

, b̃i j = bi j + gκibκ j − bκigκ j

gκκ

. (7.8)

Clearly, the background fields are in general completely changed by the duality transformation.
In [99], the (Abelian) T-duality transformations were reformulated in terms of chiral

Noether currents associated with the isometries, and it was shown that any dual pair of sigma
models can be obtained by gauging different combinations of chiral currents. The equivalence
of dual sigma models at the quantum level was analyzed in [100], where it was shown that,
while one Lagrangian representation is IR free, the dual one is asymptotically free.

This initial approach to deal with T-duality in the worldsheet theory allows us to map a
sigma model action to its T-dual one, but neither of them is manifestly O(D, D) covariant.
However, as mentioned above, the T-duality symmetry of string theory suggests that an
O(D, D) covariant worldsheet action should exist. A natural guess for such formulation would
be a sigma model where the target space coordinates are doubled. Actually, a democratic
treatment of momentum and winding modes leads to consider independently the ordinary
target space coordinates xi = xi

+(σ + τ ) + xi
−(σ − τ ) associated with momentum and the

dual ones x̃i = xi
+(σ + τ ) − xi

−(σ − τ ) associated with winding, or equivalently, the left-
and right-moving closed string fields. Moreover, since T-duality mixes the metric and 2-form
fields, it is reasonable to expect that these fields combine to form the generalized metric HMN

in (3.22). These heuristic arguments lead to a worldsheet action of the form

S =
∫

dXM ∧ �dXNHMN, XM =
(

x̃i

xi

)
, (7.9)

where � is the Hodge dual operation on the worldsheet, which is manifestly duality covariant
and two-dimensional Lorentz invariant. However, this action describes twice as many degrees
of freedom as the action (7.5), and then, it has to be supplemented with additional constraints
in order to eliminate the extra coordinates and be able to reproduce the same physics.

A different approach was followed by Tseytlin, who was able to construct a manifestly
O(D, D) covariant worldsheet action for chiral bosons [1]. Evidencing the fact that T-duality
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is a canonical transformation of the phase space of string theory [101], O(D, D) covariance is
achieved through a first-order action in time derivatives:

S = 1

2

∫
d2σ (HMN∂1XM∂1XN − ηMN∂0XM∂1XN ), (7.10)

which can be naturally interpreted as being expressed in terms of phase-space variables, with
the dual fields playing the role of the integrated canonical momenta. This action is invariant
under the following sigma-model-type symmetry:

X → ηX, H → ηTHη, (7.11)

transforming both the fields and the couplings.
The price for having duality as a symmetry of the action is the lack of two-dimensional

Lorentz invariance. Indeed, introducing the left- and right-moving parts of the string
coordinates as independent off-shell fields, one has to face the issue of having to deal with a
non-Lorentz invariant action. This is actually the case in any Lagrangian description of chiral
scalars, as originally discussed in [102], and in general, the Lorentz invariance is recovered
on-shell [1, 13, 103]. Local Lorentz invariance is achieved here if HMN is either constant
or depends only on half of the coordinates (in the language of DFT, the Lorentz invariance
requires the strong constraint [37]). The equivalence of the equations of motion following
from (7.10) with those of the ordinary sigma model (7.5) was shown in [37].

One way to obtain the action (7.10) starting from (7.1) (setting φ = 0) is to write the
Hamiltonian density in a manifestly O(D, D) invariant form, in terms of the canonical momenta
pi conjugate to xi: pi = −gi j∂0x j + bi j∂1x j, namely

H = 1

2
�MHMN�N, with �M =

(
pi

∂1xi

)
. (7.12)

Identifying the momenta pi with the dual coordinates x̃i as pi = ∂1x̃i, and rewriting the
Lagrangian as L = pi∂0xi −H, the action (7.1) can be recast in terms of the double coordinates
XM as

S = 1

2

∫
d2σ (HMN∂1XM∂1XN − ηMN∂0XM∂1XN − �MN∂0XM∂1XN ), (7.13)

where

�MN =
(

0 δi
j

−δi
j 0

)
. (7.14)

The �-term does not contribute to the field equations and does not affect the classical theory,
but it is necessary in the quantum theory [14] and, in particular, to show the equivalence of the
doubled to the conventional partition function [35]8. The correspondence with the standard
formulation of critical string theory only appears after integrating out one of the dual fields.
Then, either the original or the dual Lorentz invariant action is recovered.

A similar procedure was followed by Siegel in the so-called two-vielbein formalism
[98], where the metric and antisymmetric tensor are combined in two independent vielbeins.
Alternatively, as demonstrated in [104], the non-Lorentz invariant doubled action (7.10) can
be obtained by fixing the axial gauge in the duality and Lorentz invariant extended action
(7.6). This axial gauge fixing was identified in [105] as being responsible for the non-Lorentz
invariance of the action, and a non-local gauge fixing condition was proposed in order to get
a manifestly Lorentz invariant action.

Tseytlin’s formulation can be generalized to allow for background fields with arbitrary
dependence on the double coordinates, i.e. other than a generalized metricHMN (X ) generically

8 Reference [35] also shows the modular invariance of the one-loop double string theory.
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depending on the double coordinates, one can include a symmetric matrixGMN (X ) generalizing
ηMN and an antisymmetric tensor CMN (X ):

S = 1

2

∫
d2σ [−(CMN (X ) + GMN (X ))∂0XM∂1XN + HMN (X )∂1XM∂1XN]. (7.15)

Demanding the on-shell Lorentz symmetry of this action gives constraint equations for the
background fields9. Classical solutions of these equations were found in [70]. More general
nonlinear sigma models of this form, in which the generalized metric is replaced by a
generic symmetric matrix, were analyzed in [106], and it was shown that the solutions to
the Lorentz invariance constraints give an action with the form of the Poisson–Lie T-duality
action introduced in [107].

For completeness, we list here other approaches that have been followed in the literature
to construct double sigma models.

• In backgrounds with a toroidal fiber, the string dynamics can be described by the (partially)
doubled formalism introduced by Hull in [14]. This formalism describes a worldsheet
embedding into backgrounds that are locally T n bundles, with coordinates (Y i, X

A), where
Y i are the coordinates of the base and X

A are the coordinates of the doubled torus fiber.
The Lagrangian is a sum of an ordinary sigma model Lagrangian L(Y ) like that in (7.1)
plus a sigma model for the generalized metric HAB of the doubled fibers, which crucially
only depends on Y i and there is isometry in all the fiber directions:

L = 1
4HAB(Y ) dX

A ∧ � dX
B + 1

2�AB dX
A ∧ dX

B + L(Y ). (7.16)

The action must be supplemented with the chirality constraint

dX
A = ηABHBC � dX

C, (7.17)

ensuring that the fiber directions can be thought of as chiral bosons on the worldsheet, so
that the doubling does not increase the number of physical degrees of freedom.

This doubled formalism has been very useful in elucidating the structure of non-
geometric backgrounds, such as T-folds.

• In [36], the constraint (7.17) was incorporated into the action, which then reads

S = 1

2

∫
d2σ [−Gαβ∂1Xα∂1Xα + Lαβ∂1Xα∂0Xβ + Kαβ∂0Xα∂0Xβ], (7.18)

where Xα = (Y i, X
A) and

Gαβ =
(

gi j 0
0 HAB

)
, Lαβ =

(
0 0
0 ηAB

)
, Kαβ =

(
gi j 0
0 0

)
, (7.19)

gi j being the standard sigma model metric for the base.
• For doubled backgrounds which are locally a group manifold, the nonlinear Poisson–Lie

sigma model proposed in [107] was rewritten in [108] as

S = 1

2

∮
d2σ

(
HAB∂1XA∂1XB − ηAB∂1XA∂0XB

) + 1

12

∫
V

tIJK dXI ∧ dXJ ∧ dXK, (7.20)

where V is the volume of the membrane whose boundary is the string worldsheet and tIJK

are the structure constants of the gauge algebra.

9 The term with coupling CMN (X ) is clearly Lorentz invariant.
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7.3. DFT from the double sigma model

We have seen that the vanishing β-function equations can be interpreted as equations of motion
derived from the string low-energy effective field theory. It is then through the background field
equations of the double sigma model that one expects to make the connection between string
theory and DFT. But this raises some conceptual questions. For instance, perturbation theory
in the nonlinear sigma model (7.1) is performed around the large volume limit. Can one also
define a perturbation theory around the limit of very small substringy sizes of the background?
Or even more puzzling, is there a well-defined weak-coupling limit of the T-duality invariant
models (7.10) or (7.15)?

These questions have been analyzed by several authors from different viewpoints. From the
β-functions’ standpoint, the background field method was adapted to the doubled coordinates,
expanding them around a classical solution as XM = XM

cl +�M . Since the fluctuation �M does
not in general transform as a vector, in order to have a covariant expansion, the expansion
parameter is defined as the tangent vector to the geodesic from XM

cl to XM
cl + �M whose length

is equal to that of the geodesic. Since this is a contravariant vector, the expansion is then
organized in terms of covariant objects.

The crucial point to elucidate in order to consistently apply this method to the double
sigma models is how to define geodesics in double geometries. The simplest options starting
from the action (7.15) are to consider geodesics of GMN or geodesics ofHMN , with the resulting
expansions involving covariant derivatives and tensors with respect to the chosen metric. The
background field method was first applied to the sigma model of Hull’s doubled formalism in
[36] using geodesics of HMN . This was then generalized in [70] for the sigma model (7.15)
where the expansion was also performed using geodesics of GMN and general expressions for
the Weyl and Lorentz anomaly terms were found.

UV finiteness and worldsheet Weyl invariance at one loop were shown in [36] to require the
vanishing of the generalized Ricci tensor when DFT is restricted to a fibered background of the
type that the doubled formalism describes. In [37], the vanishing βH-function equation from
the sigma model (7.10), with HMN arbitrarily depending on any of the doubled coordinates,
subject to the strong constraint, was found to match the equation of motion for the generalized
metric obtained from the DFT action (3.71). Hence, the conformal invariance of the double
chiral sigma model (7.10) under the strong constraint corresponds to the generalized Ricci
flatness equation, and this implies that DFT is the spacetime effective field theory of the double
worldsheet action. A preliminary similar result was also found in [37] for the generalized
dilaton.

Although imposing the strong constraint means the theory is no longer truly doubled, the
appearance of the generalized Ricci tensor in this context is non-trivial and seems evidence not
only of an effective double geometry, but also of a string theory origin of DFT. Nevertheless, it
would be interesting to investigate if these conclusions still hold beyond the strong constraint,
in a truly double space. Indeed, as extensively discussed in the preceding sections, DFT with
the strong constraint is equivalent to the standard field theory description of the massless modes
of the string. Actually, the strong constraint implies one can perform an O(D, D) rotation, so
that the fields only depend on xi and, since all O(D, D) indices in the action are contracted
properly, its form is preserved under such a rotation.

Furthermore, we have seen that in standard string theory, perturbation theory makes sense
in the background field expansion of the action (7.1) if α′1/2 � Rc and in this regime one
can also neglect the massive string states. In order to analyze the validity of perturbation
theory in the double space, since O(n, n) duality is a symmetry of string theory on an
n-torus with a constant bi j background, which survives in the effective field theory when
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it is dimensionally reduced on T n, it is convenient to recall the mass spectrum of closed strings
in these backgrounds. In terms of the quantized canonical momenta pi = ni

R and winding
numbers p̃i, the mass in d = D − n dimensions is given by

m2 = 1

2α′2 gi j(v
i
Lv

j
L + vi

Rv
j
R) + 2

α′ (N + Ñ − 2),

vi
L,R = α′gi j

(n j

R
+ b jk p̃kR

)
± p̃iR, (7.21)

where N and Ñ are the number operators for the left- and right-moving oscillators, respectively,
of all the coordinates: compact and non-compact (we are assuming, for simplicity, the same
radius R for all compact dimensions). DFT deals with massless states of the D-dimensional
theory, i.e. having N = Ñ = 1, and then it includes all the momentum and winding modes of
the lower dimensional theory, which are massive. Since it truncates the massive levels (of the
decompactified theory), one wonders whether this corresponds to a consistent truncation. Then,
a better understanding of this issue seems necessary in order to strengthen the link between
string theory and DFT. By the same token, given that a T-duality symmetric description treats
the compactification scale and its inverse on an equal footing, it seems important to clarify
what is the rank of parameters for which the coupling constants are small and the theory is
weakly coupled, so that the perturbative expansion can be trusted.

Another way to tackle these issues is through the computation of scattering amplitudes
describing the interactions of winding and momentum states in geometric and non-geometric
backgrounds. The first step in this direction was taken in [109], where scattering amplitudes
of closed string tachyons in an R-flux background were computed and a very interesting non-
associative behavior of the spacetime coordinates was found. We shall review this work in
the next section, but here we point out that an effective field theory analysis of these kinds of
scattering amplitudes, which would give an alternative approach to this question, is not yet
available.

In the absence of a better comprehension, it is important to note that the background-field
equations in a particular duality frame are the same as for the usual string. A priori this does not
have to be the case since, as we have seen, the string winding modes could in principle correct
the usual β-functions. Moreover, given that T-duality is corrected by worldsheet instantons and
the doubled space contains the naive T-dual, corrections to the double geometry could arise.
It is then reasonable to expect that once double geometry is understood, one will be able to
elucidate these questions. In this sense, a higher loop calculation of the β-functionals would be
important since the full generalized Riemann tensor is expected to appear in case the analogy
with ordinary string theory goes through. As a matter of fact, as discussed in section 4, although
a duality covariant generalized Riemann tensor has been constructed whose contractions give
the generalized Ricci tensor and scalar, it cannot be completely determined from the physical
fields of DFT as in ordinary Riemannian geometry. Better understanding the link between
string theory and DFT might also help to uncover the geometry of the double space.

8. Other developments and applications

DFT has proven to be a powerful tool to explore string theoretical features beyond the
supergravity limit and Riemannian geometry. Over the last few years there has been a great deal
of progress on these issues, growing largely out of the systematic application of symmetries and
dualities. We certainly do not have a complete understanding of DFT, but an increasing number
of promising directions have opened following the original works and several encouraging
ideas have been put forward. We cannot discuss all of them in detail here but, besides the
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topics covered above and by way of conclusion, we would like to comment on some recent
developments and open problems.

8.1. Non-commutative/non-associative structures in closed string theory

In the presence of a constant 2-form field, the coordinates of the end points of open strings
attached to a D-brane become non-commutative [110]. Moreover, in the background of a non-
trivial H-flux, the coordinates are not only non-commutative but also non-associative [111].
This behavior is revealed by scattering amplitudes of open string states and usually interpreted
as a consequence of the structure of interactions in open string theory, which involve Riemann
surfaces with boundaries. To compute scattering amplitudes, the vertex operators creating
open string states must be inserted on the boundaries, and then a background that is sensitive
to ordering might distinguish the insertion points.

In contrast, the sum over worldsheets defining interactions of closed strings contains
Riemann surfaces with no boundaries, in which the vertex operators are inserted in the bulk.
Therefore, one would not expect to have non-commutative coordinates in closed string theory
because no unambiguous notion of ordering can be defined in scattering amplitudes. However,
it has been argued that in presence of non-geometric fluxes, the coordinates of closed strings
can become non-commutative or even non-associative [112, 113, 109].

Actually, non-geometric fluxes twist the Poisson structure of the phase space of closed
strings and the non-vanishing equal time commutator of closed string coordinates in a Q-flux
background has been conjectured to be given by

lim
σ→σ ′

[xi(τ, σ ), x j(τ, σ ′)] =
∮

Ck

Qi j
k dxk, (8.1)

where Ck is a cycle around which the closed string wraps, while non-associativity has been
argued to arise in an R-flux background in which

lim
σ ′,σ ′′→σ

([xi(τ, σ ), [x j(τ, σ ′), xk(τ, σ ′′)]] + cyclic) = Ri jk. (8.2)

In particular, non-commutativity has been studied in the three-dimensional background
with Q-flux that is dual to the flat 3-torus with H-flux discussed in sections 5.2 and 5.3. Recall
that one can use Buscher’s rules (3.11) to map the flat 3-torus with H-flux to a twisted torus
with zero H-flux in which the twist is related to a geometric flux ω. A further T-duality then
yields the non-geometric Q-flux background in which the metric and 2-form are locally but
not globally well defined. In the simple case in which Ck is a circle and the Q-flux is constant:
Qi j

k = Qεi j
k, the commutator (8.1) becomes

lim
σ→σ ′

[xi(τ, σ ), x j(τ, σ ′)] = 2πQεi j
k p̃k, (8.3)

and then we see that non-commutativity is a non-local effect related to winding.
Non-associativity of the string coordinates was first observed in the theory of closed

strings moving on the 3-sphere S3 in the presence of an H-flux background [112]. This theory
is described by the exactly solvable SU (2)k WZW model, and then a conformal field theory
computation can be performed. A non-vanishing equal-time, equal-position cyclic double
commutator of the spacetime coordinates, independent of the worldsheet coordinates, was
found. More recently, a non-trivial cyclic three product was also found in [109] from the
scattering amplitudes of closed string tachyon vertex operators in an R-flux background.
The three-tachyon correlator gets a non-trivial phase in R-space depending on the operators
ordering, before enforcing momentum conservation. The non-vanishing cyclic 3-bracket of
the coordinates appears then to be consistent with the structure of two-dimensional conformal
field theory.
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The non-associative geometry probed by closed strings in flat non-geometric R-flux
backgrounds has also been studied in [72] from a different perspective. Starting from a
Courant sigma model on an open membrane, regarded as a topological sector of closed string
dynamics in R-space, the authors derive a twisted Poisson sigma model on the boundary of
the membrane. For the constant R-flux, they obtain closed formulas for the corresponding
non-associative star product and its associator.

Recall that starting from a geometrical background and performing three T-dualities in
these three-dimensional backgrounds, one runs out of isometric directions. In particular, in
the R-flux background, the notion of locality is completely lost in the conventional space. In
DFT instead, the resulting background depends on a dual coordinate, and these global and
local issues can be avoided. Thus, by naturally incorporating all the T-dual backgrounds in a
covariant picture through a double space, DFT provides a convenient framework for analyzing
non-commutativity/non-associativity. Actually, as discussed in [113], in the doubled phase-
space, T-duality would exchange commutators among the conventional spacetime coordinates
with others among the dual ones. If coordinates commute in the first setting while the duals
do not, the situation gets exchanged after T-duality.

8.2. Large gauge transformations in DFT

While all the results of this review are based on the infinitesimal generalized diffeomorphisms
(3.39), finite gauge transformations were considered by Hohm and Zwiebach in [114] under
the imposition of the strong constraint. They are defined through exponentiations of the
generalized Lie derivatives, and are interpreted as generalized coordinate transformations in
the doubled space. In [114], a formula for large gauge transformations was proposed and
tested, which is written in terms of derivatives of the coordinate maps. Successive generalized
coordinate transformations give a generalized coordinate transformation that differs from the
direct composition of the original two: it is constructed using the C-bracket. Interestingly,
although these transformations form a group when acting on fields, they do not associate when
acting on coordinates, and then one wonders whether this can be related to the works in [112].

By now, it is not completely known how to construct a non-trivial patching of local regions
of the doubled manifold leading to non-geometric configurations. As we reviewed, the notion
of a T-fold is based on the idea that field configurations on overlaps can be glued with the use
of T-duality transformations. In order to address questions of this type in DFT, we need a clear
picture of the finite gauge transformations. This is a very interesting line of research.

8.3. New perspectives on α′ corrections

The effective supergravity action is nicely covariantized under the T-duality group and
generalized diffeomorphisms. One can then wonder if a similar covariantization occurs for
the α′ corrections to the action. This question was posed in [29], where a first step in this
direction was given. Specifically, within a generalized metric formulation, it was shown that the
Riemann-squared scalar Ri jklRi jkl , familiar in α′ corrections to the low-energy effective action
of string theory, is not obtained (after the proper implementation of the strong constraint in the
supergravity frame ∂̃ i = 0) from any covariant expression built out of the generalized metric
and generalized dilaton (and setting bi j = φ = 0), and quartic in generalized derivatives. For
the sake of concreteness, let us be more specific. This obstruction appears due to a problematic
contribution in the expansion, taking the form gnpgiqgklgmtgrs∂kgmr∂igns∂q∂lgpt . It was shown
that there is no possible covariant combination giving rise to a term like this, and the origin of
this problem can be traced back to the O(D, D) structure of the generalized metric.
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To understand the significance of this result, suppose one had succeeded in constructing
such a covariant combination related to Ri jklRi jkl . Then, one could have written a general
four-derivative action from linear combinations of the squares of the generalized curvatures.
Being constructed from covariant objects, any of them would be invariant. As argued in [29],
this would be unexpected because the field redefinitions gi j → gi j + α′(a1Ri j + a2gi jR)

that respect diffeomorphism invariance, map α′-corrected actions into each other, and alter the
coefficients of Ricci-squared and R-squared terms. After these field redefinitions, the T-duality
transformation of gi j would be α′-corrected, in conflict with the original assumption.

Although things are not as easy as one would have liked them to be, a better understanding
of α′ corrections in DFT would help to understand the contributions of the 2-form and dilaton
to the corrections, as commented in [115], and also possibly help to find new patterns, based
on duality arguments. Also, a better understanding of this problem might shed light on the
mysterious unphysical components of the generalized Riemann tensor and vice versa. In any
case, α′-corrections to supergravity in the context of DFT seem to be a very promising line of
research, where plenty of things remain to be done and learnt.

8.4. Geometry for non-geometry

As we have seen, T-duality appears to imply that the geometrical structure underlying string
theory goes beyond the usual framework of differential geometry and suggests an extension
of the standard diffeomorphism group of General Relativity. A new geometrical framework to
describe the non-geometric structures was developed in [64, 69]. The idea of these pieces of
work is to provide a general formulation to study non-geometric backgrounds in conventional
higher dimensional spacetime, in a formalism that facilitates the treatment of global issues
that are problematic in standard supergravity.

When the generalized metric has the form (3.22), it is said to be in the geometric frame. A
general O(D, D) transformation mixes the usual metric and 2-form fields in a complicated way
and a (T-duality inspired) field redefinition is convenient to re-parameterize the generalized
metric such that the description of non-geometric backgrounds becomes more natural (this
can be named the non-geometric frame). The field redefinition makes a dual metric and a
bivector β i j enter the game, and these now become the fields of the geometric action for
non-geometric fluxes. Performing these field redefinitions in the supergravity action (3.17)
makes the non-geometric fluxes appear in such a way that the new actions are well defined in
terms of the new fields. DFT provides a natural framework to interpolate between these two
frames, in which geometric and non-geometric backgrounds are better described.

The new actions can be interpreted as coming from the differential geometry of Lie
algebroids. These are generalizations of Lie algebras where the structure constants can be
spacetime dependent. Lie algebroids give a natural generalization of the familiar concepts
of standard Riemannian geometry, such as covariant derivatives, torsion and curvatures. A
detailed account of the relation between these conventional objects and those appearing for
Lie algebroids is presented in [69].

These are very nice results that specialize in the geometry and dynamics of non-geometric
backgrounds.

8.5. Beyond supergravity: DFT without strong constraint

As we explained, in order for the generalized Lie derivative to generate closed transformations,
the fields and gauge parameters of the theory must be constrained, i.e. DFT is a restricted theory
(3.44). One possibility of solving the constraints is to impose an even stronger restriction: the
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strong constraint (3.30). This possibility is the most explored one and allows for a generic form
of fields and gauge parameters, but with a strong restriction in their coordinate dependence:
they can only depend on a (un-doubled) slice of the double space. This enables a direct relation
to supergravity and puts DFT in a safe and controlled place. There are however other solutions
[65, 66, 34, 53–55, 30] in which the shape of the fields is restricted, but not the coordinate
dependence, which can then be truly double. As we extensively reviewed, in this situation
the fields adopt the form of a Scherk–Schwarz reduction ansatz, and this facilitates to make
contact with gauged supergravities in lower dimensions. The double coordinate dependence
here is encoded in the gaugings, which cover the corners of the configuration space that are
not reached from standard supergravity compactifications.

These doubled solutions correspond to the first attempts of consistently going beyond
supergravity in DFT. Whether these extensions live within string theory is a question that
remains unanswered. This seems most likely to be the case, because these extensions are
precisely governed by the symmetries of string theory. In any case, DFT provides a (stringy-
based) scenario in which supergravity is only a particular limit, and many explorations beyond
this limit still have to be done.

8.6. (Exotic) brane orbits in DFT

In the open string sector, T-duality exchanges Dirichlet and Neumann boundary conditions,
and then relates D-branes to different dimensionalities. This situation was nicely depicted in
the double torus in [116]. After evaluating the one-loop beta function for the boundary gauge
coupling, the effective field theory for the double D-branes was obtained, and is described by
a T-duality covariant DBI action of double fields.

In the NS-NS sector, the NS5-brane and KK5-monopole were also considered in the
double torus [117]. Both configurations are related by T-duality, and the orbit is known to
continue. By applying a further T-duality, one obtains the 52

2-brane (see [118, 119] for detailed
discussions) which looks like a T-fold, and is a special case of a Q-brane [120]. DFT allows us
to T-dualize further in order to obtain an R-brane. The picture is analogous to that of duality
orbits on non-geometric fluxes. The exotic Q- and R-branes are nicely accommodated in
DFT, and the frameworks of [64] and [69] suitably describe their underlying geometry. Being
sources of non-geometric fluxes, they exhibit an interesting non-associative/non-commutative
behavior [120].

The NS5 and KK5 source BIs on their world volumes [121] and their exotic T-duals are
likely to source the corresponding T-dual BIs for non-geometric fluxes [68]. Interestingly,
these BIs are naturally identified with the consistency constraints of DFT (3.64).

Brane orbits have been extensively discussed in [122] and [118], and we refer to those
papers for a general discussion on the topic. There are still plenty of unanswered questions,
for example, regarding the existence (and validity) of bound states of geometric and non-
geometric branes described by configurations that violate the strong constraint. This exciting
area of research is just beginning, and DFT seems to be a suitable framework for exploration.

8.7. New possibilities for upliftings, moduli fixing and dS vacua

Only a subset of all the possible deformations (gaugings or fluxes) in gauged supergravities in
four dimensions can be reached from standard compactifications of D = 10, 11 supergravity,
as we explained. The rest of them (the non-geometric orbits), on the other hand, do not
admit supergravity uplifts, and then one has to appeal to duality arguments in order to
make sense of them from a lower dimensional perspective. DFT (and the more general
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U-duality covariant frameworks) provides a suitable scenario to uplift non-geometric orbits
in an extended geometrical sense [67]. As we explained, non-geometric fluxes seem to be
necessary ingredients in purely flux-based moduli stabilization surveys [83]. The same happens
in dS vacua explorations. Although there is beautiful recent progress in the quest for classical
(meta)stable dS vacua with non-geometric fluxes [83], their uplift to extended geometry (in
particular DFT) or the ten-dimensional geometric actions for non-geometric fluxes [64, 69] is
still an open question.

Once again, DFT seems to provide a suitable framework to uplift the gauged supergravities
with non-geometric fluxes that give rise to desired phenomenological features. Progress in
this direction was achieved in some particular gauged supergravities [67] through consistent
relaxations of the strong constraint.

Also in this direction, the extended geometry of [55] might shed light on the uplifts of
the new SO(8) maximal supergravities [96], which seem to find obstructions in their uplift to
D = 11 supergravity [97].
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