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Abstract 

Climate events modulate weed population dynamics mainly by influencing field 

seedling emergence patterns. Field experiments aiming to study the influence of climate on 

the early-stage establishment of weeds are of utmost importance from a practical and strategic 

decision-making management point of view. The objective of this work was to analyse the 

effect of climate variations on the field emergence dynamics of Avena fatua in the southwest 

area of the semiarid Pampean region of Argentina. Field emergence patterns of A. fatua were 

monitored from 1977–2015. Seedling counts were destructively sampled at weekly intervals. 

Three quadrats (1 m2 each) were randomly distributed on a 5 ha experimental field with a 

high natural population density of A. fatua in the absence of a crop. Results show that the 

emergence strategy of this species is highly plastic with a striking variation in response to 

year-to-year climate signals. Avena fatua field emergence strategies were classified as 

staggered, early, medium and late based on both chronological and hydrothermal-time 

parameters. In the short-term, precipitation regimes during both the after-ripening and 
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emergence phases largely explained the resulting emergence strategy. In the long-term, the 

combined effect of a reduction in both the precipitation frequency and the mean minimum 

temperature correlated with an increase in the staggered emergence pattern. Results also point 

out the adaptability of A. fatua in the area under study, further suggesting a bet-hedging 

fitness strategy that could diminish the risk of population decline under changing climate 

scenarios. From an agronomic perspective, the occurrence of staggered emergence patterns 

with an extended emergence window would complicate the definition of the optimal time for 

weed control. Thus, tailoring decisions based on the Southern Oscillation Index (SOI) 

episodes (neutral, negative or positive) forecast plus the implementation of weed emergence 

models could lead to more accurate and sustainable weed management decisions.  
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1 | Introduction 

 

Climate events influence ecophysiological cues affecting vegetation dynamics (League & 

Veblen, 2006; Baeten et al., 2010). As reviewed by Walck et al (2011), climate variations 

have a major effect on the early stages of plant development thus influencing seedling 

recruitment. Among the most important global-scale climate events, the Southern Oscillation 

Index (SOI) which occurs across the tropical Pacific Ocean is characterized by variations in 

the temperature of the surface of the eastern Pacific Ocean and the air surface pressure in the 

tropical western Pacific. The warm oceanic episode (El Niño) accompanies high air surface 

pressure while the cold episode (La Niña) accompanies low air surface pressure (Stone et al., 

1996; Monzon et al., 2012).  

The impact of climate events on weed population dynamics and specifically on field 

emergence is of utmost importance from both an ecophysiological knowledge-based 

perspective as well as from an optimal weed management strategic point of view. As 

indicated by Royo-Esnal et al. (2020), a precise characterization of weed species field 

emergence dynamics has two main objectives: (1) understanding seedling emergence allows 



us to better comprehend the weed population dynamics, and the capacity for competition 

with the crop; (2) optimising control - as early growth stages show the highest susceptibility 

to control interventions. 

Climate variations are expected to influence weed seed dormancy and germination which 

directly impact field emergence dynamics. Seed dormancy is one of the most important 

attributes of weed seedbanks defining both the rate and magnitude of seedling emergence 

(Benech-Arnold et al., 2000). Soil temperature is widely acknowledged as the main 

regulatory variable of seed dormancy which is also modulated by soil water content in many 

cases. Seedbank dormancy levels are defined by seasonal soil temperature fluctuations which 

define the amplitude of the permissive germination range of a given weed population (Batlla 

et al., 2020). For summer annual weed species, dormancy release occurs after seed 

stratification during winter resulting in low dormancy levels at the beginning of spring. 

Conversely, winter annuals are released from dormancy by seed after-ripening during late 

spring and summer. For winter annual species, an increase in temperature during the after-

ripening phase associated with climate events (warming effects) are expected to increase the 

rate of seed dormancy release. The distribution of autumn rains is also expected to influence 

both the timing and magnitude of field germination once dormancy release requirements are 

fulfilled (Walck et al., 2011). 

Wild oat (Avena fatua L.) is one of the most conspicuous weeds of the world causing 

considerable yield and quality losses in cereal crops (Scursoni et al., 2011; Matsuhashi et al., 

2021). Avena fatua is a facultative winter annual species meaning that emergence occurs 

mainly in autumn and to a lesser extent during early spring. However, a highly plastic field 

emergence response has been observed under different climate regions worldwide. For 

example, in temperate environments with mild winters and non-severe soil moisture 

limitations, field emergence dynamics follow a regular sigmoidal-type pattern within a 

relatively short emergence window (Page et al., 2006; Martinson et al., 2007; Chantre et al., 

2014). Conversely, under semi-arid temperate conditions, A. fatua displays irregular time-

distributed cohorts (Chantre et al., 2012, 2018; Blanco et al., 2014; Molinari et al., 2020). 

Such ecophysiological behaviour suggests that A. fatua might have developed specific 

adaptations to different climate conditions (Chantre et al., 2014) which could be modulated, 

at least to some extent, by the duration of primary seed dormancy.  



Maternal effects associated with environmental heterogeneity during seed formation and 

maturing are expected to influence seed dormancy. High field temperatures during seed 

development have been shown to increase germinability of recently harvested seeds of A. 

fatua (Sawhney & Naylor, 1980; Peters, 1982) and other facultative winter annual species, 

such as Buglossoides arvensis (Longas et al., 2016). Besides, seeds produced by water-

stressed plants of A. fatua exhibited a shorter duration of primary dormancy (Sawhney and 

Naylor, 1982). Seed dormancy levels could also be influenced by the diversity of genetic 

adaptations in natural populations of A. fatua (Jana & Naylor, 1980; Adkins et al., 1986; 

Fennimore et al., 1999) as well as genotype-environment interactions which play an adaptive 

role on ecosystems’ colonization (Naylor & Fedec, 1978). Therefore, maternal effects 

associated with large inter-annual rainfall variability and seasonal temperature fluctuations, 

such as those typically registered in the semiarid Pampean region of Argentina, are expected 

to influence A. fatua seed dormancy levels which could further impact field emergence 

dynamics. 

Many aspects of agricultural production are related to the SOI in the Argentinian Pampas and 

other cropping regions of the globe (Podesta et al., 2002; Bert et al., 2006; Monzon et al., 

2007; Zhang et al., 2008). Forecasts of crop yield, such as corn, sorghum, and wheat, have 

been made based on SOI episodes (de la Casa & Ovando, 2006; Monzon et al., 2007; Iizumi 

et al., 2014). In the same way, SOI episodes have been used to set the termination date of 

cover crops before corn sowing to prioritize the soil water reserve in relation to biomass 

accumulation of the cover crop (Renzi & Cantamutto, 2013). Despite this fact, the current 

knowledge on the impact of the SOI on weed population dynamics, and particularly on field 

emergence dynamics, is very scarce.  

Based on these statements, we hypothesize that climate events influence both the frequency 

and magnitude of the field emergence patterns of A. fatua in the semiarid Pampean region of 

Argentina. Specifically, a highly variable environment is expected to favour a bet-hedging 

strategy, allowing emergence in a wider range of conditions, to reduce the risk of population 

decline. The objectives of our work were to i) evaluate inter-annual climate fluctuations on 

A. fatua field emergence patterns, and ii) explore relationships among climate conditions 

associated with the SOI and the registered field emergence patterns. Climate effects were 



studied through a 38-year experiment performed in the southwest area of the semiarid 

Pampean region of Argentina (Bordenave, Buenos Aires, Argentina).  

 

2 | Material and Methods 

 

2.1 | Field experiment 

Avena fatua field emergence data were collected at weekly intervals during 38 years 

(1977-2015) at the EEA INTA Bordenave (37°46'08.0"S 63°05'30.5"W), located in Buenos 

Aires province, Argentina. The experiment was conducted on an undisturbed field with a 

high natural population density of A. fatua without crop presence.  

Seedling counts were performed at weekly intervals on three quadrats (1 m2 each) randomly 

distributed in the field. A destructive method was implemented to avoid coexistent vegetation 

that could have influenced A. fatua emergence dynamics. At the end of each year of 

experimentation (corresponding to mid-summer = 31 December for the southern 

hemisphere), the quadrats were removed and newly distributed at random into the remaining 

area of the 5 ha experimental field. This way, the seedbank of a particular year was not 

affected by the elimination of seedlings during the counting process of the previous years. 

 

2.2 | Climate data collection and analysis 

Climate data were obtained each year from a meteorological station located within 

the experimental field of EEA INTA Bordenave (1976–2015). Data were separated to 

account for climate effect on (i) seed formation/maturing in the mother plants (i.e. maternal 

effects) and field after-ripening period (hereafter ‘after-ripening phase’, AR); (ii) the 

germination and seedling emergence period (hereafter ‘emergence phase’, E) of A. fatua. To 

discriminate maternal from germination environmental effects, we assumed that the after-

ripening phase extended from mid-spring till mid-summer (October-till-January), while the 

emergence phase encompasses mid-summer till mid-late spring (February-till-November). 

The emergence phase was also divided into autumn (February-till-April), winter (May-till-

August) and spring period (September-till-November). Such distinction between phases was 

based on both experimental and simulated data generated by Molinari et al. (2020).  



For data analyses, daily temperature (minimum, mean and maximum) and both the frequency 

and amount of total precipitation (mm and n° of rain events) for each phase and period in 

each year were used. The daily thermal amplitude (DTA) was calculated as the difference 

between the maximum and minimum temperature per day. The occurrence of extremely high 

temperatures during both phases was quantified using heat-stress units. Heat stress units 

(HSU) were the sum of the daily maximum temperature above >30°C, calculated following 

Teasdale & Cavigelli (2017):  

∑
=

°−=
,ni

i CTHSU
1

)30max(  

 

2.3 | Hydrothermal-time (HTT) estimation using soil microclimate data   

The Soil Temperature and Moisture Model (STM2) developed by USDA-ARS was 

used to estimate soil microclimate conditions (Spokas & Forcella, 2009). STM2 estimates 

soil temperature and moisture data based on soil composition and daily minimum and 

maximum air temperature and precipitation. For the region under study, STM2 outcomes 

were successfully validated by Damiano et al. (2010) and Renzi et al. (2019). STM2 was 

calibrated using soil site-specific parameters: soil texture (sandy loam = 53% sand, 31% silt, 

16% clay), OM content (3.1%) and bulk density (1.2 Mg m-3). Both OM content and bulk 

density were monitored every 3 years. The presented values remained unaltered during the 

experiment. 

Daily mean soil temperature (T) and water potential (Ψ) were estimated using weather data 

registered at a meteorological station located in the same experimental field. Hydrothermal-

time was calculated following Bradford (2002): 
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Ti is the estimated mean daily soil temperature; Tb is the base temperature for seedling 

emergence; Ψi is the daily soil water potential and Ψb is the base water potential for seedling 

emergence. Tb = 1ºC (Cousens et al., 1992) and Ψb = -1.2 MPa (Page et al., 2004). 

Hydrothermal-time (MPaºCd) accumulation start on 1 February 1. 

Previous studies suggest that for non-tillage systems seed are between 0–5 cm (Ghersa & 

Martinez-Ghersa, 2000). In this study, we have decided to use 5 cm to estimate both 

temperature and soil water potential profiles. This is an open discussion and some work have 

been devoted to optimal depth determination, see Cao et al. (2011). 

 

2.4 | Seedling emergence traits 

Several traits were used to characterise the seedling emergence dynamics of A. fatua 

from 1977-2015. The following features were calculated: i) Days10, Days50 and Days90 which 

represent the chronological time required to reach 10, 50 and 90% of cumulative emergence 

from the onset of the emergence phase (1 February = zero emergence time); ii) the emergence 

window (EW) calculated as [Days90–Days10]; iii)  HTT10, HTT50 and  HTT90 which represent 

the hydrothermal-time (MPaºCd) required to reach 10, 50 and 90% of emergence; and iv) 

EW (HTT) which stands for the amount of hydrothermal-time accumulated from 10 to 90%, 

calculated as  [HTT90 – HTT10]. For each year, eight traits that characterized the pattern of 

seedling emergence were obtained (Table S4). 

 

2.5 | Data analysis 

Pearson correlation coefficients were calculated between seedling emergence traits 

by InfoStat software (Di Rienzo et al., 2013). Four clusters were defined from the seedling 

emergence traits. For cluster analysis, a matrix based on Euclidean distance was computed 

and agglomeration was performed using Ward’s minimum-variance linkage using Infostat 

software. To define the four clusters, the cut line was used at a distance equal to 50% of the 

maximum distance.  

Then, it was defined if there were differences between clusters in the seedling emergence 

traits, and among climate variables defined in the after-ripening and emergence periods per 



each cluster. To determine if the differences between clusters could be explained by the 

climate variables in either the after-ripening or emergence periods, a linear mixed model 

(LMM) was performed (Table S4). The LMM was performed using the cluster as a fixed 

factor and years as a random factor. The LMM was performed with R version 3.6.3 (R 

Development Core Team, 2019) using Infostat software interface to R. Clusters were 

compared by Fisher’s Least Significant Difference test (P< 0.05).  

Relationships between climate variables and the Southern Oscillation Index (SOI) were 

investigated. The SOI is a measure that can be used in developing a seasonal forecasts system. 

The SOI measures the difference in surface air pressure in the central and eastern sector of 

the tropical Pacific Ocean and is defined as a departure from average or "anomaly" centred 

in 30-year base periods. SOI data based on a threshold of ± 0.5°C were used to divide the 

after-ripening and emergence phases of each year into warm, cold and neutral episodes 

(commonly identified as “Niño”, “Niña” and “Neutral”). The SOI is moderately correlated 

with future seasonal rainfall in some regions (Stone et al., 1996; Iizumi et al., 2014). The 

Climate Prediction Centre (CPC; www.cpc.ncep.noaa.gov) keeps an online record of all the 

seasonal temperature anomalies back to 1950 (L’Heureux et al., 2013). A LMM was 

performed to test the degree that the climate variables differed as a result of the SOI episodes, 

in both the after-ripening and emergence phases. 

Linear regression analyses among precipitation or mean minimum temperature from 1977 to 

2015 were performed using GraphPad Prism Software version 6.0 (GraphPad, San Diego, 

California, USA). Clusters evolution frequency from 1976–2015 were analysed by a 

nonlinear regression procedure. The goodness of fit was determined by calculating the 

residual-mean-square error (RMSE) (Mayer & Butler, 1993). 

 

3 | Results 

 

3.1 | Inter-annual climate effect on field emergence traits 

Climate variables exhibited a wide range of inter-annual variability mainly regarding 

the frequency and total precipitation as well as in the sum of heat-stress units (Table S1, 

supplementary material online). Also, high variability was observed between years for the 

emergence traits (Table S2). Among the latter, 75% were moderately correlated, except for 

http://www.cpc.ncep.noaa.gov/


Days90 and HTT90 which were associated with 28& and 43% of the traits respectively (Table 

S3). 

Four emergence patterns were identified via cluster analysis (Fig. 1) and further classified as 

staggered (Cluster 1), early (Cluster 2), medium (Cluster 3) and late (Cluster 4) emergence. 

As observed in Table 1, the onset of emergence varied from late summer (i.e. staggered and 

early emergence patterns) to late autumn (i.e. late emergence). Clusters 1 and 2 showed lower 

values of HTT and chronological time to reach 10% cumulative emergence. HTT50 values 

were 1.6-fold higher on average for medium and late dynamics compared to the staggered 

and the early emergence strategy. The latter strategy also showed the minimum average time 

to 50% cumulative emergence (Table 1). The extent of the emergence window was 

significantly lower for the late pattern when compared to the rest of the clusters showing a 

60% reduction on the average hydrothermal-time requirement (see EW (HTT), Table 1).  

Significant differences were observed between clusters when the different climate variables 

were depicted according to the after-ripening and emergence phases (Table 2). 

The staggered emergence pattern was associated with the lowest precipitation records during 

both the after-ripening and emergence phases. As indicated in Table 2, a significant reduction 

in the number of precipitation events was registered during both phases for the same strategy. 

Besides, the lowest values of total amount of precipitation and mean minimum temperature 

during the field emergence phase corresponded to the staggered strategy (Table 2). 

Conversely, late patterns were characterised by the maximum amount of precipitation during 

the seed formation and maturing of A. fatua seeds. As indicated in Table 2, for the late 

strategy, the amount of precipitation was 1.8-fold higher during seed formation/maturing in 

the field compared to the average value of the remaining strategies.   

No significant differences were observed among A. fatua emergence strategies concerning 

mean temperature values during both phases (Table 2). However, a negative relationship 

between heat-stress units and Days10 and HTT10 was observed (r2 = 0.96 and 0.98; P < 0.05; 

Figure S1). Thus, an increment in heat-stress sum (ºCd) during the after-ripening phase 

reduced both the number of days and the hydrothermal-time required for the onset of field 

emergence favouring a staggered or early emergence behaviour. 

 

3.2 | Southern Oscillation Index (SOI) patterns  



Southern oscillation index (SOI) values from 1976 to 2015 for both the after-ripening 

and emergence phases are presented in Fig S2a. The frequency of warm, neutral and cold 

episodes for the SOI are presented by decade (Fig. S2b). 

Fig. 2 shows the significant relationships obtained from the LMM relating SOI episodes to 

climate variables in both the emergence and after-ripening phases. As indicated in Fig 2, SOI 

behaviour was related to precipitation distribution during both bioecological phases, and also 

to the mean minimum temperature and the daily thermal amplitude during the emergence 

phase. Compared to the warm episode, both cold and neutral SOI episodes were associated 

with a reduction in the frequency of precipitation during seed development in the mother 

plants (Fig 2a). During the emergence phase, lower mean minimum temperature (Fig. 2b) 

and lower precipitation (mainly in winter, Fig. 2c), as well as an increment on the daily 

thermal amplitude (Fig. 2d) were registered. No differences were observed among SOI 

episodes for the remaining climate variables.  

 

3.3 | Long-term trends on climate variables and emergence traits 

Regression analysis indicates a significant reduction in both precipitation frequency (Fig. 

3a) and minimum mean temperature (Fig. 3b) for both the after-ripening and emergence 

phases from 1977 to 2015. By comparing the accumulated frequency per cluster means, we 

observed an exponential increment of the staggered strategy from 1977 to 2015 (Fig. 3c). In 

addition,  during the last decade, the highest rate of increment of the accumulated frecuency 

also corresponds to the staggered strategy.   

 

4 | Discussion 

 

Temperature, precipitation and other climate variables influence intraspecific 

variation in the germination strategy of some species. This has been typically tested among 

populations from different environmental origins (Donohue et al., 2010, 2013; Lampei et al., 

2017; Barga et al., 2017; Hradilová et al., 2019; Renzi et al., 2020b). 

In this contribution, we analysed the effect of climate variations on the field emergence 

dynamics of A. fatua using a long-term field experiment. Field emergence patterns were 

monitored during 38 years (1977–2015) in the semiarid Pampean region of Argentina. The 



analysis of the effect of climate variations for a given site and weed population (i.e. genotype) 

for such a long-time span turns this contribution into a valuable and almost unique study 

case.  

Among the potential limitations of this study, we should mention that an unambiguous 

distinction among maternal, after-ripening, germination and post-germination environmental 

effects is lacking. Based on both experimental and simulated data obtained from Molinari et 

al. (2020), we assumed a rather simplified temporal distinction between the ‘maternal/after-

ripening phase’ and the ‘germination/emergence phase’ to analyse climate variations on the 

field emergence dynamics. Also, we assumed that the majority of the new seedlings in a 

given year results from seed dispersal of the previous year. Despite the short-term persistent 

character of the seedbank (Scursoni et al., 2001), the latter assumption is partially correct, as 

older seeds might also contribute to new seedling recruitment.  

Considering both strengths and limitations of this work, our results indicate a striking 

variation among years in the emergence strategy of A. fatua. Four emergence strategies were 

identified and classified as staggered, early, medium and late. In the present study, 

precipitation regimes during both the after-ripening and emergence phases largely explained 

the resulting field emergence strategy of A. fatua. During the emergence phase, a lower 

precipitation regime could be associated with a lower mean minimum temperature and the 

increment of the daily thermal amplitude (Table 2). 

As stated by Renzi et al. (2020a), patterns of field emergence may reflect species local 

adaptations. From our perspective, the local adaptation of A. fatua is evidenced by a highly 

plastic response represented by a large inter-annual variation of the emergence patterns. 

Recently, de Souza Vidigal et al. (2020) observed that seed dormancy in Arabidopsis thaliana 

was largely controlled by the environment more than the genotype. In our study, the resulting 

emergence strategy of A. fatua was mainly determined by precipitation during both the after-

ripening and emergence periods. 

Thus, weed emergence prediction models based on short-term data under highly variable 

environments could lead to erroneous estimations of field emergence (Chantre et al., 2018). 

Other works have also shown that the accuracy of seedling emergence models in Lolium 

rigidum and Avena sterilis varied from site to site, with better performance under humid 

locations compared to very dry climate conditions (Sousa-Ortega et al., 2020, 2021). 



In the semiarid region under study, dry climate conditions during both the after-ripening and 

emergence phase increased the emergence window suggesting that a staggered pattern could 

indicate a plant bet-hedging strategy, which distributes seedling emergence timing across the 

growing season, either growing faster as autumn seedlings or germinating in safer spring 

conditions (Simons, 2014). Bet-hedging could enhance population fitness being a valuable 

strategy to deal with environmental unpredictability at a local scale (Cohen, 1966; Venable, 

2007; Satyanti et al., 2019; Gianella et al., 2021). Barga et al. (2017) working with arid land 

species showed that a higher variation in the annual precipitation regime turns into a bet-

hedging germination strategy, thus seeds are capable of germinating in response to low-

amount precipitation events rather than waiting for optimal thermal and soil moisture 

conditions to occur. From a practical viewpoint, a wide emergence window would complicate 

the definition of the optimal intervention tactic, such as delayed crop sowing, tillage or 

herbicide application time (Cirujeda & Taberner, 2009; Royo-Esnal et al., 2020).   

 The late strategy was related to a high precipitation regime during both the after-ripening 

and emergence phases and low rainfall events during winter (Table 2). Precipitation during 

winter might be the determinant factor to trigger early field emergence. However, it is 

plausible that early germination on the late strategy could also be constrained by 

physiological seed dormancy. Sawhney & Naylor (1982) showed that seeds of A. fatua 

matured under adequate soil moisture levels exhibited a longer duration of innate dormancy 

compared to seeds produced by water-stressed plants. Recently, field studies performed with 

Lolium multiflorum showed that higher temperature and lower precipitation during seed 

development were correlated with lower innate physiological dormancy (Fernández et al., 

2021). 

Temperature variability is also an important factor in the regulation of seed dormancy 

(Sawhney and Naylor, 1979). However, our results indicate that the thermal variability 

among years was low (< 7% CV, Table 1S) not showing a significant effect on the emergence 

pattern (> 30% CV). Although differences between the emergence strategy and temperature 

were not significant, a significant negative response between heat-stress units (HSU) and 

days (Days10) or hydrothermal-time to reach 10% of emergence (HTT10) was observed. Seeds 

developed on the mother plants at warmer temperatures (high HSU) are less dormant at 



maturity (Fenner, 1991; Fernández et al., 2021), and this could be associated with earlier 

germination.  

The ecological implication of different emergence strategies between years could play a 

significant role under changing climate scenarios, particularly in semiarid and arid regions. 

Early plant life state is crucial to better understand species response to climate change 

(Satyanti et al., 2019). Our results suggest that in the long-term, a combined reduction of the 

precipitation frequency during both the after-ripening and emergence phases as well in the 

mean minimum temperature would increase the occurrence of the staggered emergence 

strategy in A. fatua. Therefore, climate trends point out the adaptability of A. fatua to cope 

with both long-term precipitation and temperature changes, further suggesting bet-hedging 

as an enhanced fitness strategy. As indicated by our results, also cyclic SOI events produce 

an effect on A. fatua emergence patterns. For instance, cold episodes events associated with 

a lower frequency of precipitation events as well as lower temperatures (Fig. 2) increased the 

occurrence of the staggered emergence strategy.  

The SOI episodes could be used to quantify future precipitation probabilities in the semiarid 

Pampean region of Argentina, reducing the potential risk of “bad” years not only on the 

impact of crop yield but also on the weed management strategy (Stone et al., 1996; Monzon 

et al., 2012; Iizumi et al., 2014). The selection of the crop type according to the SOI episodes 

with some months of advanced warning, and the adjustment of the crop sowing date plus 

conventional or alternative weed control methods based on emergence prediction models 

could improve long-term weed management strategies. During warm episode events,  sowing 

of cereal crops and the use of regular sigmoidal-type pattern emergence models with a 

relatively short emergence window could ease the definition of the optimal intervention time 

from a decision-making perspective. Conversely, if cold episode events occur, a more 

complex decision-making scenario would demand the selection of highly competitive cereal 

cultivars, increasing sowing densities as well as the use of more flexible emergence 

prediction models (Chantre et al., 2018). These points suggest that different models may be 

necessary to accurately predict A. fatua under different SOI episodes. This conclusion could 

be extended to other facultative winter annual weed species under semiarid and arid 

environments. 



In conclusion, we have demonstrated a substantial within-population variation in the field 

emergence strategy of A. fatua which correlates with climate drivers in the short and long-

term time scales. 
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Figure captions 
 
 
Figure 1. Clustering of Avena fatua field emergence data (1977-2015) per year based on 

chronological time and hydrothermal-time (HTT) to reach 10, 50 and 90% of cumulative 

emergence and the corresponding ‘emergence windows’ resulting from [90–10]. HTT and 

Julian days accumulation start on 1 February (=zero emergence time). Euclidean distance 

and Ward’s minimum-variance linkage hierarchical method (a), and (b) field emergence 

patterns as a function of chronological time (mean ± standard error) are shown.  

 

Figure 2. Warm, neutral and cold episodes related to precipitation frequency (n of events) 

during after-ripening phase (AR) (a). Mean minimum temperature (b), precipitation amount 

(mm) (c), and daily thermal amplitude are shown for emergence phase (E). Black squares in 

(c) show winter precipitation.  

 

Figure 3. Precipitation (a), mean minimum temperature (b) accumulated frequency per 

cluster (c) from 1977 to 2015. 

 

Figure S1. Relationship between heat-stress units (HSU) and chronological time (Days10) 

and hydrothermal-time (HTT10) to reach 10% of cumulative emergence during AR phase 

(seed formation/maturing and after-ripening). Bars indicate ± standard error (SE). The 

numbers 1-to-4 indicate staggered, early, medium and late patterns, respectively. 

 

Figure S2. Southern oscillation index (SOI) from 1976 to 2015 depicting after-ripening 

phase (AR) (i.e. seed formation/maturing and after-ripening) and emergence phase (E) (i.e. 

germination and seedling emergence) (a), and percentage of episodes (AR+E) per decade (b). 

The warm (Niño) and cold (Niña) range were based on a threshold of ± 0.5°C for the SOI. 



A
cc

ep
te

d 
A

rti
cl

e



A
cc

ep
te

d 
A

rti
cl

e



A
cc

ep
te

d 
A

rti
cl

e



Table 1 Comparative values of Avena fatua seedling emergence traits for the staggered 

(Cluster 1), early (Cluster 2), medium (Cluster 3) and late (Cluster 4) patterns. 

Hydrothermal-time (HTT, MPaºCd) and chronological time (days) to reach 10, 50 and 

90% of cumulative emergence (CE) and the corresponding ‘emergence windows’ 

resulting from [90–10] are shown. Both chronological and hydrothermal-time 

accumulation start on 1 February (=zero emergence time).  

Emergence traits 
Cluster 

F-test P 
1-Staggered 2-Early 3-Medium 4-Late 

Hydrothermal-time to 10% CE 600.8
c
 809.1

c
 1203.0

b
 1838.5

a
 37.38 < 0.0001 

Hydrothermal-time to 50% CE 1254.2
b
 1375.8

b
 2028.8

a
 2155.4

a
 18.52 < 0.0001 

Hydrothermal-time to 90% CE 1724.4
b
 2225.3

a
 2487.5

a
 2354.1

a
 8.34 0.0003 

Emergence windows (HTT90-HTT10) 1123.6
a
 1416.2

a
 1283.6

a
 515.6

b
 7.45 0.0006 

Days to 10% CE 44.5
c
 49.0

c
 69.8

b
 115.0

a
 59.31 < 0.0001 

Days to 50% CE 124.8
b
 86.2

c
 142.7

ab
 167.8

a
 9.62  0.0001 

Days to 90% CE 219.8
a
 167.7

b
 203.8

a
 201.6

a
 10.36  0.0001 

Emergence windows (days) 174.3
a
 118.7

b
 136.1

b
 86.6

c
 20.88 < 0.0001 

Means marked with the same letters (a,b, and c) do not differ by LSD test (P≤0.05). 
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Table 2 Comparative values of climate data (1976–2015) for the staggered (Cluster 1), 

early (Cluster 2), medium (Cluster 3) and late (Cluster 4) patterns. Climate data were 

divided to account for phase AR (seed formation/maturing and after-ripening) and phase 

E (germination and seedling emergence).   

Climate variables  
Cluster 

 F-test P 
1-Staggered 2-Early 3-Medium 4-Late 

Phase AR (October-to-January) 
    

  Mean minimum temperature (°C) 11.4 12.2 11.9 12.0 2.10 0.1179 

Mean maximum temperature (°C)  26.1 26.4 26.0 26.1 0.12 0.9490 

Mean average temperature (°C) 18.8 19.3 19.0 19.0 0.45 0.7208 

Daily thermal amplitude (°C) 14.7 14.2 14.1 14.0 0.45 0.7179 

Heat-stress units (°Cd) 102.4 102.9 88.8 74.1 0.46 0.7147 

Precipitation (n° of events)  23.7
b
 29.7

a
 29.0

a
 34.0

a
 4.14 0.0132 

   Seed formation/maturing (mm) (Oct-to-Nov) 11.4
b
 15.1

a
 14.9

a
 16.7

a
 3.13 0.0382 

   Field after-ripening (mm) (Dec-to-Jan) 12.3 14.6 14.1 17.4 1.73 0.1799 

Precipitation (mm) 301.7
b
 387.1

ab
 303.7

b
 502.9

a
 4.38 0.0103 

   Seed formation/maturing (mm) (Oct-to-Nov) 136.8
b
 155.8

b
 142.4

b
 262.6

a
 2.89 0.0497 

   Field after-ripening (mm) (Dec-to-Jan) 165.1 231.4 161.4 240.8 1.31 0.2862 

Phase E (February-to-November) 
    

  Mean minimum temperature (°C) 6.5
b
 7.3

a
 7.1

a
 7.2

a
 3.16 0.0370 

Mean maximum temperature (°C)  19.8 19.7 18.8 20.0 1.71 0.1831 

Mean average temperature (°C) 13.1 13.5 12.9 13.6 1.21 0.3203 

Daily thermal amplitude (°C) 13.3
a
 12.4

ab
 11.8

b
 12.7

ab
 3.48 0.0262 

Heat-stress units (°Cd) 59.3 50.9 39.3 35.5 1.74 0.1777 

Precipitation (n° of events)  43.4
b
 56.8

a
 62.3

a
 57.4

a
 5.06 0.0053 

   Autumn (n) 15.6 18.0 19.8 17.2 1.94 0.1418 

   Winter (n) 12.8
b
 18.2

ab
 21.8

a
 17.6

ab
 2.97 0.0452 

   Spring (n) 15.1
b
 20.6

a
 20.7

a
 22.6

a
 4.84 0.0066 

Precipitation (mm) 447.8
b
 608.4

a
 614.8

a
 612.8

a
 2.96 0.0462 

   Autumn (mm) 201.8 233.4 270.6 308.6 1.87 0.1530 

   Winter (mm) 65.8
c
 158.1

a
 137.2

ab
 80.0

bc
 6.34 0.0016 

   Spring (mm) 180.7 216.9 207.3 224.4 0.40 0.7557 

Means marked with the same letters (a,b, and c) do not differ by LSD test (P ≤ 0.05). 
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