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Natural vibrations of micro beams with
nonrigid supports

Diana V Bambill1,2, Graciela I Guerrero1,3 and Daniel H Felix1

Abstract

The present study aims to provide some new information for the design of micro systems. It deals with free vibrations of

Bernoulli–Euler micro beams with nonrigid supports. The study is based on the formulation of the modified couple stress

theory. This theory is a nonclassical continuum theory that allows one to capture the small-scale size effects in the

vibrational behavior of micro structures. More realistic boundary conditions are represented with elastic edge condi-

tions. The effect of Poisson’s ratio on the micro beam characteristics is also analyzed. The present results revealed that

the characterization of real boundary conditions is much more important for micro beams than for macro beams, and

this is an assessment that cannot be ignored.
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1. Introduction

The importance of micro technologies emerges with the
necessity of observing, studying, measuring, control-
ling, manufacturing and manipulation of micro-sized
elements. Micro-sized structures and systems (micro-
scopes, super sensitive sensors, high-speed actuators)
are widely used in micro-electro-mechanical systems
(MEMS; Najar et al., 2010; Ghommem et al., 2013,
2015; Ouakad et al., 2015). Micro structures have the
aptitude to survive extreme conditions because of their
high-frequency characteristics and high mechanical
strength. In particular, micro beams have become
important in the fields of MEMS, as well as the study
of the small-scale effect on their free vibration modes.

The classical elasticity beam theories have been
failed to predict the size dependency of micro struc-
tures, because when the magnitudes decrease to
micro-scale, many essential phenomena appear that
are not significant at macro scales. However, nonlocal
theories, which consider additional material length
scale constants, have been developed to capture the
size dependency of small-sized structures. Within the
higher order (nonlocal) theories, there are the micropo-
lar elasticity theory (Cosserat and Cosserat, 1909;
Maugin and Metrikine, 2010), Eringen’s nonlocal
theory (Eringen, 2002) and the strain gradient elasticity
and the couple stress theories (Mindlin and Tiersten,

1962; Toupin, 1962). Recently, among several couple
stress theories that have been developed, Yang et al.
(2002) presented a model based on strain gradient
theory. This theory is known as modified couple
stress theory. It has a supplementary equilibrium rela-
tion to govern the behavior of couples and it involves,
besides the Lamè’s constants, only one additional
material constant. Since 2002 other researchers have
developed the modified couple stress theory for the
dynamic analysis of Euler–Bernoulli beams: Kong
et al. (2008), Şimşek (2010), Asghari et al. (2010) and
Wang et al. (2013). Park and Gao (2006) developed a
model for the bending of a Bernoulli–Euler beam based
on modified couple stress theory that involves only one
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material length scale parameter. They concluded that
the bending rigidity of the cantilever beam predicted by
their developed model is larger than that predicted by
the classical beam model. Araújo dos Santos and
Reddy (2012) analyzed the free vibration and buckling
of micro beams with a modified couple stress theory
taking into account Poisson’s effects. Zhang and Fu
(2012) developed a new beam model for the viscoelastic
micro beam based on the modified couple stress theory.
They used it for an electrically actuated micro beam.
Akgöz and Civalek (2013) used the Bernoulli–Euler
beam and modified couple stress theories together to
investigate free vibrations of cantilever micro beams
with nonhomogeneous and nonuniform characteristics.
They utilized the Rayleigh–Ritz method to carry out
the study. Wang et al. (2013) analyzed static bending,
post-buckling and free vibration of nonlinear micro
beams within the context of nonclassical continuum
mechanics, by introducing a material length scale par-
ameter. Ghannadpour et al. (2013) studied the bending,
buckling and vibration analyzes of nonlocal Euler
beams. They used Ritz method to analyze the nonlocal
beams.

On the other hand, it is important to complement the
study of free vibrations of micro beams using more real-
istic representations of support conditions. In general,
boundary conditions of micro beams are characterized
by classical boundary conditions. However, nonclassi-
cal boundary conditions may appear with the real state
of supports. Structure support systems probably allow
small deflections and/or rotations and so the assump-
tion of a perfect boundary condition will be inadequate.
The cause could be that a support is made of noninfi-
nitely rigid material or its foundation maymove or there
may be minor damage to the supports. Regardless of the
cause, unforeseen deformations in supports could affect
the natural frequencies of structural systems
(Pakdemirli and Boyaci, 2002; Ekici and Boyaci, 2007;
Bambill et al., 2013). Not many studies of natural vibra-
tions have analyzed and estimated nonclassical support
boundaries of micro-structures. Rinaldi et al. (2008)
presented the results of the characterization of nonclas-
sical support boundary conditions of micro cantilevers
through electro-mechanical testing. Abadyan et al.
(2011) emphasized the importance of characterizing
real boundary conditions in design and analysis of
NEMS (nano electro mechanical systems). They con-
sidered the elastic boundary condition on the nonlinear
pull-in behavior of supported NEMS.

Although free vibration analysis of micro beams
with the couple stress theory has been presented in
the literature, usually the presentations have referred
mostly to simply supported, cantilever or double
clamped micro beams (bridge): Kong et al. (2008) and
Liu and Reddy (2011).

In the present paper free vibrations of micro beams
are studied considering the combination of the theories
of Bernoulli–Euler and the modified couple stress. The
Bernoulli–Euler beam theory takes into account the
inertia forces due to transverse translation and ignores
the effect of shear deformation and rotatory inertia.
The modified couple stress combines a higher order
equilibrium relation for moments of couples with the
traditional equilibrium relations for forces and
moments of forces. The effects of the size dependence
are captured by only one additional material length
scale parameter. This parameter can be determined
from torsion tests of slim cylinders (Chong et al.,
2001) or bending tests (Park and Gao, 2006) of thin
beams in the micron scale. Chong et al. (2001) analyzed
microrod torsion and microplate bending experimental
data to determine the magnitude of the strain-gradient
material parameters.

In this paper, the application of the couple stress
theory in conjunction with the displacement field of a
Bernoulli–Euler beam is extended to micro beams with
elastic boundary conditions at the ends. It is intended
to give additional information for natural vibrations
for the appropriate design of micro beams acting in
vibrating environments.

In order to demonstrate the validity and accuracy of
the present analysis, when it is possible results are com-
pared with previous ones and excellent agreement is
observed between them.

1.1. Constitutive micro beam model

The micro beam model is shown in Figure 1. The origin
of the Cartesian coordinate system is taken at the left-
hand side. The x-axis is considered coincident with the
centroidal axis of the beam. The length of the micro
beam is L and its volume is Vb¼A�L, where
A¼ b� h is the cross-sectional area. Elastic support
boundary conditions are considered at x¼ 0 and
x¼L; they are represented by rotational and transla-
tional springs. Those springs are characterized by

Figure 1. Micro beam with nonrigid boundary conditions and a

Cartesian coordinate system.
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rotational rigidities: Kr1 and Kr2 and translational rigid-
ities Kt1 and Kt2, respectively.

The micro beam executes free transverse vibrations
in the x–z plane. Any damping effects are neglected.
Although the damping effects are important in studying
the behavior over time of a vibrating structure, their
influence is minimal in the value of parameters that
characterize this behavior, such as natural frequencies
and mode shapes. Rayleigh (1877) has shown that
undamped systems equations are capable of so-called
natural motions. This basically means that all the
system coordinates execute harmonic oscillation at a
given frequency (natural frequency) and adopt a certain
displacement configuration (natural mode shape)
(Adhikari, 2000). This is the reason why it is generally
accepted not to consider the influence of damping in
determining the value of these parameters. As the emi-
nent professor Den Hartog stated in page 40 of his
book Mechanical Vibrations, referring to the funda-
mental one-degree-of-freedom-system: ‘. . . the natural
frequency is practically constant and equal to

ffiffiffiffiffiffiffiffiffiffi
k=m

q
for all technical values of damping (c=cc 5 0:2’ (see
Den Hartog, 1956: 40).

2. Formulation

In view of the modified couple stress theory, the strain
energy U1 in a linear elastic isotropic material occupy-
ing a volume Vb depends on strain (stress) and curva-
ture (couple stress) (Yang et al., 2002; Park and Gao,
2006):

U1 ¼
1

2

Z
Vb

�ij"ij þmij�ij
� �

dVb ð1Þ

where

�ij ¼ l"kk�ij þ 2�"ij ð2Þ

are components of the stress tensor, with �ij the
Kronecker’s Delta and l and � the conventional
Lamè’s constants.

l ¼
E�

1þ �ð Þ 1� 2�ð Þ

� ¼
E

2 1þ �ð Þ

ð3Þ

where � is the Poisson’s ratio and E is the Young’s
modulus. The shear modulus �, defined in Equation
(3), is also denoted by G in engineering applications.

"ij ¼
1

2
ui,j þ uj,i
� �

ð4Þ

are components of the strain tensor, with ui compo-
nents of the displacement vector.

mij ¼ 2l2 ��ij ð5Þ

are components of the deviatoric part of the symmetric
couple stress tensor and l is the material length scale
parameter. The value of l depends on and is related to
the underlying microstructure of the material; it is a
property that considers the effect of couple stress
(Mindlin, 1963; Park and Gao, 2006).

�ij ¼
1

2
�i,j þ �j,i
� �

ð6Þ

are components of the symmetric curvature tensor, and
�i are components of the rotation vector given by

�i ¼
1

2
eijkuk,j ð7Þ

where eijk are the components of the Levi Civita tensor.
Within the context of small strains and small rota-

tions, the displacement field for a Bernoulli–Euler
micro beam can be described as

u1 ¼ u x, tð Þ ¼ �z
@w

@x
u2 ¼ v x, tð Þ ¼ 0 u3 ¼ w x, tð Þ ð8Þ

where u is the axial displacement, w is the transverse
displacement of the micro beam neutral axis in the
z-direction and @w=@x is the angle of rotation of the
centroidal axis of the micro beam. t denotes time.

From Equation (4) and Equations (8) the compo-
nents of the strain tensor can be written as

eij ¼

"11 0 0

0 0 0

0 0 0

2
64

3
75 ¼

�zw00 0 0

0 0 0

0 0 0

2
64

3
75 ð9Þ

where ðÞ0 indicates partial derivation with respect to x:
w0 ¼ @w

@x, w
00 ¼ @2w

@x2
.

From Equations (7) and (8) the rotation vector
yields

hi ¼ 0, � w0, 0½ � ð10Þ

Replacing Equation (10) in Equation (6), the curva-
ture tensor takes the form

vij ¼

0 �12 0

�21 0 0

0 0 0

2
64

3
75 ¼ � 1

2

0 w00 0

w00 0 0

0 0 0

2
64

3
75 ð11Þ
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The deviatoric part of the couple stress tensor mij

can be written as

mij ¼

0 m12 0

m21 0 0

0 0 0

2
64

3
75 ¼ �l2�

0 w00 0

w00 0 0

0 0 0

2
64

3
75 ð12Þ

Inserting Equation (9) into Equation (2), the stress
tensor is obtained:

rij ¼

�11 0 0

0 0 0

0 0 0

2
64

3
75 ¼ lþ 2�ð Þ

�zw00 0 0

0 0 0

0 0 0

2
64

3
75 ð13Þ

where the following expressions apply:

�11 ¼ lþ 2�ð Þð�zw00Þ "11 ¼ �zw
00

�12 ¼ �
1

2
w00 m12 ¼ �E� w00

ð14Þ

From Equation (1) the strain energy of the micro
beam is given by

U1 ¼
1

2

Z L

0

w00ð Þ
2 lþ 2�ð ÞIþ l2�A
� �

dx

¼
1

2

Z L

0

w00ð Þ
2
J dx ð15Þ

The differential volume is written as dVb ¼ Adx,
where dx is the differential length. I ¼

R
A z2 dA is the

moment of inertia and J is a constant that involves
material and geometric characteristics of the micro
beam:

J ¼ ðlþ 2�ÞIþ �Al2 ¼
EI 1� �ð Þ

1þ �ð Þ 1� 2�ð Þ
þ

EA

2 1þ �ð Þ
l2

ð16Þ

The potential energy of the boundary support
springs is given by

U2 ¼
1

2

�
Kt1 w 0, tð Þð Þ

2
þKt2 w L, tð Þð Þ

2
þKr1 w

0 0, tð Þð Þ
2

þKr2 w
0 L, tð Þð Þ

2�
ð17Þ

where Kt1 , Kt2 and Kr1 , Kr2 are the translational and
rotational spring stiffness constants, respectively
(Figure 1).

The kinetic energy of the micro beam can be
written as

T ¼
1

2

Z L

0

�A _wð Þ2 dx ð18Þ

Here ð _Þ indicates partial derivation with respect to
time: _w ¼ @w

@t , and � is the material mass density.
Summing Equations (15), (17) and (18) gives the

total energy expression:

	 ¼
1

2

Z L

0

J w00ð Þ
2
dx

�
þ Kt1 w 0, tð Þð Þ

2
þKt2 w L, tð Þð Þ

2

þ Kr1 w
0 0, tð Þð Þ

2
þKr2 w

0 L, tð Þð Þ
2
þ

Z L

0

�A _wð Þ2 dx

�

ð19Þ

In order to perform a vibration analysis, a harmonic
motion is assumed with circular natural frequency, !.
The beam deflection w x, tð Þ is expressed as

w x, tð Þ ¼W xð Þei!t ð20Þ

where W is the mode shape function.
Substituting Equation (20) into Equation (19) results

in the following expression:

	¼
1

2

Z L

0

J W00ð Þ
2
ei2!t dx

�
þKt1 Wð Þ

2
x¼0 e

i2!t

þ Kt2 Wð Þ2x¼L e
i2!tþKr1 W

0� �2
x¼0

ei2!tþKr2 W
0� �2
x¼L

ei2!t

þ

Z L

0

�Aði!Þ2W2ei2!tdx

�
ð21Þ

by applying the principle of minimum energy of the
system, the variational expression is obtained:

�	 ¼ 0

An approximate solution of this variational problem
can be found by the Ritz method.

The displacement W is approached as a sum,
Wa xð Þ, of trial admissible functions  j xð Þ with undeter-
mined coefficients Cj:

W xð Þ ffiWa xð Þ ¼
XN
j¼1

Cj j xð Þ ð22Þ

where  j xð Þ represents continuous functions, which
depend on x and model the displacement of the micro
beam. They satisfy the boundary conditions at the
micro beam boundaries.

After introducing Equation (22) into the total energy
expression, Equation (21), and minimizing this expres-
sion, a system of homogeneous equations of the first
order for coefficients Cj is obtained:

@	

@Cj
¼ 0 ð23Þ

with j ¼ 1, 2, . . . ,N.
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The natural frequencies correspond to the solutions
of the homogeneous form of Equations (23). In order
that at least one coefficient be different from zero, it is
possible to equate the determinant of this system to
zero and obtain the frequency equation:


i,j
� �
� !2 li,j

� �		 		 ¼ 0 ð24Þ

The lowest solution, which differs from zero, repre-
sents the approximate frequency of the fundamental
mode, !1, and the following solutions represent the
higher frequencies. Dimensionless parameters are
assumed to simplify the equations and to compare
some particular cases with other authors’ results:

�x¼
x

L
kt1 ¼

L3Kt1

J
kt2 ¼

L3Kt2

J
kr1 ¼

LKr1

J
kr2 ¼

LKr2

J
ð25Þ

Moreover, the dimensionless natural frequency param-
eters are adopted as

�2
j ¼

�A!2
j

E I
L4 ð26Þ

The expressions of 
i,j and li,j in Equation (24) are
given by


i,j ¼ L3

Z 1

0

 i �xð Þ j �xð Þ d �xþ kt1 i 0ð Þ j 0ð Þ

þ kr1L
2  0i 0ð Þ 

0
j 0ð Þ þ kt2  i 1ð Þ j 1ð Þ

þ kr2 L
2 0i 1ð Þ 

0
j 1ð Þ ð27Þ

li,j ¼
1

L

Z 1

0

 i �xð Þ j �xð Þd �x, ð28Þ

where the functions  j �xð Þ comprise the selected set of
admissible functions and satisfy the boundary condi-
tions at both ends of the micro beam (Ilanko et al.,
2014). They are adopted as a combination of
polynomials:

 j xð Þ ¼ �xð Þj�1 � �xð Þ ð29Þ

where the function

� �xð Þ ¼ �1 �x4 þ �2 �x3 þ �x2 þ �3 �xþ �4

has four constants: �1, �2, �3 and �4, which are deter-
mined depending upon the beam boundary conditions
at �x ¼ 0 and �x ¼ 1:

�00 0ð Þ ¼
LKr1

J
�0 0ð Þ �000 0ð Þ ¼ �

L3Kt1

J
� 0ð Þ ð30Þ

�00 1ð Þ ¼ �
LKr2

J
�0 1ð Þ �000 1ð Þ ¼

L3Kt2

J
� 1ð Þ ð31Þ

and they result in

As is known, in the modified couple stress theory the
parameter J is dependent on the material length scale
parameter, on the Poisson’s ratio and on the beam
thickness and length. Bernoulli–Euler beam theory is
valid only when the thickness of the beam is small
compared with its length.

3. Analysis of micro beams based on
modified couple stress theory

The parameter J of the constitutive micro beam model,
based on modified couple stress theory, is given by
Equation (16). If a rectangular cross-section is con-
sidered (Figure 1), A=I¼ 12=h2 and J can be written as

J ¼ EI 1� �ð Þ þ 6 1� 2�ð Þ= h=l


 �2� �.
1þ �ð Þ 1� 2�ð Þ½ �

ð32Þ

where the size ratio h=lð Þ characterizes the thickness
dependence of the micro beam on the material length
scale parameter and represents the microstructural
effect. The material length scale parameter l is thought
to be a property of the material and characterized by an
empirical constant. However, as Voyiadjis and Abu

�1 ¼
�
12 kr1 þ kr2 þ kr1kr2ð Þkt1 þ 12 kr1 þ kr2 þ kr1kr2ð Þð þ 4 3þ kr2ð Þ þ kr1 4þ kr2ð Þð Þkt1Þkt2=½24kr1 3þ 2kr2ð Þkt1

þ kr1 �24 3þ kr2ð Þ þ 6þ kr2ð Þkt1ð Þkt2
�

�2 ¼
�48 kr1 þ kr2 þ kr1kr2ð Þkt1 � 2 3 4þ kr2ð Þ þ kr1 5þ kr2ð Þð Þkt1kt2

24kr1 3þ 2kr2ð Þkt1 þ kr1 �24 3þ kr2ð Þ þ 6þ kr2ð Þkt1ð Þkt2

�3 ¼
2

kr1

�4 ¼
288 kr1 þ kr2 þ kr1kr2ð Þ þ 12 3 4þ kr2ð Þ þ kr1 5þ kr2ð Þð Þkt2ð Þ

24kr1 3þ 2kr2ð Þkt1 þ kr1 �24 3þ kr2ð Þ þ 6þ kr2ð Þkt1ð Þkt2ð Þ

Bambill et al. 5



Al-Rub (2005) said: ‘. . . a fixed value of the material
length-scale is not always realistic’. The value of the
material length scale parameter may have variations
attributed to different manufacturing processes, to dif-
ferent base materials or to different technical equip-
ments. Also, due to the small scale, differences may
arise in the experimental techniques to measure the cor-
responding material length scale parameter. Some
values of material properties in the literature are as fol-
lows: Epoxy: E¼ 1.44GPa, �¼ 0.38 and l¼ 17.6mm
(Akgöz and Civalek, 2012); Nickel: E¼ 220GPa,
�¼ 0.26 and l¼ 5 mm (Akgöz and Civalek, 2012);
Gold: E¼ 79GPa, �¼ 0.44 and l¼ 47 mm (Rezazadeh
et al., 2012); LIGA Nickel: E¼ 165GPa, �¼ 0.30 and
l¼ 5.6�0.2 mm (Shrotriya et al., 2003); silicon group 1:
E¼ 169.2GPa, �¼ 0.239 and l¼ 0.58 mm; silicon group
2: E¼ 130GPa, �¼ 0.177 and l¼ 0.71mm (Osterberg
and Senturia, 1997); SU-8 (SU-8 is a commonly used
epoxy-based negative photoresist; SU-8 derives its
name from the presence of eight epoxy groups):
E¼ 4.14GPa and l¼ 1.39mm (Liebold and Müller,
2015).

The normalized rigidity J=ðEIÞ versus the size ratio
of the micro beam based on modified couple stress is
plotted as curves in Figure 2. It can be observed that
both the size ratio and the Poisson’s ratio have an effect
on the bending rigidity of the micro beam.

Four different values of Poisson’s ratio are con-
sidered (i.e., �¼ 0, 0.30, 0.38, 0.45). It can be observed
that J increases significantly in comparison with the
classical EI relation when the beam thickness h is less
than or close to the material length scale parameter l.
The figure also shows that with h=l5 1 the rigidity
values of the beam with �¼ 0 are larger than those

beams with values of � equal to 0.30, 0.38 and 0.45.
Inverse trends are observed for relations of h=l4 1.

For a slender beam, the Poisson’s effect may be neg-
lected to facilitate the formulation of a simple beam
theory; for example, Shames (1985), Park and Gao
(2006), Araújo dos Santos and Reddy (2012) and
Akgöz and Civalek (2013). By approximating

lþ 2�ð ÞI ffi EI

the expression of J, Equation (16), simplifies to

J ¼ EI 1þ
6

h=l


 �2
1þ �ð Þ

2
64

3
75 ð33Þ

It should be noted that when h=l!1, the microstruc-
tural effect vanishes and the model is reduced to that of
the classical beam theory.

In Figure 3, the parametric curves of J =EI corres-
ponding to Equation (33), versus the size ratio, h=l, are
plotted for four different values of �. Obviously, the
Poisson’s ratio effect is smaller and the curves of
�¼ 0, 0.30, 0.38 and 0.45, are closer to each other
than in Figure 2.

In both Figures 2 and 3, it can be observed that
� ¼ 0 generates the same plot of J=ðEI Þ:

J ¼ EI 1þ
6

h=l


 �2
2
64

3
75 ð34Þ
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0
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h/l

J/
E

I

v=0

v=0.30

v=0.38

v=0.45

Figure 2. Variation of J= EI
�
¼
��

1� �
�
þ 6

�
1� 2�

�
=
�
h
�

l
�2�
=
��

1þ �
��

1� 2�
��


on
�
h
�

l
�
.
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It can be concluded that the modified couple stress
theory’s results will change with the increase of the
bending rigidity J and that the Poisson’s ratio has an
effect on it.

4. Numerical results for free vibration

4.1. Poisson’s effect

The first example corresponds to a micro beam of rect-
angular cross-section and classical boundary conditions
(simply supported beam: kt1 ¼ kt2!1, kr1 ¼
kr2! 0). The first five natural frequency coefficients
are obtained as a function of the size ratio h=lð Þ for
three Poisson’s ratios. A comparison can be made
only with published results of the fundamental fre-
quency coefficients.

The natural frequency coefficients correspond to
N ¼ 12 approximation terms. Table 1 shows numerical
results of the first five natural frequency coefficients of
micro beams with simply supported boundary condi-
tions, by consideration of Equations (32) and (33).
Results for � ¼ 0:38 are compared with the ones
obtained by Wang et al. (2013). It can be seen that
the obtained results compared fairly well with the pub-
lished results.

5. Nonrigid boundary conditions

Three cases are presented to show how the modified
couple stress theory frequency coefficients change with
parameter J (Figures 2 and 3). The cases are defined by
the expression of J: (a) the complete expression of J is
considered, Equation (32) with � ¼ 0:30; (b) J is
assumed by Equation (33) with � ¼ 0:30 (Araújo dos

Santos and Reddy, 2012); and (c) J is assumed by
Equation (34).

The next numerical example corresponds to micro
beams characterized by Figure 1. The translational
spring constants are assumed to be infinitely rigid,
kt1!1, kt2!1, while the rotational spring con-
stants vary from 0 to infinity. Table 2 shows the first
five frequency dimensionless coefficients of Bernoulli–
Euler micro beams with elastically restrained boundary
conditions for several size ratios h=l. J comes from
Equation (32). Classical boundary support conditions
are labeled as SS for simply supported and as C for
clamped. Natural frequency coefficients of boundary
limiting cases are in total agreement with those of
micro beams with classical boundary conditions.

Increments on the boundary condition rigidities pro-
duce higher values of the fundamental frequency coef-
ficients; the limiting case (!1) is the infinitely rigid
condition. The frequency coefficients predicted by the
modified couple stress theory are higher than those pre-
dicted by the classical beam theory. As is expected, the
natural frequency coefficients calculated for size ratios
h=l � 1 are larger than those calculated by
h=l 2 ð1, !1Þ, as size effects gradually vanish when
h=l increases. For h approximately equal to the internal
material length scale parameter l, the size effect is
remarkably visible.

Table 3 shows results for the limiting case of size
ratio h=l!1. It contains the first five natural fre-
quency coefficients of Bernoulli–Euler beams with elas-
tically restrained boundary conditions. Note that the
solution accurately tends to that of the classical
Euler–Bernoulli beam. The coefficients correspond to
case (b), expression Equation (33) with � ¼ 0:30. It
can be observed that for typical boundary conditions:

0 1 2 3 4 5 6
0

5

10

15

20

h/l

J/
EI

v=0

v=0.30

v=0.38

v=0.45

Figure 3. Variation of J= EIð Þ ¼

1þ 6=

��
h=l
�2

1þ �ð Þ
��

on h=l.
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SS-SS, simply supported beam: kt1!1, kt2!1,
kr1 ¼ 0, kr2 ¼ 0, the frequency parameters are in
total agreement with the known frequency parameters
eigenvalues (Blevins, 1979). On the other hand C-C,
clamped-clamped beam: kt1 !1, kt2!1,
kr1!1, kr2 !1, the frequency parameters are in
total agreement with the known frequency parameters
eigenvalues (Blevins, 1979). The fundamental frequency
results �1 are also in excellent agreement with
Ghannadpour et al. (2013) for these particular cases.

In Figure 4 a cantilever micro beam of rectangular
cross-section is presented. One of the ends of the beam
has elastic translational and rotational restrains and the

other one is completely free. It can be observed that
classical boundary conditions of a clamped-free beam
appear when kt1 ¼ kr1 !1. In addition, kt1 ¼ kr1 ! 0
corresponds to the free–free beam. The value of the
spring rigidity parameters kt1 ¼ kr1 of !0 is treated
as equivalent to absence of restrains (free boundary
condition); for the limiting case of free–free beams, a
zero value is obtained as the first double root of
Equation (24) and represents the rigid body motion.

Table 4 contains fundamental frequency coefficients
�1 for cantilever micro beams with an elastically
clamped condition. The size ratio h=l varies from 0.20
to infinity. Again the modified couple stress theory

Table 1. First five natural frequency coefficients �j ¼ !jL
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A=ðE IÞ

p
of simply supported micro beams and three Poisson’s ratios.

� ¼ 0:38 � ¼ 0:30 � ¼ 0:25

h=l Eq. (32) (a) Eq. (33) (a) Eq. (32) Eq. (33) Eq. (32) Eq. (33)

1 �1 24.6142 24.5891 22.8237 22.8004 24.0978 23.3877 24.1754 23.7691

�2 98.4569 – 91.2949 – 96.3911 93.5508 96.7015 95.0762

�3 221.528 – 205.413 – 216.880 210.489 217.578 213.921

�4 393.828 – 365.179 – 385.564 374.203 386.806 380.305

�5 615.355 – 570.592 – 602.469 584.717 604.410 594.251

2 �1 16.9772 16.9598 14.2579 14.2433 15.6052 14.4846 15.2899 14.6389

�2 67.9087 – 57.0315 – 62.4206 57.9382 61.1594 58.5557

�3 152.795 – 128.321 – 140.446 130.361 137.609 131.750

�4 271.635 – 228.126 – 249.682 231.753 244.638 234.223

�5 424.447 – 356.461 – 390.145 362.129 382.262 365.988

3 �1 15.1461 15.1306 12.0194 12.0071 13.4566 12.1393 12.9939 12.2213

�2 60.5843 – 48.0775 – 53.8263 48.5570 51.9755 48.8851

�3 136.315 – 108.174 – 121.109 109.253 116.945 109.991

�4 242.337 – 192.310 – 215.305 194.228 207.902 195.540

�5 378.667 – 300.497 – 336.428 303.494 324.860 305.544

4 �1 14.4505 14.4357 11.1301 11.1187 12.6185 11.2030 12.0877 11.2531

�2 57.8019 – 44.5202 – 50.4738 44.8119 48.3508 45.0121

�3 130.054 – 100.170 – 113.566 100.827 108.789 101.277

�4 231.207 – 178.081 – 201.895 179.248 193.403 180.048

�5 361.277 – 278.263 – 315.474 280.086 302.205 281.337

5 �1 14.1169 14.1025 10.6934 10.6825 12.2111 10.7421 11.6444 10.7755

�2 56.4676 – 42.7736 – 48.8442 42.9681 46.5776 43.1019

�3 127.052 – 96.2406 – 109.899 96.6783 104.800 96.9792

�4 225.870 – 171.094 – 195.377 171.873 186.311 172.407

�5 352.937 – 267.346 – 305.289 268.562 291.122 269.398

!1 �1 13.5036 13.4898 9.8696 9.8595 11.4511 9.8696 10.8116 9.8696

�2 54.0143 – 39.4783 – 45.8042 39.4783 43.2463 39.4783

�3 121.532 – 88.8260 – 103.059 88.8260 97.3040 88.8260

�4 216.057 – 157.913 – 183.217 157.913 172.985 157.913

�5 337.603 – 246.749 – 286.288 246.749 270.300 246.749

aWang et al. (2013).
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Table 2. First five natural frequency coefficients �j ¼ !jL
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A=ðE IÞ

p
of micro beams with elastically restrained

ends, kt1 !1, kt2 !1, for various ratios h=l. Case (a) Equation (32), � ¼ 0:30 (Figure 1).

h=l kr1 kr2 �1 �2 �3 �4 �5

4 !0 !0 11.2030 44.8119 100.827 179.248 280.086 (SS-SS)

10 14.8650 49.9955 106.868 185.828 287.027

100 17.0835 55.4097 115.704 198.016 302.403

!1 17.5012 56.7146 118.331 202.354 308.786 (SS-C)

10 10 18.7434 55.1389 112.853 192.355 293.925

100 21.2927 60.7592 121.819 204.621 309.343

!1 21.7873 62.1464 124.529 209.038 315.806

100 100 24.2148 66.8580 131.289 217.345 325.180

!1 24.7944 68.4069 134.213 222.039 331.937

!1 !1 25.3957 70.0034 137.235 226.859 338.895 (C-C)

2 !0 !0 14.4846 57.9382 130.361 231.753 362.129 (SS-SS)

10 18.1804 62.7596 135.727 237.433 368.003

100 21.8171 70.8391 148.065 253.617 387.649

!1 22.6275 73.3274 152.992 261.626 399.233 (SS-C)

10 10 21.9723 67.5070 141.035 243.069 373.849

100 25.9450 75.7143 153.420 259.252 393.453

!1 26.8608 78.3089 158.451 267.364 405.153

100 100 30.5737 84.5044 166.404 275.720 413.463

!1 31.6649 87.4595 171.756 284.402 425.503

!1 !1 32.8345 90.5083 177.433 293.307 438.154 (C-C)

1 !0 !0 23.3877 93.5508 210.489 374.203 584.717 (SS-SS)

10 26.5703 97.2018 214.319 378.125 588.680

100 34.2625 111.700 234.251 402.342 616.450

!1 36.5358 118.399 247.029 422.434 644.622 (SS-C)

10 10 29.7372 100.802 218.122 382.030 592.640

100 37.6276 115.218 237.903 406.017 620.091

!1 40.0501 122.100 250.887 426.371 648.603

100 100 46.8626 129.727 258.489 428.820 648.226

!1 49.6944 137.853 271.645 451.069 676.470

!1 !1 53.0164 146.140 286.491 473.584 707.454 (C-C)

0.5 !0 !0 43.5380 174.1517 391.8412 696.6065 1088.4928 (SS-SS)

10 45.6052 176.3046 394.0033 698.7519 1090.5789

100 61.9458 203.2326 428.1726 737.8975 1133.5035

!1 68.0092 220.3834 459.7941 786.2478 1199.7315 (SS-C)

10 10 47.6568 178.4401 396.1504 700.8765 1092.6554

100 63.9428 204.9367 429.7435 739.1984 1134.5144

!1 70.2262 222.5312 461.9366 788.3663 1201.8028

100 100 82.7496 229.0547 465.0435 771.6714 1178.5119

!1 89.7784 250.7359 496.2315 827.2129 1243.0336

!1 !1 98.6753 271.9696 533.1222 881.1890 1316.2302 (C-C)
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converges to the classical elasticity theory as h=l
approaches to infinity (classical Bernoulli–Euler beam
theory). The effect of the size ratio h=l on the funda-
mental frequency parameters can be appreciated in this
table. Differences between coefficients of cases (a) and
(b) are smaller, <3%, until h=l � 1 and they increase to
�14% for h=l!1. In all the relations, coefficients of
case (a) are greater than those of case (b). Comparing
coefficients calculated with case (a) and (c), it is
observed that they are practically equal for h=l ¼ 2.
For h=l5 2 coefficients of case (c) are greater than
those of case (a) and for h=l4 2 they are smaller. The
differences in the frequency coefficients are between
12% and (–16%) with respect to case (c).

On the other hand, it can be observed that case (c)
presents higher coefficients than those of case (b) for
h=l � 4 and they are nearly the same when h=l!1. It
is observed that when kt1 ¼ kr1 !1 the agreement
with Araújo dos Santos and Reddy (2012) is excellent.

In Table 5 it can be observed how the natural fun-
damental frequency of a cantilever beam (infinitely
rigid clamped condition) diminishes as the support
becomes less rigid (becomes more flexible). Then as
the boundary condition becomes more flexible, the fun-
damental frequency is reduced. The more flexible the
boundary condition, the lower the frequency.

For example, if kr1 ¼ kt1 ¼ 100 the reduction is
5.5% for the macro beam. For micro beams of different
micro size ratios, the reduction is much more signifi-
cant; for kr1 ¼ kt1 ¼ 100 and h=l¼ 1, it is 24% lower
than the same micro beam with the infinitely rigid
clamped condition; for h=l¼ 0.75, the frequency is
33% lower and for h=l¼ 0.20, the frequency is almost
72% lower and so on.

Tables 6–8 present the decrement of the boundary
rigidities related to the higher frequency values.

Small damage to the supports can generate signifi-
cant reductions in the fundamental frequency of beams.
If kt1 and kr1 are extremely large the natural fundamen-
tal frequency approaches the fundamental frequency
!1Cantilever of the cantilever beam, with an infinitely
rigid condition. "1 ¼

!1

!1Cantilever
� 100 ¼ 100% corres-

ponds to the classical clamped boundary condition.

Table 3. First five natural frequency coefficients �j ¼ !jL
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A=ðE IÞ

p
of beams with elastically restrained ends, kt1 !1, kt2 !1.

Case (b) Equation (33) � ¼ 0:30, h=l!1, J 	 EI (Figure 1).

h=l kr1 kr2 �1 �2 �3 �4 �5

!1 !0 !0 9.8696 39.4783 88.8260 157.9130 246.7490 (SS-SS)

9.8696 – – – – Ghannadpour et al. (2013)

9.8696 39.4784 88.8264 157.914 246.740 Blevins (1979)

10 13.4296 44.7214 95.0921 164.8540 254.1590

100 15.1257 49.0446 102.3840 175.1740 267.4420

!1 15.4181 49.9643 104.2470 178.2700 272.0350 (SS-C)

15.4182 – – – – Ghannadpour et al. (2013)

15.4182 49.9649 104.2474 178.2697 272.031 Blevins (1979)

10 10 17.2695 49.9595 101.3160 171.7440 261.5230

100 19.2721 54.5090 108.7700 182.1750 274.8810

!1 19.6272 55.4996 110.7070 185.3440 279.5460

100 100 21.5417 59.4473 116.6640 193.0470 288.6590

!1 21.9517 60.5449 118.7560 196.4130 293.5540

!1 !1 22.3731 61.6715 120.9020 199.8590 298.5620 (C-C)

22.3733 – – – – Ghannadpour et al. (2013)

22.3733 61.7061 120.903 199.859 298.556 Blevins (1979)

Figure 4. Cantilever micro beam with elastically restrained

boundary conditions.
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Table 4. Fundamental frequency coefficients �1 ¼ !1L2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A=ðE IÞ

p
of cantilever micro beams of cases (a), (b) and (c), with the elastic

boundary conditions (Figure 4).

h/l

kr1¼ kt1 0.20 0.25 0.50 0.75 1.00 1.33 2.00 4.00 !1

(a) Eq. (32); � ¼ 0:30

!0 0 0 0 0 0 0 0 0 0

1 0.88802 0.88792 0.88716 0.88604 0.88474 0.88298 0.87999 0.87569 0.87305

10 2.80315 2.80007 2.77604 2.74158 2.70239 2.65052 2.56634 2.45372 2.38925

100 10.7180 9.99765 8.23006 7.21448 6.43758 5.69267 4.85354 4.10381 3.78233

1000 32.5228 27.0400 14.9074 10.5476 8.39534 6.86102 5.48753 4.45338 4.04791

10,000 37.6999 30.2832 15.5885 10.8380 8.56733 6.96969 5.55225 4.49108 4.07625

!1 37.9877 30.4885 15.6483 10.8663 8.58478 6.98113 5.55930 4.49529 4.07941

(b) Eq. (33); � ¼ 0:30

! 0 0 0 0 0 0 0 0 0 0

1 0.88802 0.88792 0.88714 0.88596 0.88453 0.88248 0.87868 0.87238 0.86790

10 2.80313 2.80003 2.77546 2.73911 2.69605 2.63611 2.53101 2.37350 2.27357

100 10.7136 9.98521 8.20758 7.15789 6.33282 5.52307 4.58466 3.71203 3.32252

1000 32.4840 26.9977 14.7853 10.3613 8.15483 6.55903 5.10008 3.96166 3.49752

10, 000 37.6406 30.2149 15.4522 10.6403 8.31539 6.65719 5.15414 3.98810 3.51426

!1 37.9313 30.4183 15.5110 10.6676 8.33182 6.66760 5.16009 3.99104 3.51601

– – – – 8.3318a – 5.1601a – 3.5160a

(c) Eq. (34)

! 0 0 0 0 0 0 0 0 0 0

1 0.88806 0.88799 0.88737 0.88643 0.88526 0.88350 0.87999 0.87336 0.86790

10 2.80442 2.80201 2.78278 2.75357 2.71774 2.66548 2.56634 2.39671 2.27357

100 11.2185 10.3910 8.52161 7.51481 6.71290 5.88369 4.85355 3.81667 3.32288

1000 36.1784 30.0933 16.6036 11.6087 9.07660 7.21956 5.48748 4.09033 3.49819

10, 000 42.8548 34.3727 17.5045 11.9747 9.28190 7.34153 5.55225 4.11962 3.51428

!1 43.2054 34.6287 17.5800 12.0095 9.30249 7.35426 5.55930 4.12289 3.51601

aAraújo dos Santos and Reddy (2012).

Table 5. Damage to the supports, measured in percentage change rates of the first natural frequency with respect to

the cantilever beam (C-F), "1 ¼
!1=!1Cantilever

� 100.

Micro beam
kr1 ¼ kt1

h=l !1 10,000 1000 100 10 1

0.20 100% 99.23% 85.64% 28.24% 7.39% 2.34%

0.25 100% 99.33% 88.75% 32.83% 9.21% 2.92%

0.50 100% 99.62% 95.32% 52.91% 17.89% 5.72%

0.75 100% 99.74% 97.13% 67.10% 25.68% 8.31%

1.00 100% 99.80% 97.88% 76.01% 32.36% 10.62%

1.33 100% 99.84% 98.37% 82.83% 39.54% 13.24%

2.00 100% 99.88% 98.84% 88.85% 49.05% 17.03%

4.00 100% 99.93% 99.26% 93.01% 59.47% 21.86%

!1 100% 99.95% 99.47% 94.50% 64.66% 24.68%
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Table 8. Damage to the supports, measured in percentage change rates of the fourth natural frequency with respect to

the cantilever beam (C-F), "4 ¼
!4=!4Cantilever

� 100.

Micro beam
kr1 ¼ kt1

h=l !1 10,000 1000 100 10 1

0.20 100% 98.95% 81.23% 52.37% 51.15% 51.03%

0.25 100% 98.99% 81.58% 52.97% 51.23% 51.03%

0.50 100% 99.07% 82.41% 56.07% 51.82% 51.10%

0.75 100% 99.12% 82.90% 58.18% 52.60% 51.19%

1.00 100% 99.14% 83.36% 59.40% 53.42% 51.30%

1.33 100% 99.16% 83.78% 60.33% 54.38% 51.46%

2.00 100% 99.18% 84.56% 61.23% 55.72% 51.75%

4.00 100% 99.21% 85.88% 62.05% 57.18% 52.19%

!1 100% 99.23% 86.66% 62.48% 57.89% 52.49%

Table 6. Damage to the supports, measured in percentage change rates of the second natural frequency with respect

to the cantilever beam (C-F), "2 ¼
!2=!2Cantilever

� 100.

Micro beam
kr1 ¼ kt1

h=l !1 10,000 1000 100 10 1

0.20 100% 99.14% 84.68% 16.43% 5.12% 1.64%

0.25 100% 99.21% 86.65% 18.71% 6.33% 2.04%

0.50 100% 99.42% 91.47% 26.74% 11.74% 3.98%

0.75 100% 99.51% 93.07% 32.22% 15.88% 5.73%

1.00 100% 99.56% 93.85% 36.93% 18.92% 7.26%

1.33 100% 99.59% 94.43% 42.36% 21.77% 8.93%

2.00 100% 99.62% 95.11% 50.23% 25.14% 11.23%

4.00 100% 99.66% 95.90% 59.71% 28.81% 13.93%

!1 100% 99.68% 96.33% 64.75% 30.83% 15.39%

Table 7. Damage to the supports, measured in percentage change rates of the third natural frequency with respect to

the cantilever beam (C-F), "3 ¼
!3=!3Cantilever

� 100.

Micro beam
kr1 ¼ kt1

h=l !1 10,000 1000 100 10 1

0.20 100% 99.05% 83.09% 38.79% 36.54% 36.29%

0.25 100% 99.10% 84.13% 39.78% 36.69% 36.31%

0.50 100% 99.25% 86.90% 44.12% 37.77% 36.43%

0.75 100% 99.31% 88.04% 46.64% 39.11% 36.61%

1.00 100% 99.35% 88.75% 48.13% 40.40% 36.82%

1.33 100% 99.37% 89.34% 49.44% 41.82% 37.12%

2.00 100% 99.40% 90.20% 51.13% 43.61% 37.64%

4.00 100% 99.43% 91.38% 53.42% 45.40% 38.42%

!1 100% 99.45% 92.05% 54.95% 46.24% 38.93%
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A damaged support loses rigidity and affects the nat-
ural frequencies of structures.

6. Conclusions

The boundary characterization of micro beams is taken
into account by rotational and translational springs
located at the ends of the beam. The fact of considering
elastic boundary conditions allows representing more
real support conditions and then, for those cases, deter-
mining the corresponding natural frequency values.
The Poisson’s ratio effect on the bending rigidity of
micro beams can be observed, and its influence on the
natural frequencies appreciated.

The results indicate that regardless of the cause,
unforeseen flexibility in supports affects the natural fre-
quencies of structural systems. In the case of microm-
eter beams, the effects on the lower frequencies are
much more noticeable than in macro-scale beams. In
general higher frequencies are less affected than lower
frequencies.

To conclude, the characterization of real boundary
conditions is much more important for micro-scale
beams than for macro-scale beams, and this is an
assessment that cannot be ignored.
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