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Abstract. We analyse various properties of stochastic Markov processes 
with multiplicative white noise. We take a single-variable problem as a simple 
example, and we later extend the analysis to the Landau–Lifshitz–Gilbert 
equation for the stochastic dynamics of a magnetic moment. In particular, we 
focus on the non-equilibrium transfer of angular momentum to the magnetization 
from a spin-polarised current of electrons, a technique which is widely used in 
the context of spintronics to manipulate magnetic moments. We unveil two 
hidden dynamical symmetries of the generating functionals of these Markovian 
multiplicative white-noise processes. One symmetry only holds in equilibrium 
and we use it to prove generic relations such as the fluctuation-dissipation 
theorems. Out of equilibrium, we take profit of the symmetry-breaking terms 
to prove fluctuation theorems. The other symmetry yields strong dynamical 
relations between correlation and response functions which can notably 
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simplify the numerical analysis of these problems. Our construction allows us to 
clarify some misconceptions on multiplicative white-noise stochastic processes 
that can be found in the literature. In particular, we show that a first-order 
dierential equation with multiplicative white noise can be transformed into an 
additive-noise equation, but that the latter keeps a non-trivial memory of the 
discretisation prescription used to define the former.

Keywords: Brownian motion, driven diusive systems (theory), fluctuations 
(theory), stochastic processes (theory)
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1. Introduction

Stochastic Markov processes in which the noise acts multiplicatively on a function of 
the variable of interest are manifold. In physics one finds the diusion of a colloidal 
particle close to a wall, in chemistry one counts autocatalytic chemical reactions in 
which the production of a molecule is enhanced by the presence of the same molecules 
already produced, in economy the Black and Scholes model provides a theory of option 
pricing. A detailed discussion of the dynamics of single variable and extended systems 
with multiplicative noise can be found in [1].

In order to make sense, any Markovian stochastic equation with multiplicative 
noise, e.g. an overdamped Langevin equation with state-dependent diusion coecient, 
must be given a discretization prescription. For these, the associated Fokker–Planck 
equation governing the time evolution of the probability distribution function of the 
stochastic variable(s) depends, in general, on the discretisation prescription parameter, 
say α, and on the function that multiplies the noise, say g. Noteworthy, its stationary 
solution also depends on α and g [2–5].

In the presence of a multiplicative noise, Stratonovich noticed that the qualita-
tive behaviour of the stationary probability distribution can change as a function of 
the noise strength [2], and thus deviate from the usual Gibbs–Boltzmann distribution 
which would only involve the potential responsible for the deterministic forces acting, 
say, on the particle. The state-dependence of the function g can have far reaching con-
sequences. For instance, the stationary probability distribution function may develop 
new extrema that are not the ones set by the deterministic forces. Similar eect on 
many-body systems can alter the number or the nature of the extrema of the free 
energy governing the dynamics of an order parameter, and therefore induce so-called 
noise-induced phase transitions [1]. For instance, models without symmetry breaking 
potentials can thus exhibit coarsening phenomena.

However, one can adopt a dierent point of view from the one above. The sto-
chastic dierential equation can be modified so that the approach to the usual Gibbs–
Boltzmann distribution is ensured for any discretisation prescription parameter α and 
multiplicative function g. This is achieved by adding a drift term to the stochastic 
equation (given in equation (2.8) and necessary even when the common Stratonovich 
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mid-point prescription is used). With this addition, the α dependence disappears from 
the Fokker–Planck equation (and the physics in general). Although the dynamics still 
depend on g, one can show that they converge to a g -independent stationary solution 
which is now the desired Gibbs–Boltzmann measure.

We present a concise summary of these known, though perhaps not suciently 
assimilated, issues in the two first sections of section 2, that are supplemented by 
material in appendices A–C, in the framework of a stochastic dierential equation on 
a single variable.

It is sometimes found in the literature that one-dimensional Markov processes with 
multiplicative noise can be mapped to overdamped Langevin equations with an addi-
tive noise, and that once in this new framework all discretisation subtleties can be 
ignored. This statement is, however, wrong as the new additive-noise equation depends 
explicitly on the α-prescription used to define the original multiplicative-noise equation. 
The reason is that the chain rule for the time derivative of a function of the stochastic 
variable has to be used in the transformation between multiplicative and additive-noise 
equations, and this chain rule involves α and g. Accordingly, the Fokker–Planck equa-
tion associated to the resulting additive-noise Langevin equation and its asymptotic 
solution depend on α and g. This can be cured by adding a drift term to the additive-
noise Langevin equation that is completely equivalent to the one to be used in the 
multiplicative-noise formalism. We discuss these facts in appendices B and C.

In section 2.3 we recall the path-integral generating-functional formalism for sto-
chastic Langevin processes with multiplicative white noise [6–11]. We explain the 
apparent dierences with the path integrals used in [12], and why we do not agree with 
the claims in [13, 14].

The functional formulation of stochastic processes is very well-suited to prove 
model-independent properties of generic physical observables. Although the deriva-
tion of fluctuation theorems for white-noise Markov processes has been addressed on 
general grounds via equation-of-motion formalisms [12, 15, 16], we are still lacking a 
generic path-integral formulation addressing the case of multiplicative noise. In this 
paper, we will use a model-independent field transformation in the path-integral form-
ulation to show that the equilibrium fluctuation-dissipation theorems and the out-of- 
equilibrium fluctuation relations [17–26] hold for multiplicative white-noise Markov 
processes. Contrary to previous works for which the steady states were governed 
by non- equilibrium potentials, see e.g. [12–14] and [27, 28], here the approach to a  
Gibbs–Boltzmann equilibrium is ensured by the presence of a drift term, see also [29].

We will also present another transformation which leaves the action (and the func-
tional measure) invariant and which can be used to derive the Schwinger–Dyson equa-
tions governing the coupled dynamics of correlations and linear responses.

For simplicity, we will present detailed derivations in the framework of a single- 
variable stochastic equation. The generalisation to higher dimensional problems, and 
field theories, should then be clear. At the end of the paper, we will apply our results to 
the dynamics of a magnetic moment governed by the stochastic Landau–Lifshitz–Gilbert 
equation [30, 31] taking advantage of the path-integral formalism developed in [32].

Recapping, the paper is organised as follows. In section 2, we recall the main fea-
tures of the Langevin, Fokker–Planck and path-integral formulations of stochastic 
Markov processes with multiplicative white noise in the framework of single-variable 
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problems. We re-derive Crooks relation [33] between path probabilities for forward and 
backward stochastic processes, now extended to take into account non-trivial issues 
due to the discretisation of Markov stochastic processes with multiplicative white noise. 
We prove equilibrium and out-of-equilibrium fluctuation theorems. Complements to 
these sections are given in the appendices. Section 3 is devoted to the application of 
these ideas to the Landau–Lifshitz–Gilbert stochastic equation. Finally, in section 4 we 
open some ways for future research.

2. Single-variable stochastic Markov processes

In this section, we define the single-variable problem that we use as a framework to 
recall a number of important features that, sometimes, appear in confusing terms in 
the literature. We also discuss a time-reversal symmetry of the equilibrium generat-
ing functional and we use it to derive equilibrium relations such as the fluctuation-
dissipation theorem. Out of equilibrium, this symmetry is broken and we use the 
resulting symmetry-breaking terms to derive fluctuation relations. We then discuss 
another symmetry of the generating functional, valid in and out of equilibrium, 
that is useful to derive the Schwinger–Dyson equations for correlations and linear 
responses.

2.1. The Langevin equation

Let us consider a real variable x, the dynamics of which is governed by the following 
Langevin equation

( ) ( ) ( ) ( )ξ= +x t f x g x tdt (2.1)
where ( )ξ t  is a Gaussian white noise with zero mean ⟨ ( )⟩ξ =t 0 and variance

ξ ξ δ〈 = − =′ ′t t D t t D k T2 with .B( ) ( )〉 ( )    (2.2)

The noise is said to be multiplicative because it acts multiplicatively on g (x), a function 
of the stochastic variable.

This stochastic dierential equation makes sense only when complemented with a 
discretisation prescription to define at which point g(x) should be evaluated. This is 
relevant since each pulse ( )ξ t  yields a discontinuity in x and therefore the value of x 
at which g (x) is evaluated (and hence the size of the discontinuity) is a priori not well 
defined. Without restricting the generality of the foregoing, we work with the generic 
α-prescription [3, 34] which corresponds, in discrete time, to

− = ++x x f x t g x Wd dn n n n n1 ( ) ( ) (2.3)
with ξ≡W td dn n , 〈 〉 =Wd 0n  and δ=W W D td d 2 dn m nm〈 〉  for the statistics of the noise, and

( )α α= + −+x x x1 ,n n n1 (2.4)
with α a real parameter ⩽ ⩽α0 1. Note that the discretisation used in the argument of 
f is irrelevant in the continuous-time limit. Equation (2.1) can be taken into a form in 

http://dx.doi.org/10.1088/1742-5468/2016/05/053207
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which the noise appears additively but in which the dependence on the discretisation 
parameter α is still present in the new equation, see appendices B and C.

The chain rule for the time derivative of a function F of the variable x depends on 
the stochastic equation governing the time evolution of x, see [3–5] for Itô (α = 0) and 
Stratonovich ( /α = 1 2) prescriptions and appendix A for a generic α-prescription. In 
this case, it reads

α= ∂ + − ∂F x x F x Dg x F xd d 1 2t t x x
2 2( )   ( ) ( ) ( ) ( ) (2.5)

where ≡x x td d /dt . The usual chain rule of conventional calculus is recovered only 
in the case of the Stratonovich mid-point prescription, /α = 1 2. Note that the chain  
rule is independent of the ‘force’ f (x ). In particular, it does not depend on the  
addition (or not) of a drift term to the Langevin equation such as discussed around 
equation (2.11) below.

2.2. The Fokker–Planck equation

The Fokker–Planck equation corresponding to the Langevin equation (2.1) in a generic 
α-prescription reads [3, 4, 7, 28]

α∂ = −∂ + + ∂′P x t f x D g x g x P x t D g x P x t, 2 , , .t x x
2 2( ) [( ( ) ( ) ( )) ( )] [ ( ) ( )] (2.6)

(Note the dierence between this equation and the one used in [12].) Once supple-
mented by an initial condition ( ) ( )=P x P x, 0i , this equation describes the deterministic 
evolution of the probability density P(x, t) of finding x at time t. It can be written in 
the form of a continuity equation ∂ + ∂ =P J 0t x . Its stationary solution with vanishing 
current, J  =  0, is

( )  [ ( )]  ( )
( )
( )∫= α− −
′
′P x Z g x eD

f x

g xst
1 2 1

1 x

2 (2.7)

where ∫
x
 represents the indefinite integral over ′x  and Z is a normalisation constant 

[3, 4, 28]. The approach to this asymptotic form can be proven with the construction 
of an H-function as in [35], or with the mapping of the Fokker–Planck operator into a 
Schrödinger operator and the analysis of its eigenvalue problem [36]. Clearly, the fact 
that Pst depends on α and g shows that these can have highly non-trivial consequences 
on the transient dynamics as well as the asymptotic stationary properties of the system 
[1, 2, 37].

However, if we allow ourselves to consider the special ‘drift force’ [38]

α= − + −′ ′f x g x V x D g x g x2 1 .2( ) ( ) ( ) ( ) ( ) ( ) (2.8)

with the short-hand notation ≡∂′V Vx  and ≡∂′g gx , the Fokker–Planck equation loses 
any dependence on α,

( ) { ( )[ ( ) ( ) ( )]}∂ = ∂ + ∂′P x t g x V x P x t D P x t, , , .t x x
2

 (2.9)

Importantly, since physical observables are computed using P(x, t ), this implies that 
the physics of equation (2.1) with the ‘drift force’ in equation (2.8) does not depend on 
the prescription parameter α. This can also be proven using the BRST symmetry of the 
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generating functional [27] or with a perturbative analysis [39]. Moreover, the asymp-
totic solution of the Fokker–Planck equation in equation (2.9) simply reads

( )   ( )  ( )= =− −P x Z P xe D
V x

st
1

1
GB (2.10)

independently of α and g. PGB stands for the Gibbs–Boltzmann equilibrium distribu-
tion function in the canonical ensemble of statistical mechanics.

Therefore, in order to describe the Markovian stochastic dynamics of a physi-
cal quanti ty subject to multiplicative white noise and that reaches a usual Gibbs–
Boltzmann equilibrium measure, one needs to work with the drifted Langevin equation

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )α ξ= − + − +′ ′x t g x V x D g x g x g x td 2 1t
2 (2.11)

in a generic α-prescription. Several features of this equation should be remarked. First, 
there is a non-trivial additional ‘drift force’ even in the Stratonovich mid-point ( /α = 1 2) 
prescription. Second, the additional term is not equal to the one in the chain rule (2.5). 
Moreover, this equation is equivalent to the original ‘undrifted’ equation (2.1) with a 
post-point prescription α = 1 [40–43].

Although it is conventional to work with Langevin equations of the form of equa-
tion (2.1) or equation (2.11) in which the left-hand side (lhs) is solely given by the time 
derivative, xdt , it can be illuminating to re-write the latter as

( ) ( ) ( ) ( ) ( ) ( ) ( )α ξ= − − − ∂ | | +′k x x t V x D k x k x td 2 1 ln ,t x
2

 (2.12)

where we re-parametrised ( ) / ( )≡g x k x1 . Equation (2.12) has the form claimed in [44] 
for the Markovian overdamped dynamics of particles subject to forces deriving from 
a potential V and interacting with a bath of oscillators via a non-linear coupling K(x) 
with ( ) ( )≡′K x k x . The exact integration over the degrees of freedom of the bath gives 
rise to a viscous friction force, here in the left-hand side (lhs), as well as the multiplica-
tive noise in the right-hand side (rhs). Note that the drift force was not discussed in 
[44] since the focus in this paper was on non-Markovian dynamics (either because of 
the presence of a coloured noise or inertia) for which case no drift force is needed to 
ensure the convergence to the usual Gibbs–Boltzmann distribution. We can therefore 
re-interpret the time derivative, xdt , in the lhs of equation (2.1) or equation (2.11) as 
originating from the dissipative interaction with the same bath that is responsible for 
the random noise ( )ξ t .

2.3. The path-integral formulation

The stochastic dynamics of Markov processes governed by Langevin equations can be 
formulated in terms of path integrals. This approach has been first developed for cases 
with an additive noise [45–50]. It was later generalised to cases with a multiplicative 
noise [6] and extended to various discretization schemes and to higher dimensions  
[7, 8]. Below, we recall the construction of such a path-integral representation on the 
case of the multiplicative-noise equation (2.1) by following a procedure à la Martin–
Siggia–Rose–Janssen–deDominicis (MSRJD).

The probability distribution for a given trajectory of x, with initial condition −x T( ) 
at time −T  distributed according to −P xi T( ( )), and governed by equation (2.1) is

http://dx.doi.org/10.1088/1742-5468/2016/05/053207
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J DT[ ] ( )    [ ˆ]  〉ˆ [ ]∫ ∫α ∝ 〈| | ξ α
−P x P x x; e x x

i
i Eq , ;t t (2.13)

where we used the short-hand notation ∫  for the time integral in the exponential that 

runs over the (symmetrised for convenience) time interval T T[ ]− ,  , and xt  =  x (t) for 
the time-dependent functions. The brackets denote the statistical average over all pos-
sible histories of the noise ξ. We introduced the auxiliary field x̂i t to exponentiate the  
δ-function that imposes that xt be the solution to the Langevin equation at all times (for 
a given history of ξ ). We wrote the latter constraint in the compact form [ ]ξ α =xEq , ; 0t . 
The Jacobian J  is given by

J
[ ]δ ξ α
δ

≡
′ ′

⎡
⎣⎢

⎤
⎦⎥

x

x
det

Eq , ;
.

tt

t

t
 (2.14)

The calculations detailed in appendix D are similar to the ones in [7, 8, 51, 52], and 
yield for the case of the ‘undrifted’ Langevin equation (2.1)

[ ] [ ˆ]  [ ˆ ] [ ˆ ] [ ˆ ]∫α α α∝ = αDP x x P x x P x x; , i ; with , i ; eS x x,i ;
 (2.15)

and the Martin–Siggia–Rose–Janssen–deDominicis (MSRJD) action [9, 11]

[ ˆ ] [ ˆ ( ) ( ˆ ) ] ( )∫α α α≡ − − + + − +′ ′ −TS x x x x f D g g D x g f P x, i ; i ˙ 2 i ln .t t t t t t t t
2 2

i (2.16)

This action coincides with the form given in [6, 11]. It diers from the one in [12] since 
the authors used a post-point prescription in the stochastic equation (i.e. α = 1) while 
using a mid-point Stratonovitch prescription in the construction of the path integral 
formalism. We disagree with the statements made in [13, 14] concerning the invalid-
ity of action functional in [11]. Note that the use of a non-linear change of variable 
within the path integral is known to be problematic, even when starting from a mid-
point discretisation, unless the underlying discretisation is treated with great care. The 
non-trivial eects of non-linear transformations were already observed in a quantum 
field theory context [53–56] and they appear within stochastic field theory as well  
[7, 9]. In other words, covariance of the action functional under general coordinate 
transformations comes with highly non-trivial treatment of the underlying discretiza-
tion prescription.

With the addition of the drift force that ensures the approach to the usual Gibbs–
Boltzmann equilibrium, see equation (2.8), the MSRJD action reads

T

[ ˆ ] { ˆ [ ( ) ] ( ˆ )

[ ( ) ]} ( )
∫α α

α α

= − + − − +

− ∂ − + − +

′ ′

′ ′ −

S x x x x g V D g g D x g

g V D g g P x

, i ; i ˙ 2 1 2 i

2 1 ln .

t t t t t t t t

x t t t t

2 2 2

2
i

 
(2.17)

2.4. Fluctuations

The stochastic nature of the dynamics is responsible for fluctuations of the field (here xt)  
and more generally of all the possible physical observables that depend on this field  
(i.e. any A(xt )). Amongst the few universal results that apply to these dynamics, there 
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is a class of exact relations between the path probabilities that are very precious since 
they lead to strong relations between observables. In a functional formalism, these rela-
tions can be proven by (1) making use of physical symmetries or broken symmetries of 
the system or its dynamics, (2) exploiting the invariance of the generating functional 
under a dummy linear change of integration variables. In this section, we shall discuss 
these relations in the context of stochastic Markov processes with multiplicative white 
noise such as the ones defined by equation (2.11).

2.4.1. Relation between path probabilities Let us consider the cases in which the force 
f depends on a set of externally controlled, possibly time-dependent, parameters λt. 
The stochastic process is characterised by the path integral (2.15) that expresses the 
joint probability distribution, α λP x x, i ; ,[ ˆ ], of the time series {   ˆ }x x, it t  of the physical 
and the auxiliary fields, in the α-prescription, and under the set of parameters λt. Fol-
lowing Crooks [33], we ask how does [ ˆ ]α λP x x, i ; ,  compare to the probability distribu-
tion of the transformed time-dependent variables { ˆ }T Tx x, it t  in another discretisation 
prescription, α, and, possibly, under a transformed set of parameters, λt. By choosing 
adequately the transformation rules Tx, ˆT xi , α and λ  we will obtain relations of the type

T T[ ˆ ]
[ ˆ ]

[ ˆ ]α λ
α λ

= α λ∆P x x

P x x

, i ; ,

, i ; ,
e .S x x,i ; ,

 (2.18)

We have distinguished the notation for the transformation of the dynamical fields, 
ˆT Tx x, i , from the changes in the discretisation parameter, α, and the external time-

dependent parameter, λt.
The relation (2.18) implies, for the average of a generic function A of the physical 

and auxiliary fields (but, for simplicity, not of their time derivatives)

D

D T T T T T T

D T T T T

[ ˆ]  [ ˆ]  [ ˆ ]

[ ˆ]  [ ˆ]  [ ˆ ]

[ ˆ]  [ ˆ]  [ ˆ ]  [ ˆ ]

∫
∫
∫

α λ

α λ

α λ

=

= α λ∆

x x A x x P x x

x x A x x P x x

x x A x x P x x

, , i , i ; ,

, , i , i ; ,

, , i , i ; , e .S x x,i ; ,

 

(2.19)

Moreover, if the measure over the transformed fields can be related to the one over the 
original ones with a unit Jacobian, and if the domain of integration at each time slice, 
here the real axis, is unchanged or can be taken back to the real axis, then the relation 
above becomes

D

D T T

[ ˆ]  [ ˆ]  [ ˆ ]

[ ˆ]  [ ˆ]    [ ˆ ][ ˆ ]

∫
∫

α λ

α λ= α λ∆

x x A x x P x x

x x A x x P x x

, , i , i ; ,

, , i e , i , , .S x x,i ; ,
 

(2.20)

Writing T T[ ˆ]A x x, i  as a new function of the original fields x and x̂i , say ≡B x x A x x, i , iT T[ ˆ] [ ˆ], 
one has a generic relation between averages of dierent functions:

∫
∫

α λ

α λ= α λ∆

x x A x x P x x

x x B x x P x x

, , i , i ; ,

, , i e , i ; , .S x x,i ; ,

D

D

[ ˆ]  [ ˆ]  [ ˆ ]

[ ˆ]  [ ˆ]    [ ˆ ][ ˆ ]
 

(2.21)
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With dierent choices of the function A, and their associated B, one can derive various 
relation. In particular, choosing A  =  1,

〉[ ˆ ]= 〈 α λ∆1 e .S x x,i ; ,
 (2.22)

In section 2.4.2, we will identify the transformation Teq, associated with the time-
reversal invariance of equilibrium dynamics, that leaves the probability density invari-
ant (∆ =S 0) whenever the system is subject to equilibrium conditions, meaning initial 
conditions drawn from the Gibbs–Boltzmann distribution /∝ −P e V D

GB  and dynamics 
given by the Langevin equation equation (2.11), with a drift force deriving from the 
same confining potential V, and in contact with a thermal bath at the same temper-
ature such that =k T DB . We later use this invariance to derive generic properties of 
equilibrium dynamics, such as the fluctuation-dissipation theorem (section 2.4.3). Out 
of equilibrium, ∆ ≠S 0, and we will derive in section 2.4.4 various fluctuation relations 
that have been extensively studied in recent years [17–26].

2.4.2. The time-reversal transformation We look for the invariance of the generating 
functional that corresponds to the time-reversal invariance of the equilibrium dynam-
ics. For a clear discussion of time-reversal in the context of Markovian equations of 
motion, see [57, 58]. Although the action functional in equation (2.17) is relatively 
cumbersome, the identification of the correct field transformation that leaves it invari-
ant can be simplified by the fact that one expects the time-reversal invariance to hold 
for the system and its environment separately. In other words, we expect the terms 
in the action that have their origin in the coupling to the bath to transform indepen-
dently from the rest of the action. We identify them, see the discussion around equa-
tion (2.12), and collect them in

[ ˆ] ˆ [ ˆ ]( )∫≡ − αS x x x D x g x, i i i dt t t t tdiss
2

 (2.23)

where, to simplify notations, we defined

( )( ) α≡ − − ′α x x D g gd d 2 1 2t t t t t t (2.24)

and, we recall, β= = −D k TB
1. For a field xt corresponding to a physical quantity x 

that is even under time-reversal transformation (such as the particle’s position), the 
transformation of the physical field must naturally be −�x xt t. The expression of Sdiss 

in equation (2.23) suggests that we look for a transformation such that ( )α xdt t behaves 
as a usual time derivative under time reversal, i.e.

�( ) ( )−α α
− −x xd d .t t t t (2.25)

This is only true if we simultaneously transform the discretisation parameter α α−� 1 . 
Altogether, we are led to propose the following transformation of the dynamical field xt 
and its associated auxiliary field x̂i t

= − α
−

−
−
−
−
− −

⎧
⎨
⎩

x x

x x D g x

,

i i d ,

t t

t t t t t
eq 1 2

�

�T ˆ ˆ ( ) (2.26)
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complemented with the transformation of the discretisation parameter

�α α α≡ −1 . (2.27)
It is easy to check that Sdiss is indeed invariant under this transformation:

T T[ ˆ ] {[ ˆ ]

[   ˆ ]}

{[ ˆ ]    ˆ }

{[   ˆ ]  ˆ } [ ˆ ]

( )

( ) ( )

( )

( )

∫

∫
∫

α

β

α

= −

× + −

= −

= − =

α

α α

α

α

−
−
−
−
− −

− − − − − −
−
− −

−
−
−
−
− − − −

S x x x D g x

x D g x Dg g x

x D g x D g x

D g x x x S x x

, i ; i d

d i d

i d i

i d i , i ; .

t t t t

t t t t t t t t

t t t t t t

t t t t t

diss eq eq
1 2

2 2 2

1 2 2

2
diss

 

(2.28)

We now have to check that the remaining terms in the action functional are also 
invariant under the proposed transformation. In the potential case with no time-depen-
dent parameter ( λ∂ = 0t t ) and a drift force ensuring the convergence to the usual 
Gibbs–Boltzmann equilibrium measure, the remaining terms are gathered into

[ ˆ ] ( ) ˆ [ ( ) ]∫ ∫α α α= − − ∂ − + −′ ′ ′+ −TS x x P x xg V g V D g g, i ; ln i 2 1t t x t t t tdet jac i
2 2

and they transform as

∫
∫

∫
∫

α

α

α α

α

α α

= + − + + − ∂

− − ∂

= + − + + − ∂

− − ∂

′ ′

′

′ ′ ′

′

α

α

+

−
−
−
−
− − − − − −

− −

−

−

S x x

P x x D g x g V g V

D g g

P x x g V D x V g V

D g g

, i ;

ln i d 1

2 1

ln i d 1

2 1 .

t t t t t t x t t

x t t

t t t t t t x t t

x t t

det jac eq eq

i
1 2 2 2

i
2 1 2

t

t

T T

T

T

[ ˆ ]

( ) [( ˆ ) ( ) ( )]

( ) ( )

( ) [ ˆ ( ) ( )]

( ) ( )

( )

( )

 
(2.29)

We recognise that the first boundary term, ( )TP xln i , needs to be taken back to the 
initial time, −T , if one wants to recover the original [ ˆ ]α+S x xi , ;det jac ; the second and 
last terms are already part of [ ˆ ]α+S x xi , ;det jac ; rewriting ( )α α α− = + −1 1 2 , the fourth 
term produces the last piece needed to fully reconstruct the original [ ˆ ]α+S x xi , ;det jac . All 
in all, we have

∫
∫

α α

α

= +

+ − ∂ + −

′

′

α
+ +

−

−

S x x S x x D x V

g V P x P x

, i ; , i , d

1 2 ln ln .

t t t

x t t

det jac eq eq det jac
1

2
i it

T T

T T

[ ˆ ] [ ˆ ]  

( ) ( ) ( ) ( )

( )

 
(2.30)

Using the explicit form of ( )α xdt t in equation (2.24), we can simplify this expression as 
follows

∫
∫ ″

α α

α

= +

+ − + −

′+ +
−

−

S x x S x x D x V

g V P x P x

, i ; , i ; d

1 2 ln ln .

t t t

t t

det jac eq eq det jac
1

2
i i

T T

T T

[ ˆ ] [ ˆ ]  

( )   ( ) ( )
 

(2.31)
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Replacing the term in   ′x Vdt t t above by using the chain rule of stochastic calculus 
recalled in equation (2.5) [28],

  ( )   ″α= + −′V x V Dg Vd d 1 2 ,t t t t t t t
2

 (2.32)

we obtain

∫
α α=

+ + −

+ +

−
−

S x x S x x

D V P x P x

, i ; , i ;

d ln ln .t t

det jac eq eq det jac

1
i i

T T

T T

[ ˆ ] [ ˆ ]

( ) ( ) (2.33)

Finally, with initial conditions drawn from the Gibbs–Boltzmann distribution

( )   ( )=−
− − −

−
T

TP x Z e ,D V x
i

1 1

 (2.34)

we end the proof of the full invariance of the equilibrium action functional in equa-

tion (2.17) under the transformation Teq given in equation (2.26):

[ ˆ ] [ ˆ ]α α=T TS x x S x x, i ; , i ;eq eq (2.35)

and ∆ =S 0. Note that to achieve this invariance, there was a subtle interplay between 
the contributions coming from the deterministic part of the action and the ones coming 
from the α-dependent Jacobian.

This invariance of the action functional yields the following relation between path 
probabilities

D T T D T T[ ˆ ]  [ ˆ] [ ˆ ]  [ ˆ]α α=P x x x x P x x x x, i ; , , i ; , i .eq eq eq eq (2.36)

After the transformation Teq, the domain of integration of x̂t at each time slice of the 
generating functional is shifted from the real axis to the complex line with a constant 
imaginary part −D xi dt t

1 . Using the analyticity of [ ˆ ]αS x xexp ; i ; , one can return to an 
integration over the real axis by closing the contour at both infinities and by dropping 
the contributions of the vertical ends that vanish owing to the term ( ˆ )D xi t

2. Note also 

that the Jacobian associated to the change of variables { ˆ} { ˆ}� T Tx x x x, i , ieq eq  is unity. 
Finally, [ ˆ] [ ˆ]=D D T Tx x x x, , ieq eq  and we obtain the following relation between the for-

ward and backward path probabilities

=
P x x

P x x

, i

, i
1,B

F

[ ˆ]
[ ˆ] (2.37)

where we defined

T T[ ˆ] [ ˆ ] [ ˆ] [ ˆ ¯]α α≡ ≡P x x P x x P x x P x x, i , i , , , i , i , .F B eq eq (2.38)

The relation (2.37) is valid whenever the system is in thermal equilibrium.

2.4.3. The fluctuation-dissipation theorem The fluctuation-dissipation theorem [59–64]  
is a model-independent relation between the linear response and the correlation of 
spontaneous equilibrium fluctuations of a given observable. The linear response of  
x with respect to a previous perturbation is defined as
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( )
( )〉
( )

δ
δ

=
〈

′
′

α
=

R t t
x t

h t
, ,h

h 0
 (2.39)

where the infinitesimal perturbation h couples linearly to the field x in such a way that 

the potential → = −V V V hxh  and, therefore, → = −′ ′ ′V V V hh . In the path-integral 
formulation, the linear response is given by

( ) [ ˆ]  [ ˆ ]   [ ˆ ]∫
δ α
δ

=′α
α

=′
DR t t x x x

S x x

h
, , i

, i ;
et

h

t h

S x x

0

,i ;
 (2.40)

where the action has been modified as

[ ˆ ] [ ˆ ] [ ˆ ]∫α α α= + − ′S x x S x x h x g g g, i ; , i ; i 2 .h t t t t t
2

 (2.41)

Therefore, the linear response is expressed as a correlation function reading

α= −′ ′α α′ ′ ′ ′R t t x x g g g, i 2t t t t t S x x
2

,i ;( ) 〈 [ ˆ ]〉 [ ˆ ] (2.42)

where the average has to be taken with the measure given by the unperturbed action 
[ ˆ ]αS x x, i ; . The subindex α expresses the fact that the stochastic process is defined with 

a discretisation parameter α. Exchanging momentarily α by α−1  one has

( ) 〈 [ ˆ ( ) ]〉 [ ˆ ]α= − −′ ′α α− −′ ′ ′ ′R t t x x g g g, i 2 1 .t t t t t S x x1
2

,i ;1 (2.43)

Take now the expression in equation (2.43) and perform the change variables in the 

path integral from { ˆ }x x, it t  to { ˆ }T Tx x, it teq eq :

T T T T T T T( ) 〈 [ ˆ ( ) ]〉 [ ˆ ]α= − −′ ′α α− −′ ′ ′ ′R t t x x g g g, i 2 1c t t t t t S x x1 eq eq
2

eq eq , i ;1eq eq (2.44)

where ( )=T Tg g xteq eq  and similarly for ′T geq . Using that [ ˆ ] [ ˆ ]α α− =T TS x x S x x, i ; 1 , i ;eq eq , 
and applying the transformation Teq defined in equation (2.26) to the function of xt and 
ˆ ′xi t  to be averaged, one has

α

α

α

α

= − − −

= − − −

= −

− − −

′ ′

′

′

′

α
α

α

α
α

α

α

α
α

α

− − −
−
−
−

− − − − −

− − − − −
−

− − −

− − − − −

− − −
−

− − −

′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

R t t x x D g x g g g

x x g g g D x x

x x g g g

x g g D x x

, i d 2 1

i 2 1 d

i 2

2 1 2 d

t t t t t t t t S x x

t t t t t S x x t t t S x x

t t t t t S x x

t t t S x x t t t S x x

1
1 2 2

i , ;

2
i , ;

1
i , ;

2
i , ;

i , ;
1

i , ;

( ) 〈 {[ ˆ ( ) ]}〉

〈 [ ˆ ( ) 〉 〈 ]〉

〈 [ ˆ 〉

〈 ( ) 〉 〈 ]〉

( )
[ ˆ ]

[ ˆ ]
( )

[ ˆ ]

[ ˆ ]

[ ˆ ]
( )

[ ˆ ]

Identifying ( )− − ′αR t t,  in the first term in the rhs and using now ( ) = −α
− − − −x xd dt t t t   

α− ′− −D g g2 1 2 t t( ) ,

= − − + 〈′ ′α α α−
−

− −′ ′R t t R t t D x x, , d .t t t S x x1
1

i , ;( ) ( ) 〉 [ ˆ ] (2.45)
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Using the fact that the physics cannot depend on the discretisation parameter (see the 
discussion below the drifted Fokker–Planck equation (2.9)), we can drop the irrelevant 
index α (or α−1 ) in the linear response and the correlation function and

= − − + ∂ − −′ ′ ′−
′R t t R t t D C t t, , , .t

1( ) ( ) ( ) (2.46)

We apply the transformation Teq once again on the correlation function in the rhs to 
show ( ) ( )− − =′ ′C t t C t t, , . Owing to the time-translational invariance of equilibrium 
dynamics, ( ) ( )τ=′C t t C,  and ( ) ( )τ=′R t t R,  where τ≡ − ′t t , and to the causality of the 
response ( )τ =R 0 for τ< 0, we obtain the celebrated fluctuation-dissipation theorem 
(FDT)

( ) ( ) ( ) ( ) ( )τ τ τ β τ τ= − Θ = − Θτ τ
−R D C Cd d .1

 (2.47)

Here ( )τΘ  is the Heaviside step function.

2.4.4. Broken symmetry and fluctuation theorems There are various ways to drive a 
system out of equilibrium, e.g. by changing an external parameter in the potential in 
time, λt, or by using initial conditions that are not in equilibrium, ( ) ( )≠− −T TP x P xi GB . 
In these cases, the associated time-reversal symmetry of the dynamics is broken and 

the action functional is no longer invariant under the field transformation Teq. In prac-
tice, this means that ∆S defined in equation (2.18) does not vanish and the very same 
transformation technique that we used earlier can now be used to derive exact out-of-
equilibrium relations between path probabilities, the so-called fluctuation relations.

The time-reversed dynamics corresponds to evaluating the action functional in the 

transformed fields T xteq  and ˆT xi teq , the discretisation prescription parameter α α= −1 , 
and the time-reversed protocol

λ λ= − .t t (2.48)
In order to evaluate ∆S, one first notices that the dissipative part of the action Sdiss 
does not depend upon the applied force nor the initial condition. Therefore, it remains 

invariant under Teq. However, as +Sdet jac depends on both the initial distribution and 
the force, we expect it to yield ∆ ≠S 0. More precisely, the terms contributing to ∆S 

are given in equation (2.31) where ′Vt and ″Vt  are the first and second derivative with 

respect to the variable x of the potential V, = ∂′V Vt x t and ″ = ∂V Vt x
2 , respectively. If 

the potential depends on the time-dependent parameter λt, its total time derivative 
expressed in equation (2.32) acquires an extra term,

    ( )  λ α= ∂ + ∂ + − ∂λV V x V Dg Vd d d 1 2 ,t t t t t x t t x t
2 2

 (2.49)

and we use this new relation to replace  ∂x Vdt x t in the first term in equation (2.31):

∫ ∫
∫

α λ α λ

β β λ λ λ

α λ λ λ

λ λ λ

=

+ − ∂ + −

= − ∂ +

− + −

λ

λ

+ +

− −

+
− −

−
− − − −

S x x S x x

V V P x P x

S x x D V D V x

D V x P x P x

i , ; , i , ; ,

d d ln , ln ,

i , ; , d ,

, ln , ln , .

t t t t t

t t t

det jac eq eq det jac

i i

det jac
1 1

1
i i

T T

T T T T

T T

T T T T T T

[ ˆ ] [ ˆ ]

  ( ) ( )

[ ˆ ]   ( )

( ) ( ) ( )

 

(2.50)
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Here, we made explicit the dependence on the time-dependent parameter λt of the 
potential and the initial probability distribution function. The second term in the rhs 
is related to the work done by the time-dependent potential force

∫ λ= ∂λW Vd .t t t  (2.51)

For generic Pi we cannot simplify further the last four terms in the rhs of equa-
tion (2.50) and ∆S is the stochastic entropy, defined as the sum of the Shannon entropy 
[ ( ) ( )λ − −T T TP x P xln , lni i ] and the heat transfer ( β β β= ∆ −Q V W  and β = −D 1).

If, instead, we assume that the system is initially prepared in the Gibbs–Boltzmann 
distribution at temperature β= = −k T DB

1, under a potential ( )λ− −T TV x , ,

T T T T( ) ( )   [ ( )]λ λ β λ= −τ− −
−

− − −P x Z V x, exp , ,i
1 (2.52)

we find

∫α λ α λ β λ

λ λ

= − ∂

− +

λ+ +

−

S x x S x x V

Z Z

i , ; , i , ; , d

ln ln .

t t tdet jac eq eq det jacT T

T T

[ ˆ ]   [ ˆ ]  

( ) ( )
 

(2.53)

The last two terms can be regrouped into

β β λ λ λ λ∆ = − = − +− −F F F Z Zln ln ,T T T T[ ( ) ( )] ( ) ( ) (2.54)

the free-energy dierence between the equilibrium state at the final and initial value of 
the parameter λt. Therefore,

α λ α λ β β= − + ∆+ +S x x S x x W Fi , ; , i , ; , .det jac eq eq det jacT T[ ˆ ] [ ˆ ] (2.55)

and ultimately

T T[ ˆ ] [ ˆ ]α λ α λ
β β

∆ = −
= − + ∆

+ +S S x x S x x

W F

i , ; , i , ; ,

.

det jac eq eq det jac
 (2.56)

In conclusion, we obtain the following relation between the forward and backward 
path probabilities

[ ˆ]
[ ˆ]

= ∆P x x

P x x

, i

, i
e ,SB

F
 (2.57)

where we defined

α λ α λ≡ ≡P x x P x x P x x P x x, i , i ; , , , i , i ; , .F B eq eqT T[ ˆ] [ ˆ ] [ ˆ] [ ˆ ¯ ¯] (2.58)

Multiplying both sides of equation (2.57) by A, a generic observable which can 
depend on x and x̂i , and summing over all paths, one obtains

( ˆ)〉 ( ˆ) 〉〈 = 〈 ∆A x x A x x, i , i e ,S
B F (2.59)

where the subscripts F and B stand for averaging with the forward and backward path 
probability distributions defined in equation (2.58).
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In particular, setting A  =  1, one recovers the Jarzynski relation [17, 65]

〈 =β β− − ∆e e .W F〉 (2.60)

Other fluctuation relations can be found by choosing other observables A.

2.5. Schwinger–Dyson equations

We end the analysis of the single-variable problem by presenting an easy derivation of 
the Schwinger–Dyson equations which govern the coupled dynamics of correlations and 
linear responses. The proof is based on the use of another set of transformation rules 
that leave the action and measure invariant and hold in general.

2.5.1. Out-of-equilibrium symmetry Let us consider the most generic out-of- equilibrium 
situation, i.e. work with the original Langevin equation (2.1) without making any 
assumption on the force f, that can possibly be time-dependent. We recall that the 
MSRJD action functional associated to the dynamics reads

∫α α α= − − + − − +′ ′ −S x x x x f D g g Dg x f P x, i ; i ˙ 2 i ln .t t t t t t t t
2

i T[ ˆ ] [ ˆ ( ˆ ) ] ( )

This action is invariant under the transformation [44]

α≡ − + − + ′− −
⎧
⎨
⎩

x x

x x D g x f Dg g

,

i i ˙ 2 ,

t t

t t t t t t t
eom 1 2

�

�T
  

ˆ ˆ ( ) (2.61)

with no need to change the parameter α. We do not reproduce here the proof of invari-
ance as it is rather straightforward.

2.5.2. Ward–Takahashi identities Let us use this invariance of the action functional in 
the expression of the linear response to a perturbation h such that → +f f g h2

( ) 〈 ( ˆ )〉

〈 ˆ 〉 〈 ( )〉
( ) 〈 〉 〈 ( )〉

α

α

= −

= − + −

= − − + −

′ ′

′ ′

−

−

′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′

R t t x x g g g

x x g D x x f

R t t x g g D x x f

, i 2

i ˙

, 2 ˙ .

t t t t t

t t t t t t

t t t t t t

2

2 1

1

 

(2.62)

We obtain

α= ∂ − −′ ′ ′′ ′ ′ ′DR t t C t t x f D x g g2 , , 2 .t t t t t t( ) ( ) 〈 〉 〈 〉 (2.63)

If one uses the drift force given in equation (2.8) to ensure convergence to equilibrium 
with a Gibbs–Boltzmann measure /∝ −P e V D

GB , this yields

( ) ( ) 〈 〉 〈 〉= ∂ + −′ ′ ′′′ ′ ′ ′ ′DR t t C t t x g V D x g g2 , , 2 .t t t t t t t
2

 (2.64)

2.5.3. Composition of Teq and Teom For equilibrium conditions, when working with the 
drifted Langevin equation (2.11), both transformations Teq and Teom are symmetries of 

the generating functional and therefore, their composition
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≡ − + ′
−

−
−

−

⎧
⎨
⎩
x x

x x D Vi i

t t

t t t
eq eom 1�

�
�T T ˆ ˆ (2.65)

complemented with the transformation of the discretisation parameter

α α α≡ −1 .� (2.66)
is also a symmetry of the generating functional. Starting from the expression of the 
linear response, we derive

α

α

= −

= − + − −

= − − − + −

′ ′

′

′ ′

′

′
− −

−
− − − −

−
− − − − −

′ ′ ′

′ ′ ′ ′

′ ′ ′

R t t x x x g g

x x D V x g g

R t t D x V x g g

, i 2

i 2 1

, 2 .

t t t t t

t t t t t t

t t t t t

1

1

( ) 〈 ˆ 〉 〈 〉

〈 ( ˆ )〉 ( )〈 〉

( ) 〈 〉 〈 〉
 

(2.67)

Using the causality of the linear response, applying the transformation one more time, 
using the time-translational invariance of equilibrium dynamics, and β= = −D k TB

1 we 
finally obtain the relation

( ) ( ) [ 〈 〉 〈 〉]β− = Θ − −′ ′ ′′
′ ′ ′R t t t t x V x g g2 .t t t t t (2.68)

This is a generalisation of the relations found in [66–68] for additive-noise stochastic 
processes, see also [16]. The special interest of this kind of relation is that it allows to 
compute the linear response, notably in a numerical evaluation, without any need to 
apply a perturbation, by taking advantage of the expression of R as the sum of two 
correlation terms.

3. Multi-variable stochastic Markov processes

In section 2, we focused on a stochastic dierential equation of a single variable x. In a 
more general situation, the stochastic variable can be a multi-dimensional vector. In this 
section, we focus on the stochastic Landau–Lifshitz–Gilbert (sLLG) equation [30, 31],  
a Langevin equation describing the dynamics of a classical magnetic moment, a 3d 
vector M, in contact with an environment. We analyse the time-reversal transforma-

tion of the magnetisation and the auxiliary vector M̂ that leaves the action invari-
ant under equilibrium conditions. We derive some of its consequences, such as the 
fluctuation-dissipation theorem. Furthermore, we also analyse the out-of-equilibrium 
dynamics driven by a spin-polarised current of electrons and we derive the corresp-
onding fluctuation relations.

3.1. The sLLG magnetisation dynamics

In [32], we gave a detailed presentation of the stochastic Landau–Lifshitz–Gilbert 
(sLLG) equation that describes the dynamics of a magnetic moment M under the 
influence of a deterministic local magnetic field Heff and a thermal environment respon-
sible for both dissipation and a fluctuating local magnetic field ( )tH . Studying this 
equation in various discretisation prescriptions, we showed that unless the Stratonovich 
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mid-point is used, a drift term is needed to conserve the magnetisation modulus in the 
course of time, | | = MM s, and to ensure the approach to Gibbs–Boltzmann equilibrium 
in the absence of non-conservative and time-dependent forces. Numerical checks of this 
fact were discussed in [69]. In [32], we also constructed the path-integral formalism for 
the generating functional in the Cartesian and spherical coordinate systems. Adapting 
the results of section 2, i.e. identifying the field transformation that generalises the 
one in equation (2.26) to the physical problem at hand, we derive the corresponding 
fluctuation-dissipation theorem as well as the fluctuation relations.

In the so-called Gilbert formulation, the sLLG equation reads [70]

( )( ) ( )γ
η

= − ∧ + −α α⎡
⎣⎢

⎤
⎦⎥

t
M

M M H H MD D .t
s

t0 eff (3.1)

This equation has to be understood in the generic α-prescription: ( )α≡ + −+M M M Mn n n n1 . 
The α-derivative is defined as

( )( ) α
γ

η γ
≡ + −

+
α DD d 2 1 2

1
,t t

0
2

2
0
2 (3.2)

and satisfies ( ) ( )= −α α
−
−D Dt t

1 . The second term in ( )αDt  is necessary to ensure the con-
servation of the modulus of the magnetic moment, = | |M Ms , and the approach to the 
Gibbs–Boltzmann equilibrium, see equation (3.7), in the absence of non-conservative 

forces and time-dependent magnetic fields [32]. We note that ( )αDt  in the last term 
between the square brackets in equation (3.1) can be simply replaced by dt as the sec-
ond term in equation (3.2) does not contribute due to the vector product with M.

The chain rule for the time derivative of a function of the magnetisation vector 
governed by equation (3.1) reads [32]

( ) ( ) ( ) ( )
α

γ

η γ
=
∂
∂

+ −
+

∂
∂ ∂

⊥U
U

M
M

D
P

U

M M
M

M M
d d 1 2

1
,t

i
t i ij

i j

0
2

2
0
2

2

 (3.3)

where δ≡ −⊥P M M Mij s ij i j
2  is the projector on the plane perpendicular to M. A straight-

forward application to M2 together with ( )⋅ =αM MD 0t  yields =Md 0t
2  and hence the 

conservation of the modulus.
The sLLG equation depends on several parameters. γ γµ=0 0 is the product of γ, 

the gyromagnetic ratio relating the magnetisation to the angular momentum, and µ0, 
the vacuum permeability constant. The gyromagnetic factor is given by /γ µ= �gB  (in 
our convention γ> 0 for the electronic spin) with µB Bohr’s magneton and g Lande’s 
g-factor.

The Gaussian white noise ( )tH  acts multiplicatively on the magnetisation. It has 
zero average and correlations characterised by the diusion constant D,

( )〉 ( ) ( )〉   ( )δ δ〈 = 〈 = −′ ′H t H t H t D t t0, 2 .i i j ijH H (3.4)

We assume that the environment is in equilibrium at the temperature β≡ −k TB
1 yield-

ing the Einstein relation
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η
µ

=D
k T

M Vs

B

0
 (3.5)

with V the volume of the system and η the friction coecient that also appears in the 

last, dissipative, term in the rhs of equation (3.1). Indeed, the term ( )η− α MDt  induces 
dissipation in the form introduced by Gilbert [71].

The deterministic magnetic field Heff collects conservative and non-conservative 
contributions:

= +H H H .eff eff
c

eff
nc

 (3.6)

The former can be derived from a potential energy density U as µ= − ∇− UH Meff
c

0
1  

whereas the latter does not admit such a representation. U can possibly have contrib-
utions from an externally applied magnetic field Hext (that we assume to be constant 
for simplicity) and from a local magnetic field typically generated by the anisotropy 
potential of the local crystal structure (the so-called crystal field)

( ) ( )µ= − ⋅ +U VM M H M .0 ext ani (3.7)

We shall only consider the case of time-reversal symmetric potentials, i.e. with the 
property ( ) ( )− − =U UM H M H, ,ext ext .

A timely example of a non-conservative Heff
nc is the so-called spin-torque exchange. 

In the context of spintronics, the manipulation of the local magnetisation is performed 
by circulating a spin-polarised current of electrons through the ferromagnetic material. 
This can exchange angular momentum with the magnetisation via the spin-torque term

 χ= ∧H M pt t t t
torq

 (3.8)

where χt is a time-dependent parameter that is proportional to the externally con-
trolled current Jt, and pt is a unit vector indicating the spin polarisation of the incom-
ing electrons that they typically acquire earlier by going through a thick layer of 
ferromagnetic material with a fixed magnetisation. Dimensional analysis yields 

[ ] [ /( )] [ / ] [( ) ]χ µ γ= = = −k T M V H M tMs s sB
2

0 0
1 .

Due to the fact that the magnetic fields appear under a vector product with the 
magnetisation vector, only their projection on the perpendicular plane to M have an 
eect on the magnetic moment dynamics.

For =H 0eff
nc  and µ ∇= − − UH Meff

c
0

1 , the dynamics approach the Gibbs–Boltzmann 

distribution

= β− −P ZM e .VU M
GB

1( )   ( ) (3.9)

Note that the partition function   ( )∫= β−Z Md e VU M  is a function of the inverse temper-

ature, β, the external field, Hext, and the parameters of the anisotropy potential Vani. 
One has ( ) ( )= −Z ZH Hext ext .

From this stationary distribution, one simply shows the static fluctuation-dissipation 
relation between equilibrium susceptibility and magnetic fluctuation correlations:
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〉
  ( 〉)( 〉)〉βµ

∂〈
∂

= 〈 − 〈 − 〈
=

M

H
V M M M M .

i

j
i i j j

Hext 0

0

ext

 (3.10)

We will prove the time-dependent fluctuation-dissipation theorem for this problem 
below (see also [72]).

For simplicity, we study the dynamics for a system initially prepared in equilib-
rium with a Gibbs–Boltzmann distribution ( ) ( )=− −T TP PM Mi GB . In particular, we 
set χ = =− −T TJ 0. In the absence of a drive, =H 0eff

nc  ∀t and for a time-independent 
eective field Heff, the system remains in thermal equilibrium. However, a finite drive 
≠H 0eff

nc  or a time-dependent eective field ( )tHeff  push the magnetic moment out of 
equilibrium.

3.2. The path-integral formulation

As shown in [32], the generating functional reads

∫ ∫ ∫ ∫ζ ζ= + ⋅⊥
SM M M M M Mexp , i .t tZ D D D { }[ ] [ ] [ ˆ ] [ ˆ ]   [ ˆ ]∥

 (3.11)

[ ]∫D M  corresponds to integrating, at all times, over the vector field M on the 2-sphere 

of radius Ms, [ ˆ ]∫
⊥

D M  corresponds to integrating over the auxiliary real vector field 
ˆ ⊥M  in the plane perpendicular to M. Correspondingly, [ ˆ ]∥

∫D M  represents the integra-

tion over the auxiliary real vector field in plane parallel to M. As ( )⋅ =αM MD 0t , ˆ ⊥M  

and ( )α MDt  are both perpendicular to M but not necessarily parallel.
The action functional can be expressed as the sum

= + +S S S Sdet diss jac (3.12)

with

∫
∫

β

γ

= − − + ⋅

+ ⋅ ∧ +

α
−

⊥ −

− −S VU Z

M

M H H M M

M M M H

, ln i D

i d ,

t t t

t s t t t t

det ext ext

2
0 eff

T T T( ) ( ) ˆ

ˆ [ ]

∥ ( )

 
(3.13)

∫γ γ
η

= ⋅ −
⊥ ⊥⎡

⎣⎢
⎤
⎦⎥

S D
M

M M Mi i d .t t
s

t tdiss 0 0
ˆ   ˆ   (3.14)

ε[ ]∫
αγ

η γ
ηγ=

+
∂ − ∂⊥ ⊥ ⊥S

M
M M H P H

1

1
.

s
s ijk kt j ij t j tjac

0

2
0
2 eff

nc,
0 effit i (3.15)

where δ≡ −⊥P M M Mij s ij i j
2  is the projector on the plane perpendicular to M and ∂j is 

a short-hand notation for ∂Mj. Sdet encodes the initial conditions and the determin-

istic forces. Sdiss encodes the hybridisation with the thermal bath. The term in ˆ ∥
Mi t 

imposes the conservation of the modulus of the magnetisation vector. Sjac stems from 
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the unicity of the solution to equation (3.1) once the initial conditions and the noise 
history are specified. For magnetic fields that are independent of the magnetisation 
vector, =H Heff ext, Sjac vanishes.

The two-time correlation between any function of M, ( )A M , and, say, one comp-
onent of the magnetisation, Mj, reads

( ) ( ( )) ( )〉= 〈′ ′C t t A t M tM, .AM jj (3.16)

The linear response of the same observable A measured at time t to a previous 
perturbation 

∼
H that modifies the potential energy per unit volume U according to 

 µ− ⋅
∼−�U U H M0

1  (or equivalently +
∼

�H H Heff eff ) is

δ

δ
γ=

〈
= 〈∼′

′
′

=

⊥

∼
R t t

A t

H t
A t M t

M
M, i .AM

j
j

H 0

0j
( )

( ( ))〉
( )

( ( )) ˆ ( )〉 (3.17)

3.3. Fluctuations

Equilibrium dynamics are ensured as long as the system is initially prepared in equi-
librium at a given temperature T and under conservative forces, and that it is subse-
quently evolved under the same time-independent potential forces and in contact with 
an environment at the same temperature. In our setup, this corresponds to setting the 
drive to zero, i.e. =H 0eff

nc  at all times, and taking Hext constant and Vani not explicitly 
dependent on time.

3.3.1. The time-reversal transformation One can prove that the action in equa-
tions (3.12)–(3.15), and more generally the full generating functional, are invariant 
under the following variable and discretisation parameter transformations

γ γ β µ=

−

− −

−
⊥

−
⊥

−

−

⎧

⎨
⎪⎪

⎩
⎪⎪

V

M M

M M M

M M

,

i i d ,

i i ,

t t

t t t t

t t

eq 0 0 0

�

�

�

T   ˆ   ˆ  
ˆ ˆ∥ ∥

 (3.18)

if one simultaneously changes the discretisation parameter

α α α≡ −� 1 (3.19)
and simultaneously reverses all external constant magnetic fields

≡−H H H .ext ext ext� (3.20)
This discrete symmetry of the dynamical action encodes all the features of equilib-

rium dynamics and it is broken out of equilibrium.

Case without anisotropy potential, =V 0ani  Let us start the proof by treating the sim-
pler case in which =H Heff ext. It is easy to see, similarly to the one-dimensional example 
of section 2, that the dissipative terms in Sdiss are invariant independently of the other 
terms of the action functional. We do not reproduce here this calculation as it is quite 
straightforward. We simply mention that we do not need to use α α−� 1  since in 
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this case Sdiss does not depend on α explicitly. Let us now discuss the invariance of Sdet 
and Sjac. Since =H Heff ext, Sjac vanishes and is therefore trivially invariant under Teq. 

For Sdet, we look separately at the terms proportional to ˆ ⊥Mi t  and ˆ ∥
Mi t. For the former

∫
β µ

β µ γ γ

− = ⋅ − −

+ − − ⋅ ∧ −

⊥

−
⊥ −

−
−

− −

S V Z

V M

M M H M H H

M M M M H

i , , ln

i d d .t t t s t t t

det eq eq ext 0 ext ext

0 0
1 2

0 ext

T T T[ ˆ ]   ( )

[ ˆ   ] [ ]

Given the symmetry property ( ) ( )− − =U UM H M H, ,ext ext , we have ( ) ( )− =Z ZH Hext ext . 
We first change −�t t as the integration variable in the temporal integrals and we 
next rearrange terms to write

T T T

T

[ ˆ ]   ( )

[ ˆ ] [ ]

  ( ) ˆ [ ]

∫
∫

∫

β µ

β µ γ γ

β µ γ

β µ

− = ⋅ −

+ − ⋅ ∧ +

= ⋅ − + ⋅ ∧ +

− ⋅

⊥

⊥ − −

⊥ −

S V Z

V M

V Z M

V

M M H M H H

M M M M H

M H H M M M H

M H

i , , ln

i d d

ln i d

d .

t t t s t t t

t s t t t

t t

det eq eq ext 0 ext ext

0 0
1 2

0 ext

0 ext ext
2

0 ext

0 ext

 

(3.21)

The first integral has the original form. The second integral can be computed directly, 
as Hext is independent of M. One recovers the boundary terms at T  and −T ; one can-
cels the first term in the rhs, the other one builds the initial probability weight.

The term that imposes the spherical constraint is invariant on its own if we use

ˆ ˆ∥ ∥
α α− −� �M M1 and i it t (3.22)

Indeed, ( ) ( ) ( )= −α α α−
−�D D Dt t t

1  and

∫ ∫ ∫⋅ ⋅ − − = ⋅α α α
− − −M M M M M Mi D i D i D .t t t t t t t t t�ˆ ˆ ( )( ) ˆ∥ ( ) ∥ ( ) ∥ ( )

 (3.23)

Note the dierent transformation rules on ˆ ⊥Mi  and ∥Mi . The transformation α α−� 1  
is needed so that the two terms in ( )αDt  be odd under time reversal and ( )αDt  behave as 
a usual time derivative.

Case with an anisotropy potential, ≠V 0ani  Let us now examine the generic case in 
which there is an anisotropy potential and Sjac no longer vanishes. The analysis of 
the dissipative part of the action is identical to the one we discussed in the previ-
ous section. As for the combined contributions +S Sdet jac, we proceed as follows. We 
start from equation (3.21) conveniently generalised to take into account the fact that 

µ= − ∇− UH Meff
c

0
1 :

T T T[ ˆ ] ( ) ( )
ˆ [ ]

  ( )

∫
∫

β

γ

β

− = − − − −

+ ⋅ ∧ +

+ ⋅ ∇

⊥

⊥ −

S VU Z

M

V U

M M H M H H

M M M H

M M H

i , , , ln

i d

d , .

t s t t t

t t tM

det eq eq ext ext ext

2
0 eff

ext

t

t

 

(3.24)
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We use now equation (3.3)

  ( )α
γ

η γ
⋅ ∇ = ∂ = − −

+
∂∂⊥U M U U D P UMd d d 1 2

1
t t i i t ij i jM

0
2

2
0
2 (3.25)

in the last term and we obtain ( ) ( )β β+ − −T TVU VUM H M H, ,ext ext  after integrating 
the total time derivative. Using the property ( ) ( )− − =T TU UM H M H, ,ext ext , the first 
term cancels the first term in the rhs in (3.24) and the second term reconstructs the 
exponential weight in the initial distribution. We therefore have

T T[ ˆ ] [ ˆ ]
( )

∫
α ηγ

η γ µ

− =

−
−

+
∂∂

⊥ ⊥

⊥

S S

M
P U

M M H M M Hi , , i , ,

1 2

1

1
,

s
ij i j

det eq eq ext det ext

0
2

2
0
2

0

 
(3.26)

where we replaced D by its definition in equation (3.5), while

∫α
α α ηγ

η γ µ
− =

+ −

+
∂∂⊥S

M
P UM, 1

1 2

1

1
.

s
ij i jjac eq

0
2

2
0
2

0

T[ ]
[ ( )]

 (3.27)

We notice that the first term is what we need to build [ ]αS M,jac  and the last term 
cancels the remaining one in equation (3.26).

The invariance of the term imposing the spherical constraint works in the same way 
as in the =V 0ani  case.

We have therefore completed the proof of invariance of the action under the trans-
formation in (3.18).

3.3.2. The fluctuation-dissipation theorem Applying this symmetry to the linear 
response, see equation (3.17) we obtain

γ

γ β µ
β µ
β µ

≡ 〈

= −〈 − − − 〈 − −

= − − − − − −

= − − − +

′ ′

′ ′

′ ′

′ ′

⊥

⊥
′

′

′

R t t A t M t

A t M t V A t M t

R t t V C t t

R t t V C t t

, i

i d

, d ,

, d , ,

A j

j t j

A t A

A t A

M

M M

M M

0

r 0 0 r

0

0

j

j r j

j j

r

r

( ) ( ) ˆ ( )〉

( ) ˆ ( )〉   ( ) ( )〉
( )   ( )
( )   ( )

 

(3.28)

where Ar is the time-reversed observable of A. In the last step, we applied the trans-
formation once more to the last term. All averages are taken with the unperturbed 
action measured in the original variables and with the α parameter, what we would call 

[ ˆ ]αS M M, i ; . Using the causality of the response, ( )− − =′R t t, 0A Mr j
 for > ′t t  and the 

time-translational invariance of equilibrium dynamics, one may simplify the expression 
above to

( ) ( )  ( )τ β µ τ τ= − Θ τR V CdA AM M0j j (3.29)

where we introduced τ = − ′t t  and ( )τΘ  is the Heaviside step function. Note that this 
relation applies to any observable A. Higher order fluctuation-dissipation relations of 
this kind can by easily derived.
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3.3.3. Broken symmetry and fluctuation theorems In this three-dimensional vector 
problem, the spin-torque due to a spin-polarised current χ ≠ 0t  for >−Tt  is a non-
conservative force that drives the magnetic moment out of equilibrium. It gives rise to 
the following contribution to the deterministic action,

∫γ χ= ⋅ ∧
⊥

S M M pi ,t t t tdet
torq

0
ˆ  ( ) (3.30)

and to an extra term in the Jacobian,

∫
αγ

η γ
χ=

+
⋅S M p

2

1
.t t tjac

torq 0

2
0
2

  (3.31)

When evaluated with the time-reversed variables

χ χ= − = −− −p p ,t t t t (3.32)

(ensuring notably that Htorq is odd under time reversal), the deterministic part of the 
action functional corresponding to the time-reversed dynamics reads

∫
∫

∫

χ γ β µ χ

γ χ β µ χ

χ β µ χ

= − − ⋅ − ∧

= ⋅ ∧ + ⋅ ∧

= − ⋅ ∧

−
⊥

− − − −

⊥
−

S V

V

S V

M M p M M M p

M M p M M p

M M p M M p

, i ; , i d

i d

, i ; , d .

t t t t t t

t t t t t t t t t

t t t t t

det
torq

eq eq 0 0

0 0

det
torq

0

T T[ ˆ ] [ ˆ ]  ( )

[ ˆ  ( )  ( )]

[ ˆ ]  ( )
 

(3.33)

We see that the term that is generated cannot be partially integrated away, as in the 
potential case, since Htorq is not the gradient of a potential. The spin-torque contrib-
ution to the Jacobian transforms as

[ ]
( )

 

[ ] [ ]

∫α χ
α γ

η γ
χ

α χ χ

= −
−

+
⋅

= +∆

TS

S S

M p M p

M p M p

; , ,
2 1

1

; , , ; ,

t t tjac
torq

eq
0

2
0
2

jac
torq

jac
torq

 
(3.34)

with

∫χ
γ

η γ
χ∆ = −

+
⋅S M p M p; ,

2

1
.t t tjac

torq 0

2
0
2

[ ]   (3.35)

The rest of the action remains invariant under this transformation as it was in the 
absence of the spin-torque term and with no time-dependent parameter dependencies 
in the eective field Hext. Ultimately, we obtain

χ β µ χ∆ ≡∆ −S S V WM p M p; , ; , .jac
torq

0[ ] [ ] (3.36)

with

[ ]   ( )∫χ χ≡ ⋅ ∧W M p p M M; , dt t t t t (3.37)
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the work performed by the spin-torque term. This result implies the relation

[ ˆ ]
[ ˆ ]

= ∆P

P

M M

M M

, i

, i
e SB

F
 (3.38)

where we defined the forward and backward path probability distributions

α χ≡P PM M M M H p, i , i ; , , , ,F ext[ ˆ ] [ ˆ ] (3.39)

α χ≡P PM M M M H p, i , i ; , , , .B eq eq extT T[ ˆ ] [ ˆ ] (3.40)

Multiplying the identity (3.38) by a generic observable A which can depends on M, M̂i  
and Hext, one obtains

⟨ ( ˆ )⟩ ⟨ ( ˆ )  ⟩= ∆A AM M H M M H, i , , i , e S
ext B ext F (3.41)

where the subscripts F and B stand for averaging with the forward and backward path 
probability distributions defined in equations (3.39) and (3.40), respectively. In part-
icular, for A  =  1, this boils down to the Jarzynski equality [17, 65] that reads in this 
case

〉[ ] [ ]〈 =χ β µ χ∆ −e 1.S V WM p M p; , ; ,
F

jac
torq

0 (3.42)

4. Conclusions and outlook

In this paper, we studied Markov stochastic processes with multiplicative white noise 
and adequately drifted to ensure their approach to the usual Gibbs–Boltzmann mea-
sure under equilibrium conditions. In this respect, our viewpoint is dierent from the 
one in [28] where no drift force was added to the stochastic dierential equation and 
the dynamics approached a non-Gibbs–Boltzmann stationary state.

In recent years, thermodynamic relations and concepts in out-of-equilibrium sto-
chastic processes have been searched for. In this paper, we proposed a field-theoretical 
derivation of fluctuation theorems for Markov stochastic processes with multiplica-
tive white noise. This approach, based on a particular symmetry breaking of the path 
integral representation of the generating functional, extends our previous work [44] by 

showing that a single model-independent field transformation, Teq, can generate all the 
fluctuation theorems for any stochastic evolution, in the presence of white or colored, 
additive or multiplicative noise.

One could ask whether the eective temperature idea [73] applies to multiplicative-
noise processes that are not able to reach equilibrium with their surroundings and 
whether once set out of equilibrium they would satisfy fluctuation theorems in the way 
discussed in [74] for additive-noise processes. Exploring the stochastic thermodynamics 
and energetics [25, 75] proposals for multiplicative-noise Markov processes should also 
be an interesting research project.
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Appendix A. Stochastic calculus

A.1. Chain rule

We examine the time derivative of a generic function, [ ( ) ( )]/−+F x F x tdn n1 , with the 
stochastic variable x governed by the Langevin equation with multiplicative white 
noise,

− = ++x x f x t g x Wd d ,n n n n n1 ( ) ( ) (A.1)
with ( )  �W D td 2 dn

2 .
If we expand xn+1 in F (xn+1), and xn in F (xn), around the generic α point 

¯ ( )α α= + −+x x x1n n n1  we obtain

( ) ( ) ( ¯ ( )( )) ( ¯ ( ))

( ) ( ¯ ) ( )( ) ( ¯ ) ( )″

α α

α

− = + − − − − −

= − + − − +′

+ + +

+ + O

F x F x F x x x F x x x

x x F x x x F x x

1

1

2
1 2 d

n n n n n n n n

n n n n n n

1 1 1

1 1
2 3

with = −+x x xd n n1 . Using now equation (A.1) to replace ( )−+x xn n1
2 by 

( ¯ ) ( )/+ODg x t t2 d dn
2 3 2 ,

( ) ( ) ( ) ( ¯ ) ( ) ( ¯ ) ( ¯ ) ( )″α− = − + − +′+ + OF x F x x x F x Dg x F x t x1 2 d dn n n n n n n1 1
2 3

that in the limit →td 0 becomes

( ) ( ) ( ¯ ) ( ) ( ¯ ) ( ¯ )″α
−

=
−

+ −′+ +F x F x

t

x x

t
F x Dg x F x

d d
1 2 .n n n n

n n n
1 1 2

 (A.2)

This expression is written as the generalised chain rule [3, 4]

( )   ( ) ( ) ( ) ( )″α= + −′F x x F x Dg x F xd d 1 2 .t t
2

 (A.3)

A.2. From the α to the Stratonovich prescription

One can transform a stochastic equation in the generic α-prescription into one  
in the Stratonovich mid-point prescription by simply expanding the arguments  
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of f and g around the latter points. More precisely, let us start from an equation in the 
α-prescription

( ) ( ) ( ) ( )ξ= + ⇔ − = ++
x

t
f x g x x x f x t g x W

d

d
d d ,n n n n n1 (A.4)

i.e. ( )α= + −+x x x xn n n n1 . The Stratonovich mid-points are ( )= + −+x x x xn
S

n n n
1

2 1 , and 

α and S points are related by

α= − − −+x x x x
1

2
1 2 .n n

S
n n1( )( ) (A.5)

Expanding now equation (A.4) around the S mid-points one finds

[ ( ) ( ) ( ) ( )] ( )α− = − − +′+x x f x Dg x g x t g x W1 2 d dn n n
S

n
S

n
S

n
S

n1 (A.6)

where we dropped contributions of O( )td 3/2  and we used =W D td 2 dn
2( ) . The function 

g that multiplies Wd n is evaluated now at the S point xn
S and in this sense this is an 

equation in the Stratonovich prescription.
This same strategy can be followed to transform an equation from the α to the 

α′-prescription at the price of modifying the force with an adequate drift term.

Appendix B. From multiplicative to additive noise

It is often found in the literature that a multiplicative-noise process can be mapped to 
an additive-noise process, and that in the latter formulation all subtleties linked to the 
discretisation prescription can be simply forgotten. Here we show that, while indeed 
such a mapping exists [76], the discretisation used to define the original multiplicative-
noise process enters the additive-noise process in the form of a non-trivial drift force.

Let us re-parametrise the original equation of motion, equation (2.1) with ( ) / ( )≡g x k x1 , 
such that the origin of the multiplicative noise and of the velocity in the lhs can be 
tracked back to a non-linear coupling to a thermal bath of oscillators, see the discussion 
below equation (2.12). We write it as the equation (in the α-prescription)

( ) ( ) ( ) ( ) ( )ξ= +k x x t f x k x td ,t
2

 (B.1)

where we also re-parametrized f by ( ) ( ) ( )�f x k x f x2  such that f can now be thought of 
as a true force, in units of Newtons, possibly deriving from a potential ( ) ( )= − ′f x V x . If 
we now divide this equation by k (x), we obtain an equation in which the noise appears 
additively. However, it has to be treated with great care because the term ( )k x xdt  hides 
subtleties associated with the discretisation.

Equation (B.1) is defined in the α-prescription, for which unusual rules of calculus 
apply. Re-writing it momentarily as

ξ= +x f x k x k x td / 1/ ,t
2( ) ( ) ( )  ( ) (B.2)

one can show that the associated chain rule reads (see the proof in Gardiner’s book [3] 
for α = 0 or 1/2 and recalled in equation (2.5) for any α)

( ) ( ) ( )  ( ) ( )″α= + −′ ′K x K x x D K x K xd d 1 2 / .t t
2

 (B.3)

http://dx.doi.org/10.1088/1742-5468/2016/05/053207


Dynamical symmetries of Markov processes with multiplicative white noise

28doi:10.1088/1742-5468/2016/05/053207

J. S
tat. M

ech. (2016) 053207

where we introduced K such that ( ) ( )≡′K x k x . Using equation (B.3), equation (B.2) can 
be re-written as

( ) ( ) ( ) ( ) ( ) ( )″α ξ− − = +′ ′K D K x K x f x K x td 1 2 / / .t
2

 (B.4)

Let us now perform the change of variable from x to u according to the non-linear 
transformation

( )≡u K x (B.5)
to get the additive-noise process

″α ξ= − + +′u D K x u K x u f u td 1 2t
2( ) ( ( )) / ( ( )) ˜( ) ( ) (B.6)

where we introduced ˜( ) ( ( ))/ ( ( ))≡ ′f u f x u K x u . We finished mapping the original multi-
plicative-noise process in equation (B.1) to an additive-noise Langevin equation with 
a simple time-dervivative udt  in the lhs, but the first term in the rhs is non-trivi-
ally inherited from the discretisation of the original multiplicative-noise process and 
depends explicitly on α and k. It only vanishes for /α = 1 2 (Stratonovich calculus) or 
=′k 0 (additive noise in the original Langevin equation).
If we re-parametrize back to the original notations of equation (2.1), i.e. /�k g1  and 

/�f f g2, we obtain the mapping of equation (2.1) to

( ) ( ( )) ( ( ))/ ( ( )) ( )α ξ= − − + +′u D g x u f x u g x u td 1 2 .t (B.7)

Appendix C. Stationary distribution and drift term

We revisit here the need for a drift term to ensure the approach to the Gibbs–Boltzmann 
distribution in the asymptotic long-time limit by working with the Langevin equa-
tion approach exclusively. We show that, given the generic multiplicative-noise equa-
tion (B.1), the stationary distribution is not of Boltzmann form unless a force is added 
to the conservative force, consistently with what we found with the Fokker–Planck 
approach in section 2.2.

C.1. Case of a Stratonovich prescription

Let us first treat the simpler case of /α = 1 2. We learned above that equation (B.1) can 
be re-written as the additive-noise equation of motion

˜( ) ( )ξ= +u f u tdt (C.1)

with

≡ ≡ ≡′u K x K x k x f u f x k x, , / .( ) ( ) ( ) ˜( ) ( ) ( ) (C.2)

The stationary probability distribution of the stochastic variable u governed by equa-
tion (C.1) is

( ) ( ) ˜( )( ) ∫= ≡−
∼ ∼

′ ′β−
∼

P u N V u u f ue with dV u
u

st (C.3)
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and N a normalisation constant. Switching back to the stochastic variable x governed 
by equation (B.2), the corresponding probability distribution can be recovered as

∫

∫

= =

=

∼ β

β

′ ′

′ ′

P x
u x

x
P u x N k x

N k x

d

d
e

e .

u f u

x f x

st st
d

d

u x

x

( ) ( ) ( ( )) ( )  

( )  

  ˜( )

  ( )

( )

 
(C.4)

This corresponds to the usual Gibbs–Boltzmann distribution if we allow ourselves to 
work with

= − −′ ′f V k T k k/ .B (C.5)

With this choice, the equation of motion becomes

( ) ( ) ( ) ( ) ( ) ( ) ( )ξ= − − +′ ′k x x t V x k Tk x k x k x td / .t
2

B (C.6)

If we re-parametrize back to the original notations of equation (2.1), i.e. /�k g1  and 

/�f f g2, we obtain

( ) ( ) ( ) ( ) ( ) ( ) ( )ξ= − + +′ ′x t g x V x k Tg x g x g x tdt
2

B (C.7)

which is equation (2.11) in the case /α = 1 2.

C.2. Generic α-prescription

The generalisation to the generic α case is straightforward. Equation (B.1) can be re-

written as equation (B.6) with a stationary probability distribution ( ) ( )=
∼ β−

∼
P u N e V u

st
k  

for u and

∫ ″α≡− + −
∼

′ ′ ′ ′ ′V u u f u D K x u K x ud 1 2 / .
u

2( )   [ ˜( ) ( ) ( ( )) ( ( )) ] (C.8)

Returning to the the stochastic variable x, via u  =  K(x), the corresponding stationary 
probability distribution is

( ) ( ) ( ) ( )   ( )∫= | | α β− + ′ ′P x N k x e .k x x f x
st

1 2 ln d
x

 (C.9)

This corresponds to the usual Gibbs–Boltzmann distribution if we work with

α= − − −′ ′f x V x k T k x k x2 1 / .B( ) ( ) ( ) ( ) ( ) (C.10)

The Langevin equation becomes

( ) ( ) ( ) ( )  ( )/ ( ) ( ) ( )α ξ= − − − +′ ′k x x t V x k T k x k x k x td 2 1t
2

B (C.11)

If we re-parametrize back to the original notations of equation (2.1), i.e. /�k g1  and 

/�f f g2, we obtain

( ) ( ) ( ) ( )  ( ) ( ) ( ) ( )α ξ= − + − +′ ′x t g x V x D g x g x g x td 2 1t
2

 (C.12)

that is the same drifted equation that we had obtained from a Fokker–Planck analysis 
in section 2.2, see equation (2.11).
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Appendix D. The path integral

Following a route similar to the ones in [7, 8, 51, 52], we sketch the construction of 
the path integral for the Langevin equation of motion with multiplicative white noise:

ξ ξ≡ − − =x t t x f x g x tEq , d 0.t[ ( ) ( )] ( ) ( ) ( ) (D.1)

In the construction, we use a continuous time notation with the discretisation subtle-
ties being encoded in the choice of the value of the Heaviside theta-function at zero, 

( ) αΘ =0 . Later, we specify the definition of the path-integral measure.

D.1. Path integral construction

The explicit calculation of the Jacobian yields

J
[ ( ) ( )]

( )
[ ( ) ( ) ( )]δ ξ

δ
δ ξ δ≡ = − + −

′
′ ′

′ ′

⎡
⎣⎢

⎤
⎦⎥

x t t

x t
t t A x t tdet

Eq ,
det d ,

tt tt
t (D.2)

with ( ) ( ) ( ) ( )ξ ξ≡− −′ ′A x f x g x t, , ( ) ( )=′f x f xdx  and ( ) ( )=′g x g xdx . Note that if ( )≠g x ct 
the noise appears explicitly in the functional under ′dettt . After some simple algebra, J  
can be factorised as

J [ ( )] [ ( ) ( ) ( )]δ δ ξ≡ − − +Θ −′ ′ ′
′ ′

t t t t t t A xdet d det , ,
tt

t
tt (D.3)

and the first factor can be discarded in the normalisation. We can now re-write the 
second factor with the help of the identity ( ) ( )+ = +ξ ξC Cdet 1 exp Tr ln 1  with the 

causal function ( ) ( ) ( )ξ= Θ −′ ′ξC x t t t t A x, , , , where we highlighted the dependence of 

ξC  on the noise by adding a subscript ξ to C. The ( )+ ξCln 1  can now be expanded in 
Taylor series. Usually, the causal structure of C (that is also usually noise-independent) 
truncates the series at first order in C. However, in this explicitly noise dependent case 
one needs to be careful and also keep the quadratic order [10]:

( ) ( ) ( )

( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥∫

ξ

ξ

∝ Θ − −

= Θ −

′ ′ξ

ξ

′J t t A x C x t t

t A x C x t t

exp Tr ,
1

2
, ,

exp d 0 ,
1

2
, ,

tt
2

2
 

(D.4)

where ( )   ( ) ( ( ) ( )) ( ) ( ( ) ( ))∫ ″ ″ ″ ″ ″ξ ξ≡ Θ − Θ −′ ′ξC x t t t t t A x t t t t A x t t, , d , ,2 . Using now 

( ) αΘ =0 , and simplifying notations such as =x x˙ dt , ( ( )) =′ ′g x t g , ( ) =′ξ ξC x t t C, ,2 2 and 

 ∫ ∫=td , P [x] reads

D D[ ] [ ] [ ˆ]  ( ) ˆ[ ]∫ ∫ ∫ ∫ξ∝ α ξ ξ ξ− − − − −′ ξP x x e .A x C x x f g
D

, 1
2
Tr i ˙ 1

4tt
2 2

 (D.5)

(To alleviate the notation we do not write here the time-dependence of the functions 
in the action, as we do in the main text.) Before performing the integration over ξ that 
involves

∫ ∫ ∫ξ ξ α ξ− + − −′ ′ ξe ,D
xg g C1

4
i 1

2
Trtt

2 2

D [ ]   ( ˆ )
 (D.6)
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let us translate the noise by a function of the variables x and x̂i , ( ˆ )ξ ξ α+ − ′� D xg g2 i , 
in the functional integral. Notice that ξ∈R but ˆ∈ Rxi i . We can restore the original 
integration domain using the analyticity of the exponential that is zero on the bound-

ary thanks to the term ( ) ∫ ξ− −D4 1 2. The functional integral in (D.6) transforms into a 

new path integral

∫∫ ∫ξα ξ− − − −′ ′ ′ξ α+ −e e .D xg g
D

Ci 1
4

1
2
Trtt D xg g

2 2
2 i

2

D [ ]  ( ˆ ) ( ˆ ) (D.7)

Keeping the terms in ( ˆ )ξ α+ − ′C D xg g2 i
2  that are quadratic in the noise and yield a 

( )δ − ′t t  contribution within the ′Trtt  under the noise average, and using the notation 

⟨ ⟩ [ ]  ( )∫ ξ… = …∫ ξ− −
D e D4 1 2

 one has

∫

〈 =

= = ′ξ ξ α

− − 〈

− Θ − Θ − 〈 −

′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′

ξ α ξ α+ − + −e e

e e .

C C

t t t t t t g x t g x t t t D g

1
2
Tr 1

2
Tr

1
2

d d

tt D xg g tt D xg g2 i
2

2 i
2

2 2∬
〉 〉

    ( ) ( ) ( ( )) ( ( )) ( ) ( )〉

( ˆ ) ( ˆ )

Altogether we obtain [ ] [ ˆ]  [ ˆ]∫∝ DP x x eS x x,i  with the action

[ ˆ] [ ˆ( ˆ ) ]∫ α α= − − + − +′ ′S x x x x f D g g D xg f, i i ˙ 2 i 2
 (D.8)

(to which we should add the contribution from the initial measure). This action is con-
sistent with the results reported in [11] who used a slightly dierent approach in which 
the equation of motion was reformulated as

[ ( ) ( )] ( )
( )

( )ξ ξ≡
−

− =x t t
x f x

g x
tEq ,

d
0.t

 (D.9)

This is convenient because the noise does not appear explicitly in the Jacobian, although 
its eect subtly re-appears along the calculation

D.2. Path integral measure

We work with a symmetric time interval ∈ −t ,T T[ ] which is divided in N discrete time 
intervals, ≡− + ∆Tt n tn  with = …n N0, ,  and increment T /∆ ≡t N2 . The continuous 
time limit is performed by sending N to infinity while keeping T  finite. We define the 
path integral over trajectories on the time interval − ,T T[ ] as

[ ]
→∫ ∫∏=
∞ =

D x xlim d
N n

N

n

0
 (D.10)

and for the auxiliary field

∫ ∫∏ π
=

∞ =

x
x

lim
d

2
.

N n

N
n

1

D[ ˆ] ˆ
→

 (D.11)
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