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Introduction

Proteins are the most versatile macromolecules in living organisms. They have key roles in every metabolic pathway 
occurring inside living cells as (bio)catalysts, transporting and/or storing essential molecules, providing mechanical 
support and immune protection, generating movement, transmitting electric impulses, and controlling cell growth and 
differentiation (Berg et al., 2012). About a third of all proteins present in living organisms contains one or more transition 
metal ions as cofactors and are called metalloproteins or metalloenzymes, accordingly (Silva and Williams, 1991). 
Metalloenzymes occur in the six Enzyme Commission Classes (E.C.C.). Within the oxidoreductases group (EC 1), almost 
half (44%) are metalloenzymes. A large percentage of transferases (EC 2, 40%), hydrolases (EC 3, 39%), lyases (EC 4, 
36%), isomerases (EC 5, 36%), and ligases (EC 6, 59%), are also metalloenzymes (Andreini et al., 2008). 

Metalloenzymes of the oxidoreductase group catalyze specific reactions in which metal ions are part of the enzyme 
active site, function as electron transfer (ET) centers, or, less frequently, stabilize protein structure. These enzymes 
incorporate 81 % of the total Fe found in living organisms, as well as 93% of the total Cu, and 81% of total Mo plus W 
(Andreini et al. 2008). These four metals are the so-called redox-active elements of life since they can exist in several 
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oxidation states within the physiological range of electrochemical potential that can be handled by a living cell (ca from 
-800 to +800 mV, vs SHE). The redox cycling of these transition metal ions is the basis for them to work as electron 
conduits, mediating ET from the enzyme active site to a redox partner, and vice versa.

Oxidoreductases have an active site where the oxidation or reduction of the substrate occurs. In the first case, electrons 
obtained from substrate oxidation reduce the active site, and then are transferred through redox cofactors buried in the 
protein to a surface exposed center capable of reducing an electron acceptor (EA). On the other hand, when the enzyme 
catalyzes the reduction of a substrate, the process is the inverse. The electron donor (ED) transfers electrons to a surface 
exposed redox center of the enzyme, and electrons are conducted through an intra-protein chemical pathway to the active 
site where substrate reduction occurs. The processes described above stand for an important group of oxidoreductases, 
even though some develop the redox reaction in a single protein site. It should be noted that oxidoreductases catalyze 
bisubstrate reactions and the labeling of substrate and ED (or EA) is biased by the interests of the researcher. For example, 
a compound can be called “the substrate” because it is economically relevant for the pharma, fuel, or fine chemicals 
industry, or simply because it reacts at a particular enzyme site that is being thoroughly studied because it has some 
relevant and/or novel properties. Even though we will use this jargon throughout the manuscript, it is important to remark 
that the correct way of stating this is that an oxidoreductase has two substrates. 

The oxidoreductases we describe here perform long-distance ET reactions. Long-range ET, which occurs through 
electron tunneling either within an enzyme or between proteins, is fundamental to several cellular processes, mainly 
those related to energy metabolism (Davidson, 1996; Davidson, 2002). Therefore, for researchers working with redox 
enzymes and ET proteins, the knowledge of ET theory and the role of the parameters that control ET rates are relevant 
to understand at a molecular level how an enzyme regulates a physiological process. Moreover, this knowledge might 
be used to design biocatalysts by exploiting the chemistry of oxidoreductases, or even to understand the effect of a point 
mutation in human diseases (Moser et al., 2010).

The aim of this paper is to describe different experimental techniques that can be used to characterize and understand 
ET processes in oxidoreductases, and how some parameters that control ET rates can be experimentally measured or at 
least estimated independently. First, we will explain how to use voltamperometric and spectropotentiometric methods 
to characterize the redox properties of the metal centers comprising the ET pathway. Then, we will discuss different 
strategies to evaluate the ability of a given chemical path to act as ET pathway. Finally, we will show how X-ray data and 
molecular biology techniques, more specifically site-directed mutagenesis, can be used to predict ET pathways within a 
protein. All these methodologies/strategies will be explained based on two representative examples of oxidoreductases – a 
copper-containing nitrite reductase (NirK), which catalyzes the reduction of nitrite to nitric oxide, and a molybdenum-
containing aldehyde oxidoreductase (Aor), which catalyzes the oxidation of aldehyde to the respective carboxylic acid.

1. Structural aspects and general reaction mechanisms of NirK and Aor

Figure 1 shows the essential metal cofactors for catalysis in NirK and Aor together with the intra-protein chemical 
pathways that link the metal cofactors through which ET occurs. Copper-containing NirK presents a homotrimeric 
structure with two copper atoms per monomer ~ 12 Å apart, one of type 1 (T1, also blue copper) and the other of type 
2 (T2, also normal copper) (Nojiri, 2017). T1 and T2 are the ET center and the active site, respectively. The T1 copper 
ion is tetracoordinated with three strongly bound ligands, two N atoms from histidine imidazoles and a cysteine thiolate 
group, and a weaker methionine thioether group. Subtle differences in the T1 electronic structure determines the green 
or blue color of NirK from different organisms. On the other hand, T2 consists of a four-coordinate copper site bound to 
a labile water molecule and three N atoms from histidine imidazoles in a distorted tetrahedral geometry. The two copper 
sites are connected by two main chemical pathways – the shorter one, the Cys-His bridge, is thought to transport the 
electron needed for nitrite reduction to nitric oxide; the longer pathway, which has been called the substrate-sensing loop, 
is thought to work as a relay to trigger the T1→T2 electron flow through the Cys-His bridge upon nitrite-T2 binding 
(Strange et al., 1999; Boulanger et al., 2000). This sensing loop contains an aspartic acid residue (AspCAT) that forms a 
hydrogen bond with the T2 labile water molecule in the resting state, and with the nitrite-T2 complex in NirK reacted with 
nitrite (not shown); AspCAT was proposed to be essential in catalysis (Boulanger et al., 2000, Kataoka et al., 2000). The 
proposed reaction mechanism for NirK implies a two-proton coupled redox reaction in which nitrite, after binding T2, is 
converted to nitric oxide by one electron delivered by an external physiological ED (Suzuki et al., 1994; Fukuda et al., 
2016; Nojiri 2017). The physiological ED of NirK were identified to be pseudoazurin, azurin or cytochrome c, depending 
on the microorganism. Thus, the complete ET implies three intermolecular reactions: an inter-protein ET between the 
physiological ED and the NirK T1 center, the T1-T2 intra-protein ET, and the ET reaction between T2 and substrate. 
Hereafter, the ET pathways discussed in this paper will refer only to the protein intramolecular step. 



// Vol. 1, No. 2, March 2020 Studying Electron Transfer Pathways in Oxidoreductases

8

Figure 1. Metal centers in NirK (top) and Aor (bottom) together with the proposed intra-protein ET pathways. For NirK, 
the two alternative intra-protein ET pathways are highlighted in blue and green (Hadt et al., 2014). The blue subpath 
is a pure covalent chemical pathway constituted by the protein backbone and the H171 and C172 side chains, whereas 
the green one involves the His-Nd1H…O=C-Cys hydrogen bond that partially shortcuts the covalent link. For Aor, the 
proposed intra-protein ET pathway is highlighted in yellow. Structural drawings were performed with PDB structures 
1SNR using Sinorhizobium meliloti NirK numbering, and 1VLB for Aor using Desulfovibrio gigas Aor numbering. The 
labels FeS1 and FeS2 in Aor correspond to the proximal and distal FeS centers, respectively, relative to the Mo atom 
position.

Aor is an oxidoreductase with more complex metal cofactors than those of NirK. Aor contains different types of metal 
ions at the active site and ET centers. The active site, where aldehydes are oxidized, comprises a Mo6+ ion coordinated 
to two oxo, one hydroxo/water (OHx) and two sulfur ligands, the latter provided from a dithiolene moiety which is part 
of a pyranopterin cytidine dinucleotide (Figure 1, bottom). This complex molecule, together with two iron-sulfur (FeS) 
clusters of the [2Fe-2S] type, are the redox centers of Aor and comprise the ET pathway (Romao et al., 1995; Rebelo et 
al., 2001). The FeS1 (or proximal center) is closer to the Mo site (dMo-FeS1= 16.2 Å) and is buried inside the protein in a 
domain inaccessible to solvent. The FeS2 (or distal center) is further away from the Mo site (dMo-FeS2= 25.6 Å) and close 
to the protein surface, and it is able to transfer electrons to a flavodoxin, the physiological electron acceptor (Brondino 
et al. 2006, Krippahl et al. 2006). Upon aldehyde oxidation at the active site, Mo6+ is reduced to Mo4+. The two reducing 
equivalents are sequentially transferred through the FeS centers to flavodoxin, as shown in Figure 1.

2. A brief description of ET theory

Most biological reactions, mainly those related to cell energy, involve long-range intra- and inter-protein ET, sometimes 
coupled to proton transfer (Formosinho and Barroso, 2012), between redox centers. A description of ET processes 
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occurring both in proteins and in small molecules can be made on the basis of Marcus theory (Marcus and Sutin, 1985). 
The study is relatively straightforward for small molecules. However, modelling ET processes in oxidoreductases, and 
in all ET proteins, is complicated as it requires to understand all the phenomena that control ET in a protein, e.g. protein 
dynamics, which may include non-ET processes that tune ET rates (Moser et al., 2010). The Marcus model (equation 1) 
states that the ET rate (kET) is governed by the thermodynamic driving force (ΔGº), the reorganization energy (λ), and the 
electronic coupling between the reductant (donor, D) and oxidant (acceptor, A) (TDA, also written as HDA or HAB) 

where the remaining symbols have the usual meaning. The simplest representation for TDA states an exponential decay 
with distance r between D and A (Hopfield, 1974) 

where r0 is the van der Waals contact distance and k0 is the maximum ET rate when D and A are in van der Waals 
contact (r = r0) and λ = −ΔG°. Parameter β in equation 2 is the decay factor, which measures the nature of the intervening 
medium with respect to its efficiency to mediate ET (Page et al., 1999). 

When studying inter-protein and/or intra-protein ET processes in oxidoreductases, it is important to determine all the 
essential parameters involved in equations 1 and 2. This information, together with kinetic, biochemical, and structural 
data, is necessary to understand in detail how the enzyme works. Experimentally, the value of TDA could be measured by 
UVvis/NIR spectroscopies using the known Hush formalism for the case where the ET system presents a metal to metal 
charge transfer reaction, as it occurs in mixed-valence complexes (Creutz, 1983). This is not possible for the systems 
studied here, since the charge transfer band discussed above for Nir is between the Cu(II) ion and the S-Cys of T1, 
whereas Aor does not show any charge transfer band. When the enzyme has a redox center that can be independently 
spectroscopically monitored (UV-vis absorption, Raman, or EPR spectroscopies), the technique of choice to study 
ET processes is Laser Flash Photolysis (LFP) (formerly Pulse Radiolysis), provided that the process is amenable to 
light triggering. Performing LFP experiments at different temperatures allows one to least-squares fit equation 1 to the 
experimental data in order to determine ΔGº, λ and TDA  (Davidson, 1996; Davidson, 2002; Davidson, 2008; Formosinho 
and Barroso, 2012). Next, equation 2 is fit to the same dataset, but fixing the previously determined parameters ΔGº 
and λ. Through this procedure, parameters β and r can be determined. Given the large number of parameters to be 
determined, this approach applied to complex systems like oxidoreductases may conduct to erroneous interpretations 
of the intra-protein electron transfer process at molecular level (Davidson, 2002; Formosinho and Barroso, 2012). This 
fact determines that the characterization of the intraprotein ET pathway in these enzymes must be studied also through 
other experimental techniques. In the next sections we will discuss other techniques to determine parameters ΔGº and TDA 
independently, or at least to estimate their values using electrochemical and spectroscopic tools, and how ET processes in 
an oxidoreductase can be predicted and studied. 

3. Determination of the driving force (ΔGº) by electrochemical methods

Understanding the oxidoreductase catalytic mechanism and its relationship with the intramolecular ET process requires 
establishing the reduction potentials of the metal centers situated along the ET pathway, e.g. those for T1 and T2 for NirK, 
and Mo, FeS1, and FeS2 for Aor. As shown in equations 1 and 2, the ET rate (kET) depends on ΔGº, which is related to the 
reduction potentials of the intervening redox centers of the oxidoreductase by
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where n is the number of electrons involved in the reaction and F is the Faraday constant. ΔEº, also known as Ecell, is 
equal to the reduction potential (Eº) of oxidant A minus the reduction potential of reductant D. Eº is the half-cell potential 
or half-reaction reduction potential under standard conditions, i.e. 298 K, 1 atm, 1 M solutions. For most proteins, it is 
impossible to work at such concentrations and, therefore, midpoint reduction potentials (Em or Eº’) of the redox cofactors 
are determined. Em values can be experimentally determined through different electroanalytical methods, such as redox 
potentiometry and voltamperometry. 

Em values of several redox cofactors in metalloproteins have been determined using voltamperometric techniques like 
cyclic voltammetry, differential pulsed voltammetry (aka polarography) and square-wave voltammetry. For instance, we 
have determined the Em of two physiological redox partners of NirK (Sinorhizobium meliloti Paz and Bradyrhizobium 
japonicum CytC) by cyclic voltammetry (Ferroni et al., 2014). The experimental setup for this technique consists of 
three electrodes (working, reference, and auxiliary) immersed in an electrolyte buffered solution (Figure 2A). The redox 
protein adsorbed on the working electrode must be capable of exchanging electrons with the solid conducting material 
used. The applied potential is swept across a given range, and the current is measured. For a thorough explanation of direct 
electrochemistry of metalloproteins, see Leger et al. (Leger and Bertrand, 2008).

Figure 2. Three- and two-electrode cell setups used for voltamperometric (A) and potentiometric (B) measurements. 
WE, RE, AE and ME stand for Working, Reference, Auxiliary and Measuring Electrodes, respectively.

Voltamperometric techniques may present some technical problems, such as an inefficient ET between the 
metalloprotein and the working electrode, which may be overcome by spectropotentiometry. In contrast to 
voltamperometry, spectropotentiometry is an equilibrium technique in which the oxidoreductase in buffered solution 
is poised at several potentials by adding reducing (e.g. sodium dithionite or ascorbate) or oxidizing (e.g. potassium 
ferricyanide or hexachloroiridate) reagents. Solution potential at equilibrium is measured by a setup of two electrodes, 
comprising a measuring electrode (which must be a noble material like Au or Pt) and a reference electrode (Ag(s)/AgCl or 
Hg(l)/Hg2Cl2) (Figure 2B) 

To understand how spectropotentiometry works, we will consider the simplest redox equilibrium

Ox + e- → Red

where Ox and Red stand for the oxidized and reduced species, respectively. Let us assume that Ox and/or Red can be 
quantified by any spectroscopic technique and that the electron involved in the half reaction is provided by a redox partner 
that is spectroscopically silent or does not interfere in the determination of the Ox/Red fraction. 
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Considering the Nernst equation for the redox half reaction and that the total concentration of the redox cofactor is 
[Total] = [Ox] + [Red], obtaining the change in Ox and Red concentration with solution potential (E) is straightforward:

To determine the signal intensity of Ox vs. E, a specific spectroscopic feature of the redox center must be monitored 
by techniques such UV-Vis absorption, EPR, CD, MCD, Fluorescence, NMR, FT-IR and RAMAN. The spectroscopic 
properties of the redox center (e.g. chromophore, paramagnet, etc.) determine the technique and whether the oxidized or 
reduced form is measured. We will explain below the UV-vis and EPR monitored potentiometry results we obtained with 
the two oxidoreductases described in this review. 

3.1. UV-vis absorption spectroscopy

UV-vis absorption spectroscopy is one of the most useful and easy to apply (as regards costs and operator training) 
spectroscopic techniques to monitor redox cofactors. The optical spectra of metalloproteins give information on the 
electronic structure of redox cofactors, and the technique can also be used to study the absorbance of a specific chromophore 
as a function of a physicochemical variable such as concentration, pH, E, etc.

For potentiometric titrations monitored by UV-vis spectroscopy, the intensity of an absorption band or peak is related 
to the species concentration by the Beer-Lambert law. The common setup for determining the absorbance at different E 
values involves, as depicted in Figure 3A, an inert atmosphere vessel allowing the simultaneous measurement of E and the 
absorbance of the protein solution. A single wavelength or the entire absorption spectrum can be recorded at each stable E 
value. The intensity of a characteristic absorption peak of the redox center of interest can be plotted against E and equation 
4 can be fit to the experimental dataset. 

Figure 3. A) modified UV-vis quartz cuvette used for potentiometric titrations. B) Absorbance of NirK oxidized-T1 
center at 590 nm as a function of the solution potential. Equation 4 was fit to the data to yield Em = +250 mV. The inset 
shows the UV-vis absorption spectra of oxidized T1 of Nir for different potentials. 
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Panel B in Figure 3 shows a potentiometric titration of NirK monitored by UV-vis spectroscopy. Both the titration 
and absorbance measurements were simultaneously performed at 298 K and pH 6.0, yielding Em = +250 mV (vs. SHE). 
Even though this procedure is useful to determine the T1 reduction potential of NirK, the ET driving force (ΔGº) can only 
be calculated knowing both T1 and T2 reduction potentials, which cannot be evaluated by this procedure, as T2 does not 
present UV-vis absorption bands. The next EPR section will show how to measure both.

3.2. EPR spectroscopy

UV-vis spectroscopy is by far the simplest technique to perform a spectropotentiometric titration, but it cannot be 
used in cases of very weak or undetectable absorption bands, as is the case of the T2 copper site in NirK and the Mo-
cofactor in Aor. Another example of the limitation of this technique is the case of the FeS centers in Aor, which show 
overlapped broad absorption bands that cannot be discriminated. In these cases, EPR was shown to be the technique of 
choice. The advantage of EPR is that most important redox active ions of life (Fe, Cu, Mo and W) can generally be well 
discriminated through their typical EPR signatures and properties, allowing the determination of Em values by poising the 
protein solution at several potentials with reducing and/or oxidizing reagents. Furthermore, EPR can provide important 
information in those systems containing at least two paramagnetic cofactors presenting intercenter magnetic interactions. 
The EPR signals in the examples below will be used, as in the case of the UV-vis spectra, as a simple fingerprint of the 
cofactors. Readers interested in understanding more deeply the information that can be obtained from an EPR experiment 
can read (Rizzi et al., 2016) and references therein. 

The T2 center of NirK is paramagnetic in the cupric state and, therefore, can be monitored by EPR spectroscopy. 
Figure 4 (Top) shows two EPR spectra of NirK. In the as-prepared form, both T1 and T2 are in their oxidized Cu2+ state 
(d9, spin S= 1/2), giving rise to nearly axial overlapped EPR signals (Spectrum A), which are distinguishable through their 
hyperfine coupling constant A|| (A||

T1 < A||
T2). This feature allows simulating each spectrum separately, and also to quantify 

T1 and T2 concentrations; EPR parameters can be found in (Cristaldi et al. 2018). Upon incubation with sodium ascorbate 
(E ~ 0 mV), T1 becomes EPR silent, as it is reduced to Cu1+ (d10, S= 0), whereas a fraction of T2 remains in the Cu2+ 
oxidation state (Figure 4, spectrum B). In contrast, no EPR signals are detected upon addition of a 10-fold molar excess of 
sodium dithionite under anaerobic conditions (E ~ -660 mV, not shown), indicating that both copper centers are reduced 
to the cuprous oxidation state. Ferricyanide addition to as-prepared NirK (E ~ +440 mV) does not modify the intensity 
and line shape of the EPR signal, indicating that both T1 and T2 are fully oxidized in the as-prepared sample (not shown). 
This relatively simple experiment allows inferring that the T1 reduction potential is higher than that of T2, and that the 
reduction potentials of both centers fall within the range +440 to 0 mV (Olesen et al., 1998; Pinho et al., 2004). Thus, 
this approach is useful in those cases where it is not possible to perform an EPR-monitored redox titration, for example 
because of limitations in sample amount.

In contrast to UV-vis absorption spectroscopy, metal centers EPR signals are recorded at cryogenic temperatures. 
Therefore, EPR spectroscopy does not allow simultaneously measuring solution potential and recording a spectrum. For 
this reason, in order to perform an EPR-monitored redox titration, samples of the protein solution poised at different E 
values at room temperature and under an O2-free atmosphere, must be withdrawn, frozen to liquid nitrogen temperature, 
and measured afterwards. Note that, even though EPR measurements are performed at cryogenic temperatures due to 
experimental reasons, spectra correspond to samples poised at room temperature potential. Figure 4 (bottom) shows a 
redox potentiometric titration of NirK monitored by CW-EPR, together with the EPR spectra at different potentials in the 
inset. In this case, the intensity of the EPR signal observed comprises both T1 and T2 signals. A plot of signal intensity 
(area below integrated spectra) vs. solution potential (E) yielded a double sigmoid curve that was fit to the sum of two 
one-electron Nernst equations. The Em values obtained at pH 7.0 were +224 and +108 mV (vs. SHE) for T1 and T2, 
respectively. 

Before going to the EPR analysis of Aor, just a brief explanation regarding the electronic structure of Mo and FeS metal 
centers. Molybdenum in Aor can be found in three different oxidation states, Mo6+, Mo5+, and Mo4+. Only Mo5+ (d1, S= 
1/2) is detectable by EPR and gives rise to signals with all g-values lower than 2. The two [2Fe-2S] centers can be found 
in two oxidation states. The oxidized state ([2Fe-2S]2+) is EPR silent as it contains two strongly antiferromagnetically 
coupled Fe3+ ions with a ground state with S= 0, which is the only one thermally populated under the EPR experimental 
conditions. The [2Fe-2S] center becomes paramagnetic on reduction of one of the Fe3+ ions to Fe2+. The resulting Fe2+-Fe3+ 
pair ([2Fe-2S]1+) is also strongly antiferromagnetically coupled, but with a S= 1/2 ground state and hence detectable by 
EPR (Johnson, 1998). 
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Figure 4. EPR signals (top) in the as-prepared (spectrum A) and ascorbate-reduced form (spectrum B) of NirK. 
Experimental spectra are in black; simulation of spectrum A is in gray and it was obtained by adding T1 and T2 simulations 
(blue and red, respectively). The EPR parameters indicated on the figure can be found in (Cristaldi et al., 2018). Redox 
potentiometric titration of NirK from S. meliloti monitored by EPR (bottom). The solid line was obtained by least squares 
fitting the sum of two-independent Nernst equations with n= 1 to the data. EPR spectra as a function of E are shown in 
the inset. The midpoint reduction potentials obtained were +224 and +108 mV for T1 and T2, respectively (Ferroni et al. 
2014). 

In contrast to NirK, redox cofactors of Aor are EPR-silent in the as-prepared form, and EPR signals are only developed 
upon dithionite addition under strict anaerobic conditions. Dithionite reduction of Aor for 20 min under anaerobic 
conditions (E ~ -660 mV vs SHE, reduction for a time lower than 20 min gives rise to a different EPR signal) gives rise 
to EPR signals associated with the Mo5+ ion and the two [2Fe-2S]1+ clusters (Figure 5). Using the same arguments given 
above in this section for estimating reduction potentials in Cu(II) centers of NirK, we can conclude that metal centers 
reduction potentials in Aor are below 0 mV (vs. SHE). 
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Figure 5. EPR signals of D2O-exchanged Aor upon dithionite addition at different temperatures. The inset shows the 
Mo5+ signals at 100 K and 20 K. Note the nearly isotropic splitting of Mo5+ EPR features at low temperature originated 
by Mo-proximal FeS center magnetic coupling. EPR parameters indicated on the figure with arrows can be found in 
(González et al., 2009) and references therein.

The Mo5+ signal obtained under these conditions is commonly named “slow-type” in the literature on Mo-enzymes 
(red and blue spectra in the inset on Figure 5) (Hille, 1996), but hereafter it will be referred to as Mo5+ EPR signal. Whereas 
~100% of the FeS centers are paramagnetic at this solution potential, only about 10-15% of the total molybdenum is 
obtained as Mo5+ species. This indicates that at this potential, FeS centers were fully reduced to the paramagnetic [2Fe-
2S]1+ state, indicating that the Em values of both FeS centers fall in the range of -450-0 mV (vs SHE). A similar analysis, 
but with some added complexity, can be performed for Mo. The fact that only 10-15% of Mo+5 species are detected by 
EPR indicates that the Em values of the +6/+5 and +5/+4 couples fall in the same range, and also that both Em values are 
very close.

After analyzing the EPR spectra of the system, i.e., after the distinct EPR signals are identified, the redox titration can 
be performed. The Em values of FeS centers can be obtained as explained for NirK. To analyze the Em values associated 
with the redox transitions of the Mo cation, the redox equilibriums of both couples should be taken into account, as the 
redox behavior of Mo species depends on the couples Mo6+/Mo5+ and Mo5+/Mo4+. This analysis yielded Em values of 
-450 and -530 mV for the Mo6+/ 5+ and Mo5+/ 4+ couples, respectively, for D. gigas Aor, and, in addition, it was possible to 
determine Em = -280 and -285 mV for FeS1 and FeS2, respectively (Moura et al., 1978).

It should be noted that the ΔE0 values for the pair T1/T2 obtained for NirK are uphill, i.e. in contrast of the electron 
flow experienced during catalysis. It is not uncommon to obtain such results in metalloproteins, and some explanations 
have been assayed stating that an uphill step can be compensated for diminishing the DA distance (Moser et al., 2010). 
In the case of the NirK enzyme studied by us, there is strong evidence that the Em of the Cu centers are modulated by 
the interaction of the enzyme with the substrate and the physiological ED during catalysis, giving rise to a downhill ET 
process (ΔE0 > 0 mV) (Ferroni et al., 2014).

4. Assignment of the spectroscopically detected metal centers to those observed in 
the protein structure

The assignment of the spectroscopically detected metal centers to those observed in the X-ray structure is an essential 
step in characterizing proteins that contain pathways composed of various metal cofactors. This problem is simple in 
proteins with metal centers showing distinguishable spectroscopic features, e.g. the two Cu centers in NirK, where only 
T1 shows UV-Vis absorption bands (Figure 3B, inset), and T1 and T2 can be easily discriminated by EPR (Figure 4 top). 
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However, the solution is not trivial for proteins such as Aor, which has two very similar [2Fe-2S] centers. This problem 
can be solved using different strategies. The most common approach is to generate site-directed variants by molecular 
biology techniques, changing an amino acid residue that acts as a ligand of the redox cofactor, and then verifying which 
spectroscopic component was modified. In the case of Aor, the generation of site-directed variants was not possible. 
Therefore, assignment was based on the analysis of the weak magnetic interaction between Mo and the proximal FeS 
cluster that splits the Mo5+ EPR signal at low temperatures (Figure 5). This involves detecting which FeS (1 or 2) EPR 
signal is associated with the splitting of the Mo5+ spectrum. This can be achieved using EPR by poising an Aor sample at 
a potential value between the reduction potentials of the FeS centers in order to obtain different populations of reduced 
(paramagnetic) and oxidized (diamagnetic) FeS centers. This experiment was performed in D. alaskensis Aor, which 
presents more separated Em values, which is not the case of D. gigas Aor. Once that the FeS EPR signal responsible for 
the Mo5+ EPR splitting is identified, the correlation is straightforward, as the Mo5+ EPR splitting must be provoked, as 
said above, by the crystallographically identified proximal FeS center (Figure 1). Thus, it was possible to conclude that 
the EPR signals identified as FeS1 and FeS2 correspond to the proximal and distal FeS centers of Aor, respectively. A 
thorough explanation about how this method was performed can be found in references (Andrade et al., 2000; Rizzi et 
al., 2016). Similar conclusions for Aor, but using an alternative strategy also based on the Mo5+ EPR signal splitting 
provoked by the proximal FeS center, consisted of simulating Mo5+ EPR signal splitting as a function of temperature. The 
dependence of Mo5+ splitting on temperature (see Figure 5) is due to the higher relaxation rate of FeS1 in the pair FeS1-
Mo5+, a characteristic that is present in all magnetically interacting pairs of spins presenting different relaxation rates.  
Ideas behind this issue, full experimental data for Aor, as well as the mathematical formalism employed in their analysis 
can be found in (González et al., 2009) and references therein.

5. Evaluating the integrity of the ET pathway upon inhibition 

Enzyme inhibition studies are mandatory to understand enzyme catalytic mechanisms. For oxidoreductases, as for any 
other class of enzymes, inhibition can be either irreversible or reversible. The latter can be competitive, uncompetitive, or 
non-competitive. The type of inhibition can be unambiguously determined through in-depth steady state enzyme kinetic 
studies (Cornish-Bowden 2004). Nevertheless, spectroscopic studies are needed to understand at a molecular level how 
enzyme inhibition occurs, and to gain insight into catalytic mechanisms. There is no specific methodology to study 
whether inhibition is due to disruption of the ET pathway. Hence, we will explain specific strategies we followed in our 
examples to evaluate integrity of the ET pathway upon inhibition. 

Aor presents the peculiarity that the active site yields redox inert Mo5+ species upon adding enzyme inhibitors such 
as arsenite, ethylene glycol, and glycerol (Santos-Silva et al. 2009). This fact determines that Aor can be obtained in two 
states, in which Mo is always as Mo5+ but the FeS clusters can be either in their diamagnetic (oxidized) or paramagnetic 
(reduced) states. In other words, the Mo5+ species can be measured by EPR in these two enzyme states, one in which 
the Mo5+-FeS1 coupling is “switched off” (oxidized form, diamagnetic FeS1), and a second where the coupling is 
“switched on” (reduced form, paramagnetic FeS1) (Boer et al., 2004; Santos-Silva et al., 2009). The experiment consists 
in measuring the intensity of the Mo5+ signal as a function of microwave power to evaluate the degree of saturation of the 
EPR signal. The higher the microwave power, the higher the probability that the EPR signal attains saturation. Another 
concept is necessary to understand the saturation EPR experiment. Magnetic coupling of the Mo5+ species with a nearby 
faster relaxing paramagnetic species enhances the relaxation rate of the slow-relaxing species. With these concepts in 
mind, it is easy to understand the saturation EPR experiment. The reduced sample of inhibited Aor (magnetic interaction 
“on”) requires higher power to reach saturation due to the enhanced relaxation rate of the Mo5+ ion induced by the faster 
relaxing FeS1 center. This fact indicates that the Mo-FeS1 ET pathway can transmit magnetic interaction in the enzyme 
inhibited form, confirming that the ET pathway is not affected upon inhibition. Details on how to perform this experiment 
can be found in (Boer et al., 2004; Rizzi et al., 2016).

For NirK, the saturation strategy could not be used due to two simple reasons. First, no T1-T2 magnetic coupling is 
observable. Second, the two copper centers show similar relaxation rates. Therefore, to evaluate the integrity of the ET 
pathway in NirK, we exploited the pH dependence of its catalytic activity (Cristaldi et al., 2018). NirK presents maximal 
activity at pH 5-6 and no activity at pH >8, in which the dependence with pH could be attributed the Nd1H…O=C hydrogen 
bond present in the T1-T2 ET pathway (Figure 1). To prove this hypothesis, we performed kinetic studies of S. meliloti 
NirK at pH of maximal and minimal activity using dithionite as electron donor in which the starting and final oxidation 
states of the copper centers were monitored by UV-Vis and EPR spectroscopies. Both spectroscopies showed that at pH 
6 both T1 and T2 center are as Cu2+ upon redox cycling the enzyme upon nitrite addition. In contrast, at pH 10 only T2 is 
reoxidized to Cu2+, which confirms that the lack of activity at high pH may be due to an innefficient/non-existent ET. The 
conclusion that emerges from this experiment is that the Cys-His covalent pathway (marked in blue in Figure 1) is not 
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involved in ET since it is pH-independent, suggesting that the ET occurs through the pH-dependent green path in Figure 
1. Another methodology used to evaluate ET pathway integrity will be discussed below under section 8.

6. Relation between electronic coupling (TDA) and the isotropic exchange constant J

An application of the Marcus theory is to predict the kET between two distant redox centers bridged by a chemical pathway 
(Marcus and Sutin 1985). If the two redox centers are paramagnetic and coupled by isotropic exchange (J), the bridging 
chemical pathway not only mediates ET, but also transmits isotropic exchange (Calvo et al., 2000) (Note: isotropic 
exchange, also known as superexchange, is the main Mo-FeS1 interaction that contributes to the splitting of the Mo+5 EPR 
signal, Figure 5; despite it is not magnetic in origin, it is usually regarded as a magnetic interaction). For large distances 
between spins, the term TDA, which depends on the nature of the chemical pathway bridging two redox centers, is related 
to the isotropic exchange coupling constant by 

     J ≈ -TDA
2/U   (8)

where U is the difference in energy between the chemical species DA and D+A-, with the latter being obtained when 
one electron is removed from D and transferred to A. Note also that this expression is valid for TDA << U. Thus, we can 
see how the evaluation of J by EPR is related to the term TDA that appears in equation 1. 

Aor is a representative example in which the evaluation of J by EPR can be useful to study the factors that govern ET 
between redox centers in metalloproteins. The catalytic mechanism of Aor involves substrate binding followed by a two-
electron oxidation of the Mo4+ center once the product is released (Brondino et al., 2006). The structure of as-prepared Aor 
corresponds to the enzyme in the ready-state and is the starting point of the catalytic cycle (Figure 1, bottom), whereas that 
of alcohol-inhibited Aor (with the alcohol moiety being bound to the Mo5+ ion) resembles a situation where the product of 
the reaction (the corresponding acid, Figure 1) is formed and remains within bonding distance with the Mo ion (Santos-
Silva et al., 2009).

As for the Mo5+ EPR signal obtained from the enzyme resting state (Figure 5 and spectrum A in Figure 6), the alcohol-
inhibited Aor Mo5+ EPR signal is also split by magnetic interaction with the proximal FeS center (Figure 6). The splitting 
of the EPR lines of glycerol- and ethylene glycol-reacted Aor increases notably relative to that of reduced as-prepared Aor.

 

Figure 6. EPR spectra (black) at 20 K for the Mo5+ center of reduced as-prepared Aor (spectrum A), and ethylene glycol- 
and glycerol-reacted Aor (spectra B and C, respectively) with simulations (gray). Simulations yielded J = -16.6 × 10-4 
cm-1 for as-prepared Aor and J = -33.3 × 10-4 cm-1 for ethylene glycol- and glycerol-reacted Aor. Simulation details can be 
found in reference (Gómez et al., 2015).
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The ≈2-fold increase in J (J-values are in the caption to Figure 6) upon alcohol binding indicates that the capability 
to transmit isotropic exchange is enhanced, likely due to structural changes in the Mo-FeS1 pathway, or changes in the 
electronic structure of either Mo5+ or FeS1. High resolution structural data of alcohol-inhibited Aor showed no changes 
associated with the pyranopterin chemical pathway, and the FeS1 EPR signal is identical to that of as-prepared Aor reduced 
with dithionite (Santos-Silva et al., 2009). Therefore, the increase in J-value would indicate changes in the electronic 
structure of Mo5+, which is a reasonable hypothesis considering the change of Mo5+ geometry produced after alcohol 
binding. This hypothesis was addressed by computational calculations that showed that coordination of the alcohols led 
to a redistribution of the electronic spin density at Mo5+ and its ligands (Gómez et al., 2015). It is important to note that 
although these studies are not performed during catalysis, they allow one to obtain clues about how ET processes are 
carried out in these enzymes. For the resting state, calculations showed that part of the spin density is displaced towards 
the catalytically relevant OHx ligand, whereas the spin density is displaced towards the dithiolene sulfur ligands of the 
pterin moiety in the situation that emulates product formation. This fact suggests that this spin density reorganization 
would raise TDA upon product formation during catalysis, and thus favoring the ET process towards the FeS centers, a 
process which is required to return the enzyme to the original resting state. 

7. Site-directed mutagenesis as a tool in the study of ET pathways

Specific structure-function relationships can be elucidated by site-directed mutagenesis, as this molecular biology tool 
can be useful to understand how certain amino acid residues of the polypeptide chains modulate ET rates. As an example 
about how a chemical pathway can be altered by site-directed mutagenesis, the Cys-His ET pathway of S. meliloti NirK 
was modified. As shown in Figure 1, this pathway has two subpaths, one that involves a pure covalent chemical pathway 
(highlighted in blue) constituted by the protein backbone and the Cys and His side chains, and another one that is a 
mixed chemical pathway constituted by a His-Nd1H…O=C-Cys hydrogen bond that partially shortcuts the T1-T2 bridging 
covalent link (highlighted in green, Figure 1). We constructed two variants of S. meliloti NirK, H171D and C172D (Note: 
H171D and C172D are two protein variants where the residues histidine 171 and cysteine 172 were changed to aspartic 
acid), and their kinetic, structural, and spectroscopic properties were compared with those of the wild type enzyme 
(Cristaldi et al., 2018). The H171D variant (Figure 7) contains both T1 and T2 only connected by the pure covalent 
subpath and, even though it retains its ability to bind the substrate, it is unable to catalyze nitrite reduction. In contrast, 
the C172D variant contains two copper sites, one of them being similar to T2Cu in the wild type enzyme. The cysteine 
variant can reduce nitrite using artificial electron donors, which confirms that, though with less efficiency, the reaction can 
be conducted entirely at the active site without mediation of the Cys-His ET pathway. From kinetic studies on the wild 
type enzyme and C172D, it is evident that the involvement of the Cys-His chemical pathway increases enzyme efficiency 
for catalysis. This is not the case of H171D, where the modification of the ET pathway, more specifically the lack of the 
His- Nd1H…O=C-Asp hydrogen bond bridge, was suggested to be the cause for the lack of catalytic activity. In summary, 
site-directed mutagenesis is useful for modifying ET pathways selectively and hence demonstrate the relevance of certain 
chemical bonds in intra-protein ET. Readers interested in reading about alternative applications of this technique related 
to ET studies can see reference (Davidson, 2008). 
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Figure 7. T1-T2 bridging pathways in wild-type S. meliloti NirK (top) and H171D variant (bottom) Figures were 
constructed using the atoms positions obtained from QM/MM calculations (Cristaldi et al., 2018). The Nd1H…O=C 
hydrogen bond is depicted in red.

8. X-ray crystallography and its use to unveil potential ET pathways

The ability to get atomic details in three dimensions has demonstrated to be a booster in biological sciences and has helped 
to understand the chemistry that is carried out at the catalytic active site and/or at the ET pathway of an enzyme or protein 
complex. The increasing use of X-ray crystallography in macromolecules relies on (i) the relatively large number of 
synchrotron X-ray sources currently available in the world, (ii) the ability to automate crystallization conditions screening 
(robotics and in situ visualization platforms), (iii) the use of optimized beamlines with efficient single-photon-counting 
detectors, (iv) automation, (v) user-friendly data-acquisition systems, and (vi) powerful data-processing/analysis packages 
(Grimes et al., 2018; Muench et al., 2019).

Relevant information from NirK and Aor X-ray structures, such as the identification of putative amino acids involved 
in the ET mechanism and the putative regions of interaction with external ED, have been obtained in the last years 
(Nojiri 2017). For NirK, X-ray crystallography has provided all the structural information regarding the catalytic T2 
site and its surrounding area, the ways in which T2 and T1 are connected by the His-Cys bridge, the sensing loop, and 
the identification of second sphere copper coordination ligands relevant in catalysis (Strange et al., 1999; Boulanger 
et al., 2000; Kataoka et al., 2000). All this information has been valuable in elucidating the catalytic mechanism of 
nitrite reduction at T2, and the T1-T2 ET process. The roles of AspCAT and HisCAT (Figure 1) as relevant players in the 
catalytic mechanism of NirK were based on crystallographic structures and the confirmation of their relevance achieved 
performing NirK variants through site directed mutagenesis. Remarkably, the identification of two AspCAT conformations, 
called proximal and gate keeper, led to suppose that this residue accomplishes an essential role in catalysis (Antonyuk 
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et al., 2005; Horrell et al., 2016). The current hypothesis is that AspCAT would sense the binding of nitrite at T2 and then, 
through an unknown mechanism, would trigger the ET from T1 to T2 through the Cys-His pathway (Strange et al., 1999; 
Cristaldi et al., 2018). Even though X-ray crystallography cannot give in fact any evidence for this ET process, it opens 
up distinct types of possibilities that merit to be investigated by other techniques. X-ray crystallography in conjunction 
with EPR has also been essential in characterizing the FeS2-FeS1-Mo ET pathway in D. gigas Aor, which is explained 
above under Sections 5, 6, and 7. 

More recently, one particularity of X-ray crystallography, thought to be a weakness of the technique, enlarged its 
capability. It is well known that X-ray radiation photoreduces metal centers in several cases, though the structures so 
determined are thought to be those of the oxidized proteins. Particularly, the T1 centers in NirK are prone to photoreduction 
by X-rays during data collection (Hough et al., 2008). The T2 site of the resting-state enzyme, in contrast, remains 
unaffected, even at much higher X-ray doses. This fact determines that when a nitrite is bound to T2 in crystals soaked 
with substrate, the nitrite is converted to nitric oxide during X-ray data collection, indicating that T1-T2 ET is occurring 
under irradiation. Exploiting these features and using a serial crystallography approach (Horrell et al., 2016), it was 
possible to obtain a structural movie capturing the conversion of nitrite to nitric oxide and the subsequent return to the 
enzyme resting state. 

Nowadays, genome mining procedures allowed identifying putative novel NirK, with X-ray crystallography being 
not only the key to unveil their structures but also to predict the involvement of metal cofactors in ET processes. These 
novel proteins emerged as a new group of NirK which are arranged in a three-domain structure containing, in addition to 
the two-domain core with T1 and T2 centers, an extra domain with an additional metal cofactor. X-ray crystallographic 
data confirmed the presence of copper cofactor C-terminus-tethering in NirK from Thermus scotoductus SA-01 (Figure 
8) (Opperman et al., 2019), an extra heme c group at C-terminus in NirK from Ralstonia picketii (Antonyuk et al., 2013), 
an extra N-terminus cupredoxin domain in the non-self-efficient NirK from Hypomicrobium denitrificans (Nojiri et al., 
2007), and an extra C-terminus heme c binding domain in NirK from Pseudoalteromonas haloplanktis (Tsuda et al., 
2013). The copper extra cofactor present in H. denitrificans NirK was suggested to be involved in the intra-protein ET 
pathway (Deligeer et al., 2002; Yamaguchi et al., 2004), but X-ray structural data combined with mutagenesis and kinetic 
assays using external electron donors refuted that assumption (Nojiri et al., 2007). Even more, the functionality of R. 
picketii NirK and P. haloplanktis NirK was solely discussed based on terms of the X-ray structures (Antonyuk et al., 2013; 
Tsuda et al., 2013), such as intercofactor distances and nature of the chemical pathway linking the putative redox centers. 
However, additional experiments, as the ones explained in the sections above, are mandatory to confirm these hypotheses 
based only on X-ray structures. 

Figure 8. Metal cofactors and putative intraprotein electron transfer pathway in T. scotoductus NirK. The ET pathway 
ED→T1CuC→T1CuN→T2Cu is possibly established in 3 segments i) from the external electron donor to the T1CuC 
through a hydrophobic patch surrounded by charged amino acids (residues in purple), ii) from T1CuC to T1CuN through a 
water molecule and Glu385 residue, and iii) from T1CuN to T2Cu by either Cys-His bridge or the sensing loop.
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Conclusions

This paper summarizes the use of various experimental techniques employed in the characterization of electron transfer 
pathways in oxidoreductases. The examples presented have been selected to show how the combination of molecular 
biology, spectroscopic, electrochemical, and structural techniques can be used to characterize the chemical pathways for 
electron transfer process in redox enzymes and electron transfer proteins. Although the methodologies used to study these 
types of systems are rather different, we present in this paper a unified view of the problem to show the multidisciplinary 
experimental approach of the subject. 

It is clear that UV-vis and EPR in conjunction with other spectroscopies not discussed here are valuable tools to study 
not only the geometric and electronic structure of individual paramagnetic transition metal ions, but also to evaluate DGo 
required in all long-distance electron transfer reactions. The biggest advantage of the spectropotentiometric techniques 
relative to those based on voltamperometry is that, in general, with just one technique one could discriminate all the redox 
active species present in an electron transfer pathway. The measurement of exact values for TDA in an independent manner 
is more complicated in these oxidoreductases. For those systems presenting paramagnetic redox centers coupled by 
isotropic exchange, it is evident that the information relative to the TDA term provided by EPR is very valuable, as not only 
the ability of a chemical pathway to mediate electron transfer can be inferred, but also the order of magnitude of TDA can 
be estimated. However, this “paramagnetic redox centers coupled by exchange” characteristic is not present in all electron 
transfer systems, and therefore additional experimental approaches have to be implemented. Among them, structural 
techniques can provide the starting information as potential electron transfer pathways can be envisaged, but evidently 
these hypothetical conclusions must be proved with other techniques. Under this context, site directed mutagenesis studies 
appear as one of the election techniques, since the construction of specifically designed protein variants, whose kinetic 
properties can be measured in comparison with those of the wild type enzymes, constitutes in our opinion a powerful 
method that complements structural X-ray and spectroscopic data. Evidently, the information that can be obtained with all 
these methodologies is in most cases either qualitative or semiquantitative at the most, as they are not oriented to measure 
the kET specifically. However, the information gathered from all the experimental techniques presented here is mandatory 
to fully understand at a molecular level electron transfer processes in redox enzymes. 
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