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Abstract. Different connectivity configurations were simulated using epileptogenic and non 
epileptogenic neuronal populations. Connectivity between them was measured using Partial 
Directed Coherence and Directed Transfer Function. The results were satisfactory and in some 
cases of clinical utility. The methodology that was used is discussed in comparison with 
previous works.  

* Jacobacci, Sapir and Collavini contributed equally to this work. 

1.  Introduction 
Epilepsy is a neurological pathology characterized by the recurrence of seizures which is the result of 
abnormal electrical activity in groups of neural populations. The epileptogenic zone (EZ) is the area of 
cortex indispensable for the generation of seizures. It may include different overlapped areas: the 
seizure onset zone (SOZ), an abnormal region of the brain which becomes hyperexcitable and 
synchronized and triggers the epileptic seizure; the irritative zone (IZ), an area of cortex involved in 
epileptic interictal activity; and other areas, e.g. lesion zones  [1]. To keep seizures under control, the 
most common treatment is drug-based. Unfortunately, 30% of these patients do not respond to 
pharmacological treatment  [2] and the surgical treatment, i.e. tissue resection, may be the best option 
in 50% of these cases  [3]. In order to eradicate seizures after cortical resection the EZ has to be 
correctly defined.  
Intracranial electroencephalography (iEEG) recording of brain activity is the gold standard method of 
assessing the location and extent of the SOZ and IZ since it provides electrical signals directly 
recorded from the cortical surface (electrocorticography, ECoG) or areas deep inside the brain 
(StereoElectroencephalograpy, SEEG). The incorrect identification and resection of the pathological 
region would result in the recurrence of seizures after surgery. As a consequence, it is crucial to 
determine its anatomical location, its functional interactions, and its connectivity pattern. The EZ is 
organized as a network, commonly known as epileptogenic network, and is formed by different 
neuronal populations connected to each other. Understanding this organization may have implications 
in the surgery prognosis. 

9th Argentinean Bioengineering Society Congress (SABI 2013) IOP Publishing
Journal of Physics: Conference Series 477 (2013) 012037 doi:10.1088/1742-6596/477/1/012037

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

It has long been recognized that neuronal interactions are directional  [4]. Being able to assess the 
directionality of neuronal interactions in the EZ is highly desirable in order to have a deeper 
understanding of the behavior and extension of pathological network. 

Different kinds of connections have been defined in neuroscience in the last decades. Anatomical 
connectivity refers to the physical trajectory of the nervous fibers that connect different regions of the 
brain. This type of connectivity is almost stable over time and can be assessed using diffusion tensor 
imaging. Functional connectivity is a concept that reflects the functional interaction of different 
temporal correlations between remote neurophysiological events. It is simply a statement about the 
observed correlations; it does not provide any direct insight into how these correlations are mediated. 
Functional connectivity is studied using functional neuroimaging techniques such as functional 
magnetic resonance imaging (fMRI). Effective connectivity, on the other hand, is closer to the 
intuitive notion of a connection and can be defined as the influence on neural system exerts over 
another. This connectivity may vary over different situations, conditions or tasks, denoting the 
dynamics of information processing between different areas in the brain. In pathological situations, as 
in epilepsy, evidence indicates that effective connectivity may be affected  [5] [6]. A significantly 
different connectivity pattern distinguishes the epileptogenic zone from other cortical regions not only 
during the ictal event, but also during the inter- and pre-ictal periods. This indicates that the lesional 
nodes play a leading role in generating and propagating ictal EEG activity by acting as the hubs of the 
epileptic network originating and sustaining seizures. 

The aim of this work is to be able to test tools that estimate the effective connectivity between 
neuronal populations within the epileptogenic network. The knowledge of this characteristic would 
offer better insight on the pathology and a better planning of resection surgery, resulting in a better 
quality of life for the patient. In order to study the reliability of the connectivity estimator, we propose 
the use of non-linear physiologically plausible models of neuronal populations. These models have 
proven to be useful in resembling real iEEG signals  [7]. Besides, they allow variation of the 
parameters so as to set the connectivity between the different groups of neurons.  

2.  Method 
To test the reliability of the connectivity estimators, we generated a series of data representing pairs of 
populations with different characteristics and different connectivity. These populations consisted of 
epileptic and/or non-epileptic neurons with a one-way connectivity gain. We defined three different 
levels of coupling based on the activity induced by an epileptogenic population over a non-
epileptogenic one. These levels were denoted as low, intermediate and high. Four basic cases were 
defined in which all the possible combinations of said populations were represented. Each case was 
simulated four times, according to high, medium and low connectivity or none at all, thus defining 
sixteen different series of data. 

Lastly, two final simulations were carried out with three populations which represented a more 
relevant and realistic case. The connectivity was measured using Partial Directed Coherence and 
Directed Transfer Function  [8] [9] [10]. Statistical significance of connectivity measurements was 
tested using a non-parametric surrogate statistical method. Phase randomized surrogate data was used 
for the tests  [11]. Finally, to account for multiple comparisons statistics, the false discovery rate (FDR) 
method was applied  [12].  

All simulations and data analysis were done in Matlab 7.12.0 (The MathWorks, Inc). Our own 
scripts were developed and functions from ARFIT, BIOSIG, EEGLAB and SIFT toolboxes for Matlab 
were also used for this purpose  [13] [14] [15] [16] [17]. 

2.1.  Physiologically plausible model 
The model used is a reversion of a neurophysiologically relevant model which represented the 
generation of evoked potentials in the visual cortex  [18]. Later on, this model was extended to 
generate spontaneous interictal spikes from multiple coupled neuronal populations by altering the 
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model parameters  [7]. The simulation of this kind of pathological electrical activity has successfully 
been used to evaluate sLORETA algorithm for the resolution of the inverse problem on ECoG  [19]. 

The diagram of the model used to simulate normal and epileptic brain activity in a realistic way can 
be seen on Figure 1. On this model, each population represents thousands of neurons and is composed 
of three subpopulations: pyramidal neurons, excitatory inter-neurons, and inhibitory inter-neurons. In 
turn, each subpopulation is characterized by: a) a non-linear sigmoid function S(v) that relates the 
average membrane potential of the subpopulation with the density of action potentials and b) a second 
order linear system which relates the density of pre-synaptic impulses to the average membrane 
potential; excitatory post-synaptic potential (EPSP) or inhibitory post-synaptic potential (IPSP), 
depending if the generating subpopulation  is excitatory or inhibitory. Besides, there are four constants 
Ci (i=1, 2, 3, 4) that represent the amount of synapses between the subpopulations.  

 

 

Figure 1. Physiologically plausible model of 
coupled neural populations. The top of the 
figure shows the diagram for a cortical 
population where the upper loop represents the 
subpopulation of excitatory inter-neurons, the 
middle loop represents pyramidal neurons and 
the lower loop represents inhibitory neurons. 
On the bottom of the figure, connection with 
other populations can be seen. 

The impulse response of the second order systems represents the EPSP and IPSP of the modeled 
neurons. In the case of pyramidal neurons and excitatory inter-neurons this is he(t)=Aate-at whereas for 
inhibitory inter-neurons it is hi(t)=Bbte-bt, where A and B are the average synaptic gains for each 
model, and a and b are linked to the membrane average time constant and the average distributed 
delays in the dendritic tree.  In normal conditions, A=3,25mV, B=22mV, a=100s−1 and b=50s−1. The 
populations modeled using these parameters are called passive and the electrical activity they generate 
is “background activity”. On the other hand, increasing the average excitatory synaptic gain to values 
between 3,4mV and 3,6mV leads these populations to a state of rhythmic generation of interictal 
spikes. These populations are called active. 

Finally, to define the coupling between the populations, the matrix K is used, where each element 
K ij represents the coupling intensity between the origin population i with the destiny population j.  

The mean membrane potentials in pyramidal neurons are a measure of the neural activity in a 
relatively small area of cortex and are proportional to the potentials recorded with intracranial 
electrodes  [19]. Therefore, these signals are used as output of the system. The coupling parameters 
define the connectivity between populations and can be adjusted to simulate different network 
configurations.  

A coupling criterion was defined based on the behavior of a passive neuron when receiving 
information from an active one. The passive neuron would start to show spikes with a firing rate 
related to the coupling parameter. At a certain level of coupling the passive neuron would have a firing 
rate equivalent to that of the active neuron (at least 30 spikes per minute); this level was defined as 
high connectivity. Low connectivity was defined as the lowest level that produces a firing rate 
different than zero (about 5 spikes per minute). A third, intermediate level was defined in between 
these two.  

The assessed connectivity estimators presented later in this work may predict these configurations 
based on the information of membrane potential in the pyramidal neuron populations. These potentials 
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were selected as an appropriate measure since real iEEG recordings are proportional to the mean 
membrane potential of pyramidal neurons populations. The reader is referred to  [7] and  [18] for more 
details of the model used. 

2.2.  Multivariate causality based measures of connectivity 
The methods for studying effective connectivity between neuronal populations were based on 
mathematical analysis of the membrane potential in the pyramidal neuron populations. These data 
were presented in the form of multiple simultaneous time series.  

The basic concept of bivariate causality introduced by Granger is the causal influence in the 
context of linear regression models. If the variance of the autoregressive prediction error of one time 
series at the present time is reduced by inclusion of past measurements from a second time series, then 
the second is said to have causal influence on the first i.e. the prediction of one time series could be 
improved by incorporating the knowledge of a second one  [4] [20].  

2.2.1.  Multivariate autoregressive (MVAR) model Let X(t)=[X1(t), X2(t),…,Xk(t)]
T denote the 

measurement from k channels at time t and T means matrix transposition. We can describe X(t) in the 
form of a MVAR model  [9]. In equation 1, p is the model order, that is to say, how many previous 
values of X are needed to estimate the current value. A(i) is a matrix of dimension kxk containing the 
autoregressive coefficients Amn, m and n=1,...,k which relate channel m with channel n for the time lag 
i. E(t) is a vector of length k containing the error term for each channel, i.e. part of the signal X at time 
t that is not explained  by the previous values of X. 

E(t)+i)A(i)X(t=X(t)
p

=i
∑ −

1

                                                  (1) 

2.2.2.  Directed Transfer Function In the definition of Granger causality given at the beginning of 
section 2.2, only two time series are considered. Directed Transfer Function (DTF) is a multivariate 
method that gives pairwise directional information from one autoregressive model fit to a larger 
number of channels. It has been shown that multivariate DTF function can be interpreted within the 
framework of Granger causality  [9] . Transforming equation 1 to the frequency domain  [8], we obtain: 

∑ ∆−−
p

j=

tjfiA(j)expI=A(f)
1

)2( π                                                       (2) 

Where I is the identity matrix of dimension kxk and ∆t is the sampling interval. 
Equation 2 can be rewritten as: 

H(f)E(f)=(f)E(f)A=X(f) 1−                                                   (3) 
In equation 3, H(f) is the transfer matrix of the system for each time frequency point.  

DTF from channel j to channel i, representing the causal influence from j to i at frequency f, is 
defined as: 

| |22 (f)H=(f)θ ijij                                                                (4) 

The normalized DTF expresses the ratio of influence of channel j to channel i to the joint 
influences from all the other channels to the channel i, and has a value between 0 and 1. 

| |
| |∑

2

2

2

(f)H

(f)H
=(f)γ

im

ij
ij                                                             (5) 

It is important to highlight that a zero value of DTF may not mean a total absence of causal 
influence between the two channels  [9].  
 
2.2.3. Partial Directed Coherence Partial Directed Coherence (PDC) was introduced as a 
modification/generalization of directed coherence and DTF. While DTF represents a balance of signal 
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power that spreads from one structure to another over many possible alternative pathways, PDC 
portrays the relative strength of direct pairwise interactions. As a consequence, DTF marks the 
existence of signal pathways connecting structures either directly or indirectly while PDC resolves the 
existence of direct connections [23]. Thus, PDC provides clearer and more immediate frequency 
domain connectivity picture of Granger causality for the simultaneous analysis of more than two time 
series  [10]. Besides, PDC has the computational advantage of avoiding the matrix inversion in 
equation 3 that the calculation of DTF requires.  

The normalized squared PDC expresses the ratio of influence of channel j to channel i to the joint 
influences from channel j into all other channels, and has a value between 0 and 1. 

   
| |
| |∑

2

2

2

(f)A

(f)A
=(f)π

im

ij
ij                                                            (6) 

2.3.  Simulation of data, adjustment of MVAR model and calculation of DTF and PDC 
Sixty seconds simulations were considered a good balance between the number of data points to 
synthesize and analyze and sufficient interictal record with abundant epileptic spikes. Based on 
previous studies sampling frequency was set to 200 Hz  [23]. Average excitatory synaptic gain was set 
to 3.25mV to generate passive populations and to 3.52mV to generate active ones. Null, low, medium 
and high one-way connectivity between the populations were used. 

Two coupled poupulations  
Four groups were defined according to the populations and direction of connectivity possibly 

involved in a simulation consisting of two populations. The name of each group consists of two 
characters that identify the type of neurons that take part of the coupling as passive (P) or active (A). 
The first character refers to the population where the information flow is originated and the second one 
refers to the population which is the destiny of this flow. 

These groups were simulated for each connectivity level: null (N), low (L), intermediate (M) and 
high (H). Simulations will be quoted using this code (e.g.: simulation PA-M refers to a passive 
population coupled to an active one with intermediate connectivity with the information flowing from 
the passive to the active population). The result was 15 simulations (due to AP-N and PA-N being 
equivalent) which cover all the possible combinations of unidirectional and null connectivity between 
active and/or passive populations. 

Many coupled populations 
The two final cases represented an active population (A) connected to a passive one (P1), which in 

turn was connected to another passive population (P2). The coupling scheme used can be seen in 
figure 2. Connectivity between the active population A and the passive population P1 (A�P1) was set 
to be medium. Two different connectivity patterns were assumed. In one of these cases the 
connectivity between the passive populations (P1�P2) was set to be low (this case will be quoted as 
APP-ML), while in the other it was set to be medium (which will be quoted further in this work as 
APP-MM).  

 
Figure 2.Coupling scheme for APP-ML and APP-MM simulations. 

 
Since spike duration is 200-300 ms long, and based on physiological previous works  [6] we 

constrained the MVAR model to use information from the previous 100ms to estimate the actual 
signal value. Therefore, the time series data were adjusted using an order 20 MVAR. To test this 
premise, the Schartz Bayes Criterion (SBC) was used to define an optimal MVAR model order. The 
Matlab ARFIT Toolbox was used for this purpose  [13] [14].  

The connectivity is most likely to be time variant in this case due to the mutual influence of brain 
regions  [21]. As a consequence, a Kalman filter was used to estimate the MVAR model coefficients on 
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every time sample using Matlab’s Biosig toolbox  [15]. Then, PDC and DTF were calculated for every 
time point and every frequency going from 0 to Nyquist frequency using our own Matlab scripts. PDC 
and DTF were chosen over the multivariate version of Granger causality  [22] due to the fact that PDC 
and DTF consider the frequency domain and they are normalized estimators of connectivity  [23]. 

2.4.  Non-parametric statistical test for significance 
An empirical distribution technique using surrogate data was used  [9], [11]. Surrogate data were 
constructed by performing an independent phase randomization in each of the time series data. This 
method has no assumptions about connectivity distributions and allows testing a no connection 
hypothesis. The data was transformed using Matlab fast Fourier transform command. The phase was 
then randomized independently for each channel, making sure that the phase spectrum remained odd. 
Afterwards, the signal is transformed to the time domain using inverse fast Fourier transform. Phase 
randomization algorithm maintains the power spectrum of the signal while destroying any information 
flow in the time domain. 

In order to have good statistical significance, we created an empirical distribution for the causal 
measures out of 500 surrogates. Since phase randomization method assures that there is no interaction 
among the channels, this distribution gives the estimator behavior for the null hypothesis case. P-value 
of every time-frequency was obtained in comparison with the surrogate distribution. 
 
2.5.  Multiple comparison statistics   
The approach on assessing statistical significance of the results that was discussed in the previous 
section bears a probability that there will be false positive detections. Considering the fact that the 
connectivity matrix has a time-frequency dimension of 600000 points (50 frequency by 12000 time 
points), approximately 3000 points may show a statistically significant connectivity due to the 
multiple comparisons (assuming that the null hypothesis is true, alpha value of 0.05 and a normal 
distribution of the connectivity estimator). In order to correct for multiple comparisons a false 
discovery rate (FDR) method was applied to the connectivity matrix which eliminated false results 
with a 5% error rate. The implementation for the FDR method belongs to the SIFT toolbox for EEGlab 
 [16] [17].  

3.  Results 
The simulated model of the neural populations proved to be effective, as it resulted in a 
physiologically plausible signal in which the algorithms could be tested. Active and passive 
populations were simulated in different cases so as to represent the different combinations of 
populations that could be present in the neural cortex. 

To fulfill the criteria described in section 2, connectivity coupling parameters K were defined as 
100, 170 and 275 for low, medium and high simulations respectively.  

The order 20 MVAR showed little to no difference compared to lower orders despite the fact that 
the SBC is known to penalize for the use of a large order model. As a matter of fact, it is more 
acceptable to err due to overfitting rather than subfitting, hence the preference over the largest order. 
On figure 3, SBC for simulation AP-L can be seen. Similar results were obtained for the rest of the 
simulations. According to SBC, MVAR model order should be between 3 and 25 depending on the 
considered simulation.  
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Figure 3. Bayesian criterion shows that the chosen model order is 

acceptable 
 
Connectivity was measured in these simulations, and the effectiveness of the PDC and DTF 

algorithms turned out to be determined by the neuronal populations involved. Since the simulations 
involving two coupled populations can not include indirect connectivity between them, results of PDC 
and DTF did not differ in those cases. As expected, in the many coupled populations, some differences 
were found in the estimation of connectivity using PDC and DTF  [10], [23].  

Non-coupled populations 
 Simulations PP-N, AA-N and PA-N (equivalent to AP-N) were estimated correctly, as the PDC 

and DTF plots ended up being void of all information.  
Groups PA, PP and AA 
In most cases, the effective connectivity measurements properly showed the coupling direction 

among populations until the surrogate data method and the statistical test for significance were 
applied, resulting in the equivalent of no connectivity at all between the populations. This would 
suggest that the method has low sensitivity for this kind of application.  

Group AP 
Connectivity measures from simulations AP-H and AP-M are showed in figures 4 and 5 

respectively. Different frequency connectivity patterns can be observed. Connectivity results in 
simulation AP-L were not statistically significant when contrasted with the no connectivity hypothesis. 

 

 

 

Figure 4. PDC of simulation AP-H. The 
connectivity is mainly in the lower frequency 
band. Ch1: A population, Ch2: P population.  

 Figure 5. PDC of simulation AP-M. The 
connectivity is mainly in the lower 
frequencies and also spread over medium 
frequencies. Ch1: A population, Ch2: P 
population. 
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Many coupled populations 
PDC and DTF results for simulation APP-MM can be seen on figures 6 and 7, respectively. 

Differences between PDC and DTF were visible in these cases. Significant connectivity was measured 
for A�P1 and P1�P2. DTF in this case did not depict the indirect connectivity between A and P2, as 
it could be expected  [9].   

 

 

 
Figure 6. PDC for APP-MM simulation. 
A�P1 and P1�P2 show effective 
connectivity in the lower frequency band. 
P1�P2 connectivity shows lower strength. Ch 
1: A population, Ch 2: P1 population, Ch 3: P2 
population. 

 Figure 7. DTF for APP-MM simulation. 
A�P1 and P1�P2 show effective 
connectivity in the lower frequency band. 
P1�P2 connectivity shows lower strength. 
Ch 1: A population, Ch 2: P1 population, Ch 
3: P2 population.  

 
PDC and DTF results for simulation APP-ML can be seen on figures 8 and 9, respectively. 

Connectivity was measured successfully for A�P1 but a non significant measure was found for 
P1�P2. Again, the difference between DTF and PDC measures can be seen. DTF for APP-ML 
depicts a very low indirect connection between A and P2. 

 

 

 
Figure 8. PDC for APP-ML simulation. 
A�P1 show effective connectivity mainly in 
the lower frequency band. P1�P2 
connectivity is not detected. Ch 1: A 
population, Ch 2: P1 population, Ch 3: P2 
population.  
 

 Figure 9. DTF for APP-ML simulation.  
A�P1 show effective connectivity mainly in 
the lower frequency band. P1�P2 
connectivity not detected. Indirect 
connectivity is measured between A�P2 Ch 
1: A population, Ch 2: P1 population, Ch 3: 
P2 population.  

4.  Discussion  and conclusion 
Results show that PDC and DTF methods, corrected by FDR method, describe correctly the 
connectivity for simulations AP-M, AP-H, PP-N, AA-N and PA-N (equivalent to AP-N). On 
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simulation AP-L, the measured connectivity was not significant. This could be due to the fact that low 
connectivity gain was defined as the least possible to alter the firing rate of the passive population, 
thus providing little information flow. As a consequence, causal influence resolution achieved by the 
method may be below what we expected to resolve.  

The estimation of connectivity in the simulations belonging to group PA and PP was not 
significant. This might be caused by the fact that information coming from passive populations does 
not modify the firing rate of the destiny populations.  As for simulations of group AA, results were not 
significant either. This could be due to the non-linearity of the signals, which would make it difficult 
for the MVAR model to get a good estimation of the temporal dynamics of this signal. 

The fact that the best outcome came from simulations AP-M and AP-H shows that the estimation 
of connectivity between two populations using this method might be only possible when the firing rate 
of the destiny population is noticeably altered.  

Three population simulations offer a more realistic approach of the connectivity on an 
epileptogenic network. Connectivity from the active population A to the passive P1 was measured for 
simulations APP-MM and APP-ML with both PDC and DTF. These results are of importance in the 
clinical interpretation of epilepsy network configuration, since this method allows the determination of 
how epileptic activity is spread from its origin. Meanwhile, connectivity from P1 to P2 could only be 
measured in simulation APP-MM.  These simulations use the passive population in the middle of the 
connectivity path as an information pathway. Again, the case is properly represented by PDC and DTF 
once the firing rate in the destiny populations is altered in a noticeable way.  Since P1 is a passive 
population “activated” by A, the coupling P1�P2 behaves more like an AP coupling than a PP 
coupling. PDC and DTF for AP-L simulation proved to be not significant while AP-M did. As a 
consequence, the results for many coupled populations are consistent with what was found for 
simulations of two coupled populations.  

We noticed differences in the frequency response of PDC and DTF according to the strength of 
couplings. These differences will be studied in future works. 

As PDC and DTF methods are linear estimators it is evident that the connectivity estimation will be 
more effective in signals simulated by the use of linear models. Previous works have already proven 
the success of DTF and PDC for estimation of signals generated linearly via autoregressive simulation 
 [23]. Recent work has been done on estimating connectivity based on simulated data of physiological 
significance  [28]. However this work is based on a two-dipole model with linear dynamics which is 
far from representing the non-linear dynamics of real brain signals. 

Astolfi et al.  [26] simulated a non-linear population model signal  [7] and then other population 
signals to simulate a neural network. However, the other populations with connections to the non-
linear one were generated based on delays and escalations of it  [26]. This type of connections were 
well described by PDC, however physiological plausibility of this signals is not clear. 

It is important to remark that, in this work, we applied the model proposed by Wendling et al.  [7] 
which is representative of the physiological reality. This means PDC and DTF’s effectiveness was 
tested with a model that generates physiologically plausible neuronal signals. However, PDC and DTF 
are linear estimators of causal influence. Using non-linear connectivity estimators may provide better 
results, since this model includes non-linear elements and it has been shown that subtle relations 
between signals are not accessible by linear methods  [27]. 

In  [7] the authors proposed the use of a nonlinear method to analyze the connectivity of simulated 
signals, the nonlinear correlation coefficient h2 to measure the degree of coupling between two 
signals. Although h2 proved to be effective at estimating the connectivity between two nonlinear 
signals, it does not give information about the flow direction of the information.  

DTF has already been used to study the propagation of epilepsy real neural information using 
intracranial recordings  [8]. However, it is to be noted that no statistical tests for significance were 
applied.  In our work we have observed that the use of FDR reduces considerably the number of 
connections that are noticed.  
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It should also be noted we did not attempt any pre processing of the data, which may help improve 
the statistical significance in the results. Also, the use of other methods for multiple comparisons 
corrections, such as voxel-cluster approach, may provide more consistent results  [1]  

For future works, attempting to pre-process the data may produce more sensible results. Some 
possibilities include a normalization based on the variance of the signals. It remains unclear, yet, how 
to consider the influence of interictal spikes in this procedure. Moreover, an approach analyzing only 
interictal spikes is interesting. Besides, the use of information theory approach will avoid the linearity 
constrains that are used in PDC and DTF. 

Concluding, we evaluated the use of PDC and DTF as estimators of effective connectivity between 
philologically plausible populations in epilepsy. The methods show sensitivity to distinguish the 
coupling from active to passive populations at intermediate and high levels. This tool may be useful in 
the description of epileptogenic networks. However other techniques would be necessary to achieve 
more sensible results. 
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