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We provide a holographic description of two-dimensional dilaton gravity with Anti-de Sitter
boundary conditions. We find that the asymptotic symmetry algebra consists of a single copy
of the Virasoro algebra with non-vanishing central charge and point out difficulties with the stan-
dard canonical treatment. We generalize our results to higher spin theories and thus provide the first
examples of two-dimensional higher spin gravity with holographic description. For spin-3 gravity
we find that the asymptotic symmetry algebra is a single copy of the W3-algebra.
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I. INTRODUCTION

Gravity models in lower dimensions can provide useful
insights into classical and quantum gravity. They were
studied vigorously in the past three decades. In terms of
technical simplicity, the optimal choice for the dimension
is two: it is the lowest dimension where the notions of
curvature, causal structure, light-cones and black holes
exist, all of which are essential features of the way we
think about gravity in higher dimensions. Of course,
some aspects of higher-dimensional gravity are inevitably
lost — for instance, there are no graviton excitations in
two dimensions (2d) — but if these aspects are not of
relevance for a given physical question then studying 2d
toy models can be a rewarding exercise.

The first thing to realize when working in 2d is that
Einstein gravity is not the right starting point: any 2d
metric trivially solves the 2d Einstein equations as a con-
sequence of the 2d identity Rµν = 1

2 Rgµν . The most suit-
able set of theories are scalar-tensor theories, also known
as dilaton gravity. These theories have non-trivial equa-
tions of motion (EOM) and non-trivial solutions, includ-
ing black holes.

Indeed, 2d dilaton gravity has been employed to study,
among other things, black holes in string theory [1–3],
black hole evaporation [4], black hole complementarity
[5], black hole thermodynamics [6, 7], information loss [8,
9], the S-matrix in quantum gravity [10], and gravity at
large [11] and small [12] distances. See [13] and references
therein for further literature on 2d dilaton gravity.

An item conspicuously absent in this list is holography
[14, 15] and the Anti-de Sitter/Conformal Field Theory
(AdS/CFT) correspondence [16]. The reason for its ab-
sence is because so far no satisfying treatment of hologra-
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phy exists in 2d dilaton gravity, despite of several inter-
esting attempts like [17–20]. We shall comment on them
(and on further work) as we go along.

Given the recent excitement about higher spin hologra-
phy in three dimensions [21–25] another important item
that is missing on the list above is the construction of 2d
higher spin theories and their holographic description.
These two items are the main motivation for our work.

The main purpose of this paper is to establish AdS
holography in 2d dilaton gravity and for the first time
also in higher spin theories in 2d.

The 2d dilaton gravity bulk action [26–28]

S =
κ

2π

∫

d2x
√
g
(

XR+ U(X) (∂X)2 + 2V (X)
)

(1)

contains the 2d gravitational coupling κ, the dilaton field
X and two arbitrary potentials thereof, U(X) and V (X).
We set κ = 1, work in Euclidean signature throughout
(though most of our results extend straightforwardly to
Lorentzian signature) and restrict for the time being to
models with U(X) = 0.

Dilaton gravity in 2d is locally quantum trivial [29],
but globally it can be non-trivial, which is why physical
boundary states could exist, similar to the situation in
three-dimensional Einstein gravity with negative cosmo-
logical constant [30] or flat space chiral gravity [31]. It
is one of the aims of this paper to check to what extent
this is true.

II. PRELIMINARIES

Like in three-dimensional gravity, where a gauge-
theoretic formulation as Chern–Simons theory exists
[32, 33], there is a useful gauge-theoretic formulation
of 2d dilaton gravity as a non-linear gauge theory [34],
namely a Poisson-sigma model (PSM) [35] (see [36] for
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higher-dimensional generalizations).

S =
1

π

∫

d2x ǫ̃µν
(

Xa(∂µeνa + ωµǫa
beνb) +X∂µων

+ 1
2ǫ

abeµaeνbV (X)
)

(2)

The notations mostly follow [13] (except for our Eu-
clidean signature). Latin indices are raised and lowered
with δab = diag(1, 1)ab. We set ǫ10 = 1. We denote the
“holographic” (or radial) coordinate by ρ and the angular
coordinate (or in Lorentzian signature: time coordinate)
by ϕ, identifying ϕ ∼ ϕ + 2π. We fix the sign in the
Levi-Civita symbol ǫ̃µν by ǫ̃ρϕ = 1.
To make the relation of the first order action (2) to a

PSM manifest we rewrite it as

S =
1

π

∫

d2x ǫ̃µν
(

XI∂µAνI +
1
2P

IJ(XK)AµIAνJ

)

(3)

with three target space coordinates XI = (X,Xa), three
connection 1-forms Ax = ω, Aa = ea, and the Poisson
tensor (P IJ = −P JI)

PXb = Xaǫ b
a , P ab = V (X)ǫab . (4)

As a consequence of the non-linear Jacobi identities

∂P IJ

∂XL
PLK +

∂P JK

∂XL
PLI +

∂PKI

∂XL
PLJ = 0 (5)

the non-linear gauge transformations

δλX
I = P IJλJ (6a)

δλAµI = −∂µλI −
∂P JK

∂XI
λKAµJ (6b)

leave the PSM action (3) invariant up to a total deriva-
tive,

δλS =
1

π

∫

d2x∂µ

[

ǫ̃µνAνIλJ

(

P IJ −XK ∂P IJ

∂XK

)]

. (7)

Terms in P IJ that are linear in XK do not contribute to
the gauge variation (7).
In components the gauge transformations (6) read

δλX
a = V ǫabλb −Xbǫ a

b λX (8a)

δλX = Xbǫ a
b λa (8b)

δλeµa = −∂µλa − ωµǫ
b
a λb + ǫ b

a eµbλX (8c)

δλωµ = −∂µλX − ǫabeµaλb dV/ dX (8d)

Canonically, the gauge transformations (8) (which cor-
respond on-shell to diffeomorphisms and Lorentz trans-
formations) are realized through first class constraints.

∂ρX
I + P IJAρJ = 0 (9)

In components the constraints read as follows.

∂ρX
0 −X1ωρ − V eρ1 = 0 (10a)

∂ρX
1 +X0ωρ + V eρ0 = 0 (10b)

∂ρX +X1eρ0 −X0eρ1 = 0 (10c)

The remaining field equations are the torsion constraint

ǫ̃µν
(

∂µeνa + ωµǫa
beνb

)

= 0 , (11)

which allows to express the spin-connection ωµ through
the zweibein eaµ, the curvature equation

R =
2ǫ̃µν

det(e)
∂µων = −2 dV/ dX (12)

and the same equations as the constraints (10), but with
ρ replaced by ϕ.
There are two distinct sets of solutions to the field

equations. Constant dilaton vacua, with X0 = X1 =
V (X) = 0 and X = const., and linear dilaton vacua,
where the dilaton X does depend on ρ. The latter solu-
tions are generic, while the former exist only for specific
models, and even then require an infinite finetuning for
the value of the dilaton. Some recent attempts towards
AdS holography for constant dilaton vacua are based on
work by Hartman and Strominger [20, 37] and require
coupling to a Maxwell field. Also the recent construction
of spin-3 gravity by Alkalaev restricts to the constant
dilaton sector [38].
We do not consider this non-generic sector and focus

instead on generic linear dilaton vacua. At first glance
it may seem surprising that asymptotic AdS symmetries
can be compatible with linear dilaton vacua, since a vec-
tor field ξ that generates diffeomorphisms does only pre-
serve a constant dilaton, ξµ∂µX = 0. However, it is
sufficient if these vector fields preserve the asymptotic
structure of the dilaton (and of all other fields involved),
and this depends on the precise boundary conditions one
imposes, which turn out to be somewhat delicate. It is
probably for this reason that so far no consistent holo-
graphic description exists for linear dilaton vacua.

III. ADS2 BOUNDARY CONDITIONS

The discussion above applies to arbitrary potentials
V (X). However, in order to obtain asymptotically AdS
solutions (with unit AdS radius) the potential must
asymptote to X , since only then the Ricci scalar asymp-
totes to R = −2, see (12). For simplicity let us therefore
consider from now on the potential V (X) = X , which
describes the Jackiw–Teitelboim model [39, 40] and post-
pone a description of generalizations thereof. In that case
the PSM reduces to a linear gauge theory, with gauge
group SL(2) [41–44].
We discuss now locally asymptotically (Euclidean)

AdS boundary conditions. We assume that ρ → ∞ cor-
responds to the right (R) AdS boundary and ρ → −∞
to the left (L) one. For simplicity we choose the gauge

e1ρ = 1 e0ρ = e1ϕ = 0 . (13)

The only non-trivial zweibein-component is e0ϕ. It must
diverge exponentially in ρ at both AdS boundaries. Thus,
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a reasonable Ansatz is

e0ϕ = TR(ϕ) e
ρ + TL(ϕ) e

−ρ (14)

where TR,L are arbitrary (state-dependent) functions of
the angular coordinate. We note that the exponential be-
havior in ρ of the zweibein generalizes one of the assump-
tions imposed in a previous approach to PSM holography
by one of us [45].
In fact, solving the EOM in the gauge (13) it can

be shown that (14) is the most general solution, which
shows the consistency of our Ansatz (14). In the lan-
guage of Brown and Henneaux [30] we have gauge-
fixed small gauge transformations by the choice (13) and
parametrized the large gauge transformations (those that
change the physical state of the theory) by the functions
TR,L(ϕ).
With the gauge (13) and boundary conditions (14) on

the zweibein we proceed now to determine the boundary
conditions for the connection by demanding consistency
with the torsion constraint (11).

ωϕ = −TR(ϕ) e
ρ + TL(ϕ) e

−ρ ωρ = 0 (15)

We demand that the target space coordinates obey
boundary conditions such that the constraints (10) hold
identically; this means nothing else but prohibiting
boundary conditions that violate the constraints and is
therefore a meaningful restriction.

X0 = ∂ρX ∂ρX
1 = 0 ∂2

ρX = V (X) = X . (16)

Solving the constraints (16) establishes boundary con-
ditions for the target space coordinates.

X = XR(ϕ) e
ρ +XL(ϕ) e

−ρ (17a)

X0 = XR(ϕ) e
ρ −XL(ϕ) e

−ρ (17b)

X1 = X1(ϕ) (17c)

Our result that XR,L are allowed to fluctuate in a state-
dependent way differs crucially from the approach by
Navarro–Salas and Navarro [19], who fixed XR to some
(state-independent) constant.
In addition to the terms that we displayed in the

boundary conditions (13)-(17) there could be sublead-
ing terms that we are not going to specify explicitly, as
they will be of no relevance for our discussion.
The SL(2) Casimir-function turns out to be indepen-

dent from the radial coordinate ρ:

C(ϕ) = X2 − (X0)2 − (X1)2 = 4XRXL − (X1)2 (18)

On-shell C is constant and corresponds physically to the
mass of the solution. The EOM provide three relations
between the five state dependent functions, X1TR,L =
−X ′

R,L and (X1)′ = −2(XRTL + XLTR). Above and
in what follows we reduce notational clutter by writing
XR,L and TR,L instead of XR,L(ϕ) and TR,L(ϕ).
As a first check that our boundary conditions above

are consistent we show that the action is off-shell gauge-
invariant and obeys a well-defined variational principle.

Gauge invariance is evident from (7), since in our case the
Poisson tensor is linear in the target-space coordinates,
so that the term in parentheses in (7) vanishes identi-
cally. Thus, as long as the variational principle does not
require additional boundary terms in the action, off-shell
gauge invariance is guaranteed. In this regard our ap-
proach differs from our previous treatment [46], which
related the boundary terms in the PSM formulation to
the standard boundary terms in the second order for-
mulation, thereby introducing boundary terms that look
bizarre from a PSM perspective. Our current approach
avoids such boundary terms.
We check now the variational principle. The first vari-

ation of the action (3) yields on-shell

δS
∣

∣

EOM
=

1

π

∫

∂MR

dϕXI δAϕ I−
1

π

∫

∂ML

dϕXI δAϕ I . (19)

Here ∂MR,L denote the two disconnected components of
the AdS2 boundary, and the relative minus sign appears
since the outward pointing unit normals to the boundary
have different orientations. Inserting our boundary and
gauge conditions (13)-(17) establishes that all exponen-
tially diverging terms at either boundary vanish iden-
tically, and only finite terms remain at each boundary
component.

δS
∣

∣

EOM
=

2

π

(

∫

∂MR

dϕ−
∫

∂ML

dϕ
)

(

XR δTL −XL δTR

)

= 0 .

(20)
Even though the boundary terms do not necessarily van-
ish individually at each component of the boundary, they
cancel each other once both boundary components are
taken into account.
Thus, we have a well-defined variational principle: the

first variation of the action vanishes for all variations
that preserve our boundary conditions. In this respect
our setup differs crucially from the one by Cadoni and
Mignemi [18], who considered similar boundary condi-
tions but only one boundary component, and therefore
did not have a well-defined variational principle.

IV. ASYMPTOTIC SYMMETRIES

Let us now construct the metric and discuss some of its
properties. With the choices (13), (14) the line-element
is given by

ds2 = dρ2 +
(

T 2
R e2ρ + 2TRTL + T 2

L e−2ρ
)

dϕ2 . (21)

Infinitesimal diffeomorphisms δgµν = ∇µξν +∇νξµ that
preserve the form (21) of the line-element are generated
by vector fields ξµ with

ξρ = ξρ(ϕ) ξϕ = ξ(ϕ) +
∂ϕξ

ρ e−ρ

2TR e0ϕ
. (22)

The same vector field also preserves our boundary condi-
tions on the target-space coordinates (17). In this respect
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our approach differs crucially from [19], where nearly all
the diffeomorphisms that preserve their boundary condi-
tions on the metric violate their boundary conditions for
the dilaton field.
Defining ξR = ξ and ξL = ξ + (∂ϕξ

ρ)/(2TRTL) the
state-dependent functions transform as

δξTR = ξρTR + ∂ϕ(ξRTR) (23)

δξTL = −ξρTL + ∂ϕ(ξLTL) . (24)

Note that at this stage we have two independent func-
tions of ϕ appearing in the asymptotic symmetries,
namely ξρ(ϕ) and ξ(ϕ). This is different from all previous
approaches to 2d holography and may provide interesting
generalizations.
However, in order to make contact with previous ap-

proaches we fix from now on TR = 1
2 so that only TL is

allowed to fluctuate. Then ξρ is determined by (23) as
ξρ = −ξ′ and the transformation law (24) for T := −TL

expands to

δξT = 2ξ′T + ξT ′ + ξ′′′ . (25)

What we have just proven is that the state-dependent
function T transforms precisely like a chiral stress-tensor
in a 2d CFT [47] with positive central charge. This is
one of our main results.
The PSM gauge transformations (6) that preserve our

boundary conditions are generated by gauge parameters
λ whose components read

λX = − 1
2ξ e

ρ −
(

Tξ + ξ′′
)

e−ρ (26a)

λ0 = 1
2 ξ e

ρ −
(

Tξ + ξ′′
)

e−ρ (26b)

λ1 = −ξ′ (26c)

They are parametrized by a single function ξ and re-
produce the transformation law (25). The action of this
gauge transformation on the connection 1-forms coincides
with a Lie derivative generated by a vector field ξ as
given in (22) plus a compensating local Lorentz transfor-
mation to maintain our gauge choices. In addition, the
PSM gauge transformations allow to establish transfor-
mations laws for all other state-dependent functions. For
instance, the transformation law

δξXR = XRξ
′ −X ′

Rξ (27)

shows thatXR behaves like a boundary vector, consistent
with the analysis in [48].
Our main result (25) shows that the central charge is

positive, but does not specify its precise value. Without
a canonical analysis we do not know how to determine
the central charge by direct calculation, and as we shall
see in a moment, the canonical analysis is problematic.
An indirect way to fix the central charge would be to
appeal to the Cardy formula for entropy

SC = 2π

√

ch

6
(28)

where c is the central charge and h the value of the
Virasoro zero mode charge, and to equate it to the
Bekenstein–Hawking entropy [6, 7]

SBH = 2κXh (29)

where Xh is the value of the dilaton field evaluated at the
black hole horizon and we have reintroduced the gravita-
tional coupling constant κ. Fixing XR = 1 we define

h = κ
4π C = 2κ

π
T , (30)

where C is the Casimir function (18) evaluated on-shell.
We shall provide some justification of the definition (30)
below. Demanding equality between the CFT entropy
(28) and the gravitational entropy (29), SBH = 4κ

√
2T ,

yields

2πc = 48κ . (31)

It would be nice if there was a direct way to derive this
result for the central charge [69]. In fact, a check on the
correctness of our results is that the suitably rescaled
version of (25), δξh = 2ξ′h+ ξh′ + 2κ

π
ξ′′′ = 2ξ′h+ ξh′ +

c
12 ξ

′′′, with h as defined in (30), leads precisely to the
result (31) for the central charge that we determined from
the Cardy formula. Thus, our findings are compatible
with the conjecture that 2d dilaton gravity in the linear
dilaton vacuum with our boundary conditions is dual to
a chiral half of a CFT with central charge c = 24κ/π.
We have worked directly with the state-dependent

functions and their transformation behavior to unravel
the asymptotic symmetries. However, it is fair to ask if
the same results, in particular (25), could have been ob-
tained from a canonical analysis along the lines of [30].
Surprisingly, the answer is no. Consider the variation of
the canonical boundary charges [70],

π

κ
δQ = −λI δX

I = ξ δXL+ξ′ δX1+2ξ′′ δXR+2ξT δXR .

(32)
The first equality follows by inspection of the derivative
terms in the constraints (10) and the second from our
boundary conditions and the results (26). The only good
news is that the charges (32) are finite, but they are
neither conserved nor integrable. The last term in (32)
spoils integrability [71].
The non-conservation is well-known and was addressed

by Cadoni and Mignemi [18], who proposed as solution
to integrate the “charges” over ϕ (which in their con-
ventions is time). However, non-integrability apparently
went unnoticed so far and is a serious issue. It implies
that there is no good canonical realization of the asymp-
totic symmetries.
Thus, we are in a similar situation as in flat space

holography in four dimensions [49, 50] (see also [51, 52]):
we can consistently define currents and their algebra —
in our case the main result (25) leads to the anomalous
transformation law for T familiar from the Virasoro alge-
bra — but have no conserved integrable canonical charges
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(see [53] for a general relativistic discussion). This is a
remarkable and unexpected feature of 2d dilaton grav-
ity that deserves further study and could shed light on
similar issues arising in flat space holography.
Non-integrability means that we have to pick a certain

class of paths in field space to define charges. Let us
restrict to field variations that do not change the value
of the dilaton field at the right boundary, δXR = 0. For
concreteness we fix XR = 1. Then the variation (32) sim-
plifies to δQ = κ/π ξ δXL which integrates to the charges

Q[ξ] = 2k
π
ξ T = k

4π ξ C . (33)

The relation (33) provides the motivation for our defini-
tion (30) of the Virasoro zero mode charge. (Note that a
truncation to XR = 1 is consistent only for constant ξ.)

V. HIGHER SPIN THEORIES

We generalize now our results to higher spin theo-
ries. Instead of choosing SL(2) we pick some higher rank
gauge algebra with generators LI and structure constants
f IJ

K , i.e., [LI , LJ ] = f IJ
KLK . Let us fix a representa-

tion and assume that the trace form GIJ = tr (LILJ) is
non-degenrate. Let GJK be the inverse of GIJ . Matrix-
valued fields are defined as Aµ ≡ AµIL

I , X ≡ XIGIJL
J .

Then we define the higher spin theory as a PSM (3) with
a linear Poisson tensor [72] and appropriate identifica-
tions of the gauge field 1-forms as zweibein, zuvielbein,
and connection.

P IJ = f IJ
K XK (34)

The PSM gauge transformations read

Aµ → eλ (∂µ +Aµ) e
−λ X → eλXe−λ . (35)

For concreteness let us focus on spin-3 gravity, de-
fined by a PSM with SL(3) gauge group, with princi-
pally embedded SL(2). The generators are taken as in
[54], Eq. (3.2), numbered with superscripts, and the in-
dices related to their spin-3 generators W will be taken
in parentheses, e.g. L(−1) ≡ W−1.
In the spin-2 case we have shown that once the bound-

ary conditions on the connection 1-forms are fixed, the
boundary conditions for the target space coordinates fol-
low from consistency with the constraints. Therefore, it
is sufficient to provide boundary conditions for the con-
nection 1-form A. Inspired by the way in which boundary
conditions are set up in three-dimensional spin-3 gravity
[21, 22] we impose the boundary conditions

A = e−ρL0

(

d+aϕIL
I dϕ

)

eρL0 (36)

with

aϕIL
I = L1 + T (ϕ)L−1 +W (ϕ)L(−2) (37)

The symmetry transformations that preserve the form
(36), (37) depend on two arbitrary functions, λ1 = ξ(ϕ)

and λ(2) = η(ϕ). Decomposing AI with respect to the
sl(3) generators yields the following consistency condi-
tions.

I = 1 : λ0 = −ξ′ (38a)

I = (2) : λ(1) = −η′ (38b)

I = 0 : λ−1 = 1
2 (ξ

′′ + 2ξT − 16ηW ) (38c)

I = (1) : λ(0) =
1
2 (η

′′ + 4ηT ) (38d)

I = (0) : λ(−1) =
1
3

(

− 1
2η

′′′ − 5η′T − 2ηT ′
)

(38e)

I = (−1) : λ(−2) =
1
4 (−λ′

(−1) + 2λ(0)T + 4ξW ) (38f)

The asymptotic symmetry transformations are obtained

from (38) by λ → e−ρL0

λ eρL
0

.
For I = −1 and I = (−2) we obtain the transforma-

tions of T and W , respectively

δT = − 1
2ξ

′′′ − ξT ′ − 2Tξ′ + 12η′W + 8ηW ′ (39)

δW = −λ′
(−2) + Tλ(−1) − 2Wξ′ . (40)

Comparing with [22] we find that making the identifica-
tions η → χ, ξ → −ǫ, T → 2πL/k and W → πW/(2k) as
well as fixing their σ = −1 establishes perfect agreement
with their equations (4.17)-(4.20). Thus, the current al-
gebra generated by (39), (40) is a single copy of the W3

algebra with positive central charge. This is our main
result for spin-3 holography.
All the caveats we discussed in the spin-2 case re-

garding the canonical boundary charges also apply to
2d higher spin theories. In particular, they are non-
integrable also for higher spin theories.
We treated here higher-spin theory entirely in its gauge

theoretic formulation, since the metric formulation is ex-
pected to be more cumbersome. Alkalaev discusses the
relation between gauge theoretic and metric formulation
in [38].

VI. DISCUSSION AND GENERALIZATIONS

We discussed 2d dilaton gravity with AdS2 bound-
ary conditions in the gauge-theoretic PSM formulation
and found as asymptotic symmetry algebra a single copy
of the Virasoro algebra, in the sense that we have the
anomalous transformation law for the state-dependent
function T in (25) with positive central charge. By
“asymptotic symmetry algebra” we mean all transforma-
tions that preserve the gauge- and boundary conditions
we imposed, modulo trivial gauge transformations (since
we fixed the latter completely we did not need to mod out
anything). However, we showed that there is no canon-
ical realization of the asymptotic symmetry algebra due
to non-integrability of the canonical boundary “charges”.
Finally, we formulated generic 2d higher spin theories

as PSM with higher rank gauge group and showed that
the asymptotic symmetry algebra for spin-3 gravity [with
principally embedded SL(2)] is a single copy of the W3

algebra.
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We address now generalizations and possible further
applications of our results. Instead of choosing V = X
one could study potentials that asymptote to X at large
values of X , so that curvature asymptotically is still a
negative constant (12). In general such potentials will in-
troduce curvature singularities in the bulk and the global
structure no longer is that of global AdS2, i.e., the Pen-
rose diagram no longer is a strip. Even in that case one
could still proceed along the lines of our work and take
into account both boundaries.
There are two alternatives. If one wants to consider

only a single boundary component then the variational
principle is not well-defined for our boundary conditions.
One could try to make sense of such a situation, though it
is awkward if solutions to the classical EOM no longer are
classical solutions of the theory, i.e., they do not extrem-
ize the action. It is important to point out that this defect
cannot be repaired by adding suitable boundary terms
to the action, since the non-vanishing term in the first
variation of the on-shell action (20) is not integrable, for
essentially the same reasons that the canonical boundary
charges are not integrable (32). It could be possible to
find suitable relations between the state-dependent func-
tions TR,L and XR,L leading to a well-defined variational
principle.
Alternatively, one could fix the leading behavior of the

dilaton, XR = const. in (17), which reduces the boundary
conditions preserving gauge transformations to transla-
tions only. Then the theory can no longer be dual to a
CFT. Instead, such an approach would generate a corre-
spondence to quantum mechanics at the boundary [55].
Similar comments apply to generalizations with non-

zero kinetic potential, U(X) 6= 0 in (1). Also in this case
asymptotic AdS2 behavior is guaranteed if the potential
V asymptotes to X (times a positive constant).
Adding gauge fields like in [20, 37] basically leads to a

modification of the potential V (X), since all gauge fields
can be integrated out exactly. For instance, adding to
the action (1) a Maxwell term FµνF

µν is equivalent to
shifting the potential V (X) by a term that is constant
on-shell and proportional to the square of the conserved
U(1)-charge. Generalizing our boundary conditions to
this case is straightforward and only requires to allow for
a suitable order unity term in the dilaton in addition to

the terms already present in (17a).

At some point we switched off the fluctuations TR at
one boundary component. It could be interesting to
study generalizations where both TR,L are switched on.
We speculate that they may lead to an additional u(1)
current algebra.

Some of the canonical issues of our intrinsic 2d discus-
sion could be avoided by lifting the discussion to higher
dimensions. For example, in many approaches to AdS2
holography the starting point is string theory and AdS2
times some compact manifold arises as near horizon ap-
proximation to black holes, see for instance [17, 37, 56].
However, it could be rewarding to try to clarify these
issues intrinsically within 2d, since this may shed light
on more generic situations where an asymptotic symme-
try algebra arises, but does not allow for a well-defined
canonical realization.
Generalizations to other higher spin theories, like spin-

N theories based on SL(N) or Vasiliev-type theories [57]
based on hs(λ), are straightforward and follow from sim-
ilar constructions in three dimensions [21, 22]. There will
always be a single copy of some W -algebra as asymptotic
symmetry algebra [73].
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