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Abstract
The recent inflow of empirical data about the collective behaviour of strongly correlated
biological systems has brought field theory and the renormalization group into the biophys-
ical arena. Experiments on bird flocks and insect swarms show that social forces act on the
particles’ velocity through the generator of its rotations, namely the spin, indicating that
mode-coupling field theories are necessary to reproduce the correct dynamical behaviour.
Unfortunately, a theory for three coupled fields—density, velocity and spin—has a pro-
hibitive degree of intricacy. A simplifying path consists in getting rid of density fluctuations
by studying incompressible systems. This requires imposing a solenoidal constraint on the
primary field, an unsolved problem even for equilibrium mode-coupling theories. Here, we
perform an equilibrium dynamic renormalization group analysis of a mode-coupling field
theory subject to a solenoidal constraint; using the classification of Halperin and Hohenberg,
we can dub this case as a solenoidal Model G. We demonstrate that the constraint produces a
new vertex that mixes static and dynamical coupling constants, and that this vertex is essential
to grant the closure of the renormalization group structure and the consistency of dynamics
with statics. Interestingly, although the solenoidal constraint leads to a modification of the
static universality class, we find that it does not change the dynamical universality class, a
result that seems to represent an exception to the general rule that dynamical universality
classes are narrower than static ones. Our results constitute a solid stepping stone in the admit-
tedly large chasm towards developing an off-equilibriummode-coupling theory of biological
groups.
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1 Introduction

The phenomenon whereby systems with very different microscopic details have similar crit-
ical behaviour, known as universality, finds an elegant explanation in the context of the
renormalization group (RG) [46,47]. As a system approaches a critical point, i.e. a sec-
ond order phase transition, it exhibits emergent collective phenomena on increasingly wider
length-scales, which leads to the presence of a diverging correlation length. In this regime, a
set of phenomenological scaling laws for near-critical systems have been proposed [28,45]
in order to describe the critical behaviour through a set of critical exponents ruling the
divergence of thermodynamic quantities with respect to the correlation length. In the RG
framework, these scaling laws naturally arise as a consequence of the diverging correlation
length, thanks to the flow in the parameter space generated by iterating an RG transformation
many times. Through the concept of attractive fixed points of the RG flow, it is possible to
prove that systems sharing only few general properties, as symmetries, dimensionality and
range of the interactions, develop the same large-scale behaviour near the critical point, hence
belonging to the same universality class. Moreover, the RG gives a constructive method to
compute the critical exponents [23], making it one of the most powerful tools of the theory
of critical phenomena, broadly employed to characterise both static [34] and dynamic [26]
universality classes in equilibrium systems.

Whenwe shift our attention from equilibrium to non-equilibrium phenomena, the study of
emergent collective dynamics is of fundamental interest also in biological systems, in which
the response to external perturbations is more efficient when individuals behave collectively
[16,36]. The existence of collective behaviour in biological systems is strictly related to
the presence of scale-free correlations among the system’s components, as experimentally
observed in bird flocks [8], sheep herds [22] and bacterial clusters [49], in strong similarity
with emergent phenomena studied in condensed matter, as superfluidity, superconductivity
and ferromagnetism. The experimental discovery of scale-free correlations provides some
justification to the theoretical investigation of collective behaviour in biological systems using
the tools developed for critical phenomena, including of course the renormalization group.

The early efforts in the study of collective phenomena in active biological systems focused
on the ordered phase, namely in those groups exhibiting net groupmotion, themost prominent
example being represented by bird flocks [40,41].More recently it has become experimentally
evident that also systems in their disordered phase, as natural swarms of insects, display col-
lective phenomena even in absence of collective order [3]. Moreover, within natural swarms
both static and dynamic scaling laws have been found to hold [3,10]. Since scaling laws are
fundamental features of near-critical systems, a renormalization group approach to swarming
behaviour seems particularly appealing.

Dynamic critical systems not only have a diverging correlation length, but also a diverging
relaxation time [7]. According to the dynamic scaling hypothesis, the correlation length ξ and
the collective (i.e. zero wavelength) relaxation time τ are linked by the relation τ ∼ ξ z , where
z is the dynamic critical exponent ruling the dynamical relaxation of the system. Experiments
show that the dynamic behaviour of natural swarms is characterized by a critical exponent
z ∼ 1 [10], which is very far from the value z ∼ 2 typical of the simplest dissipative
ferromagnetic models, generically represented by Model A in the famous classification of
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Halperin and Hohenberg [26]; this is somewhat problematic, as the earliest theories for
active biological systems are essentially a mix of Model A ferromagnets and Navier–Stokes
equations [40]. Finding what are the correct dynamical equations that provide a value of the
dynamical critical exponent z equal to the experimental value represents a very important
step, not only towards understanding collective behaviour in natural swarms (which will
be our focus here), but more broadly in the effort to prove that statistical field theory is a
predictive tool in biophysics.

There are two possible mechanisms that can explain a drop of the value of the dynamical
critical exponents in natural swarms compared to that of standard ferromagnetic systems in
the Model A class. The first possibility is activity, namely the fact that individuals are self-
propelled, which leads to a time-dependent network of interactions between the particles’
velocities, thus driving the system out of equilibrium. Activity gives rise to density fluctua-
tions, thus meaning that in addition to the velocity field v (x, t), also the density field ρ (x, t)
must be included in the hydrodynamic description of the system [40,41]. Broadly speaking,
one can say that the feedback between velocity and density fluctuations is responsible for
a more efficient transport of information within the system, which may reflect into a lower
value of z. Indeed, theoretical RG calculations in presence of activity have been performed
in the incompressible case, showing that z is indeed lower than its equilibrium value, leading
the exponent from z ∼ 2 to z ∼ 1.7 in d = 3 dimensions [15]; and yet this is still far from
the experimental value z ∼ 1.

The second factor thatmay lower the valueof z, and that has been shown tobe relevant in the
description of both insect swarms and bird flocks, is the presence of inertial dynamics, namely
a coupling between the velocity field v (x, t) and the generator of its rotations, known as the
spin s (x, t) [2,10]. In equilibrium systems, as for example planar ferromagnets, superfluids
and quantum antiferromagnets (respectively Model E, F and G in the classification of [26])
this coupling (and the conservation law generated by it) radically alters the mechanism of
information propagation throughout the system and it also lowers the dynamical critical
exponent, which becomes z = 1.5 in d = 3 [12,13]. Even in this case, though, we are
quite far from the experimental value, but then it seems likely that a calculation that keeps
into account both the off-equilibrium active nature of swarms and the mode-coupling nature
of their interaction, may provide a value of the dynamical critical exponent close to the
experimental one, z ∼ 1. The bad news is that a full-fledged out of equilibrium field theory
taking into account both these features must contain a density field ρ (x, t), a velocity field
v (x, t) and a spin field s (x, t), with a large number of couplings between them and a
near-prohibitive level of intricacy. Therefore, to make theoretical progress, one needs some
simplifying assumptions.

The first and most natural simplification is that of incompressibility. Incompressibility in
the RG study of the Navier–Stokes equations was first used in the seminal paper by Forster,
Nelson and Stephen [20], while it was used first in the context of dynamical field theories for
active matter in [15]. This hypothesis seems quite reasonable both in natural insect swarms
and bird flocks, because experiments show that density fluctuations are indeed very limited
in these systems, and they do not seem to be a crucial ingredient in their collective behaviour
[3,31]. Incompressibility is obtained by enforcing a solenoidal constraint on the velocity
field, that is by adding to the dynamics the condition, ∇ · v = 0. This allows to neglect the
(constant) density field, whose fluctuations are suppressed thanks to the solenoidal constraint.
Incompressible swarms in the fully dissipative case (i.e. without velocity-spin coupling) have
been studied in [15], but we need to move to the mode-coupling case, of velocity and spin,
and here some new problems arise. In the case of a theory with one single field (the velocity),
the solenoidal constraint is simply enforced by projecting the force acting on the velocity
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onto the direction orthogonal to the wave vector k in Fourier space [15,20]; in this way,
the constraint is conserved along the time trajectories. But in systems with mode-coupling
dynamics incompressibility cannot be achieved in this simpleway, as the forces nowact on the
spin, rather than on the velocity, and the spin is not subject to the solenoidal constraint! Hence
we are in a paradoxical situation: the assumption that was supposed to radically simplify the
calculation, reducing from three to two the number of fields, creates itself a new challenges.

Instead of giving up the crucial simplification of incompressibility, we choose to try and
solve the problem of how to impose a solenoidal constraint in a mode-coupling theory; and
because this new problem has nothing to do with the complications due to off-equilibrium
dynamics, we tackle the problem in the case of a zero-activity equilibrium system, namely a
system living on a fixed-network. Indeed, surprising as this may seem, the problem of how to
impose the solenoidal constraint on amode-coupling theory has never been investigated so far.
Once we will have solved this problem, we will be in a far better shape to push the calculation
out of equilibrium, still retaining the incompressibility condition. Notice that in absence of
activity it does not make much sense to insist in calling the primary field “velocity". Hence,
we will use as our primary field ψ , the field describing the average direction of motion in the
vanishing speed limit. The virtue of this approach is that any future calculation performed in
the active case must have the present calculation as a limit in the zero-speed case.

To summarize, in the present work we will derive and study the coarse-grained dynamic
equations for a critical field ψ which is coupled to the generator of its rotations, s, in the
presence of the solenoidal constrain, ∇ · ψ = 0. We shall refer to this theory as Solenoidal
Model G (SMG), because in absence of the solenoidal constraint this field theory is known
in literature as Model G [26]: this classic model for equilibrium quantum antiferromagnets
will therefore be our stepping stone towards a theory for off-equilibrium natural swarms. We
will show that the solenoidal constraint leads to the emergence of an additional non-linear
term in the equation of motion of the spin, as a consequence of the suppression of the ψ

mode longitudinal to the wave-vector k. We will also prove that the equations we obtain
are eigenstates of the renormalization group, by calculating perturbative corrections up to
one loop. Moreover, the dynamic behaviour will be shown to be consistent with the static
behaviour of a ferromagnet with dipolar interactions [1,19]. Finally, we will find as dynamic
critical exponent z = d

2 , leading to the same dynamic universality class as the unconstrained
theory [12,26]. Therefore, while incompressibility affects the static universality class, it
does not modify the dynamic universality class, suggesting that the critical behaviour of
homogeneous systems is not affected by imposing incompressibility.

In Sect. 2 we will review the biological origin of the mode-coupling dynamics and the
reason for which incompressible constraint is imposed. In Sect. 3 the coarse-grained theory
will be derived, starting form the staticHamiltonian and thePoisson-bracket relations between
the various quantities. In Sect. 4 we will derive one-loop corrections to the couplings of
the theory and verify that the equations of motion are self-consistent. Self-consistency is
proven by showing that no new RG-relevant interaction is generated and that the dynamic
renormalization reproduces the correct static behaviour. Finally, in Sect. 5 we will derive the
dynamical critical exponent.
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2 Biophysical Background

2.1 Dynamic Scaling

The spatio-temporal statistical behavior of a collective system can be described through
the connected space-time correlation function of the velocity, C(r, t), which expresses how
much the velocity fluctuations of some individual in the system influence and are influenced
by the velocity fluctuations of another individual at distance r and after a time t [11]. For
t = 0 this is just the static (i.e. equal times) correlation function, whose decay range defines
the correlation length, ξ . Conversely, for r = 0 and t �= 0, this is the singe-particle auto-
correlation function. In general, when both r and t are non-zero, the correlation function is
quite a loaded concept, entailing the fundamental relationship between relaxation in time and
relaxation in space. In the case of critical systems, such relationship acquires a particularly
illuminating form, which goes under the name of dynamic scaling [18,25]. Dynamic scaling
states that the dynamic correlation function C , when expressed as a function of wave-vector
and frequency, takes the following simplified scaling form,

C (k, ω; ξ) = C0 (k; ξ) F

(
ω

ωk
, kξ

)
(1)

where ξ is the correlation length and where the static correlation function C0 has in turns the
scaling form,

C0(k, ξ) = k2−ηF0 (kξ) (2)

and where the characteristic frequency at scale k is given by,

ωk = kz�(kξ) (3)

In the relations above, �, F0 and F are well-behaved scaling functions, whose explicit form
is inessential to capture the gists of dynamic scaling [18,25]; η is the critical exponent for
the static correlation function (normally called anomalous dimension [5]). The fundamental
meaning of dynamic scaling is that in critical systems space and time do not scale indepen-
dently from each other, but they are linked by the dynamic critical exponent z. The space-time
correlation function has a very simple form, as its whole spatio-temporal dependence goes
through the product kξ . When k = 0, the collective relaxation time τ of the system is linked
to the correlation length ξ through the relation,

τ � ω−1
k=0 ∼ ξ z (4)

This phenomenon is known as critical slowing down and it represents a consequence of the
fact that the time τ needed to decorrelate a spatially correlated region grows with the region’s
size, namely with the correlation length ξ , making the latter the only relevant scale also at a
dynamic level.

Notably, natural swarms of insects have been found to obey dynamic scaling [10], with
a dynamical critical exponent z quite close to 1 (z = 1.2, obtained as the value at which
correlation functions collapse on the same [10], is the safest determination). On one hand,
because the validity of scaling laws is one of the hallmarks of critical systems, the exper-
imental evidence of static and dynamic scaling in natural swarms [3,10] suggests that the
swarming phase can be theoretically described as a near-ordering phase of classic ferromag-
netic theories. On the other hand, the value z ∼ 1 is definitely anomalous, as the standard
exponents in Model A class of statistical systems [26] is z ∼ 2, with small corrections at
two loops. This state of affairs suggest that a critical dynamical universality class, different
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from Model A, must be found for natural swarms. This new universality class will need to
take into account the two main features that affect the collective behaviour of these systems,
namely activity and mode-coupling dynamics. Let us illustrate the first factor through the
most venerated hydrodynamic theory describing active matter.

2.2 The Hydrodynamic Theory of Toner and Tu

In most collective biological systems, from bacterial clusters up to insect swarms, bird flocks
and animals herds, individuals are self-propelled thanks to their ability to convert energy into
systematic movement [39]. The presence of metabolic processes, through which an energy
supply from the environment is provided, guarantees a constant speed. Activity means that
the interaction network over which the velocities of the individuals are interacting with each
other evolves in time, representing the principal non-equilibrium feature of these systems.

The hydrodynamic theory developed by Toner and Tu [40,41], based on the discrete
model proposed by Vicsek and collaborators [44], paved the way to a theoretical analysis of
collective behaviours in the presence of activity. Together with the velocity field v, also the
density number field ρ is an hydrodynamic variable of the system, since activity allows local
density fluctuations. The velocity field obeys to a dynamical behaviour that is a crossover
between that of a Landau-Ginzburg O(n) model, reflecting the presence of an effective
alignment among the animals velocities, and a Navier–Stokes dynamics, reflecting the fact
that velocity and density are coupled as in a standard fluid; the density evolves according
to a continuity equation, since the total number of individuals is assumed to be fixed. The
essential terms of the Toner and Tu (TT) theory are given by [35],

∂v

∂t
+ γv (v · ∇) v + · · · = −


δH
δv

+ ∇P + θ (5)

∂ρ

∂t
= −∇ · (ρv) (6)

In Eq. (5), the r.h.s. encloses Model A dynamics [26], with the gaussian random white
noise θ and the hamiltonian force − δH

δv
, to which a pressure force is added contrasting

an infinite compressibility. Here the effective hamiltonian H takes the Landau-Ginzburg
structure, namely

H =
∫

dd x

[
1

2
(∇v)2 + r0

2
v · v + u0

4
(v · v)2

]
(7)

Depending on the value of r0, two phases can be identified: an ordered phase for r0 < rc and
a disordered phase for r0 > rc, where rc is the critical value of the parameter r . The main
difference with equilibrium dynamics is represented by the γv term on the l.h.s. of Eq. (5),
which is the advection term 1 typical of the Navier–Stokes structure.

Since its development, the TT theory has been able to explain many fundamental aspects
of collective behaviours in active systems, from the existence of an ordered phase also in 2
dimensions, to the presence of linear sound modes [40,43]. The success of this remarkable
theoretical effort is due to the minimal description given by the TT equations of motion,
which tie together activity and effective alignment. However, experimental evidence has
shown how this theory is not able to fully describe some aspects of biological systems’,
in particular information propagation in flocks [2], and dynamical correlation functions in

1 Since Galilean invariance is violated, we cannot require γv = 1. Moreover, the ellipsis in Eq. (5) denote
other two advection-like terms, involving one ∇ and two v, allowed by symmetries
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swarms [10]. These discrepancies arise as consequence of the structure of Eq. (5), which is
essentially that of an overdamped Langevin equation for the velocity,

Dtv = −∂vH (8)

Moreover, RG analysis of the near-ordering dynamics of the TT theory in the incompressible
case predicts a dynamical critical exponent z � 1.7 for d = 3 [15], significantly different
from the value z ∼ 1 observed in natural swarms.

2.3 Restoring Inertia: TheMode-Coupling Theory

The first hints about the necessity of restoring an underdamped dynamics in the description
of collective behaviour in biological systems came from experiments on bird flocks. When a
flock undergoes a collective turn, local variations in the direction ofmotion propagate linearly
in timewith surprising efficiency [2]. Although “sound”modes arise in the TT hydrodynamic
theory as a consequence of density-velocity coupling, they are known to lead to enormous
density fluctuations [42] that have not been observed in turning flocks. To explain these
observations, a different physical mechanism responsible for the propagating sound-waves
during turns has been proposed in [2], namely the presence of inertia in the dynamics of the
system.

A second piece of empirical evidence that inertial dynamics was missing from the original
Vicsek model and Toner-Tu theory came from the calculation of the dynamical correlation
functions in real swarms [10]. The overdamped dynamics for the velocity typical of theVicsek
model and TT theory generates a classic exponential decay of the dynamical correlation
functions; however, in natural swarms this is not the case, and the correlation function displays
a non-exponential form typical of underdamped inertial systems.

At a theoretical level, both these feature can be included at once by incorporating in
the dynamics the conjugate momenta of the generalized coordinate of the model, as in a
Hamiltonian systems. In Vicsek-like models, where the speed v0 is fixed, the generalized
coordinate is the direction of motion, given by the phase ϕ.2 The momentum s conjugate
to ϕ is the local generator of the rotations parametrized by ϕ. In analogy with quantum
mechanics, this generator of the rotations in the internal space of the velocity, which must
not be confused with the generator of spatial rotations (the standard angular momentum),
takes the name of spin.

The discrete model that restores the inertial spin-velocity coupling is known as the Inertial
Spin Model (ISM) [9], and it is characterized by an underdamped structure for the equations
of motion of the kind [2]

ϕ̇i = si
χ

; ṡi = Fi (9)

where the alignment force Fi exerted on the particle i by its neighbours does not act directly
on the velocity as in Vicsek model, but it is mediated by the generator of rotations si , thus
restoring an inertial behaviour. The parameter χ is the generalized inertia, and plays the same
role as the moment of inertia for the spatial angular momenta. We must however stress out
again that the spin s is not the spatial angular momenta: a rotation parametrized by the phase
of the velocity ϕ is not a parallel path turn around a common center of rotation, as typically
happens in rigid bodies, but instead is an equal radius turn, i.e., a turn in which all individuals
turn with the same radius R [2].

2 In d = 2 one phase is sufficient to define the direction of motion, while in higher dimensions a set of angles
is needed. The results derived for the 2d case however apply also in higher dimensions
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To understand the physical meaning of the spin s, we must connect the internal space of
the order parameter v to the external space of x. This can be done by looking at the kinematic
equation of the trajectory x, namely

ẋ = v = v0e
iϕ (10)

from which it follows that ϕ̇ = v0κ , where κ is the curvature of the trajectory, namely the
inverse of the instantaneous radius of curvature R. By combining this result with Eq. (9), one
can see that the spin s physically represents the curvature of the trajectory

s = v0χκ (11)

The spin introduced in the previous paragraphs is generator of the symmetry group of
the model, given by the O(d) group, which reflects the fact that all directions of flight are
equivalent. In virtue of Noether’s theorem, a symmetry implies in general a conservation law.
Adding a conservation law leads to amodification of the hydrodynamic behaviour of a system,
which now must include the dynamics of the spin density and the effects of a conserved total
spin on the other variables. In the present case, the conservation of the spin leads a mode-
coupling between the order parameter and the spin density field. This structure is not new
to physical systems: this is what happens in the case of planar magnets, superfluid helium
and isotropic anti-ferromagnets (Models E, F and G in [26] respectively). The equations of
motion for these models, in terms of the order parameter ψ and the spin s, take the following
form for a 3 dimensional order parameter (Model G)

∂ψ

∂t
= −


δH
δψ

+ gψ × δH
δs

+ θ (12)

∂s
∂t

= λ∇2 δH
δs

+ gψ × δH
δψ

+ ζ (13)

where θ and ζ are gaussian randomwhite noises, while theHamiltonian has the usual Landau-
Ginzburg form for ψ , plus a Gaussian non-interacting kinetic term in the spin,

H =
∫

dd x

[
1

2
(∇ψ)2 + r0

2
ψ · ψ + u0

4
(ψ · ψ)2 + s · s

2

]
(14)

In Eqs. (12) and (13) the two terms proportional to g, namely ∂tψ ∼ δsH and ∂t s ∼ δψH,
represent the Hamiltonian conservative dynamics enforced by the Poisson-braket relation{

sα, ψβ

} = g0 εαβγ ψγ (15)

where εαβγ is the Levi-Civita antisymmetric symbol, meaning that s is rotatingψ . Moreover,
the equation of motion of s can be written in the form of a continuity equation, reflecting the
fact that due to the rotational symmetry, the total spin S(t) = ∫

dd x s(x, t) is conserved.3

2.4 Incompressible Flow and Fixed Network Assumptions

In order to join the two ingredients described in the last two sections, namely activity and
inertia (i.e. mode-coupling dynamics) into one single dynamical field theory, one needs to

3 In the biophysical context, the spin is not strictly conserved. Thus, the presence of a dissipative term
∂t s ∼ −ηδsH is allowed in Eq. (13). In this system a crossover between a conservative and a dissipative
dynamics has been observed [12,13], in which the former regulates the behaviour of finite-size systems as
swarms. As we will see later on, the solenoidal constraint will violate the spin conservation, but does not
generate a dissipative behaviour, thus allowing us to work at η = 0
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write equations for three coupled fields - density, velocity and spin - with several non-linear
couplings among them, giving rise to a diagrammatic RG proliferation that it is impossible
to keep under control without any simplifying assumption. One such simplification is that of
incompressibility. The huge advantage of working under the hypothesis of incompressibility
is that the density field drops out the theoretical description [15,20], thus reducing the num-
ber of fields that have to be studied from three to two, hence dramatically simplifying the
theoretical investigation. One may worry that incompressibility introduces some non-local
interactions in the system, then potentially changing the critical exponents with respect to the
compressible case. However, numerical simulations of the standard compressible theory have
found the dynamic scaling exponent to be in perfect agreement with theoretical RG results
for incompressible theory [14], thus indicating that the effects of activity on the dynamical
critical exponent are independent from whether incompressibility is enforced or not. This
is very useful indeed, as it means that incompressibility can be used as a simplifying tool,
without changing critical dynamics.

A second remark about incompressibility is in order. In the standard compressible theory,
the presence of density fluctuations in the system, as a consequence of activity, makes the
phase transition of Vicsek-like models a first-order (i.e. discontinuous) transition [24]. In
incompressible systems, however, the absence of density fluctuations makes the phase tran-
sitions always second-order (continuous) [15], thus scaling behaviour is observed at all sizes
and all the complications about phase separation are avoided. Of course, this is only rea-
sonable because in real natural swarms of insects (as in bird flocks), density fluctuations are
negligible and play no determinant role in ruling the collective dynamics of the system [3,4].
Hence, incompressibility is not only a simplifying hypothesis, but also a sound theoretical
description of actual empirical data.

Thanks to the continuity equation (6), the condition of incompressibility reduces to impos-
ing a solenoidal constraint on the velocity field,

∇ · v = 0 (16)

Aswe shall see, the introduction of a solenoidal constraint on the primary fieldwithin amode-
coupling dynamics is far from trivial. The only encouraging thing is that the complications
arising are completely unrelated to activity, so that it seems sound to first find a conceptually
consistent way to impose the solenoidal constraint on a theory at equilibrium, and then to use
that results tomake progress off-equilibrium in the future. Therefore, in this work activitywill
be neglected by assuming the adjacency network to be fixed in time. Since in the microscopic
description of Vicsek-like systems each individual has a fixed speed v0, the fixed-network
approximation can be formally seen as a limit where v0 vanishes, which is equivalent to
freeze the position of each particle. While in this limit the velocity field acquires a singular
behaviour, since no particle is actually moving, the coarse-grained direction of motion ψ ,
defined by the relation

v (x, t) = v0 ψ (x, t) (17)

still has a smooth behaviour when v0 → 0, and therefore represents the ideal candidate to
be the order parameter in the fixed network approximation. Since the solenoidal constraint
given by Eq. (16) holds also for ψ at any finite value of v0, it must hold also in the fixed
network approximation.
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3 The Solenoidal Mode-Coupling Theory

The first problem we have is that the presence of the solenoidal constraint,

∇ · ψ = 0 (18)

forces the order parameter to have the same dimensionality as the space in which the theory
is defined. Thus, since in the following sections we will need to perform an RG expansion
near d = 4, we must work with the generalization of Model G to arbitrary dimensions,
known as the Sasvari–Schwabl–Szepfalusy (SSS) model [37,38].4 In this model, the spin s
is an anti-symmetric d × d matrix, with one independent component for each possible plane
around which a rotation can be performed. The Poisson-bracket relation between s and ψ

becomes, {
sαβ (x) , ψγ

(
x′)} = 2g0 Iαβγρψρ (x) δ(d)

(
x − x′) (19)

where repeated greek-letter indices are intended to be summed, if not otherwise indicated,
and the tensor I is the identity tensor in the space of d × d anti-symmetric matrices,5 given
by

Iαβγρ = 1

2

(
δαγ δβρ − δαρδβγ

)
(20)

The static properties of theSSSmodel are fully determinedby its effectiveHamiltonian,which
reflects the fact that ψ is a critical field with O (d) symmetry group and local interactions,
having the static critical properties of the Landau-Ginzburg universality class, while s is a
non-criticalmassive field. The effectiveHamiltonian of the system takes the following natural
generalization,

H =
∫

dd x

[
1

2

(
∂αψβ

) (
∂αψβ

) + r0
2

ψαψα + u0
4

(ψαψα)2 + sαβsαβ

4

]
(21)

The equations of motion of the critical SSS model can be derived starting from the Poisson-
bracket relation (19) and the effective hamiltonian (21) by following a procedure coming
from the works of Mori et al. [32] and Zwanzig [50] (see [29] and [21]). These equations are
given by

∂ψα

∂t
= −
0

δH
δψα

+ g0
δH
δsαβ

ψβ + θα (22)

∂sαβ

∂t
= λ0∇2 δH

δsαβ

+ 2g0Iαβγ ν ψγ

δH
δψν

+ ζαβ (23)

where θ and ζ are two gaussian white noises, with variance

〈θα (x, t) θβ

(
x′, t ′

)〉 = 2
0δαβδ(d)
(
x − x′) δ

(
t − t ′

)
(24)

〈ζαβ (x, t) ζγ ν

(
x′, t ′

)〉 = −4λ0Iαβγ ν∇2δ(d)
(
x − x′) δ

(
t − t ′

)
(25)

The λ0∇2 terms in the stochastic parts of the dynamics of s ensure that the spin is conserved.

4 Given that we will be calculating the properties of the Solenoidal Sasvari–Schwabl–Szepfalusy model,
strictly speaking we should use the nomenclature “SSSS model"; however, chiefly for aesthetic reasons, we
prefer not to do that, and we will rather stick to Solenoidal Model G (SMG) even in generic dimension d.
5 The factor 1

2 in the definition of I arises as a consequence of the fact that, when s is represented as an
anti-symmetric matrix, each independent component appears twice.
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Table 1 Values of 2ν and η up to order ε2 [6]

Landau–Ginzburg Dipolar ferromagnets
Mean-field ε-expansion ε = 1 ε-expansion ε = 1

2ν 1 1 + 1
4 ε + 1

8 ε2 1.375 1 + 9
34 ε + 7013

58956 ε2 1.384

η 0 1
48 ε2 0.0208 20

867 ε2 0.0231

3.1 Static Critical Behaviour of the Solenoidal Theory

Wewill now review, for the benefit of the reader, the classic results of the universality class of
dipolar ferromagnets [1,19], since the static behaviour of the ψ field in SMG belongs to this
class. From now on, if not explicitly indicated, we shall work with the Fourier transformed
fields, defined by the relation

ψα (x) =
∫
k
eik·xψα (k) (26)

where we introduced the notation
∫
k

= ∫
|k|<�

ddk
(2π)d

.

In Eq. (26) the cutoff � is the value of the wave-vector above which fluctuations have
no physical meaning. Since a field theory, in the context of biophysics, is obtained by
coarse-graining a discrete model, fluctuations cannot occure on distances shorter than the
microscopic length a, therefore meaning that the cutoff can be taken to be � ∼ a−1. In
Fourier space the solenoidal constraint reads

kαψα (k) = 0 (27)

An equivalent way in which this can be formulated is by requiring that

Pαβ (k) ψβ (k) = ψα (k) (28)

where we have introduced the transverse projection operator

Pαβ (k) = δαβ − kαkβ

k2
(29)

The static behaviour of a field characterized by the Hamiltonian of the SSS model, given
in Eq. (21), to which a solenoidal constraint is applied, is described by the static universality
class of isotropic dipolar ferromagnets [1,6]. The universality class of dipolar ferromagnets
describes the more generic class of critical theories described by an Hamiltonian with a
structure as that of Eq. (21), in which the ψ‖ (k) mode is taken to be non-critical.

The renormalization group analysis of isotropic dipolar ferromagnets [1] shows that the
non-criticality of the ψ‖ (k) mode leads to its full suppression in the long-wavelength limit,
meaning that the RG stable fixed point describes a solenoidal-constrained theory. To order
ε = 4 − d , the RG recursive relation for the ferromagnetic coupling constant is [1],

ul+1 = bεul

[
1 − 17

2
ul ln b

]
(30)

In dimension d < 4 the stable fixed point u∗ ruling the critical behaviour of dipolar ferro-
magnets is given by [1]

u∗ = 2

17
ε (31)
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(for the sake of simplicity we have set to 1 the volume of the d-dimensional unit sphere).
The fact that at the stable fixed point the ψ‖ (k) mode is suppressed [1,6] means that the
solenoidal theory is robust with respect to weak violations of the constraint, i.e. small non-
critical fluctuations of the ψ‖ (k) mode. Even though the change of static universality class
is very interesting at the theoretical level, it must be said that the new critical exponents
are so close to those of the Landau-Ginzburg universality class that the difference is often
experimentally difficult to observe [6]. A two-loop estimation of the critical exponents 2ν,
ruling the behaviour of the mass r while the transition is approached, and η, modifying the
spatial dependence of the correlation function, are reported in Table 1. Here it is clear the little
difference between the scaling behaviour of dipolar ferromagnets class and Landau-Ginzburg
class.

3.2 Dynamics of the Solenoidal Theory

In this crucial section, the dynamical equations of the mode-coupling theory subject to a
solenoidal constraints will be derived. We will use the Poisson relations, the effective Hamil-
tonian of the SSS model, and the classic Mori–Zwanzig formalism [32,50].

Because the field ψ is subject to the constraint,

kαψα (k) = 0 (32)

the most natural representation in which one would like to derive the equations of motion is,

ψ (k) = ψ‖ (k) ê‖
(k) +

d−1∑
i=1

ψ⊥,i (k) ê
⊥,i

(k) (33)

where ê‖ = k/|k| is the unitary vector identifying the direction of k, while the ê⊥,i are
orthogonal unitary vectors spanning the space perpendicular to k, in such away that ê‖·ê⊥,i =
0 and ê⊥,i · ê⊥, j = δi j ; indeed, within this set of coordinates, the constraint simply reads,

ψ‖ (k) = 0 (34)

leaving only the (d − 1) independent modes ψ⊥,i (k) to take care of. The advantage of
this notation is that we can formulate the constrained field theory in terms of the (d − 1)
independent transversemodes and not in terms of a constrained set of d cartesian coordinates,
ψα , to which it is not clear how to apply the Mori–Zwanzig procedure. However, the explicit
form of both the effective hamiltonian H and of the Poisson-brackets are given in terms
of the cartesian coordinates, ψα , while their form in terms of the ψ⊥,i would be extremely
cumbersome. What we shall do, then, will be to first obtain the equation of motions for the
ψ⊥,i and then to go back to the standard ψα fields by using the chain rule. In doing that,
something new will pop out in the spin equation.

The dynamic behaviour of the constrained variables ψα is given, in terms of the indepen-
dent variables ψ⊥, by

∂ψα

∂t
(k, t) =

d−1∑
i=1

ê⊥,i
α (k)

∂ψ⊥,i

∂t
(k, t) (35)

Following theMori–Zwanzig procedure, the equations of motion for the (d−1) independent
fields ψ⊥,i and s take the following form

∂ψ⊥,i

∂t
(k, t) = −
0

δH
δψ⊥,i (−k)

+ 1

2

∫
q

{
sγ ν (−q) , ψ⊥,i (k)

} δH
δsγ ν (−q)

+ ê⊥,i
β (k) θ̃β (36)
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∂sαβ

∂t
(k, t) = −k2�αβγν (λ0, k)

δH
δsγ ν (−k)

−
d−1∑
i=1

∫
q

{
sαβ (k) , ψ⊥,i (−q)

} δH
δψ⊥,i (−q)

+ ζαβ (37)

where the t dependence is always understood even when not made explicit for reasons of
space. In Eqs. (36) and (37)H is the Hamiltonian given by Eq. (21) in whichψ‖ is set to 0; θ̃ ,
ζ are white gaussian noises with variance respectively given by 2
0δαβ and 4k2�αβγν . The
tensor �αβγν = �αβγν (λ0; k) is function of the diffusive coefficient λ0 and potentially also
of thewave-vector k; in the field theorywithout constraint it takes the form�αβγν = λ0Iαβγ ν ;
however, since the solenoidal constraint generates an anisotropy in Fourier space for the order
parameter, we expect that anisotropic effects can affect also the spin dynamics; therefore, we
generalize �αβγν by allowing λ0 to take different values for the longitudinal and transverse
components, namely by taking,

�αβγν

(
λ⊥
0 , λ

‖
0; k

)
= λ⊥

0 Pαβγ ν (k) + λ
‖
0

[
Iαβγ ν − Pαβγ ν (k)

]
(38)

where P is the generalization of the projection operator P defined in Eq. (29) acting on the
space of 2-indices antisymmetric tensors, and takes the following form

Pαβγ ν (k) = Iαβγ ν − Iαβστ Pσγ (k) Pτν (k) (39)

In order to find the equations of motion of ψα and sαβ , we will proceed by making explicit
the terms in Eqs. (36) and (37) exploiting the chain rule between the fields ψ⊥ and ψα . The
chain rule applied to the variations of the Hamiltonian with respect to ψ⊥,i reads,

δH
δψ⊥,i (−k)

=
∫

dd p
δψβ (− p)
δψ⊥,i (−k)

δH
δψβ (− p)

= ê⊥,i
β (k)

δH
δψβ (−k)

(40)

while the Poisson-bracket relation between s and ψ⊥,i can be written as

{
sγ ν (−q) , ψ⊥,i (k)

} =
∫

dd p
{
sγ ν (−q) , ψβ ( p)

} δψ⊥,i (k)
δψβ ( p)

=

= ê⊥,i
β (k)

{
sγ ν (−q) , ψβ (k)

} (41)

where in the last equality of both Eqs. (40) and (41) we used the relations,

δψ⊥,i (k)
δψβ ( p)

= ê⊥,i
β (k) δ(d) (k − p) (42)

δψβ ( p)
δψ⊥,i (k)

= ê⊥,i
β (k) δ(d) (k − p) (43)

Thanks to Eqs. (40) and (41) we can write the mode-coupling term of the dynamics of the
spin in the following way

d−1∑
i=1

∫
q

{
sαβ (k) , ψ⊥,i (−q)

} δH
δψ⊥,i (−q)

=
∫
q

{
sαβ (k) , ψν (−q)

} [
d−1∑
i=1

ê⊥,i
ν (q) ê⊥,i

ρ (q)

]
δH

δψρ (−q)

=
∫
q

{
sαβ (k) , ψν (−q)

}
Pνρ (q)

δH
δψρ (−q)

(44)
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where we used the following relation, which comes directly from the definition of the unitary
vectors ê⊥,i

Pαβ (k) =
d−1∑
i=1

ê⊥,i
α (k) ê⊥,i

β (k) (45)

Thanks to the relations we found in Eqs. (40), (41) and (44) we can write Eqs. (36) and (37)
in the following form

∂ψ⊥,i

∂t
(k, t) = ê⊥,i

β (k)
[
−
0

δH
δψβ (−k)

+ 1

2

∫
q

{
sγ ν (−q) , ψβ (k)

} δH
δsγ ν (−q)

+ θ̃β

]
(46)

∂sαβ

∂t
(k, t) = −k2�αβγν

δH
δsγ ν (−k)

−
∫
q

{
sαβ (k) , ψν (−q)

}
Pνρ (q)

δH
δψρ (−q)

+ ζαβ (47)

By substituting Eq. (46) in Eq. (35) and by using the explicit Poisson-bracket relation given
in Eq. (19), the equations of motion for the standard Cartesian components ψα and for sαβ

can finally be written,

∂ψα

∂t
(k, t) = −
0Pαβ (k)

δH
δψβ (−k)

+ g0Pαρ (k) Iρβγ ν

∫
q
ψβ (k − q)

δH
δsγ ν (−q)

+ θα (48)

∂sαβ

∂t
(k, t) = −k2�αβγν (k)

δH
δsγ ν (−k)

+ 2 g0Iαβγ ν

∫
q
ψγ (k − q) Pνρ (q)

δH
δψρ (−q)

+ ζαβ (49)

Here the hamiltonianH can be taken to be the sameof SSSmodel, since all the terms involving
derivatives ofHwith respect to ψ are already projected. Moreover, the two gaussian random
white noises ζ and θ have variance

〈θα (k, t) θβ

(
k′, t ′

)〉 = 2 (2π)d 
0 Pαβ (k) δ(d)
(
k + k′) δ

(
t − t ′

)
(50)

〈ζαβ (k, t) ζγ ν

(
k′, t ′

)〉 = 4 (2π)d �αβγν

(
λ⊥
0 , λ

‖
0; k

)
k2 δ(d)

(
k + k′) δ

(
t − t ′

)
(51)

Effects of the Constraint

The solenoidal constraint has a double effect on the equations of motion. The first, and
maybe the most trivial, is that the equation of motion for ψ is projected orthogonally to k, as
it happens in incompressible field theories with no mode-coupling interaction [15,20]. The
second effect is less obvious, and it is represented by the presence of a projection operator
Pνρ (q) in the mode coupling interaction of the spin dynamics. The existence of this projector
is a consequence of the fact that, in the presence of a solenoidal constraint, the conservative
Hamiltonian force is not simply,

Fν (q) = − δH
δψν (−q)

(52)

but rather,

Fν (q) = −Pνρ (q)
δH

δψρ (−q)
(53)

The linear part of the force is not affected by this new projector, but the non-linear terms are.
This can be seen by writing explicitly the new force,

Fν (q) = − (
r0 + q2

)
ψν (q) + u0Pνρ (q)

∫
p,h

ψρ ( p) ψσ (h) ψσ (q − p − h) (54)

123



Dynamical Renormalization Group for Mode-Coupling… Page 15 of 36 26

where in the first linear term we used the fact that Pνρ (q) ψρ (q) = ψν (q). The linear part
of the force contributes to the dynamics of s with the same term as Model G [26]

∂t sαβ (k) ∼ g0Iαβγ ν

∫
q

[
q2 − (k − q)2

]
ψγ (k − q) ψν (q) (55)

The factor q2−(k − q)2 arises as a consequence of mode-coupling and it vanishes as k → 0,
thus conserving the total spin S(t) = ∫

dd x s (x, t) = s (k = 0, t). But now, thanks to the
presence of the projector, also the non-linear term contributes to the dynamics of the spin!
More precisely, it does so through a novel dynamical interaction term given by,

∂t sαβ (k) ∼ 2g0u0Iαβγ ν

∫
q,h, p

ψγ (k − q) Pνρ (q) ψρ ( p) ψσ (h) ψσ (q − p − h) (56)

This is a completely new term, whichmixes the static ferromagnetic interaction (the coupling
constant u0) with the dynamic mode-coupling interaction (the coupling constant g0); such
vertex is absent in the non-constrained theory, since when Pνρ is substituted by δνρ , as in
the non-solenoidal case, the r.h.s. of Eq. (56) vanishes. We call this new interaction, the DYS
vertex, which stands for DYnamic - Static vertex since it mixes the dynamic mode-coupling
structure to the static ψ4 term. As we will demonstrate later on, the DYS vertex is crucial in
order to keep closed and self-consistent the RG calculation and to recover the correct static
critical exponents.

The DYS interaction does not vanish when k → 0, meaning that the equation of motion
of s cannot be written as a continuity equation anymore and thus that the total spin S(t) is no
longer conserved. However, in the following section we will show thats no spin dissipation
is generated by the DYS vertex, suggesting that the violation of the spin conservation is
equivalent to a generalized precession of the total spin vector.

3.3 Field Theoretical Description

In order to set up the renormalization of the theory we will follow the procedure proposed
by Martin et al. [30], Janssen [27] and De Dominicis [17] to write stochastic differential
equations as a field theory formulated using path integrals. Thanks to this procedure, the
behaviour of a field φ governed by a stochastic differential equation with a deterministic
evolution operator F and a gaussian noise θ

F [φ] − θ = 0 (57)

can be described through a field-theoretical action that correctly reproduces the statistics, i.e.
the correlation and response functions, of Eq. (57),

S[φ̂,φ] =
∫
k̃

[
φ̂αFα [φ] − φ̂αLαβφ̂β

]
(58)

where 2Lαβ is the variance of the gaussian noise, while φ̂ is an auxiliary field. From now on,
if not explicitly mentioned, we will work in Fourier space for both the spacial and temporal
dependence,

φ (x, t) =
∫
k̃
ei(k·x−ωt)φ(k̃) (59)

where k̃ = (k, ω) and
∫
k̃ = ∫

k

∫ ∞
−∞

dω
2π . The presence of the additional field φ̂ is the cost

which has to be paid in order to exploit standard path integral formulation, which will allow
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us to use the standard rules of static renormalization and write the perturbative series in
terms of Feynman diagrams. This auxiliary field takes the name of response field, since the
propagator, namely the response function, can be written as:

G(k̃) = 〈φ̂(−k̃)φ(k̃)〉 (60)

The Martin-Siggia-Rose (MSR) action for the stochastic differential equations (48) and (49)
takes the following form

S[ψ̂,ψ, ŝ, s] = S0,ψ [ψ̂,ψ] + S0,s[ŝ, s] + SI [ψ̂,ψ, ŝ, s] (61)

where S0,ψ and S0,m are the two Gaussian free action of the two fields, which reproduce the
linear dynamic theory

S0,ψ
[
ψ̂,ψ

]
=

∫
k̃

[
ψ̂α

(
−k̃

) (−iω + 
0k
2 + m0

)
ψα

(
k̃
)

−ψ̂α

(
−k̃

)

0Pαβ (k) ψ̂β

(
k̃
)]

(62)

S0,s
[
ŝ, s

] = 1

2

∫
k̃

[
ŝαβ

(
−k̃

) (−iωIαβγ ν + k2�αβγν (k)
)
sγ ν

(
k̃
)

−ŝαβ

(
−k̃

)
k2�αβγν (k) ŝγ ν

(
k̃
)]

(63)

while SI , which takes contributes from the non-linear dynamic terms and represents the
interaction part of the action, is given by

SI =−g0 Iρβγ ν

∫
k̃,q̃

Pαρ(k)ψ̂α(−k̃)ψβ(q̃)sγ ν(k̃ − q̃)−

+ J0
3

∫
k̃,q̃, p̃

Qαβγ ν(k)ψ̂α(−k̃)ψβ(q̃)ψγ ( p̃)ψν(k̃ − q̃ − p̃)

−g0 Iαβγ ν

∫
k̃,q̃

k · q ŝαβ(−k̃)ψγ (−q̃ + k̃/2)ψν(q̃ + k̃/2)+

−g0u0
12

∫
k̃,q̃, p̃,h̃

Kαβγ νστ (k, q, p, h, k − q − p − h)

×ŝαβ(−k̃)ψγ (q̃)ψν( p̃)ψσ (h̃)ψτ (k̃ − q̃ − h̃ − p̃)

(64)

where we have introduced the new parameters,

m0 = 
0r0 J0 = 
0u0 (65)

which are a sort of dynamical generalization of mass and ferromagnetic coupling constant.
In Eq. (64) the following new tensors have been introduced

Qαβγ ν (k) = Pαβ (k) δγ ν + Pαγ (k) δβν + Pαν (k) δβγ (66)

Kαβγ νστ

(
k, p1, p2, p3, p4

) = IαβγρQρνστ

(
k − p1

) + IαβνρQργ στ

(
k − p2

)
+IαβσρQργ ντ

(
k − p3

) + IαβτρQργ νσ

(
k − p4

)
(67)

Free Theory

The starting point to build the perturbative expansion of the equations of motion is the free,
or Gaussian, dynamic theory, obtained by setting to 0 all the dynamic non-linear couplings,
namely g0 and u0. From the gaussian part of the action, given by Eqs. (62) and (63), we
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can easily derive the expressions for the bare propagators and correlation functions for the
effective field theory, which are given by:

〈ψα(k̃)ψ̂β(q̃)〉0 = G
0,ψ
αβ (k̃)δ̂(k̃ + q̃) (68)

〈sαβ(k̃)ŝγ ν(q̃)〉0 = G
0,s
αβγ ν(k̃)δ̂(k̃ + q̃) (69)

〈ψα(k̃)ψβ(q̃)〉0 = C
0,ψ
αβ (k̃)δ̂(k̃ + q̃) (70)

〈sαβ(k̃)sγ ν(q̃)〉0 = C
0,s
αβγ ν(k̃)δ̂(k̃ + q̃) (71)

where δ̂(h̃) = (2π)d+1δ(d)(h)δ(ωh). The subscripted 0 on thermal averages indicate that
they are computed within the non-interacting theory, namely by setting u0 = g0 = 0. The
tensors G and C are given by

G
0,ψ
αβ (k̃) = G0,ψ (k̃)δαβ (72)

C
0,ψ
αβ (k̃) = C0,ψ (k̃)Pαβ(k) (73)

G
0,s
αβγ ν(k̃) = G⊥

0,s(k̃)Pαβγ ν(k) + G‖
0,s(k̃)

[
Iαβγ ν − Pαβγ ν(k)

]
(74)

C
0,s
αβγ ν(k̃) = C⊥

0,s(k̃)Pαβγ ν(k) + C‖
0,s(k̃)

[
Iαβγ ν − Pαβγ ν(k)

]
(75)

In Eq. (72), (74), (73) and (75) we have,

G0,ψ (k, ω) = 1

−iω + 
0k2 + 
0r0
C0,ψ (k, ω) = 2
0

ω2 + 
2
0

(
r0 + k2

)2 (76)

G⊥
0,s (k, ω) = 2

−iω + λ⊥
0 k

2
C⊥
0,s (k, ω) = 4λ⊥

0 k
2

ω2 + (λ⊥
0 k

2)2
(77)

G‖
0,s (k, ω) = 2

−iω + λ
‖
0k

2
C‖
0,s (k, ω) = 4λ‖

0k
2

ω2 + (λ
‖
0k

2)2
(78)

In the diagrammatic framework, bare propagators and correlation functions are represented
in the following way

〈ψαψ̂β〉0 = 〈sαβ ŝγ ν〉0 = (79)

〈ψαψβ〉0 = 〈sαβsγ ν〉0 = (80)

where the arrows in the propagators aways point in the direction of the response field.

Non-linear Terms: The Vertices

The four terms that compose SI represent the non-linear interactions in the equations of
motion. Two of them involve one field ψ̂ , since they derive from the equation of motion of
ψ , while the other two involve one field ŝ, since they derive from the equation of motion of
s. In the diagrammatic framework these interactions are represented by vertices, in which
different lines merge together, each representing one of the fields involved in the interaction.
Here we are representing with a solid line the fields ψ and ψ̂ , with wavy lines the fields s
and ŝ. Moreover, an arrow is used to recognize which legs represent a response field.
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The first vertex - namely interaction - involving ψ̂ , represents the mode coupling non-
linearity,

ψ̂α(−k̃)

ψβ(q̃)

sγ ν( p̃)

= g0Pαρ (k) Iρβγ ν δ̂(k̃ − q̃ − p̃) (81)

This interaction represents a purely dynamic interaction, since it is proportional only to the
dynamic coupling g0.

The second vertex involving ψ̂ derives from the ferromagnetic quartic interaction of the
static hamiltonian, ensuring that the fieldψ relaxes towards the static equilibriumdistribution,
and therefore is proportional to static coupling u0. It is represented by the term

ψ̂α(−k̃)

ψβ(q̃)

ψγ ( p̃)

ψγ (h̃)

= − J0
3
Qαβγ ν (k) δ̂(k̃ − q̃ − p̃ − h̃) (82)

The other two vertices involve one field ŝ, and both derive from the mode-coupling inter-
action in the equation for s. The first comes from the linear part of the "force" defined in
Eq. (53), representing a purely dynamic interaction proportional to g0, and it takes the usual
form as in the non-constrained theory

ŝαβ(−k̃)

ψγ (q̃)

ψν( p̃)

= g0
2

(
p2 − q2

)
Iαβγ ν δ̂(k̃ − q̃ − p̃) (83)

Here the factor (p2 − q2), coming from the cross product structure of the mode-coupling
interaction, guarantees that this interaction vanishes when k = 0. This is a consequence of
the symmetry of the non-constrained theory, which conserves the total instantaneous spin
S(t) = s(k = 0, t).

The last interaction term is the DYS vertex, given by the novel non-linear contribution
peculiar of the solenoidal theory, discussed at the end of Sec. 3.2. This interaction mixes
static and dynamic terms, since it represents the effects of the static quartic interaction on
the dynamics of s, mediated by the mode-coupling dynamic interaction. Therefore, the DYS
vertex is proportional to the product of the static coupling u0 and the dynamic coupling g0
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and it takes the following form,

ŝαβ(−k̃)

ψγ (q̃1)

ψν( p̃2)

ψσ ( p̃3)

ψτ ( p̃4)

= g0u0
12

Kαβγ νστ

(
k, p1, p2, p3, p4

)
δ̂(k̃ − p̃1 − p̃2 − p̃3 − p̃4)

(84)
TheDYSvertex arises as a consequence of the solenoidal constraint, since the tensor Kαβγ νστ

vanishes in the non-constrained theory. At variance with the vertex (83), DYS causes a
violation of the spin conservation due to the fact that the order parameter has lost the O(d)

symmetry as a consequence of the solenoidal constraint, meaning that it does not vanishwhen
k = 0. However, the fact that the total spin is not conserved does not mean that it is dissipated.
In fact, we will show in the following sections that no perturbative corrections dissipating
the spin arise after the shell integration as a consequence of the presence of the DYS vertex,
reinforcing the hypothesis according to which s is an hydrodynamic slow-variable of the
system. Note that, were this not the case, the RG flow would lead to the stable fixed point of
solenoidal Model A [12].

4 Renormalization Group Calculation

The key idea behind the renormalization group is that, under the assumption of an infinitely
large correlation length, scaling laws and critical exponents can be obtained by looking at
how the parameterss of a theory change by changing the length-scale at which the system is
observed [46]. The RG itself consists in a transformation through which a set of equations
describing the dependence of the couplings from the length-scale, namely the β-functions,
can be derived.

We will use Wilson’s momentum shell approach [47], which can be performed by follow-
ing a two-steps procedure: i) integrating out the short wavelength details, hence decreasing
the cutoff in momentum space; ii) rescaling space and time, so to formally reinstate the same
original cutoff. The first step is carried out by marginalizing the probability distribution of
the fields over the modes in the momentum shell �/b < k < �, where � is the cutoff. Here
b is a parameter larger than 1, but close to it, while � is the cutoff of the theory. The effect of
this integration is to modify the parameters of the theory, and shift the cutoff from � to �/b.
To compare the coefficients of the new theory with the bare ones, space, and consequently
time, must be rescaled in order to restore the original cutoff. The iteration of this procedure
defines a flow in the parameter space, from which information on the critical behaviour can
be obtained.

In the Gaussian theory, namely when u0 = g0 = 0, the shell integration is harmless
since modes at different wavelength are independent [23]; hence, only the rescaling step
remains, giving to all parameters, fields, and coupling constants their naive (or engineering)
scaling dimension. However, in the interacting theory, where non-linear interactions are
present, during the shell integration the coupling between long and short wavelength modes
generates perturbative corrections to the parameters of the theory, which have the effect to
correct the scaling dimensions. In order to explicitly compute these corrections, one performs
a perturbative expansion of the shell integrals in terms of the parameter ε = dc −d , where dc
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is the upper critical dimension, namely the dimension abovewhichmean-field theory is exact.
This expansion method, known as ε-expansion, is nowadays a well established procedure in
the context of perturbative RG techniques [7,23,33,48].

4.1 Renormalization Group Equations

In this section we will explicitly show how the renormalization group changes the parameters
of the model. As stressed out before the RG procedure unfolds in two steps. In the first step
we integrate out the small length scale (large momenta) fluctuations, namely fluctuations
with momenta �/b < k < �. The effect of this integration is twofold: i) it changes the
cut-off of the theory, since now only fluctuation k < �/b are allowed; ii) it changes the value
of the parameters of the model, which acquire corrections due to the coupling between low
and high momenta fluctuations,

S�/b =
∫

ψ̂
[−iω + 
0(1 + δ
 ln b)k2 + m0(1 + δm ln b)

]
ψ

+
∫

ŝ
[
−iω + λ⊥

0 (1 + δλ⊥ ln b)k2 + λ
‖
0(1 + δλ‖ ln b)k2

]
s + . . .

(85)

We omitted the tensorial structure of the action for easier reading. We remark the fact that
all the corrections are proportional to the volume of the momentum shell, which is always
proportional to ln b. The standard way to carry out this task, and to compute the corrections
to the bare parameters of the model, is using perturbation theory; to be more precise we will
compute the corrections δP using a Feynman diagram expansion.

The second step consist in re-scaling momenta, frequencies and fields

k → b−1k ω → b−zω (86)

ψ → bdψ ψ ψ̂ → bdψ̂ ψ̂ (87)

s → bds s ŝ → bdŝ ŝ (88)

The scaling dimensions of the physical real-space fields ψ(x, t) and s(x, t) are fixed by the
requirement that the coefficients in front of the terms (∂ψ)2 and s2 in the Hamiltonian (21)
remain equal to the unity under static RG flow, and therefore are

dψ = 1 − d

2
− η

2
ds = −d

2
(89)

where η is critical exponent characterizing the anomalous dimension of the ψψ correlation
function. On the other side, the scaling dimensions of the response fields ψ̂ and ŝ are fixed
by the requirement that the coefficient in front of ∂tψ and ∂t s in the equations of motion
remain equal to one along the RG flow. Since the exponent η takes the first non-vanishing
contribution only at two-loops, and since no perturbative correction arises at one loop to ∂tψ

and ∂t s, namely to the −iω terms in (85), the scaling dimensions of the real-space fields at
one loop are given by the naive ones

dψ = 1 − d

2
ds = −d

2
(90)

d
ψ̂

= −d − dψ = −1 − d

2
dŝ = −d − ds = −d

2
(91)
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The effect of this rescaling step is to restore the original cut-off of the theory. Moreover
after this step all the parameters of the model acquire a naive scaling factor, corresponding
to their naive/engineering scaling dimension:


 → bz−2
 λ⊥ → bz−2λ⊥ λ‖ → bz−2λ‖ (92)

g → bz−
d
2 g J → b2z−d J m → bzm (93)

where z is the dynamic critical exponents, which determines how the order parameter relaxes
close to the critical point. After these two steps we completed the RG step, and we ended up
with a theory defined by a new set of parameters:


b = bz−2 
0(1 + δ
 ln b)

λ‖ = bz−2 λ
‖
0(1 + δλ‖ ln b)

λ⊥
b = bz−2 λ⊥

0 (1 + δλ⊥ ln b)

mb = bz m0(1 + δm ln b)

gb = bz−
d
2 g0(1 + δg ln b)

Jb = b2z−d J0(1 + δ J ln b)

(94)

How the parameters change iterating this procedure defines the renormalization group flow,
and the fixed point of this flow rules the critical dynamics of the system.

Even though we apparently have six equations for six parameters, it is possible to reduce
the complexity of the problem by introducing an appropriate set of four effective coupling
constants and effective parameters, namely,

f0 = g20

0λ

‖
0

u0 = J0

0

w0 = 
0

λ
‖
0

x0 = λ⊥
0

λ
‖
0

(95)

that, through equations (94), are regulated in a closed manner by the following four equa-
tions,6

fb = bε f0
[
1 + (2δg − δ
 − δλ‖) ln b

]

ub = bε u0 [1 + (δ J − δ
) ln b]

wb = w0

[
1 + (δ
 − δλ‖) ln b

]

xb = x0
[
1 + (δλ⊥ − δλ‖) ln b

]
(96)

We point out that if we set λ‖
0 = λ⊥

0 ≡ λ the set of effective parameters (95) coincides with
the one of the standard, unconstrainedModel G [26]. Once we iterate the RG transformation,
we obtain the final recursive RG flow equations,

fl+1 = bε fl
[
1 + (2δg − δ
 − δλ‖) ln b

]

ul+1 = bε ul [1 + (δ J − δ
) ln b]

wl+1 = wl

[
1 + (δ
 − δλ‖) ln b

]

xl+1 = xl
[
1 + (δλ⊥ − δλ‖) ln b

]
(97)

6 In fact, u0 is not a new effective coupling constant!We are just going back to the original static ferromagnetic
coupling constant; we are sorry for this back-and-forth, but it was quite inevitable.
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The fixed point value of these parameters will determine the value of the critical exponents
of the model. We notice that the naive scaling dimension of the effective couplings f0 and
u0 is ε = 4 − d , which suggest that their fixed point will be of order ε. In the next sections
we shall compute all the contributions arising from the shell integral at first order in ε (one
loop), using the Feynman diagrams technique.

Of course, the equations above are rather useless without a determination of the various
perturbative corrections δ
, δg, . . . , which we now calculate.

4.2 Self-Energies

We start computing the perturbative corrections to the Gaussian parameters of the action,
namely m0, 
0, λ⊥

0 , λ
‖
0. Diagrammatically these perturbative corrections are given by the

two-field vertex function, also referred as self-energies:

αβ(k̃) ψ̂α( k̃) ψβ(k̃)H ¡ (98)

αβγ ν(k̃) ŝαβ( k̃) sγ ν(k̃)H ¡ (99)

The self-energies � and � are given by the following Feynman diagrams expansion:

�αβ = + + (100)

�αβγν = (101)

which corrects the action as follows:

δS =
∫
k̃
v̂α(−k̃)�αβ(k̃)vβ(k̃) + ŝαβ(−k̃)�αβγ ν(k̃)sγ ν(k̃) (102)

Therefore �αβ corrects 
0 and r0, while �αβγν corrects λ⊥
0 and λ

‖
0. These diagrams can be

written as integrals, using the standard Feynman diagrammatic rules, and read

�αβ(k̃) = −J0Qαβστ (k)
∫ �

�
b

dd p

(2π)d

∫ ∞

−∞
dω

2π
C
0,ψ
στ ( p̃)

+g20 Pαρ(k)
∫ �

�
b

dd p

(2π)d

∫ ∞

−∞
dω

2π
Pτμ( p+)G0,ψ

στ (− p̃+)C
0,s
ρσμβ( p̃−)

+g20 Pαρ(k)
∫ �

�
b

dd p

(2π)d

∫ ∞

−∞
dω

2π
(k2 − p2−)G

0,s
ρστβ(− p̃+)C0,ψ

στ ( p̃−)

(103)

�αβγν(k̃) = g20IαβσμIρτγ ν

∫ �

�
b

dd p

(2π)d

∫ ∞

−∞
dω

2π
(p2+ − p2−)Pιρ( p+) ×

×G
0,ψ
μι (− p̃+)C0,ψ

στ ( p̃−) (104)
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where p̃+ = p̃ + k̃
2 , while p̃− = p̃ − k̃

2 . The integration over the frequency is performed
explicitly, as ω has no cutoff, while the integration in the wave vector is performed by using
a thin-shell approximation, which is valid for b ∼ 1; in this way we get:

�αβ(k̃) = −(m0 + 
0k
2)δαβ

3(1 + 3w0 + 2x0) f0
4(1 + w0)(x0 + w0)

ln b + δαβ

9

2
u0(m0 − 
0�

2) ln b

�αβγν(k̃) = −λ⊥
0 Pαβγ νk

2 f0
6x0

ln b − λ
‖
0k

2(Iαβγ ν − Pαβγ ν)
f0
3

ln b

(105)
Here we evaluate�αβ and�αβγν a the relevant order in the momenta, namely up to order k2.

From (105) it is possible to read the perturbative correction to the parameters
0,m0, λ
⊥
0 , λ

‖
0:

δ
 = 3(1 + 3w0 + 2x0)

4(1 + w0)(x0 + w0)
f0 (106)

δm = −9

2
u0

m0 − 
0�
2

m0
+ 3(1 + 3w0 + 2x0)

4(1 + w0)(x0 + w0)
f0 (107)

δλ⊥ = f0
6x0

(108)

δλ‖ = f0
3

(109)

4.2.1 Absence of Spin Dissipation

It is important at this point to emphasize a key result: the self-energy �αβγν(k, ω) vanishes
when k → 0. This fact implies that the renormalization group is not generating a dissipative
term for the spin, namely it is not generating a linear term in the spin equation of motion
which is finite at k = 0. This result is strictly related to the particular structure of the mode
coupling vertex of the spin equation of motion (83), and in particular to the fact that this
vertex vanishes at zero external momentum k. We believe that this result, which we proved
here only at one loop level, could be valid at all orders in perturbation theory. Indeed, the
most general diagram that can generate a dissipation is given by,

αβγ ν H
(110)

where the blob represents the sum of all 1-particle irriducible diagrams compatible with the
given external legs, namely the renormalized mode coupling spin vertex, in which all the
possible diagrammatic corrections (at all orders) are taken into account. If the renormalized
spin mode coupling vertex vanishes at zero external momentum k, then this diagram is zero
too at k = 0, implying that no dissipation is generated. Therefore, as far as the structure of
the spin mode coupling vertex is preserved under RG, no spin dissipation can be generated.
Even though in this work we explicitly showed that the structure of this vertex is preserved
under RG only at one loop level, there are some hints suggesting that this result could remain
valid at all order in perturbation theory.

It can be shown, by computing the Fokker–Planck equation [26] from the Langevin equa-
tions (48) and (49), that the probability density of the system approaches the equilibrium
Gibbs-Boltzmann stationary state, P ∼ exp (−H). This non-perturbative result relies on the
specific structure of the mode coupling vertices, whichmeans that if the structure of the mode
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coupling interactions (83) and (81) were different, the system would not have a stationary
equilibrium distribution. As this result is not perturbative, it is reasonable to think that the RG
does not violate it; indeed, it would be very strange if under coarse-graining an equilibrium
model flowed to an out-of-equilibrium one. Therefore, we believe that the structure of the
mode coupling vertices is preserved by the RG at all orders in perturbation theory. Finally,
since an essential requirement to generate a spin dissipation is that the RG changes the struc-
ture of the mode coupling vertices, we believe that no dissipation is generated at all orders
in perturbation theory. Note also that this result ensures that in the presence of a small bare
dissipation, the same crossover observed in [12,13] between a conservative and a dissipative
dynamics is recovered.

Finally, we remark once again that the absence of spin dissipation does not imply that the
total spin is instantaneously conserved: due to the presence of the novel DYS vertex (56),
which is not zero at k = 0, conservation is broken, even though it is still true that the mean
value of the total spin vector is conserved, suggesting that a generalized spin precession
occurs: similarly to a standard angular momentum without dissipation but in presence of
an external force, which performs a periodic precession with constant time average, so the
total spin in presence of the solenoidal constraint has a non-dissipative time dynamics that
conserves its mean value.

4.3 Mode CouplingVertex Corrections

The corrections to themode coupling constant g0 are given by the following vertex functions,

V ψ̂ψs
αβγ ν(k̃, q̃) H ψ̂α(¡k̃)

ψβ(q̃)

sγ ν(k̃ q̃)¡ (111)

V ŝψψ
αβγ ν(k̃, q̃) H ŝαβ(¡k̃)

ψγ ( k̃2 ¡ q̃)

ψν(
k̃
2 q̃)C (112)

These two vertex functions correct the action as follows:

δS =
∫
k̃,q̃

ψ̂α(−k̃)ψβ(q̃)sγ ν(k̃ − q̃)V ψ̂ψs
αβγ ν(k̃, q̃)

+
∫
k̃,q̃

ŝαβ(−k̃)ψγ (k̃/2 − q̃)ψν (k̃/2 + q̃)V ŝψψ
αβγ ν(k̃, q̃)

(113)
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Weare interested in how these vertex function change the value of themode coupling constant,

hence we can compute V ψ̂ψs at the zeroth order in the momenta, and V ŝψψ at the second
order in the momenta (because the g0ŝψψ term in the action is of second order in the wave
vector).

A First Key Consistency Check: Perturbative Renormalization Vs Symmetry Generator

The coupling g0 is the parameter conjugated to the generator of the rotational symmetry (the
spin), hence it plays a central role in the definition of the Poisson structure and for this reason
it cannot take perturbative contributions from the RG calculation. Therefore, we expect both

V ψ̂ψs and V ŝψψ to be zero, and fortunately this is indeed the case in our calculation. From
the technical point of view, however, the fact that these vertex functions are zero is extremely
nontrivial and it is worth showing, as it is a vital consistency check of the calculation and in

particular of the necessity of the new DYS vertex. The vertex function V ψ̂ψs is given by the
following Feynman diagrams:

V ψ̂ψs
αβγ ν = + + + (114)

To compute the corrections to g0 we must compute V ψ̂ψs at the zeroth order it the momenta.
As it happens in the non-constrained case [26], these four diagrams, at zero external momenta
k̃, q̃, sum up to zero.

V ψ̂ψs
αβγ ν(0, 0) = 0 (115)

The vertex function V ŝψψ
αβγ ν(k̃, q̃), on the other hand, is given by the following nonzero Feyn-

man diagrams:

V ŝψψ
αβγ ν = + + + (116)

The first two diagrams (the triangles) cancel each other, exactly as in the non-solenoidal
case. The other two diagrams are, on the other hand, specific to the solenoidal case. The first
diagram, which vanishes in the non-constrained theory [13], is nonzero when the solenoidal
constraint is present, due the suppression of the longitudinal ψ mode,

= −g0u0
8

Iαβστ

(
kσ kγ δτν + kσ kνδτγ

)
ln b + . . . (117)

where the ellipses stand for higher order in themomentumexpansion, representing corrections
to RG-irrelevant interactions. This vertex corrections not only would give to g0 a perturbative
correction due to the shell integration, but it would generate a novel interaction term too,
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since it has not the same tensorial structure as the original interaction (83). Therefore, if no
other diagram canceling it were present, the RG would not have a closed structure, meaning
that the equations of motion would not be eigenstates of the RG transformation, since the
shell integration generates new interaction terms that were not present in the bare theory. This
unpleasant scenario, in which new relevant interactions arise during the RG flow, is avoided
by the key presence of a new Feynman diagram formed by a bubble connection of two lines
of the DYS vertex, namely,

= g0u0
8

Iαβστ

(
kσ kγ δτν + kσ kνδτγ

)
ln b + . . . (118)

where, as before, the ellipses stand for higher order in themomentumexpansion. The presence
of this diagram is fundamental, since it exactly cancels the contributions of diagram (117),
therefore curing the anomalies that the latter carries andmaking the solenoidal RG calculation
self-consistent. We therefore consider the following diagrammatic equation a key result of
our calculation:

+ = 0 (119)

Moreover, although the DYS vertex contributes to the dynamic behaviour of s also at k = 0,
namely violating the conservation of the total spin, the last diagrams vanishes at k = 0.
The fact that the simplest one-loop diagram that can be constructed starting from the DYS
vertex does not give any perturbative contribution at vanishing momenta suggests that no
spin dissipation should arise, not even at higher orders in the ε-expansion. This is related to
the fact that the DYS vertex violates the conservation of the spin leading to a precession of
it, but keeping fixed its average value.

4.4 Ferromagnetic Vertex Corrections

In contrast to the mode coupling vertex, the ferromagnetic coupling does have perturbative
corrections due to the shell integration. The coupling J0 is corrected by the four-field vertex

function V ψ̂ψψψ ,

V (ψ̂ψψψ)
αβγ ν (k̃, q̃, p̃) H ψ̂α(¡k̃)

ψβ(q̃)

ψγ ( p̃)

ψν(k̃ q̃ p̃)¡ ¡ (120)
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that corrects the action as follows:

δS =
∫
k̃,q̃, p̃

ψ̂α(−k̃)ψβ( p̃)ψγ (q̃)ψν(k̃ − q̃ − p̃) V ψ̂ψψψ
αβγ ν (k̃, q̃, p̃) (121)

At one loop, only the following Feynman diagrams contribute to the vertex function V ψ̂ψψψ

in a non-trivial way:

V ψ̂ψψψ
αβγ ν = + +

+ + +
(122)

The first term is the classic fish diagram of the standard ferromagnetic theory; the second
diagram is generated by joining a mode-coupling vertex with the DYS vertex; the last three

diagrams are of purely mode-coupling origin. Computing V ψ̂ψψψ at the zeroth order in the
external momenta, gives,

V ψ̂ψψψ
αβγ ν = − J0

3
Qαβγ ν

[
−17

2
u0 + 3(1 + 3w0 + 2x0)

4(1 + w0)(x0 + w0)
f0

]
ln b (123)

so that the perturbative corrections to the coupling J0 are,

δ J = −17

2
u0 + 3(1 + 3w0 + 2x0)

4(1 + w0)(x0 + w0)
f0 (124)

4.4.1 A Second Key Consistency Check: Statics Vs Dynamics

The dynamical RG calculation (at equilibrium) must of course contain in itself the static
RG calculation; more specifically, if a coupling constant is present also in the static case,
its dynamical renormalization must be exactly the same as its static renormalization. This is
clearly the case for the ferromagnetic coupling, which is perfectly well-defined also within
a purely static framework. Therefore, in this section we show that this consistency between
statics and dynamics is achieved by our calculation.

First of all we recall that the actual ferromagnetic coupling, namely the coupling con-
stant that appears in the static Hamiltonian, is u0 = J0/
0 (see (65)). Hence, the static
ferromagnetic coupling u0 gets perturbative corrections both from J0 and 
0,

δu = δ J − δ
 (125)

and from equations (124) and (106) we have,

δu = −17

2
u0 (126)

Hence, the static coupling u0 does not receive any perturbative corrections from the dynamic
coupling g0, which is healthy. But the crucial check is whether the recursive relation we get
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for u from the dynamic RG is the same as the static one, equation (30). Fortunately, it is.
From equation (97) and (126) we obtain,

ul+1 = bε ul

[
1 − 17

2
ul ln b

]
(127)

which is exactly the same as the static RG recursive equation (30). We stress that this key
consistency is recovered in an extremely nontrivial way; in particular, the DYS vertex plays
a crucial role. The cancellation of the dynamical coupling g0 in the perturbative correction
of the static coupling is achieved through the following diagrammatic identity:

D1

+

D2

+

D3

+

D4

= ∂

∂k2

D5

D1 = − f0
4(w0 + x0)

D2 + D3 + D4 = (2 + 5w0 + 3x0)

2(1 + w0)(x0 + w0)
f0

D5 = 3(1 + 3w0 + 2x0)

4(1 + w0)(x0 + w0)
f0

(128)

where the l.h.s of the equation is computed at zero external momenta. The diagram D1 is
the product of the interplay between the mode-coupling vertex and the DYS vertex, which is
therefore crucial in recovering the correct static behaviour.

There is a second, and subtler, consistency check related to the renormalization of the
ferromagnetic coupling constant. The coupling u0 not only appears in front of the ferromag-
netic vertex, but - due to the static-dynamic coupling induced by the solenoidal constraint -
it also appears in front of the DYS vertex, V ŝψψψψ , which is indeed proportional to g0u0
(see equation (84)); we know that g0 does not acquire perturbative corrections, hence any
diagrammatic correction to the DYS vertex must be billed to u0; but u0 has been already cor-

rected by its natural ferromagnetic vertex V ψ̂ψψψ , in the static-compliant way that we have
just seen, equation (126). Hence, it seems we have two potentially independent corrections
to u0, one coming from the bona fide ferromagnetic vertex, and a second one from the DYS
vertex! If these diagrammatic corrections were different from each other, we would have a
serious problem, as there would be a bifurcation of the ferromagnetic interaction, with highly
dubious physical interpretation, not to mention the impossible recovery of the equilibrium
static results. Once again, fortunately, the calculation does not disappoint us, even though
in a very nontrivial way. The DYS vertex function V ŝψψψψ has (at one loop) the following
non-vanishing diagrammatic contribution,

V ŝψψψψ
αβγ νστ = (129)
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Computing this Feynman diagram we get,

V ŝψψψψ
αβγ νστ = −g0u0

12

[
1 − 17

2
u0

]
Kαβγ νσ (130)

and therefore the correction to u0 that we obtain from the DYS vertex is exactly the same as
from the ferromagnetic vertex, namely δu = −17/2u0, which saves the day.

5 The Critical Dynamics of Solenoidal Model G

We now have all that we need to finally calculate the dynamical critical exponent z at one
loop in a mode-coupling theory subject to a solenoidal constraint, that is in solenoidal Model
G.

5.1 The Recursive RG Equations and theˇ-Functions

First we collect all the perturbative contributions, we plug them into equations (97) and write
the recursive relations for the effective parameters and coupling constants of the theory,

ul+1 = bεul

[
1 − 17

2
ul ln b

]
(131)

fl+1 = bε fl

[
1 − fl

(
1

3
+ 3 (1 + 3wl + 2xl)

4 (1 + wl) (xl + wl)

)
ln b

]
(132)

wl+1 = wl

[
1 − fl

(
1

3
− 3 (1 + 3wl + 2xl)

4 (1 + wl) (xl + wl)

)
ln b

]
(133)

xl+1 = xl

[
1 − fl

3

(
1 − 1

2xl

)
ln b

]
(134)

where we are now working at T = Tc, namely at r = m = 0. Since the calculation here
is performed at one loop, the static coupling u does not contribute to the renormalization
of the dynamic parameters, therefore completely decoupling the dynamic behaviour from
the static one. Because we have already abundantly checked that the renormalization of u is
compatible with the statics, we simply drop this equation from now on.

The derivatives of a parameter P with respect to ln b is known as the β-function βP =
∂P

∂ ln b , and measure how the parameter change when an infinitesimal RG transformation is
performed. Theβ-functions of the effective parameters f ,w and x , obtained fromEqs. (132),
(133) and (134), are given by:

β f = f

(
ε − 1

3
− 3 (1 + 3w + 2x)

4 (1 + w) (x + w)

)
(135)

βw = w f

(
3 (1 + 3w + 2x)

4 (1 + w) (x + w)
− 1

3

)
(136)

βx = f

3

(
1

2
− x

)
(137)

The zeros of the β-functions give the fixed points of the RG flow, which have a crucial role in
ruling the critical behaviour of the theory. Sincewe are interested in a genuinemode-coupling
dynamical regime, we will not consider the trivial fixed points with f ∗ = 0, since they lead
to the overdamped dynamics with z = 2 (at one loop) typical of Model A [26]. We find a set
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of non-trivial fixed points, one stable and the other unstable. The stable fixed point is given
by,

f ∗ = 3ε

2
, w∗ = 21 + √

697

8
, x∗ = 1

2
(138)

As expected the effective coupling constant is of order ε = 4 − d at this fixed point.
The stability of the new fixed point p∗ = ( f ∗, w∗, x∗) can be verified by studying the RG

flow of small perturbations δp = p − p∗. The linearized flow equation in the surroundings
of p∗ is given by

∂δp
∂ ln b

� Wδp (139)

where the matrix W is the Jacobian of the β-functions β = (β f , βw, βx ), namely

W =

⎛
⎜⎜⎝

∂β f
∂ f

∂β f
∂w

∂β f
∂x

∂βw

∂ f
∂βw

∂w
∂βw

∂x
∂βx
∂ f

∂βx
∂w

∂βx
∂x

⎞
⎟⎟⎠ (140)

When the eigenvalues of the Jacobian matrix are negative, Eq. (139) guarantees that small
deviations δp form the fixed point flow back towards p∗. At the fixed point (138) the matrix
W has eigenvalues

e1 = − ε

2
; e2 = −ε; e3 = −

(
3
√
697

4
− 697

36

)
ε ≈ −0.44ε (141)

which are all strictly negative for ε > 0, thus making the novel fixed point stable in d <

dc = 4. In Fig. 1 (upper panel) we plot the RG flow in the ( f , w) plane at x = 1/2 in d = 3
(upper panel), which converges to the stable fixed point (138) as expected. In the lower panel
we show the flow of the running couplings in function of the RG step, from which we can
clearly see how the parameters flow from the gaussian fixed point with f = 0 and z = 2
towards the new fixed point with z = d

2 .

5.2 Anisotropy in the Spin Dynamics

In Model G the absence of anisotropic effects leads to the implicit assumption that all the
different directions of the fields, both in real and Fourier space, meaning that transverse and
parallel modes must be equal and therefore λ = λ⊥ = λ‖, namely x = 1. However, at the
new stable fixed point of the solenoidal Model G described by Eq. (138) x∗ = 1/2, meaning
that the anisotropy due to the suppression of the longitudinal ψ-mode leads to a different
dynamic behaviour of the two s-modes s⊥ and s‖, in such a way that λ‖∗ = 2λ⊥∗

. This result
directly follows from the fact that the perturbative corrections δλ⊥ and δλ‖, given in Eqs.
(108) and (109) respectively, obey the relation

δλ‖ = 2x δλ⊥ (142)

It is not yet clear to us whether this factor 2 between λ⊥ and λ‖ can be guessed through a
direct analysis of the equations of motion, or if it is valid only in the long wavelength and
long time dynamic behaviour.

In any case, since the diagram contributing to δλ⊥ and δλ‖ does not involve neither
propagators nor correlators of the field s, wemay observe that this result is a pure consequence
of suppression of the ψ‖ modes. In fact, even if we had naively left λ0 = λ⊥

0 = λ
‖
0 at a bare
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Fig. 1 Renormalization group flow. Top: RG flow in the ( f , w) plane in d = 3 at x = 1
2 . The f = 0 black

line represents the set of unstable gaussian fixed points. The RG flow converges towards the stable fixed point
(red dot). Bottom: running parameters and critical exponent z as a function of the iteration step. The initial
values of the running parameters are f0 = 10−5, w0 = 1.4 and x0 = 1

level, the RG transformationwould have led to two different perturbative corrections δλ⊥ and
δλ‖, meaning that the infrared behaviour of this theory has two different diffusive coefficients
for the s⊥ and s‖ modes.

5.3 The Dynamical Critical Exponent z

To find the dynamic critical exponent, following [26] and [7], we require that the kinetic
coefficient of the primary field, 
, is non-singular at the RG fixed point, thus ensuring that
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the effectiveRG theory has a non-singular characteristic time scale. This amounts to imposing
the condition,


∗ = lim
l→∞ 
l = O(1) (143)

and thus we need to write explicitly the recursive RG equation for the kinetic coefficient;
that equation can be found in (94), complemented by its perturbative corrections, equation
(106), thus giving,


l+1 = bz−2 
l

[
1 + 3(1 + 3wl + 2xl) fl

4(1 + wl)(xl + wl)
ln b

]
(144)

By using the obvious expansion, bx (1 + y ln b) = bx+y , we finally obtain from (143) and
(144) that the general expression for the dynamic critical exponent is,

z = 2 − 3 (1 + 3w∗ + 2x∗) f ∗

4 (1 + w∗) (x∗ + w∗)
(145)

and once we use the one-loop values of the parameters at the stable fixed point (138), we
obtain

z = d

2
(146)

Despite the difference of all effective parameters and coupling constants at the stable fixed
point, this is exactly the same dynamic critical exponent as the standard unconstrainedModel
G [26]. This result is somewhat surprising. The solenoidal constraint does change the static
universality class: the static critical exponents are different from the Landau-Ginzburg class,
and define the novel dipolar ferromagnet class (see Table I and [1]). According to the common
wisdom in the theory of critical phenomena, we would expect a change also in the dynamic
universality class, as universality is normally broader at the static level than at the dynamic
level. For example, Ising-like ferromagnets, have the same static critical exponents, while the
dynamical critical exponents varies depending on whether the order parameter is conserved
(Model B) or not (Model A). Here, we see something different: the dynamic universality
class does not change due to the solenoidal constraint. Even though we have derived this
conclusion perturbatively, this is probably a non-perturbative result due to the great power of
the symmetry; the lack of diagrammatic renormalization of the coupling constant conjugated
to the generator of the rotations, g0, leads to the recursive relation,

gl+1 = bz−
d
2 gl (147)

If we now ask that the central charge of the symmetry does not change at all, we get z = d/2,
at the non-perturbative level.

The fact that the solenoidal constraint does not alter the dynamical critical exponent is an
encouraging result, since it suggests that using the incompressibility condition to simplify
the dynamical equations of active matter with mode coupling interactions is a reasonable
approximation, as it does not change dramatically the dynamical behaviour of the system.

6 Conclusions

We have studied the effects of a solenoidal constraint on the critical dynamics of a field ψ

with O(d)-symmetry in the presence of mode-coupling interaction with the generator of the
rotational symmetry s, which we called spin; more succinctly, we have studied solenoidal
Model G. The presence of the constraint leads to the suppression of theψ-mode parallel to the
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wave-vector k, namely ψ‖(k) = k ·ψ (k) /|k|, violating the O(d)-symmetry and modifying
the static behaviour. The equations of motion of the constrained theory have been derived
starting from the symmetries and Poisson-bracket relations between the hydrodynamic vari-
ables, namely the order parameterψ and the spin s.We performed a one-loop renormalization
group calculation to investigate the long wave-length and long time behaviour in the crit-
ical region. The closed structure of the RG transformation and the consistency of the RG
flow with the static behaviour of dipolar ferromagnets provide a self-consistent proof that no
RG-relevant interaction has been omitted and that the equations of motion we derived are
correct.

Twomain dynamic effects arise as a consequence of the solenoidal constraint. Thefirst, and
most predictable one, is the projection on the plane orthogonal to k of the equation of motion
for the order parameter ψ . On the contrary, no similar projection of the equation for s can be
performed in order to obtain the spin dynamics; instead, the suppression of ψ‖(k) leads to a
novel non-linear interaction - theDYSvertex - combining the effect of the static ferromagnetic
coupling of the fieldψ and the mode-coupling dynamic interaction. The presence of this new
mixed interaction is the second, less intuitive, effect of the constraint, which adapts the spin
dynamics to the presence of the constraint by making the static quartic coupling contributing
to the torque-like interaction ∂t s ∼ g0ψ × δψH. Moreover, the DYS vertex contributes to
the time-derivative of the spin also at zero wave vector, therefore violating the conservation
of the total spin.

The lack of conservation of the spin is not something strange: the order parameter is
not rotational-invariant, due to the solenoidal constraint, and therefore the generator of its
rotations is not a conserved quantity. It is however crucial to understand whether the spin
is dissipated or not, since the presence of a dissipation generated by the RG would make
the spin stop being an hydrodynamic variable, therefore suppressing any inertial behaviour
in the critical region. The torque-like nature of the DYS vertex, which is the only dynamic
term violating the spin conservation, indicates that this violation gives rise to a generalized
precession of the total spin, rather than a dissipation. At one loop, the perturbative expansion
confirms this interpretation, since the self-energy of the spin � does not contain any pertur-
bative corrections at k = 0. Moreover, we show that the presence of any dissipative term in
the linear dynamics of the spin can arise only if the dynamic mode-coupling vertex in the
equation of s did not vanish when k = 0, which seems not to be the case for this theory.

Our RG calculation passed several nontrivial consistency checks. First of all, the fact
that the equations of motion appear to be eigenstates of the RG, in the sense that the shell
integration step does not generate new interaction terms, ensures that we did not miss any
relevant coupling in the problem description. Secondly, the RG recursive relations we found
for the dynamic theory reproduce the behaviour of dipolar ferromagnets, ensuring that the
static behaviour is correctly reproduced by the dynamics. We must remark that both these
results directly follow from the presence of the new DYS vertex, in absence of which the
theory would not describe correctly the dynamics of the system; therefore meaning that the
this new non-trivial interaction plays a crucial role in making the dynamic behaviour of the
spin compatible with the constraint.

From the study of the RG recursive relations, the dynamic behaviour has been shown to be
characterized by a critical exponent z = d

2 , which is the same as the non-constrained theory.
This result was somewhat unexpected. In general, static properties are more robust compared
to dynamical properties;modelswith different dynamical critical behaviours are often charac-
terized by the same static behaviour, such asModelA andModelG of [26]. On the contrary, in
our model the solenoidal constraint changes the static universality class, leaving unchanged
the critical dynamics of the system. This suggests that the dynamic critical behaviour of
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homogeneous systems does not change when a solenoidal constraint, i.e. incompressibility,
is enforced; this indicates that we can try and understand their dynamic critical behaviour
by studying their incompressible version. Homogeneous systems are governed by equations
of motion in which incompressibility is, in general, not required, but where density fluctu-
ations, and therefore density-velocity couplings, are negligible. Incompressibility, though,
completely suppresses density fluctuations and therefore represents a stronger requirement
than homogeneity. Moreover, requiring incompressibility, hence imposing a solenoidal con-
straint on the velocity field, generates long-range interactions that could change the properties
of a system; while this is indeed the case for the static behaviour of our theory, the long-
range interactions are not sufficient to modify its dynamic universality class. Theoretical
evidences of this fact have already been discussed in homogeneous active systems [14],
therefore suggesting that the solenoidal constraint does not significantly affect the critical
dynamic behaviour in the presence of neither activity nor mode-coupling terms. This result is
very encouraging, as it allows to study the homogeneous phase of the off-equilibrium Inertial
Spin Model under a incompressible hypothesis, where the absence of the density field leads
to a great simplification of the calculation.

Our result is an important stepping stones towards developing an RG theory for natural
swarms. The DYS interaction vertex in the spin dynamics that we derived in this work, which
emerges as an effect of the solenoidal constraint,must certainly characterize also the equations
of motion of an incompressible out-of-equilibrium field theory, in which terms coupling
the order parameter to its generator of rotations are present. It would have been extremely
difficult to derive the DYS vertex had one tackled the problem directly in the presence of
activity. Despite this step forward, though, the complexity of the present calculation suggests
that significant more theoretical efforts will be needed to carry out the full-fledged out-of-
equilibrium mode-coupling RG study of natural swarms.
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