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� Bayesian multiple sparse priors (MSP) inverse method accurately localizes epilepsy foci.
� MSP solutions are more focal and easier to use than sLORETA inverse method.
� MSP inverse method showed similar or better accuracy than coherent maximum entropy on the mean

inverse method and is faster to compute.

a b s t r a c t

Objective: To evaluate epileptic source estimation using multiple sparse priors (MSP) inverse method and
high-resolution, individual electrical head models.
Methods: Accurate source localization is dependent on accurate electrical head models and appropriate
inverse solvers. Using high-resolution, individual electrical head models in fifteen epilepsy patients, with
surgical resection and clinical outcome as criteria for accuracy, performance of MSP method was com-
pared against standardized low-resolution brain electromagnetic tomography (sLORETA) and coherent
maximum entropy on the mean (cMEM) methods.
Results: The MSP method performed similarly to the sLORETA method and slightly better than the cMEM
method in terms of success rate. The MSP and cMEM methods were more focal than sLORETA with the
advantage of not requiring an arbitrary selection of a hyperparameter or thresholding of reconstructed
current density values to determine focus. MSP and cMEM methods were better than sLORETA in terms
of spatial dispersion.
Conclusions: Results suggest that the three methods are complementary and could be used together. In
practice, the MSP method will be easier to use and interpret compared to sLORETA, and slightly more
accurate and faster than the cMEM method.
Significance: Source localization of interictal spikes from dense-array electroencephalography data has
been shown to be a reliable marker of epileptic foci and useful for pre-surgical planning. The advantages
of MSP make it a useful complement to other inverse solvers in clinical practice.
� 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction activity (Blume et al., 2002). The ictal (seizure) oscillations and
Epilepsy is a neurological disorder of recurring seizures that
affects approximately 0.5 to 1 % of the world population (Sander,
2003). These seizures reflect abnormally synchronized neural
interictal spikes of epilepsy can be observed in the electroen-
cephalogram (EEG), a recording of biopotentials at the head sur-
face. The list of diseases associated with epilepsy and thus, the
possible causes of epilepsy is vast (Engel, 2001). Some epilepsy
cases are correlated with brain lesions or abnormalities, visible
by neuroimaging techniques such as computed tomography (CT)
or magnetic resonance imaging (MRI), while others are not associ-
ated with a visible lesion. About 30% of epileptic patients are non-
responsive to drug treatment and neurosurgical resection of the
epileptogenic tissue becomes the primary therapeutic option. The
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goal in pre-surgical planning is to determine the location of the so
called ‘‘epileptogenic zone”, theoretically defined as the smallest
brain region that, if removed or disconnected, will result in the
patient being seizure free (Lüders et al., 2006). More recently, the
concept of ‘‘epilepsy networks” has gained popularity, where a
treatment directed at any region of the network should, conceptu-
ally, be just as effective as treatments directed at a specific ‘focus’
of seizure activity (Jehi, 2018; Spencer, 2002).

Virtual head models are built to compute what is called the for-
ward problem in EEG, i.e., the computation, governed by the well-
known Maxwell equations, of the expected scalp measurements
produced by a source of neuronal activity. This computation pro-
duces a lead field (LF) matrix that describes the scalp voltage field
for neuronal activity at every position on the cortex (i.e., possible
EEG sources). The LF matrix is used by inverse solvers to estimate
the brain activity that produces the real EEG signal, known as the
inverse problem. It is well established that accurate LF matrices pro-
duce more accurate source estimates (Brodbeck et al., 2011; Feng
et al., 2018), and the quality of LF matrices is dependent on the
accuracy of head conductivity models used. Geometrically realistic
head models with three to eight different tissues require numerical
algorithms to solve the forward problem. These algorithms include
the boundary element method (de Munck et al., 2000), the finite
difference method (Hallez et al., 2007) or the finite element
method (FEM) (Beltrachini et al., 2011). Among the realistic
head-shaped models, many of them assume nested layers (as
required for the boundary element method), and more recent mod-
els incorporate multiple skull compartments and foramina
(Fernandez-Corazza et al., 2018), the dura layer (Ramon et al.,
2006), anisotropic conductivity from diffusion tensor imaging
(Wolters et al., 2006) and even major vessels (Fiederer et al., 2016).

Multiple inverse solvers have been proposed in the literature to
image the underlying neuronal activity that generates the EEG sig-
nals (Grech et al., 2008). The simplest inverse solver is the mini-
mum norm (MN) where the solution is the activity map that
minimizes the squared difference between the estimated signals
and actual measurements (Hämäläinen and Ilmoniemi, 1994). As
the mathematical problem is undetermined, there are infinite pos-
sible solutions and thus some sort of regularization is required. The
low-resolution electrical tomography (LORETA) method imposes a
smoothness constraint (minimum 3D Laplacian) on the solution
space (Pascual-Marqui et al., 1994). The standardized low-
resolution electrical tomography (sLORETA) is probably the most
commonly used method (Pascual-Marqui, 2002). It is simple, fast
and, in contrast with MN and LORETA, is unbiased towards the
electrode positions.

Bayesian inverse solvers have garnered extensive interest in the
past decade. These solvers belong to a separate class and share the
common feature that the EEG or magnetoencephalography (MEG)
signals being modeled are based on a set of priors (i.e., prior
assumptions). A likelihood function is optimized to parametrically
estimate the most likely combination of priors. The multiple sparse
priors (MSP) method belongs to this family and uses a large set of
priors, where the weight for each prior is automatically deter-
mined by an expectation maximization algorithm (Friston et al.,
2008). The MSP method appears to be robust and accurate, and
its performance is improved only slightly by the addition of infor-
mation, such as localization priors from functional MRI, that have
been shown to improve accuracy obtained with other inverse sol-
vers (Daunizeau et al., 2010; Henson et al., 2010). Two extensions
of the MSP method were proposed: temporally adaptive - MSP
(taMSP) and temporally adaptive with fused lasso and connectivity
measure (taMSP-FL-conn) (Martinez-Vargas et al., 2017). These
researchers evaluated the algorithms with epilepsy data (two
patients, two seizures each) and concluded that their proposed
variants were accurate for localizing both focal and distributed
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sources. Another Bayesian variant and extension of MSP, coherent
maximum entropy on the mean (cMEM) method, has been shown,
also with a boundary element model, to be accurate for estimating
the source of epileptic EEG and MEG data (Chowdhury et al., 2016;
Grova et al., 2006). Using data from 15 epileptic patients, cMEM
solutions were compared against Bayesian equivalents of MN and
LORETA solutions and concludinging, similar to (Friston et al.,
2008), that the cMEMmethod was superior when source estimates
were evaluated relative to data obtained from intracranial EEG
(icEEG) recordings (Heers et al., 2016). However, this work did
not compare cMEM versus MSP.

Thus, evidence is accumulating that the Bayesian approach to
source estimation, particularly the MSP method, appears to be
superior to other classes of inverse solvers. There are also usability
advantages of the MSP method. First, the MSP method does not
require selection of additional parameters (e.g., noise handling
hyperparameters in MN and sLORETA). Solutions acquired with
methods that depend on noise handling hyperparameters will dif-
fer depending on hyperparameter choice, and making such choices
is challenging for physicians without extensive training and expe-
rience. Moreover, MSP solutions are easily interpretable because
they are sparse (focal), requiring no magnitude thresholding to
reveal location(s). Surprisingly, given the strengths of the MSP
method, there has been no study that directly evaluated the basic
MSP algorithm for localization of epilepsy activity, either with EEG
or MEG data.

In this work, we evaluate our own implementation of the MSP
algorithm in combination with our own hexahedral FEM (Hexa-
FEM) solutions for head conductivity models. This evaluation is
performed using inter-ictal spike data from fifteen patients who
also had surgical resection and became seizure-free post-surgery.
Importantly, in these 15 patients, the epileptic foci include those
in the medial temporal lobe as well as those involving other corti-
cal regions (i.e., extratemporal). The questions we address are: (1)
what is the expected performance of the MSP method for the speci-
fic application of source localizing epilepsy spikes in real cases?,
and (2) how does its performance compare against other methods,
such as sLORETA and the most advanced cMEM? Finally, we
include a conductivity analysis to understand the impacts of using
literature values for the scalp and skull conductivity values.
2. Methods

2.1. Patients

Fifteen patients undergoing epilepsy pre-surgical evaluation
were recruited for the study and provided informed consent (pro-
tocol approved by the Institution Review Board at Fudan Univer-
sity). In addition to dense-array EEG (dEEG) assessment, patients
had standard pre-surgical workup, which included long-term 16-
channel video EEG, semiology evaluation, Fluoro-2-deoxy-D-
glucose positron emission tomography (FDG-PET) and MRI. Half
of the subjects were evaluated also with icEEG recordings before
surgery. Patient information is presented in Table 1.
2.2. High-resolution electrical head models

To create high-resolution individual head models, all patients
had axial T1-weighed MRI scans, acquired using the 3D-SPGR
sequence (General Electric, US) with 1x1x1 mm resolution and
scanned from top of head to chin. The MRI data were then seg-
mented with the GeoSource 3.0 software (Philips Neuro, Eugene,
Oregon, USA), which uses a unique relative thresholding method
for tissue segmentation (Li et al., 2016). Tissue segmentation clas-
sified each image voxel into the following tissue types: eyeball,



Table 1
Patient information. The used ‘‘time point” is relative to the spike peak.

Subject Gender Age [years] Volume of Interest (VOI) Location VOI volume [cm3] Time point [ms] Number of bad Chanels

S1 M 26 R. hippocampus 51 �12 4
S2 M 21 L. temporal lobe 7 �12 0
S3 M 17 L. medial frontal lobe 14 �12 0
S4 M 7 R. central sulcus 1 �12 12
S5 M 37 L. temporal anterior lobe 38 �16 0
S6 M 19 R. ventro-medial prefrontal lobe 20 �12 2
S7 M 28 L. medial-frontal lobe 42 �10 7
S8 F 15 L. anterior temporal lobe 28 �24 0
S9 M 26 R. posterior temporal lobe 34 �17 0
S10 M 19 R. medial temporal lobe 58 �12 3
S11 F 45 R. medial temporal lobe 42 �6 0
S12 F 28 L. medial temporal and left frontal lobes 36 �16 0
S13 M 25 R. frontal lobe 90 �5 0
S14 M 32 L. parahippo-campal gyrus 17 �12 0
S15 F 36 L. anterior temporal lobe 34 �12 0
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scalp, skull, cerebral-spinal fluid (CSF), gray matter (GM), white
matter (WM) and air. The WM and GM were further partitioned
into cortex and cerebellum.

To specify current generator positions (i.e., dipole sources), the
cortical surface was first characterized using triangular meshes,
which were parceled into patches of approximately equal size.
All models used in the present study contained 2400 dipole
patches per hemisphere. For each patch, perpendicular directions
of vertices within the patch were averaged to derive the average,
perpendicular orientation of current flow. Average sensor positions
were used to register to each head model.

There are several options to solve the differential equations
involved in the FP. These numerical methods transform the ana-
lytic solutions into a linear system of equations. The finite differ-
ence method is one option that runs directly on the segmented
voxel space, and it is more computationally intensive than other
methods (Turovets et al., 2014). Another option is the use of the
boundary element method, which is computationally efficient
but requires the inaccurate assumption that major tissues such
as the skull form closed boundaries (misrepresenting major skull
orifices such as foramen magnum or optical canals). A different
method is the tetrahedral FEM. It has the advantage that smooth
surfaces can be built because the meshing process is adaptive
and is not necessarily tied to the original MRI voxel space. Also,
coarser or finer regions can be defined according to the desired
precision.

In the present work we used HexaFEM. HexaFEM has been
widely used for mechanical simulations, although not so com-
monly used for electromagnetic head modelling. The main advan-
tage is that the mesh can be built directly from the segmented
image where each voxel is directly mapped as a cube of the mesh,
no matter the complexity of the segmentation. HexaFEM also has
the advantages of tetrahedral FEM in that the resulting matrices
are both sparse and symmetric, allowing the use of computation-
ally efficient solvers to solve the resulting linear system of equa-
tions. Also, it has the potential of being adaptive, although for
the current version we kept it as one cube per voxel. In Appendix
A, we show a comparison of HexaFEM against analytics and the
finite difference method in a three-layer spherical model, and
against the finite difference method in a realistic model. The EEG
forward problem computation for each dipole is intensive. The
time to compute the LF matrix can be drastically reduced if the
reciprocity principle is used (Malmivuo and Plonsey, 1995). It
relates the EEG forward problem with the transcranial electrical
stimulation (TES) forward problem that computes the electric field
at the brain from a current injection pattern. In this way, instead of
the larger number of dipole computations, only the smaller num-
ber of electrode computations are required.
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We assigned literature conductivity values for each tissue as
follows: 0.35S/m for the WM (Gabriel et al., 1996), 0.01 S/m for
the skull (Oostendorp et al., 2000), 0.33 S/m for the scalp
(Goncalves et al., 2003), 1.79S/m for the CSF (Baumann et al.,
1997), 0.25 for the GM (Gabriel et al., 1996) and 1.55 S/m for the
eyeballs (Lindenblatt and Silny, 2001).

2.3. Dense-array EEG acquisition

dEEG data were acquired in one session, lasting approximately
one hour for each patient. Patients were allowed to rest in a recum-
bent position during the recording session. dEEG were acquired
using 256-channel system (Philips Neuro, Eugene, Oregon, USA).
Each EEG sensor net was applied using the nasion, bilateral pre-
auricular locations and Cz position as landmarks to ensure stan-
dardized placement across patients. The tension structure of the
EEG net ensured even distribution of the remaining sensors on
the head and at similar locations across patients. The EEG was
recorded with a direct current amplifier and sampled at 500 or
1000 s/s.

2.4. Inter-ictal spike marking

The continuous dEEG data for each patient were filtered with a
0.1–30 Hz band-pass filter. The data were then reviewed by a
member of the epilepsy evaluation team (R. F.) and interictal spike
types marked. Topographic maps, after the data were referenced to
the average-reference, were used to examine spatial distribution,
and spikes were grouped according to spatial similarity prior to
spike averaging. Spike dominance was determined based on fre-
quency of occurrence. The average dominant spike was used in
source estimation. Spikes were segmented at the peak of the spike
and included 500 ms before and after spike peak. Based on previ-
ous comparisons to intracranial validations, source estimates were
based on the rising slope prior to the spike peak. Bad channels,
after averaging, were manually identified and removed prior to
source estimation.

2.5. Specifying surgically resected brain region

For each patient, the volume of the resected region was marked
by hand on the pre-surgical MRI by the neurosurgeon that per-
formed the resection. The neurosurgeon used all available informa-
tion such as post-surgical MRI slices, post-surgical CT images, brain
pictures taken during the surgeries, pre-surgical PET and pre-
surgical intracranial EEG data as guidelines while marking the
resected region in the pre-surgical MRI. Use of the pre-surgical
MRI instead of the post-resection MRI was adopted for several rea-
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sons: (i) post-surgical MRI may contain significant brain shifts due
to the resection; (ii) the EEG data was collected before the surgery;
and (iii) in the majority of the cases, either the post-surgical MRI
available for these data was acquired for only few slices of interest
and not for the whole brain, or the post-surgical protocol specified
acquisition of only CT images. Due to reasons (i) and (ii), using the
pre-surgical MRI was preferred even in the case of having the full
head post-surgery MRI. Fig. 1 shows examples of the pre-surgical
MRIs and the marked volume of interest (VOI) masks overlaid with
the corresponding post-surgical MRIs. The volumes were delin-
eated directly on the T1 images using the MIPAV software
(https://mipav.cit.nih.gov).

2.6. Inverse methods

2.6.1. sLORETA
sLORETA is one of the most popular inverse solvers due to its

algorithmic simplicity and unbiased nature (Pascual-Marqui,
2002; Sekihara and Nagarajan, 2008). The formulation is:

s rð Þ ¼ w rð ÞY ¼ lðrÞTðLLT þ aIÞ�1
Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l rð ÞT LLT þ aI
� ��1

lðrÞ
r ð1Þ

Where Y is the L� T EEG data matrix (where L is the number of
channels and T is the number of time samples), L is the LF matrix,
lðrÞ is the column of the LF matrix generated by the dipolar source
r, a is the hyperparameter, I is the identity matrix, sðrÞ is the source
waveform estimate of dipole r, and wðrÞ is the weighting vector for
dipole r. Formulation in Eq. (1) is repeated for each dipole r of a total
of D dipoles.

2.6.2. Multiple sparse priors (MSP)
The MSP method is described in detail in the original paper

(Friston et al., 2008). This method defines a large set of sparse pri-
ors that are later weighted to better explain the measured data.
The weighting is done by using an expectation-maximization iter-
ative algorithm. There is a compromise in defining the set of priors;
the priors should be general enough to cover a wide solution space
Fig. 1. Examples of the volume of interest (VOI) marking process. VOIs marked on the pr
based on the post-surgical MRIs for (A) subject S5 and (B) subject S9; or on the post-su
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such that the solution is not biased to a small subdomain of the
solution space. The function to optimize is a maximum likelihood
function.

Implementation of MSP method was accomplished with no
modifications to the algorithm as proposed by Friston et al
(2008), see Appendix B for some more details taken directly from
that source. A step-by-step function evaluation was accomplished
to ensure the code performed equal to implementation of the MSP
method in the SPMMatlab toolbox (Kiebel and Friston, 2004). Both
sLORETA and MSP methods will be available within BEL Co’s Sour-
cererTM product. SourcererTM will be available as a research applica-
tion. For clinical use, SourcererTM will require FDA clearance.

The construction of the priors also followed Friston et al (2008)
as much as possible. The first step was to generate an adjacency
matrix ‘‘A” (D� D), with ones indicating neighboring sources and
zeros indicating non-neighbors. The neighbors were determined
from the cortical surface as neighboring patches and not as the
closest patches by Euclidean distance. A spatial smoothing matrix

G, as G ¼ P8
i¼0

ri

i! A
i, was generated, where sigma is a constant

(r ¼ 0:6) that weighs the influence of the neighbors, and the num-
ber 8 in the sum ensures that up to eight neighbors are engaged.
Each column gi of G corresponds to a compact prior with one cen-
tral element and its neighbors. Fig. 2A shows an example of a prior.
A subset of 400 out of 4800 rows G was selected as the subset of
priors, meaning that approximately 8.5% of the total number of
dipoles were selected as the central dipoles of the priors. Fig. 2B
highlights the central dipoles of the 400 selected priors, showing
that they are evenly distributed in the brain space. Finally, the
400 priors were built as Qi ¼ gigT

i .
Once the hyperparameters corresponding to each prior were

computed using the expectation maximization method, the maxi-
mum a posteriori estimator was finally computed as:

M ¼ R�LTR�1UT; ð2Þ

and the signal estimates in the source space over time were wewe:

ED�T ¼ MY; ð3Þ
e-surgical magnetic resonance image (MRI) (the right figure of each pair of images)
rgical CT images for (C) subject S7 and (D) subject S6 are shown.

https://mipav.cit.nih.gov


Fig. 2. (A) Example of a compact support prior. The color scale indicates the neighbor connection strength, where the strongest one is the central dipole location. (B) Central
dipole locations for the 400 priors (in magenta) among all other dipole locations (in cyan). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

2 NRDMðv;wÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
v i
vj j2 �

wi
wj j2

� �2
r

, where v and w are two arbitrary vectors.
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where R� is the estimated spatial covariance matrix in the source
space, R is the estimated covariance matrix in the electrode space
and U is the spatial projector of size L� L accounting for the con-
founds or fixed effect on the signal model (Friston et al., 2008).

2.6.3. Coherent maximum entropy on the mean (cMEM)
The cMEM method is available in the scientific Matlab toolbox

Brainstorm (Tadel et al., 2011). The cMEM method minimizes the
Kullback Leibler divergence and incorporates spatial smoothness,
similarly to MSP (Chowdhury et al., 2016). The ‘‘be_cmem_solver”
function from Brainstorm was used for the present study. This
function requires the LF matrix and the neighboring matrix A (as
used in MSP). Neighbors were defined in the same manner as for
the MSP method. Algorithmic parameters used default values and
the baseline, as required by the method, was defined as the first
100 samples (in all cases the spike starts after these first 100
samples).

2.7. Best hyperparameter and polarity selection

For each patient we applied the sLORETA, MSP and cMEMmeth-
ods and obtained source activity maps. For each algorithm, the fol-
lowing procedure was used to keep the strongest positive, negative
or both sources (and the hyperparameter for LORETA) by compar-
ing the true EEG and artificial EEG generated by these sources as
follows:

– For sLORETA, 9 source activity maps were computed using 9 dif-
ferent hyperparameters, ranging from 1� 10�4 to 1� 104, and
increasing one order of magnitude at each step. For each solu-
tion obtained with each hyperparameter, three candidate dipole
selections were considered based on polarity: (i) the two
dipoles with most positive intensity (‘‘max”), (ii) the two
dipoles with most negative intensity (‘‘min”), and (iii) the dipole
with most positive intensity and the dipole with most negative
intensity (‘‘both”). Note that a solution being positive or nega-
tive reflects the polarity of the source with respect to the cortex
normal surface. Thus, a positive sign indicates a source, reflect-
ing current flow outward from the cortex, and a negative sign
indicates a sink, reflecting inward current flow. The three
options were considered because we observed that in certain
cases the polarity of the real EEG data did not correspond to
the polarity of the strongest (in module) source. Among the
27 candidates (9 hyperparameter solutions with three possible
polarities each), the one that better explained the scalp EEG pat-
tern was chosen. This procedure was done by placing artificial
EEG generators (dipoles) centered at each of the 27 possible
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source locations and simulating the EEG potential at the scalp.
Then, this synthetic EEG potential was compared to the actual
measurements by using the normalized relative difference mea-
sure (NRDM2) (Meijs et al., 1989) and the solution with lowest
NRDM value was chosen. Note that this search of the best source
localization does not require the knowledge of a ground truth.

– For MSP and cMEM methods, because there is no hyperparam-
eter requirement, we followed the same procedure as for sLOR-
ETA but just for the three polarities: ‘‘min”, ‘‘max” or ‘‘both”.
Again, the solution that better matched the EEG recording on
the scalp by means of the NRDM metric was chosen.

The time point to analyze was selected at the spike onset prior
to the spike maximum by visual inspection of the EEG measure-
ments over time (butterfly plot) and as well the spatial topography
of the voltage data. The same EEG time point was used for the three
solvers. It is noted, however, that the solutions were robust across
multiple time points of the rising edge.

2.8. Evaluation metrics

2.8.1. Center of mass and localization error
The most important metric of success was defined as the Eucli-

dean distance between the center of mass (CoM) of selected
dipoles from the solution and the closest VOI voxel. The CoM is
defined as:

CoM ¼
P

selected dipoles sij j xi
!P

selected dipoles sij j ð4Þ

where si is the intensity of the solution at dipole i, and xi
! are the

spatial coordinates of dipole i. The selected dipoles were either
the most intense ones with positive polarity, the most intense ones
with negative polarity or a combination of both, as described in Sec-
tion 2.7. The distance of the CoM and the VOI can be interpreted as a
localization error (LE) or bias metric. This quality metric assumes
that the marked VOI is the ground truth for the location of the spike
generators. This assumption has limitations that are discussed in
Section 4.3.

2.8.2. Spatial dispersion and focality
These metrics were used to quantify the extent and focality of

the reconstruction for the three solutions when the CoM was
located inside the VOI or close enough (less than 5 mm). We
defined the spatial dispersion (SD) as (Chowdhury et al., 2016):
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SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
all dipoles min

j2VOI
D2

ij

� �
s2iP

all dipoless
2
i

vuuut ð5Þ

In the numerator of Eq. (5), the squared of each intensity si is
weighted by the minimum squared distance between source i
and the VOI (Dij). This means that if larger intensities are inside
the VOI, they are weighted by zero. Overall, a large SD indicates
that there are large intensity spots outside the VOI and the further
away they are, the more weight they are given. In contrast, a lower
SD means that the source activation map has stronger activity in
the VOI or nearby.

Because SD strongly penalizes source activity far away from the
VOI, a simpler focality metric (Foc) was also computed and defined
as:

Foc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

VOI dipoless
2
iP

all dipoless
2
i

s
ð6Þ

The numerator of Eq. (6) sums the squared of each intensity si
that is inside the VOI-plus-5 mm and the denominator is equal
to Eq. (5). The Foc metric lies in the [0–1] range, where lower val-
ues indicate poor focality and values closer to 1 indicate better
focality.
3. Results

Results obtained using the LE, SD and Foc metrics for each of the
algorithms against the hand-marked VOIs are presented first.
Results using an alternative VOI definition (based on an atlas par-
cellation criterion) are presented next. An analysis of the source
localization robustness against variations of the electrical conduc-
tivity values of the tissues is presented last.

3.1. Results based on hand-marked VOI

The LE results for sLORETA, MSP and cMEM methods are shown
in Table 2. When the LE is lower than 1 mm, it means that the CoM
is inside the VOI. For the sLORETA solutions, the resulting hyperpa-
rameters and polarities (min, max or both) are shown, whereas for
MSP and cMEM solutions only the resulting polarities are relevant.

We defined a LE below 5 mm as good (in bold in Table 2),
because it is close enough to the VOI and, by visual inspection,
appears to be a reasonable tolerance limit to the inherent mis-
Table 2
Localization error (LE) for all subjects and for the three studied methods: standardized low-
and coherent maximum entropy on the mean (cMEM). The best polarities and hyperparame
of Table 1 is presented as a reference.

sLORETA

Subj. VOI Location LE* [mm] Polarity

S1 R. hippocampus <1 Both
S2 L. temporal lobe 4 Min
S3 L. medial frontal lobe <1 Both
S4 R. central sulcus 22 Min
S5 L. temp. ant. Lobe <1 Both
S6 R. ventro-medial prefront. Lobe <1 Min
S7 L. medial-frontal lobe <1 Both
S8 L. anterior temporal lobe 44 Max
S9 R. posterior temporal lobe 20 Min
S10 R. medial temporal lobe <1 Max
S11 R. medial temporal lobe 3 Both
S12 L. medial temporal and left frontal lobes <1 Min
S13 R. frontal lobe <1 Max
S14 L. parahippo-campal gyrus <1 Both
S15 L. anterior temporal lobe <1 Both

*Bold text indicates low LE (less than 5 mm), italic italic indicates intermediate LE (betw
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match between the pre-operative MRI and the resected region.
We also distinguish between a close no-hit (LE between 5 mm
and 15 mm) and a large no-hit (LE larger than 15 mm) with differ-
ent font styles in Table 2 (blue and red respectively). Using these
criteria, sLORETA andMSP displayed 80% (12/15) accuracy whereas
cMEM produced 66% (10/15) accuracy.

Visual inspection of each solution provides a better understand-
ing of each case. Figs. 3–5 show the solutions for the first three sub-
jects as examples. Figures for the remaining subjects, as well as a
detailed, case-by-case analysis are provided as Supplementary
Material (Fig. SF1 for subject S4, Fig. SF2 for S5, Fig. SF3 for S6,
Fig. SF4 for S7, Fig. SF5 for S8, Fig. SF6 for S9, Fig. SF7 for S10,
Fig. SF8 for S11, Fig. SF9 for S12, Fig. SF10 for S13, Fig. SF11 for
S14, Fig. SF12 for S15).

Fig. 6 shows the SD and the Foc metrics of the cases where the
LE is lower than 5 mm for the three solvers. As expected, sLORETA
solutions have larger SD and are less focal than MSP and cMEM
solutions. The median of the SD is very similar for MSP and cMEM
solutions. However, the MSP method produces solutions that can
be more dispersed (S3, S7, S10, S13) than the cMEM solutions. This
is because the MSP solutions present, in some cases, attenuated
activity far away from the maxima that affects the SD (because
they are weighted by a large distance). For example, in Fig. 6 the
MSP solution for subject S3 presents some very light activity in
the frontal pole and in some other brain areas far from the VOI that
the cMEM does not. In terms of focality, where the inside of VOI-
plus-5 mm energy is divided by the overall energy without weight-
ing by the distance, the MSP and cMEM solutions are more focal
than the sLORETA solutions, and MSP solutions are slightly more
focal than cMEM solutions, although again, the median of these
two methods is very similar.

The results shown in Table 2 might be slightly influenced by the
boundaries of the VOI that were marked by hand by the neurosur-
geon. As an example, subject S4 has the smallest VOI and it is the
only pediatric subject. The three methods, especially sLORETA and
cMEM, seem to give a source localization in the same brain region
of the VOI, although in Table 2 the LE is marked as large (more than
15 mm). Thus, in the following section we present alternative
results based on a standard parcellation, to address this limitation.

3.2. Results based on atlas parcellation

The method used to segment the head and the cortex into
dipole patches also provides a transformation map from the native
resolution brain electromagnetic tomography (sLORETA), multiple sparse priors (MSP)
ters (the latter only for sLORETA) are also shown. The volume of interest (VOI) location

MSP cMEM

Best Hyp. LE* [mm] Polarity LE* [mm] Polarity

0.001 <1 Max <1 Both
10 <1 Min 3 Min
1 <1 Max 5 Max
10 46 Min 21 Both
10 <1 Both <1 Max
1 <1 Min 5 Both
1 <1 Min <1 Min
10 13 Max 40 Min
10 60 Min 15 Min
0.1 <1 Min <1 Min
1 <1 Max <1 Min
0.1 <1 Min 22 Min
0.01 <1 Min <1 Both
0.01 3 Min 23 Min
1 <1 Max <1 Both

een 5 and 15 mm), and regular font style indicates large LE (more than 15 mm).



Fig. 3. Results for subject S1. Top left: the volume of interest (in red) as marked by the neurosurgeon on the T1 image, overlaid with the wrinkled cortex. Top row, second,
third and fourth columns show the solutions obtained with sLORETA, MSP and cMEM respectively, where the selected patches based on the best artificial versus real EEG
match are highlighted in green. Bottom left: the interpolated (Oostendorp et al., 1989) real EEG on the scalp at the time point of interest. Bottom row, second, third and fourth
columns show the artificial EEG modeled by placing dipoles centered at the patches marked in green in the top row for sLORETA, MSP and cMEM, respectively. Methods:
standardized low-resolution brain electromagnetic tomography (sLORETA), multiple sparse priors (MSP) and coherent maximum entropy on the mean (cMEM). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Results for subject S2. Top left: the volume of interest (in red) as marked by the neurosurgeon on the T1 image, overlaid with the wrinkled cortex. Top row, second,
third and fourth columns show the solutions obtained with sLORETA, MSP and cMEM respectively, where the selected patches based on the best artificial versus real EEG
match are highlighted in green. Bottom left: the interpolated real EEG on the scalp at the time point of interest. Bottom row, second, third and fourth columns show the
artificial EEG modeled by placing dipoles centered at the patches marked in green in the top row for sLORETA, MSP and cMEM, respectively. Methods: standardized low-
resolution brain electromagnetic tomography (sLORETA), multiple sparse priors (MSP) and coherent maximum entropy on the mean (cMEM). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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space to Talairach space (Li et al., 2016). Using this map, we
obtained the Talairach coordinates of every voxel of the VOI. From
these coordinates and using the Bisweb MNI-TAL conversion tool
(https://bioimagesuiteweb.github.io/webapp/mni2tal.html) the
corresponding Brodmann area (BA) for each voxel was obtained.
Through this procedure, a list of the BAs that are ‘‘touched” by each
VOI was generated. Because some VOIs have only few voxels inside
some BAs, only BAs with more than 50 mm3 were retained in the
list. New boundaries for each VOI in the normalized space were
defined as the boundaries of the retained BAs, following the stan-
dard atlas parcellation. In this way, the hand-marked VOIs are only
used as a rough reference to indicate the major involved BAs, but
do not define the new VOI boundaries. Therefore, this method is
592
robust to possible imprecise VOI boundary errors made in the
hand-marking process.

The CoMs of each solution were also mapped to the MNI space,
and a check was performed to determine whether they fall inside
or outside the new definition of VOIs by examining the correspon-
dence between BAs of the VOIs and the BAs of the CoM. If the BA of
the CoM is within the list of the BAs involved in the VOI, then it is
considered a ‘‘hit”, and otherwise it is labelled as a ‘‘miss”. Table 3
shows the lists of BAs involved in each VOI and the BAs of each
CoM for each solver. This table only shows the subjects where at
least one algorithm failed in Table 2, because the other cases that
succeed with all three algorithms did not change with the BA -
VOI registration (this is expected because both the VOIs and the

https://bioimagesuiteweb.github.io/webapp/mni2tal.html


Fig. 5. Results for subject S3. Top left: the volume of interest (in red) as marked by the neurosurgeon on the T1 image, overlaid with the wrinkled cortex. Top row, second,
third and fourth columns show the solutions obtained with sLORETA, MSP and cMEM respectively, where the selected patches based on the best artificial versus real
electroencephalography (EEG) match are highlighted in green. Bottom left: the interpolated real EEG on the scalp at the time point of interest. Bottom row, second, third and
fourth columns show the artificial EEG modeled by placing dipoles centered at the patches marked in green in the top row for sLORETA, MSP and cMEM, respectively.
Methods: standardized low-resolution brain electromagnetic tomography (sLORETA), multiple sparse priors (MSP) and coherent maximum entropy on the mean (cMEM).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Spatial dispersion and focality. Boxplots of the spatial dispersion (left, the lower the better) and focality (right, the larger the better) of the solutions obtained with the
three solvers for the cases where all three algorithms presented a localization error lower than 5 mm (S1, S2, S3, S5, S6, S7, S10, S11, S13, S15). Each red cross represents a
different subject, the blue asterisk represents the median, and edges of the blue boxes are the 25th and 75th percentiles. Methods: standardized low-resolution brain
electromagnetic tomography (sLORETA), multiple sparse priors (MSP) and coherent maximum entropy on the mean (cMEM). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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CoMs are moved using the same transformation). Comparing the
results in Tables 3 and 2, the accuracy of sLORETA solutions
remained the same (12/15), being successful for exactly the same
subjects. MSP solutions showed an improved accuracy of 13/15,
due to inclusion of S8, and cMEM solutions also increased in accu-
racy (13/15) due to the addition of ‘‘hits” for subjects S4, S9 and
S14. The cMEM source activation maps for these subjects (Supple-
mentary Figures SF1, SF6 and SF11) indeed show that the cMEM
localizations are close to the VOIs.
3.2.1. Conductivity robustness
Because literature conductivity values were used to generate

the LF matrices, a study was performed to analyze the robustness
of the sLORETA and MSP inverse solutions with respect to the skull
and scalp electrical conductivity values. For each patient, addi-
tional LF matrices were computed by adjusting ±15% the scalp
and skull conductivity values, resulting in eight additional forward
solutions. MSP and sLORETA inverse source localization were per-
formed using these new LF matrices. This resulted in a 3x3 LE
matrix per subject, where the horizontal axis corresponds to
�15%, 0% and 15% deviation of the skull conductivity and the ver-
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tical axis corresponds to the �15%, 0% and 15% deviations of the
scalp conductivity.

Fig. 7 shows the LE matrices for all subjects, where the color
indicates the LE. Note that the color scaling is the same for all cases
and that a flat color image indicates that the LE did not change
when using different electrical conductivity values.
4. Discussion

4.1. Comparison between sLORETA, MSP and cMEM

In this work we compared the performance of the popular
sLORETA and the most advanced MSP and cMEM algorithms to
source localize epilepsy spikes, considering the resected brain
region as a ground truth VOI. Results show that the three inverse
methods were able to localize the epileptic spike onsets to the
resected brain region in the majority of cases, even for this set of
complex cases with only seven (S1, S5, S8, S10, S11, S12, and
S15) out of fifteen subjects being typical temporal lobe epilepsy.
sLORETA and MSP methods achieved an accuracy of 80% (12/15),
and they failed for the same subjects (S4, S8 and S9), whereas



Table 3
Brodmann areas (BAs) of the volumes of interest (VOIs) and of the centers of mass (CoMs) for the subjects that had at least one algorithm failing in Table 2. The third column
shows the BAs of the VOI, and the fourth, fifth and sixth columns show the BAs of the CoMs obtained with each inverse method: standardized low-resolution brain
electromagnetic tomography (sLORETA), multiple sparse priors (MSP) and coherent maximum entropy on the mean (cMEM). Numbers 1–47 correspond to the BAs of left
hemisphere, 48 is the left caudate, 49: left putamen, 50: left thalamus, 51: left globus pallidus, 52: left nucleus accumbens, 53: left amygdala, and 54–55: left hippocampus. The
same numbers plus 100 are the analogous brain regions on the right hemisphere.

Subject VOI location (native space) BAs involved in VOI CoM sLORETA BA* CoM MSP BA* CoM cMEM BA*

S4 R. central sulcus 101, 104, 106 113 136 104
S8 L. anterior temporal lobe 11, 20, 21, 34, 36, 38, 47, 53, 54 24 11 45
S9 R. posterior temporal lobe 118, 119, 121, 122, 137, 138, 139, 140, 141 136 37 139
S12 L. medial temporal and left frontal lobes 13, 20, 21, 22, 34, 36, 37, 38, 47, 48, 49, 53, 54 53 49 11
S14 L. parahippo-campal gyrus 11, 13, 20, 34, 36, 38, 47, 49, 53, 54 34 49 11

*Bold text indicates that the BA of the CoM is part of the VOI and regular font style indicates that it is not.

Fig. 7. Localization errors (LE) when using deviations of the electrical conductivity. Each chart indicates the LE for each subject and each of the two source localization
methods: sLORETA and MSP. Within each chart, the horizontal axis corresponds to �15%, 0% and 15% deviation of the skull conductivity with respect to the nominal (Drsk)
and the vertical axis corresponds to the �15%, 0% and 15% deviations of the scalp conductivity (Drsc). Note that the central point of each chart indicates the LE using the
nominal values for the scalp and skull conductivity values, that correspond to the values shown in Table 2. Methods: standardized low-resolution brain electromagnetic
tomography (sLORETA), and multiple sparse priors (MSP). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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the cMEM method achieved an accuracy of 66% (10/15). However,
when it failed, cMEM had an LE lower than 2.5 cm in 4/5 cases. This
explains why when analyzing the alternative VOI based on a nor-
malized brain segmentation, cMEM achieved an accuracy of 86%,
same as MSP and slightly better than sLORETA (80%).

Considering only the typical anterior temporal lobe cases (S1,
S5, S8, S10, S11, S12, S15), accuracy was 86% (6/7) for MSP and
sLORETA methods and 70% (5/7) for the cMEM method for hand-
segmented VOIs, and 86% (6/7) for sLORETA, 70% (5/7) for cMEM,
and 100% for the MSP method for atlas-based VOIs. Excluding the
anterior temporal lobe cases, the success rate was 75% (6/8) for
sLORETA and MSP methods and 62% (5/8) for the cMEM method
for hand-segmented VOIs. For atlas-based VOIs, these rates were
75% (6/8), 75% (6/8) and 100% (7/7) for sLORETA, MSP and cMEM
methods, respectively.

The success rates obtained here are in general agreement with
what has been reported in a more extensive study with 152
patients that used dEEG and surgical resection plus clinical out-
come for ground truth comparisons (Brodbeck et al., 2011). In that
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study, 52 patients had individual MRIs that were used to construct
individual head models. In this subset, the researchers showed
accurate localization in 86% of the cases when using the LAURA
method as the inverse solver. From those patients, 52% (27/52)
had extratemporal spikes, similarly to our set (53%). This study
showed that when extratemporal cases were evaluated, the accu-
racy was 75%, in agreement with our findings.

Even when two or three of the inverse algorithms localized the
source within the VOI, sometimes they do not agree on the exact
locations. This fact highlights the difference in nature between
the three algorithms and supports the idea that they can be com-
plementary, in agreement with (Grova et al., 2006). In seven out
of twelve cases where the sLORETA and the MSP methods pro-
duced results in agreement with the VOI, these show exact (or
almost exact) match (S1, S2, S3, S5, S6, S7, S15). For the other three
subjects (S10, S11, S13), the solutions of both methods are very
close but at the opposite side of the cortex, with one solution
pointing inward and the other outward from the cortical surface.
For the remaining 2 subjects (S12 and S14), it seems that the solu-
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tions are very close on the wrinkled cortical surface, although they
are separated when depicted on the inflated cortical surfaces.

In five out of the 10 cases that the cMEM solutions correspond
to the VOI, the strongest cMEM activations agree with the stron-
gest activations of the sLORETA and/or MSP solutions (or its imme-
diate neighbors, see S1, S3, S5, S10, S15), but it does not exactly
match in the others cases (S2, S6, S7, S11 and S13). However, in
two cases where both sLORETA and MSP solutions fail (S4, S9),
the cMEM solution is much closer to the VOI. For subjects S4, S8
and S9, where the three methods fail, one or two of the algorithms
are much closer to the VOI than the other(s). However, it is inter-
esting to note that when a method fails, there is always some sec-
ondary activity that coincides with the main peak of the algorithm
that succeeded. Thus, slight differences in the ways the sources are
weighted by each algorithm can make the difference between a hit
or a miss. Therefore, a visual inspection of the secondary sources
when using multiple algorithms to the same data and head models
might help in distinguishing the most important source location.

Visual inspection of the source activity maps clearly shows that
the MSP solutions generally have more pronounced ‘‘peaks” than
the sLORETA and cMEM solutions, which is consistent with the
quantitative results showing better focality of the MSP compared
to both sLORETA cMEM solutions (the latter to a lesser extent).
The MSP maps are easier to interpret and do not require arbitrary
thresholds for visualization. The spatial dispersion metric showed
that both MSP and cMEM have less dispersion than sLORETA. The
blurriness and source extension overestimation of sLORETA are
well known (Cosandier-Rimélé et al., 2017; Wagner et al., 2003).
If thresholds are not applied in sLORETA, source reconstruction of
temporal lobe spikes typically extends to the orbito-frontal region
(see subjects S1, S5, S8, S10, S11, S12, S15), in agreement with pre-
vious findings (Plummer et al., 2010). In some specific examples,
the MSP solutions show secondary peaks far from the most intense
source of activity that alter this metric because it significantly
penalizes distant activity sources. The cMEM solutions in general
show broader activity regions than MSP but are concentrated in
only one cluster.

We proposed, for the three methods, a simple algorithm to
objectively select the best solution among a range of possible
hyperparameters (only for sLORETA) and the polarity type (min,
max or both) based on comparing the true EEG and the synthetic
EEG generated by the peaks of the solutions. This procedure was
inspired by consistency checks that some specialists perform in
practice. The accuracy of sLORETA solutions was achieved by test-
ing a wide range of hyperparameters whereas the MSP and cMEM
methods automatically adjust the hyperparameters, which can be
considered as an advantage over sLORETA. In terms of the similar-
ity between the reconstructed EEG with the three solutions and the
true scalp EEG topography, there is no clear trend to determine
which of the solutions produce a more similar EEG topography.
An important implication of these results is that despite being
sparse by nature, the MSP solution can sometimes produce a very
similar EEG to the measured EEG, meaning that the true EEG is
compatible with only one very focal generator in these cases.

The MSP version used here followed as much as possible the
original methodology described in (Friston et al., 2008). However,
there are some modifications that can potentially enhance the
method. Although the selection of 400 priors out of 4800 seems
to be a good compromise between computational time and cover-
age, the number of priors can be enlarged to have a better coverage
of the cortex. Another possibility is to increment the value of
parameter r in matrix G leading to broader priors. In future studies
it would be beneficial to examine accuracy as a function of how
these priors are adjusted.

Regarding the cMEM method, the Brainstorm default parame-
ters were used and the adjacency matrix A was adopted from that
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used for MSP method. A difference between cMEM and MSP is that
cMEM requires baseline data, which we selected as the first 100
samples of each register. This might constitute a practical advan-
tage of MSP over cMEM, although we did not analyze the sensitiv-
ity of cMEM against different selections of the baseline, as it was
out of the scope of this work.

In terms of computational performance, we found that an sLOR-
ETA computation takes less than a second, an MSP solution takes
approximately 2.5 minutes and the cMEM solutions took an aver-
age of 12 minutes each, when using the same standard desktop PC.

4.2. Conductivity robustness

sLORETA and MSP algorithms appear to be, in general, robust
against scalp and skull conductivity changes for the tested changes
of ±15%. Interestingly, for the subjects where some of the sLORETA
solutions showed errors when using different conductivity values,
the MSP method was robust and vice-versa. This is another indica-
tion of the different nature of both methods. In 4 out of the 12 sub-
jects that had good LE, the LE increased when computing the
sLORETA solutions with alternative conductivity values, whereas
this happened in 6 subjects when using MSP. Another interesting
finding was that for one of the three subjects that failed to con-
verge, subject S8, some combinations of the alternative conductiv-
ity values tested reduced the LE of the sLORETA solution, even
causing the solution to fall inside the VOI. This indicates that the
source localization error for this subject might be due to a misspec-
ification of the conductivity values. The other two subjects that ini-
tially had large LEs (S4 and S9) showed robust solutions against the
other conductivity values evaluated, thus it is likely the LEs in
these cases are due to some other reason.

Another interesting observation is the upper-right or bottom-
left triangular shape of the reddish regions of the matrices in
Fig. 7 in almost all cases where conductivity changes leaded to lar-
ger LEs. This is expected, as reducing the conductivity of one tissue
and at the same time increasing the other tissue conductivity pro-
duces the major difference in the ratio between both tissues, which
is known to influence predominantly the electric current distribu-
tion. In some cases, the LE matrices have larger LEs in the upper tri-
angle and some other in the lower triangle. These differences
indicate that the literature scalp to skull conductivity ratio used
is likely lower (in the upper-right LE matrix cases) or larger (in
the bottom-left LE matrix cases) with respect to the best fit indi-
vidual conductivity ratios. However, both methods do not seem
to behave similarly in this sense. If one method shows upper or
lower triangular LE matrix shape, in most of the cases, the other
method shows a flat shape, meaning more robustness against con-
ductivity changes.

Although we obtained good success rate in localizing the spikes
using literature conductivity values, the fact that changing 15% of
the scalp or skull conductivity values lead to larger LEs (with at
least one of the methods) in 8 out of 12 subjects suggests that
the use of calibrated conductivity values is preferable. Moreover,
the fact that for one subject that originally failed to accurately
localize the VOI and a different conductivity specification resulted
in success, also supports this idea. This calibration can be done
with little additional time burden to the EEG exam using bounded
Electrical Impedance Tomography (bEIT) (Fernandez-Corazza et al.,
2018; Ferree et al., 2000; Goncalves et al., 2003; Rush and Driscoll,
1968). Unfortunately, we did not implement bEIT in this study, and
that was the main reason for performing this conductivity analysis.

4.3. Limitations

One limitation of this study is that we considered the resected
region as the ground truth. This region is somewhat large in some
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subjects and there is the uncertainty of where the true spike gen-
erator is located within this volume. As the VOI was marked by the
neurosurgeon by hand, this procedure is also subject to human
errors, although we estimate the errors due to this fact lower than
5 mm (being pessimistic) as the neurosurgeon that marked the
resected volume is the same one that in fact did the resections
and he based this marking in all pre- and post-surgery available
data. We evaluated performance of the three inverse methods
using the alternative VOIs, based on atlas segmentation, to miti-
gate this limitation. However, this alternative also presents its
own limitations (e.g., individual to a normalized space mapping
might be subject to errors, and the standard MNI parcellation into
Brodmann areas also have its limitations (Geyer et al., 2011)).

The fact that the resected region relieved patients from seizures
does not necessarily reflect the fact that the spike originated at the
resected region. From a network perspective, seizures are a result
of a pathological neural circuit, and disruption of the circuit is just
as effective in eliminating seizures. Thus, if the surgery resected a
node or a connection of this network, the patient can remain sei-
zure free, even though the spike was generated in a different brain
region. However, this is unlikely, given that we generated the for-
ward solution of the source estimates and compared the voltage
distribution to the actual EEG potential field and obtaining, in the
majority of the cases, good agreement between them. Also, there
is the possibility that the spike is generated at the region surround-
ing a lesion rather than at the lesion itself (Blenkmann et al., 2012).
Relatedly, even though we localized interictal spikes, localizing sei-
zure onset is a more accurate indicator of the epileptogenic zone.

Another limitation is the use of standardized electrical conduc-
tivities and not subject specific values. It is known that the inverse
solvers are sensitive to these parameters (Vanrumste et al., 2000;
Wolters et al., 2006). In this study we spanned the scalp and skull
conductivity values ±15% and we found that for approximately half
of the subjects the solutions seem to be robust against these
changes. For other subjects, we found that the solutions were sen-
sitive with respect to using different conductivity values, thus sug-
gesting that, although literature conductivity values produced
good results, using bEIT is still recommended. For one of the three
subjects that the source localization initially failed, there was an
improvement by adjusting the conductivity values, which suggests
that the cause of the mis-localization was the use of literature con-
ductivity values. This did not occur for the other two subjects that
originally failed to identify the VOI.

The a-priori position of the possible sources of activity is
another limitation. In the present research, the gray matter surface
was parcellated into patches and one dipole was assigned to each
patch. This procedure imposes a restriction to the solution to be on
that surface and with normal orientation according to the normal
vectors of this surface. In some cases where the source extends
to ventral locations not exactly sitting on the cortex, the inverse
solution will never be at the true location. The closest cortical loca-
tion with similar normal orientation will probably get the largest
activation, which might lead to localization errors.

A final limitation of this study was the use of ‘‘typical” sensor
coordinates, based on application of the sensor net with skull fidu-
cial landmarks. Measurement of sensor positions with a 3D digi-
tizer may resolve some of the localization errors in relation to
closely adjacent, but functionally distinct, cortical regions.
5. Conclusions

Overall, the results suggest that the MSP method is comparable
to sLORETA and cMEM methods in performance for this applica-
tion, at least when using high quality realistic head models. When
the MSP method succeeds, the stronger activation peaks are more
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pronounced than in those found with the sLORETA and cMEM
methods. Even when solutions from the three methods are within
the VOI, it is not necessarily the case that they exactly agree on the
location. This means that these methods are somehow different in
nature, as they explain the EEG on the scalp using different
assumptions. Thus, we believe that the three methods might be
complementary and used together to derive a better description
of the possible sources, providing cross-checks to increase confi-
dence in localization when they agree. In practice, MSP will be
easier to use than sLORETA (although it will take longer to com-
pute) because the solution is not dependent on hyperparameter
selection, and also easier to interpret by a clinician because the
solution is much more focal than sLORETA. The facts that the
MSP method is five times faster than the cMEM method and that
MSP does not require a baseline might constitute practical advan-
tages of MSP.

In terms of the conductivity values of the scalp and the skull, we
conclude that assigning literature values is valid when no bEIT data
is available, but that subject specific conductivity values is pre-
ferred, as half of the studied cases exhibited sensitivity to changes
in the conductivity values.

Finally, we described a simple algorithm (based on a compar-
ison between the actual EEG and the synthetic EEG explained, as
done empirically by some experts) that can be implemented to
determine the best hyperparameter (for sLORETA) and most rele-
vant source polarity (for any method).
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