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Lockdown and vaccination policies have been the major concern in the last year in order
to contain the SARS-CoV-2 infection during the COVID-19 pandemic. In this paper, we

present a model able to evaluate alternative lockdown policies and vaccination strategies.
Our approach integrates and refines the multiscale model proposed by Bellomo et al.,

2020, analyzing alternative network structures and bridging two perspectives to study

complexity of living systems. Inside different matrices of contacts we explore the impact
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of closures of distinct nodes upon the overall contagion dynamics. Social distancing is

shown to be more effective when targeting the reduction of contacts among and inside
the most vulnerable nodes, namely hospitals/nursing homes. Moreover, our results sug-

gest that school closures alone would not significantly affect the infection dynamics and

the number of deaths in the population. Finally, we investigate a scenario with immu-
nization in order to understand the effectiveness of targeted vaccination policies towards

the most vulnerable individuals. Our model agrees with the current proposed vaccina-
tion strategy prioritizing the most vulnerable segment of the population to reduce severe

cases and deaths.

Keywords: Pandemic; COVID-19; epidemiological models; kinetic theory; active parti-
cles; spatial patterns; networks; vaccination; health policies.

AMS Subject Classification 2020: 92C60, 92D30

1. Introduction

Although the use of SIR type models has been widely adopted by policy makers1–3

in order to obtain predictions about COVID-19 spreading, a severe respiratory syn-

drome caused by a new coronavirus (SARS-CoV-2), many limitations have been

acknowledged to this simple modeling approach, particularly regarding the role of

heterogeneity, which has been shown to significantly affect disease transmission and

control. Although the influence of age affecting disease severity and death probabil-

ity in a population is often assumed, only few modeling frameworks are currently

able to include heterogeneity via social networks structures, see e.g. Refs. 21, 23

and 26.

In this paper, using a multiscale network-based model of contagion dynamics,

we explore the role of heterogeneity in shaping and unfolding the overall diffusion

process of COVID-19 epidemic. An extensive simulation analysis considering differ-

ent social network structures is performed to investigate the impact of interactions

during the pandemic. Results are compared addressing the effectiveness of social

distancing policies. The impact of an immunization strategy is also investigated to

understand the effectiveness of the current COVID-19 vaccination policy prioritiz-

ing the most vulnerable individuals.

The model is able to account for two forms of heterogeneity, namely between-

individual heterogeneity in virus transmission on the basis of individual attributes

influencing the epidemic growth, and social-structure heterogeneity, introducing

alternative forms of networks influencing the contact dynamics as well as different

structured nodes within which contacts occur, namely schools, hospitals/nursing

homes, workplaces and households. In so doing, we explicitly model the two crucial

factors affecting the reproduction number of the epidemic, hence the most sought

information by policy-makers during COVID-19 crisis, contagion, i.e. between-

individual virus transmission and contact, i.e. the social structure interaction of

individuals in a population.

Methodologically, we make a bridge between two different approaches to model

complex behavior in living systems. The first approach is the kinetic theory of

active particles (KTAP)9 which allows to model macroscopic states as the result

of multi-level interactions occurring at microscopic states, going from the rela-
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tionship between the virus and the immunological system (within-host dynamics)

toward the population dynamics (between-host dynamics). The KTAP approach

has been successfully employed to innovatively model the contagion dynamics of

the COVID-19 spreading.8,10 The second approach is the complex system analy-

sis of social networks which has seen in the last decades an increasing number of

studies documenting the network properties of social relationships, quite far away

from homogeneous distributions, and in general characterized by repeated, struc-

tured and clustered contacts.31 Both approaches share the view of biological and

social organizations as complex systems, often evolving, and indeed provide many

common interpretations of real world phenomena.

Simulation-based results of the developed model support the role played by net-

work structure in affecting the social distancing policies implemented during the

pandemic. In particular, comparing random, scale-free and small-world graphs, we

study the dynamics of contacts occurring among the four different types of nodes

above mentioned, each of them characterized by different size, immunity of the pop-

ulation and probability of contacts with other nodes. The dynamics of the epidemic

is studied with reference to crucial parameters influencing the network structure and

connectivity, mainly the wiring probability and the degree (number of contacts).

Inside alternative contact matrices we study the impact of closures of different

nodes upon the overall contagion dynamics. As we shall show, social distancing

is more effective when targeting the reduction of contacts among and within the

most vulnerable nodes, namely hospitals/nursing homes. On the other hand, school

closures do not appear to be the most effective policy measure, not affecting sig-

nificantly the reduction of deaths in the population. Finally, we experiment with a

set-up on immunization in order to understand the effectiveness of targeted vacci-

nation policies towards the most vulnerable individuals. According to our model,

vaccinating first the most vulnerable segment of the population has an important

role to reduce deaths in the population.

The paper is structured as follows. Section 2 discusses the two modeling

approaches integrated in this paper. Section 3 presents the model and its dynamics,

and Sec. 4 presents simulation results on social distancing and vaccination. The last

section concludes this work.

2. KTAP and Complex Networks

The kinetic theory of active particles9 represents a powerful avenue to formalize

processes of contagion and progression of infections. This approach shares with the

classical kinetic theory12 the representation of a large system of interacting entities

by a distribution function over their individual state at the microscopic scale. The

dynamics is obtained by equating the time derivative of the distribution function

to the difference between the inlet and the outlet flux in an elementary volume of

the space of the microscopic states.

References 9 and 28 present an overview of the applications and covered domains

in which the KTAP has been employed, ranging from socio-economic systems11,17,27
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to models of mutating virus16 and bacterial antibiotic resistance.25 A unified

multiscale vision of behavioral crowds using the KTAP approach is presented in

Ref. 4, while Ref. 24 focuses on the study of contagion in crowds, where the inter-

nal state of particles is given by the awareness to the risk of contagion. Unlike

the standard kinetic theory,12 the microscopic state is not only identified by the

position and velocity of the particles, but it also includes a vector of additional

variables, called activity, which models the forms of interactions. The whole system

can be subdivided into groups of interest called functional subsystems, in short,

FSs. Additionally, interactions, which in the classical kinetic theory are governed by

basic principles of classical mechanics, in the active particles (in short a-particles)

approach are modeled by stochastic interactions, wherein actors/agents are iden-

tified by distribution functions. In so doing, interactions do not simply involve

individual entities but also collections of them.

Irreversibility of the interaction processes and potential state-dependent param-

eters fuel the non-linear nature of the approach, increasing the level of complexity

and calling for a computational analysis. Indeed, diverse types of behaviors of agents

and more generally system complexity5 might be appropriately modeled.

In the following, inspired by Ref. 9, our mathematical derivation will avoid

mean-field approximations to let extreme behaviors emerge. The sequential steps

of the derivation of the model include:

(1) Representation of the functional subsystems involved in the dynamics, where

FSs are constituted by active particles, and where each FS expresses one or

more functions defined as activities.

(2) Derivation of a mathematical structure suitable to describe the dynamics of the

dependent variables derived in the first step.

(3) Specification of individual interactions by inserting them into the general math-

ematical structure derived in the second step.

From the KTAP approach to complex networks, the extensive review in Ref. 31

discusses the advances made in integrating classic mathematical models of epidemic

spreading (SIR or SIS types) with complex networks. As acknowledged by the

authors such research path gave origin to a long series of results and modeling

techniques quite scattered among different disciplines. In summary, the integration

of epidemic models with network structures has been systematized in three different

approaches.

Individual-based mean-field (IBMF) whose basic idea is to build evolution equa-

tions for the probability of a given individual (node) to belong to a given com-

partment, assuming independence from the state of each node with respect to its

own neighborhood. The method is akin to mean-field theory assuming factoriza-

tion between probabilities and it has been mainly used to find solutions in static

networks.

To study the evolution of dynamical processes on networks it has been employed

the Degree-based mean-field (DBMF) which instead of working at the individual
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level, it assumes that all nodes of the same degree are statistically equivalent,

therefore variables are specified at the degree and not at the individual level. The

approach deals with the probability that a given individual with a given node degree

belongs to a given compartment. In this case, the adjacency matrix is not expressed

in terms of individual contacts, but rather in terms of average contacts among

nodes of different degrees. The approach is used to describe processes of epidemic

diffusion occurring at a lower time scale than interaction dynamics, as in this case,

the network, although maintaining its distribution, is always rewired.

The third approach is the Generating function which is used to describe a prob-

lem of percolation inside a network. In this case, the link between two nodes depends

on the probability of transmission of the disease from one infectious node to a

susceptible one. It therefore nests contagion and contact in the same probability.

Although advancing with respect to homogenous SIS/SIR models, such types of

modeling attempts mainly make heterogeneous the transition probability of belong-

ing to each of the compartment, or alternatively link the creation of the network

structure with the propagation of the virus.

Compared to the extant modeling approaches, the following model presents

many different characteristics:

• The model completely detaches the process of virus propagation from the struc-

ture of interactions among individuals.

• The propagation of infection is based on entity-level differential equations which

define endogenous transition probabilities different across entities.

• The dynamics of contagion is then nested into the dynamics of complex networks,

which dynamically evolve.

• The model entails alternative micro-meso-macro levels of interactions:

— within-host (virus versus antibodies);

— between-individual (different functional subsystems);

— within-node, whereby nodes represent different structures/places, and not

individuals;

— between-node, whereby each node is linked to neighbors on the basis of the

underlying network structure;

— population level dynamics in terms of overall number of infected, recovered,

susceptible, deceased cases.

Given that the characterization of each node is not in terms of single individ-

uals but rather in terms of populations/places, and considering that each node is

populated by individuals (particles) which can move connecting two nodes of the

network, our model is more akin to a particle-network metapopulation approach.

This framework considers that particles inside each given node may react accord-

ing to specific mechanisms, while across nodes diffuse creating edges depending on

the attributes of the nodes, mainly degree. This representation makes the whole

system of epidemic spreading similar to a reaction-diffusion model. When applied

to SIR, it has been shown that metapopulation models present threshold points in
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determining the outbreak of the epidemic, also labeled invasion threshold depending

on the mobility between nodes.36

3. The Mathematical Model

Let us consider a population of spatially homogeneous distributed individuals. Each

individual can belong, at each time t, to one of the following compartments or FSs:

susceptible (S-FS), infected (I-FS), recovered (R-FS) or deceased (D-FS). The S-FS

is assumed to have only an outlet flow (into the I-FS), while R-FS and D-FS have

only an inlet flow (from I-FS), i.e. we assume that recovered individuals get a long

lasting immunity and remain in that compartment, as schematized in Fig. 1.

The micro-state of every individual is described by a variable w ∈ [0, 1] cor-

responding to the level of activation of the immune defense. It is convenient to

discretize into a set

w =

{
w1 = 0, . . . , wk =

k − 1

n− 1
, . . . , wn = 1

}
,

such that n risk groups (e.g. according to age or presence of co-morbidities) are

considered. In this way, w1 = 0 and wn = 1 correspond, respectively, to the lowest

and highest immune system activation.

In addition, within the I-FS individuals are also characterized by a variable

u ∈ [0, 1] representing the level of progression of the viral infection (e.g. from mild

to severe). If m possible states are considered, we have

u =

{
u1 = 0, . . . , up =

p− 1

m− 1
, . . . , um = 1

}
.

Here, if an individual reaches the state u1 = 0 we assume that it is recovered from

the infection (transition into R), while reaching the state um = 1 implies a decease

(transition into D).

The representation of the system is given by the following distribution functions:

— fkS(t) is the probability to find, at time t, a susceptible individual with micro-

state wk. Susceptible population at time t, fS(t), is simply computed by the

zeroth order moment
∑n

k=1 f
k
S(t).

u1 u2 uj−1 uj uj+1 um−1 um

βγαk

Fig. 1. (Color online) Susceptible individuals can get infected with an infection rate αk, entering
to the infected compartment with state u2. Then, competitive interactions between the virus that

replicates with rate β towards more aggressive states and the immune system which acts with rate

γ may end up with a transition into the R or D compartments.
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— fp,kI (t) is the probability to find, at time t, an infected individual with micro-

state (up, wk). Prevalence at time t is given by fI(t) =
∑n

k=1

∑m−1
p=2 fp,kI (t).

— fkR(t) is the probability to find, at time t, a recovered individual with micro-

state wk. The cumulative recovered population, fR(t), is simply computed by

the sum
∑n

k=1 f
k
R(t).

— fkD(t) is the probability to find, at time t, a deceased individual with micro-state

wk. As for the recovered, the cumulative deceased population fD(t) is given by∑n
k=1 f

k
D(t).

The system of equations representing the evolution of the distribution functions,

whose derivation can be followed in details in Ref. 8, is given by

d

dt
fkS(t) = −

n∑
l=1

m−1∑
q=2

αkuqf
k
S(t)fq,lI (t),

d

dt
fp,kI (t) =

n∑
l=1

m−1∑
q=2

αkupf
k
S(t)fq,lI (t)δ2p + βup−1f

p−1,k
I (t)

+ γwkf
p+1,k
I (t)− βupfp,kI (t)− γwkf

p,k
I (t),

d

dt
fR(t) = γ

n∑
k=1

wkf
2,k
I (t),

d

dt
fD(t) = βum−1

n∑
k=1

fm−1,k
I (t),

(3.1)

where for (3.1)1 one has k = 1, . . . , n, while for (3.1)2 one has p = 2, . . . ,m− 1 and

k = 1, . . . , n. Equation (3.1)1 describes the infection of susceptible individuals due

to interactions with infected ones. Equation (3.1)2 describes the dynamics within

the infected population. The factor δ2p denotes a Kronecker delta function, mean-

ing that the entry state immediately upon infection is u2, and from that state a

competitive interaction between viral particles and the immune system begins, as

illustrated in Fig. 1. Then, Eqs. (3.1)3 and (3.1)4 give the inlet flows into recovered

and deceased classes, respectively, as a result of the aforementioned competitive

interactions. Regarding model parameters, αk is the infection rate of individuals

with micro-state wk, β is the viral progression rate and γ the immune action rate

towards recovery.

3.1. Network structure

Let us now consider that the dynamics described above takes place within several

nodes of an undirected weighted network G = (V,E), where V is a set of N nodes

and E is a set of edges joining some pairs of nodes. Let A = [aij ]i,j=1...,N be the

adjacency matrix of G, such that its elements indicate whether pairs of vertices are

linked or not. The entries of the adjacency matrix are equal to zero if there is no
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edge linking nodes i and j, while they are positive if i and j are linked through

an edge. The existence of a link between two nodes implies that the epidemic may

spread with positive probability from one to the other. We make the following

assumptions:

• Entries aij ∈ [0, 1] weigh the “intensity” of the interaction between nodes i and j.

• Within each node there is a subpopulation of individuals belonging to one of the

classes S, I, R or D.

• To keep the model as a generalization of the one presented above, there is an edge

connecting each node to itself, namely a self-loop. Let aii = 1 for i = 1, . . . , N .

• The network is undirected. Consequently, A is symmetric.

Let fkiS , fp,kiI , fiR and fiD denote the distribution functions of susceptible,

infected, recovered and deceased individuals within node i, for i = 1, . . . , N ,

k = 1, . . . , n and p = 1, . . . ,m. The system (3.1) can be now formulated for the

entire network as follows:

d

dt
fkiS(t) = −

N∑
j=1

n∑
l=1

m−1∑
q=2

aijα
k
i uqf

k
iS(t)fq,ljI (t),

d

dt
fp,kiI (t) =

N∑
j=1

n∑
l=1

m−1∑
q=2

aijα
k
i upf

k
iS(t)fp,ljI (t)δ2p + βup−1f

p−1,k
iI (t)

+ γwkf
p+1,k
iI (t)− βupfp,kiI (t)− γwkf

p,k
iI (t),

d

dt
fiR(t) = γ

n∑
k=1

wkf
2,k
iI (t),

d

dt
fiD(t) = βum−1

n∑
k=1

fm−1,k
iI (t),

(3.2)

where αk
i is the contagion rate of individuals with state wk within node i.

Model parameters and variables are summarized in Table 1.

Table 1. Model parametrization.

Parameter Meaning

n Number of immune states

Iw = {w1, . . . , wk, . . . wl, . . . , wn} Immune states

m Number of states of viral progression
Iu = {u1, . . . , up, . . . uq , . . . , um} Viral progression states

N Network size
A = [aij ] Adjacency matrix
αk
i Infection rate for individuals with state wk within node i

β Disease progression rate
γ Immune action rate
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3.2. Within node dynamics

In order to characterize each node as a distinct metapopulation, we consider four

classes of nodes which are distinguished in terms of three attributes, namely, size

(number of individuals inside each node), distribution of immunity which is a proxy

for age and presence of other co-morbidities, multiplicity of each class of node. To

sum up, we include in the model:

• Household: this node is the most copious, each of them populated by few individ-

uals, whose immunity is distributed according to a symmetric distribution, with

far from the average values quite unlikely. Being families characterized by indi-

viduals of different ages, their immunity distribution is expected to be well-mixed

(see Fig. 2(a)).

• School: this node is characterized by a higher number of individuals compared to

households and presents a right-skewed immune distribution, with higher values
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Fig. 2. (Color online) Frequency distribution of immunity levels wk (left panel) for each node

type, and cumulative infected, recovered and deaths (right panel) assuming initially one infected
individual in the node.
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Fig. 2. (Continued)

more probable than lower ones, in line with the empirical evidence according to

which infection rates are lower among younger people (see Fig. 2(b)).

• Hospital/nursing home: this node is characterized by a higher number of individu-

als compared to households and presents a left-skewed immune distribution, with

lower values more probable than higher ones, in line with the empirical evidence

according to which infection rates are higher among the elderly or patients already

exposed to other co-morbidities. Therefore, the higher infection rate emerging

out of a left-skewed immune distribution might reflect either an older population

(nursing homes) or the presence of individuals with other co-morbidities (hospi-

tals), as shown in Fig. 2(c). For the sake of simplicity, we will call this group as

hospital throughout this manuscript.

• Company: this node is characterized by a higher number of individuals compared

to households and presents a symmetric immune distribution with far from the

average values quite unlikely. Being companies characterized by individuals of

different ages, but generically of ages comprised in the range 20–65 years, their

immunity distribution is expected to be well-mixed as families (see Fig. 2(d)).
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Table 2. Parametrization of each node type.

Node type Node population Immune distribution Color code

Household 5 Centered Green

School 150 Skewed-right Blue
Hospital 150 Skewed-left Red

Company 150 Centered Black

In order to avoid mixing different attributes at the same time, we parametrize

immunity equally distributed in households and companies; additionally we set the

same size in terms of number of individuals for companies, hospitals and schools.

The final parametrization is presented in Table 2.

Figure 2 shows the immune distribution of the population within each of the

different node types as well as the dynamics of cumulative infected, recovered and

deceased cases, assuming in all cases 1 initial infected individual. A common feature

across all four nodes is the emergence of an outburst in the period 50–100, with

however different shapes across nodes with schools converging at a much slower

rate, less concave when compared to the rest.

A strong heterogeneity emerges when looking at different within-node dynamics.

With reference to nodes of the same size but different in immunity distribution,

the latter clearly influences not only the speed of diffusion, but also the overall

fraction of infected and deceased cases, ranging from almost the total in hospitals

to one third in schools in case of infected, and from two to fifty deaths from schools

to hospitals. When comparing nodes of different size but with the same immunity

distribution, households and companies present the same fraction of deceased cases

(one-tenth), while the number of individuals in each cluster only influences the

speed of diffusion, without altering the shape.

The within-node dynamics is governed by the interaction rate parameter αk
i

which has been on purpose kept equal across all nodes, therefore heterogeneity

mainly derives from different immunity distributions.

3.3. Network dynamics

Once defined the dynamics in each node, we open the structure of interrelationships

allowing for contacts across different populations, each located inside a different

node and now having the chance to move reaching another node.

In order to characterize the structure of interactions, we start with the easiest

network topology, considering zero clustering and a Poisson distribution of contacts,

namely the Erdös–Rényi (ER) graph (see Fig. 3) which assumes that contacts occur

with a completely random order.

A random network consists of N nodes where each node pair is connected with

wiring probability p. Each node is statistically equivalent to another. Such a network

can be constructed as follows6,20:

(1) Start with N isolated nodes.
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Fig. 3. (Color online) Random network with N = 20 and p = 0.15. The color node code is: green

= household; blue = school; red = hospital; black = company.

(2) Select a node pair and generate a random number between 0 and 1. If the

number exceeds p, connect the selected node pair with a link, otherwise leave

them disconnected.

(3) Repeat the previous step for each of the N(N − 1)/2 pairs of nodes.

Figure 3 illustrates a random network obtained with N = 20 nodes and wiring

probability p = 0.15. Each node belongs to one of the categories introduced above,

namely household (green), school (blue), hospital (red) and company (black). In

this case, a category was randomly assigned to each node in such a way that 15 of

them are households, while the other 5 are distributed among the other categories.

Dynamics for a single realization of the experiment with N = 200 is shown in

Figs. 4 and 5, where low and high wiring probabilities are considered. Most of the

nodes are assumed to be households, with a lower number of schools, hospitals and

companies, as may be the case e.g. of a neighborhood. A first result is that under a

low wiring probability (cf. Fig. 4), connecting the previously isolated nodes, instead

of making the outbreak exploding actually reduces the spreading with respect to

the case of isolated nodes. Notably, the number of infected individuals is quite low

and no outburst of the epidemic occurs. The result is in line with the literature doc-

umenting that introducing some forms of heterogeneity in the structure of contacts

reduces the outbreak.34 However, when looking at a very high wiring probability

(cf. Fig. 5) a different dynamics emerges with a large cumulative fraction of infected

and deceased cases.

Figure 6 shows the final epidemic size and cumulative deaths for many realiza-

tions of the random network with different wiring probabilities. A strong threshold

effect in the dynamics of the epidemic is visible: in order to have an actual outburst

the wiring probability needs to reach 50% meaning that each pair of individuals of

different nodes have a probability to meet in one case over two. Threshold effects are

quite expected in such type of modeling approach and there exist two limit cases:

if p = 0 the epidemic will remain confined in each of the population nodes, without

diffusing, under p→ 1 the epidemic will spread across all-over the nodes because all

individuals visit each node with certainty. In our case p ∈ [0.4, 0.5] defines the tran-

sition point, or global invasion threshold at which the epidemic spreads.31 A strong

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
21

.3
1:

24
25

-2
45

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 4

5.
71

.5
.1

0 
on

 1
0/

12
/2

2.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



December 18, 2021 19:24 WSPC/103-M3AS 2150052

A multiscale network-based model of contagion dynamics 2437

0 100 200 300 400 500
time

0

0.5

1

1.5

2

2.5

3

I(
t)

p = 0.1
p = 0.2
p = 0.3

0 100 200 300 400 500
time

0

5

10

15

I cu
m

u(t
)

p = 0.1
p = 0.2
p = 0.3

(a) Infected (b) Cumulative infected

0 100 200 300 400 500
time

0

5

10

15

R
(t

)

p = 0.1
p = 0.2
p = 0.3

0 100 200 300 400 500
time

0

0.5

1

1.5

2
D

(t
)

p = 0.1
p = 0.2
p = 0.3

(c) Recovered (d) Deceased

Fig. 4. (Color online) Random network with N = 200 and p = 0.1, 0.2, 0.3, with 195 households, 2

schools, 1 hospital and 2 companies. The total population is 1725 with 5 initial infected individuals.
Parameter values are αk

i = 0.4, β = 0.1 and γ = 0.2. Curves represent (a) Prevalence I(t), (b)

Cumulative infected Icumu(t), (c) Recovered R(t) and (d) Deceased D(t).

correlation indeed emerges between increasing wiring probabilities and fraction of

infected/deceased cases, corroborating the role played by the topological structure

of the network.

In order to experiment with the role played by the latter network structure,

we now construct a Watts–Strogatz (WS) diffusion process to link the nodes (see

Fig. 7). Such network is a random graph with small-world graph properties, such

as clustering and short average path length.38 A small world network with N nodes

is constructed in the following way29:

(1) Create a ring lattice with N nodes of mean degree 2K. Each node is connected

to its K nearest neighbors.

(2) For each edge in the graph, with independent and uniform probability p̃, that

edge is removed and replaced by a new edge between two nodes that are chosen
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Fig. 5. (Color online) Random network with N = 200 and p = 0.5, 0.7, 0.9, with 195 households, 2

schools, 1 hospital and 2 companies. The total population is 1725 with 5 initial infected individuals.
Parameter values are αk

i = 0.4, β = 0.1 and γ = 0.2. Curves represent (a) Prevalence I(t), (b)

Cumulative infected Icumu(t), (c) Recovered R(t) and (d) Deceased D(t).

uniformly at random from the N nodes, without duplicating or self-looping

edges.

In this way, when p̃ = 0, a ring graph in which each node is coupled to its

K nearest neighbors is obtained. On the other hand, when p̃ = 1, the result is a

random graph.32 The topology of a small-world network is illustrated in Fig. 7 for

N = 20, K = 2 and two different wiring probabilities.

Finally, we experiment with large connectivity of few hubs and low connectivity

of the majority of nodes, as represented by the case of scale-free networks, shown in

Fig. 8. The following algorithm produces a Barabási–Albert (BA) undirected scale-

free network of size N . It begins with an initial network of size m0 and then N−m0

nodes are introduced sequentially into the network, where each node connects with

m∗ ≤ m0 existing nodes. Note that it is typical to choose m0 = m∗. One cannot

choose m∗ > m0 as then the first new node introduced cannot be assigned m∗ edges.
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(a) Final epidemic size versus wiring probability
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(b) Cumulative deaths versus wiring probability

Fig. 6. (Color online) (a) Final epidemic size and (b) Cumulative deaths versus wiring probability,
for 200 realizations of the random network. Spearman correlation coefficient of 0.75.

Thus, the initial network size m0 determines the maximum mean degree of the

network. The m∗ existing nodes are chosen with a probability which is proportional

to their current degree; the combination of network growth with this preferential

attachment is what leads to a power-law degree distribution.7 We have adapted

the algorithm by Ref. 37 based on Ref. 33. The topology of a scale-free network is

illustrated in Fig. 8 for N = 20, m0 = 3 and two different preferential attachment

values m.
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(a) p̃ = 0 (b) p̃ = 0.1

Fig. 7. (Color online) Watts–Strogatz small world network with N = 20, K = 2 (the mean degree
is thus 4) and wiring probabilities (a) p̃ = 0 and (b) p̃ = 0.1. The color node code is: green =

household; blue = school; red = hospital; black = company.

(a) m = 1 (b) m = 3

Fig. 8. (Color online) Scale free Barabasi Albert network with N = 20, m0 = 3 and (a) m = 1,

(b) m = 3. The color node code is: green = household; blue = school; red = hospital; black =
company.

Comparing different network structures in Fig. 9, showing an ER, a WS small

world and a scale-free BA graph, we do not observe any systematic difference in the

overall dynamics, as far as the three graphs are parametrized in “comparable” way.

This suggests that the dynamics and eventual outbreak of the disease depend on

the network connectivity. Therefore in Fig. 10 we show the final size of cumulative

infected (here we kept only the figures for infected cases in order to have a better

resolution, since deceased show the same dynamics) as a function of three alternative

measures of centrality, namely mean degree, mean closeness and mean betweenness

for an ensemble of realizations of the model with the three graphs.

For each graph, centrality of a node represents how much the node of interest is

influential in spreading the virus. Centrality might be measured by the mean degree

which defines the probability that a randomly chosen vertex has degree k, mean

closeness which defines how much a node is close to another on average in terms of

shortest paths, mean betweenness which defines the average importance of a node

with respect to others in terms of connections it captures as shortest paths, that is

the amount of information the node controls. The experiment, which is run under

randomly chosen parameters (differently from the one presented in Fig. 9 which

confronts comparable parametrizations) reveals that

• Threshold (phase-transition) behaviors are present independently of the graph

under study and occur in the proximity of similar values of mean degree, closeness

and betweenness.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
21

.3
1:

24
25

-2
45

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 4

5.
71

.5
.1

0 
on

 1
0/

12
/2

2.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



December 18, 2021 19:24 WSPC/103-M3AS 2150052

A multiscale network-based model of contagion dynamics 2441

0 100 200 300 400 500
time

0

20

40

60

80

100

120

I(
t)

Watts-Strogatz
Erdos-Renyi
Barabasi-Albert

0 100 200 300 400 500
time

0

200

400

600

800

1000

1200

1400

I cu
m

u(t
)

Watts-Strogatz
Erdos-Renyi
Barabasi-Albert

0 100 200 300 400 500
time

0

200

400

600

800

1000

1200

R
(t

)

Watts-Strogatz
Erdos-Renyi
Barabasi-Albert

0 100 200 300 400 500
time

0

50

100

150

D
(t

)

Watts-Strogatz
Erdos-Renyi
Barabasi-Albert

Fig. 9. (Color online) Infected, cumulative infected, recovered and deceased cases for three dif-
ferent types of networks with N = 200, same number of nodes of each type and of initial infected

individuals: random graph with p = 0.75, WS with K = 70, p̃ = 0.1, BA with m0 = m∗ = 90.
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(a) Final epidemic size versus mean degree

Fig. 10. (Color online) Proportion of long time cumulative infected as a function of (a) mean

degree, (b) mean closeness and (c) mean betweenness, for three different types of networks: ER
(blue circles), WS (black squares), scale-free (red diamonds). Each realization generates a graph

with randomly chosen parameters.
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(b) Final epidemic size versus mean closeness
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(c) Final epidemic size versus mean betweenness

Fig. 10. (Continued)

• Degree and closeness centralities positively correlate with the outbreak after

a given threshold is reached, independently from the graph under study: the

higher the number of edges for each node or the closeness between two nodes, the

higher the possibility of the outburst, but only after a given threshold parameter.

On the other side, below a certain threshold, reducing the number of links or

making them more distant is irrelevant in affecting the shape of the epidemic.

• Betweenness centrality negatively correlates with the outbreak after a given

threshold is reached independently from the graph under study. Notice that the

betweenness of a node is calculated as the proportion of shortest paths in the
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network that pass through it. Nodes with large betweenness centrality value often

act as bridges between distant clusters but have small degrees. Thus, networks

with large mean betweenness resemble one-dimensional grids, explaining the neg-

ative correlation with the outbreak.

4. Social Distancing and Vaccination

Taking as a departure point the random network with the same features as in

Fig. 5, some experiments are now conducted in order to analyze different ways

of reducing contacts. Given the structure of our model, social distancing might

be performed under alternative strategies: (i) reducing between-node contacts, (ii)

reducing within-node contacts, (iii) reducing both within- and between-node con-

tacts, (iv) comparing reduction of contacts among alternative nodes, (v) targeting

specific nodes.

4.1. Between-node contacts reduction

We start by experimenting with the strategy of between-node contacts reduction.

Here, we exclude contacts reduction from and toward households since, given the

symmetric property of the adjacency matrix, it will entail the unreasonable scenario

of preventing individuals to reach their home. Note also that households have the

same qualitative dynamics of companies, being characterized by the same immune

distribution (cf. Fig. 2).

Figure 11 shows the effect of reducing the weights of the edges connecting alter-

native nodes. While aii is kept equal to 1 for all i = 1, . . . , N , aij (i 6= j) now

takes different weights from 0.6 to 1 from a given “locking time”, supposed to be at

Tlock = 100. The reduction of weights from 1 to 0.6 effectively reduces the spread-

ing of the epidemic with substantial impacts in terms of cumulative infected and

deceased cases, almost halved when reducing the between-node propagation. It is

worth mentioning that the entries of the adjacency matrix are changed in such a

way that it preserves the symmetry.

We now move to analyze which type of between-node contacts reduction is more

effective. Figure 12 shows, respectively, the scenario in which only schools (first

row), only hospitals (second row) or only companies (third row) are closed (100%

closure) or partially closed (50% closure), while the rest of nodes keep receiving

flows of individuals. Comparing contacts reduction in terms of alternative nodes,

school closures appear to be the less effective in terms of reducing the number of

cumulative infected and deceased cases: particularly in terms of deaths we observe

that a reduction of the weights of connections toward schools from 1 to 0 marginally

affects the total number of deceased cases in the system. At the opposite, the

reduction of weights connecting hospitals from 1 to 0 strongly affects the number

of deaths, while company closures represent an intermediate case, for sure more

effective than school closures in containing the epidemic. Recall that the three nodes

are differentiated only in terms of the immunity distribution, while the size and
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Fig. 11. (Color online) Infected, cumulative infected, recovered and deceased cases in a weighted
Erdos–Renyi random network with N = 200 and p = 0.9. From Tlock = 100, weights are reduced

to 0.8 and 0.6. The yellow curve shows the scenario without weight reduction.

the numerousness among them is comparable. Therefore, the latter heterogeneous

effects are only due to the within-host dynamics affected by different immunity

distributions.

Figure 13 compares one by one node closures under the three alternative net-

work configurations in order to study the robustness of our results and to detect

the extent to which different connectivity might play a role. In all three studied

networks, school closures are the less effective social distancing strategy particularly

in affecting the number of deaths.

4.2. Between-node versus within-node contacts reduction

The next experiment consists in comparing the effects of reducing between-node

contacts versus reducing the intensity of interactions inside each node. The exper-

iment allows to understand the extent to which it is more effective mitigating the

spreading of the contagion inside each node or conversely the diffusion across nodes.

The trade-off is not trivial since lockdown policies restricting the access to different

nodes are socially more strenuous than controlling interactions inside each node.
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Fig. 12. (Color online) Cumulative infected and deceased cases in a weighted Erdos–Renyi ran-
dom network with N = 200 and p = 0.9. Scenarios showing no closure (yellow), 50% closure (red)
and 100% closure (blue) of schools (a) and (b), hospitals (c) and (d) and companies (e) and (f),
at Tlock = 100.
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(c) Watts–Strogatz - Cum. Infected (d) Watts–Strogatz - Deceased
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Fig. 13. (Color online) Cumulative infected and deceased cases in a weighted Erdos–Renyi ran-
dom network with N = 200 and p = 0.9 (a) and (b), Small world Watts–Strogatz network with
N = 200, p = 0.1 and K = 70 (c) and (d), Scale-free Barabasi Albert network with N = 200,

m0 = m1 = 90 (e) and (f). Scenarios show a 50% closure of schools only, hospital only and

companies only at Tlock = 100, contrasted to the scenario without weight reduction.
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Fig. 14. (Color online) (a) Infected, (b) Cumulative infected, (c) Recovered and (d) Deceased

cases in a weighted Erdos–Renyi random network with N = 200 and p = 0.9. At time Tlock = 100,
assuming a 25% reduction for each considered scenarios: social interactions αk

i (red), edges weights

(yellow) and the total number of edges randomly reduced (purple). The scenario with no reduction
is shown in blue.

Results are presented in Fig. 14 where we compare three alternative scenarios

under a common random graph. At time t = 100 the lockdown might consist in

(a) reducing social interactions within each node via the parameter αk
i ;

(b) reducing the diffusion across nodes via weights in the adjacency matrix;

(c) reducing the number of edges that connect nodes.

In all three cases the reduction is set at 25%. Acknowledging that strategy (c) is the

most invasive for society since it implies the deterministic deletion of some edges,

in our case identified randomly but potentially identifiable also on the basis of node

centrality (so called hubs), strategy (b) results indeed to be less effective than (a)

in mitigating the overall diffusion. In fact, reduction of interactions inside nodes

not only mitigates the peak of infection but also delays it.
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Having considered alternative ways to undertake lockdown measures and their

effectiveness, we now present the scenario in which the lockdown strategy is consid-

ered to be the most effective. We label this experiment as “protecting the vulnera-

ble” and we introduce a set-up in which we compare reduction of social interactions

for the vulnerable segment of the population, denoted by α1
i , and reducing weights

of edges connecting to hospitals (cf. Fig. 15). In both cases the reduction was done

at 50%. While the first experiment is directed in controlling virus diffusion among

the most vulnerable segment, the elderly or people affected by co-morbidities, the

second experiment allows to reduce the access to hospitals/nursing homes to avoid

the possibility of spreading the infection in such places. From the model results,

coupling the two strategies would be the most effective policy in mitigating the

number of deaths.
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Fig. 15. (Color online) Protecting the vulnerable. (a) Infected, (b) Cumulative infected, (c)

Recovered and (d) Deceased cases in a weighted Erdos–Renyi random network with N = 200 and

p = 0.9. At time Tlock = 100, a reduction of 50% is considered for two scenarios: social interactions
involving the most vulnerable population αi

1 (red) and weight of edges connecting to hospitals

(yellow). The scenario with no reduction is shown in blue.
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4.3. Vaccination

The final experiment we conduct consists in analyzing the impact of vaccination

targeting a given population. Defining the target population from which starting

the vaccination is a complex task from a health management point of view and

there have been different possibilities on how to do it. In Ref. 15 two alternative

strategies have been discussed, assuming that vaccines are able to protect against

disease and infection, either (i) the immunization of the most vulnerable segment

of the population or (ii) the immunization of super-spreaders, which according to

the 80–20 Pareto law of cumulative processes,15 represent the 20% fraction of the

population responsible for 80% of infections.

Although the existing COVID-19 vaccines are reported with remarkable effec-

tiveness against severe disease and death, the sterilizing immunity, occurring when

vaccinated individuals cannot transmit the virus, conferred by these vaccines are

still being evaluated. Our model considers an imperfect vaccine with vaccinated

individuals able to transmit the disease even when a certain level of immunity is

acquired. Here, our baseline assumption is that immunizing primarily the vulner-

able individuals would reduce deaths, whereas immunizing primarily the so called

“super-spreaders” would contain the diffusion of the disease.

According to our model, virus transmission does not only depend on the number

and structure of contacts, as the super-spreader strategy would entail, but also on

the biological evolution of the virus. The within-host dynamics is equally if not

more important than the structure of contacts in determining the transmission:

most vulnerable individuals not only have higher chances to get infected but also of

die out of the infection. Additionally, this fraction is not only more vulnerable but

also more contagious because of high viral loads concentrating in elderly residency

and hospitals.

In order to test the effectiveness of targeted vaccination toward the most vul-

nerable segment of the population, we define an experiment according to which

• We employ the ER random network with N = 200 and p = 0.9 as a sample

graph (see Fig. 5).

• Each realization of the experiment consists in choosing randomly a proportion

of the total nodes, and within the chosen nodes we “vaccinate the vulnerable

individuals”. We model the effect of vaccination “moving” those individuals

with states w1 and w2 to the highest level wn.

After 200 realizations of the experiment, we get the results shown in Fig. 16. The

Spearman correlation coefficient is around −0.9. The reduction in terms of infected

and deceased cases strongly increases with the number of vaccinated nodes just

immunizing a small fraction of the population inside each node. The number of

vaccinated people for each realization depends on the randomly chosen nodes and

can be computed by looking at how many individuals belong to the classes w1 and

w2 for each node type (see left panel in Fig. 2). Note that nodes have not been
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(a) Final epidemic size
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(b) Cumulative deceased cases

Fig. 16. (Color online) (a) Final epidemic size and (b) Cumulative deceased cases versus fraction
of vaccinated nodes for 200 realizations of the experiment. Spearman correlation coefficient of

−0.9 in both cases. Blue markers represent the output of each realization and the red curve is a

sigmoidal LSQ robust filter.

targeted in this experiment but chosen randomly. We fit by means of a Least Squares

(LSQ) robust filter the scattered points obtained under repeated MC realizations:

a deterministic sigmoidal filter well approximates the dynamics signaling that the

variance across realizations does not explode.

Even in this random set-up, which does not start from e.g. hospitals/nursing

homes, protecting the vulnerable contributes significantly in reducing the burden

of the epidemics in terms of deaths.
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5. Conclusions

Lockdown and vaccination policies have been the major concern in the last year in

order to contain the SARS-CoV-2 transmission. We present a model able to study

the impact of different lockdown policies and vaccination strategies. It integrates

and refines the multiscale approach presented in Ref. 8 by means of alternative

network structures, therefore bridging two perspectives to study complexity of liv-

ing systems.9 While the multiscale approach allows to tackle both the within- and

between-host dynamics, modeling the problem of virus propagation as a competi-

tion process between immunity and the virus itself, contacts among individuals are

structured within nodes via a constant probability, and across nodes via network

dynamics. Additionally, we characterize four alternative nodes in terms of their

size and immunity distributions, namely households, companies, schools and hospi-

tals/nursing homes. Methodologically, our model can be seen as a metapopulation

multiscale model able to interact biological and social dynamics.

Simulation results have shown that protecting the vulnerable hub, namely hos-

pitals/nursing homes by reducing their contact with the other hubs and contacts

within the hub, would influence significantly the reduction of deaths, whereas reduc-

tion of contacts toward the most heterogeneous hubs, namely schools and compa-

nies, would not affect the number of decease cases as much, but rather influencing

on disease transmission. Clearly, controlling the diffusion of the virus inside nodes

is very important and effective in containing the epidemics.

Moreover, the within-host dynamics allows to implement vaccine administra-

tion and to evaluate the impact of different strategies, which we are able to study

acting on the immunity distribution of individuals. We show that immunizing the

most vulnerable segment of the population is very effective in reducing deaths and

eventually transmission.

Lockdowns are carriers of an enormous mental stress at the societal level and

therefore must be limited and properly planned to be effective. They have inequality

enhancing effects, impinging more on children and the youth, women and migrants.

In terms of social side-effects, lockdowns have to be assessed in light of (i) the low

efficacy they have when put in place generically, without targeting specific segments

of the population (nodes in our modeling set-up), (ii) the challenge they repre-

sent for early stage education because of school closures, hardly substitutable via

online schooling for the majority of pupils.22,30,35 In terms of economic side-effects,

lockdowns enormously exacerbate disparities among those who can telework, main-

taining income and job security, versus those who cannot, at risk of unemployment

and income losses.13 In the last year, workplace safety, particularly in segments like

logistic and food processing, has been largely missing and this calls again for the

implementation of targeted policies at workplaces well beyond lockdowns.14,19

Studies like the one described here are of major importance to understand

the dynamical behavior of epidemics in a population. As an example, our model

allows to study the role played by workplaces as hubs of virus spreading and have
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showed that mitigating accesses to companies is indeed more effective than reducing

accesses to schools. Moreover, our model also shows that prioritizing vaccination

towards the most vulnerable is the most effective strategy to reduce severe cases

and deaths.

From a global health-management perspective, although after six months many

rich countries got decent immunization rates, the majority of developing countries

still misses vaccines. Under vaccine scarcity, immunizing the most vulnerable seg-

ments in less-developed areas of the globe should be the priority. Therefore, plans

to make vaccine production free and easily replicable, relaxing intellectual property

rights and promoting transfer of know how should be encouraged by international

institutions, starting with the World Trade Organization. Related, international

agreements favoring the acquisitions of vaccines from non-producing countries at

controlled prices should be fostered as well.18

Among many potential modeling refinements, the direct extension would entail

the inclusion of an economic process regulating the relationship among companies

in order to study the coupled dynamics between the biological system and the social

structure of interactions and related economic outcomes.
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