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Abstract 
The relationship between the native Galaxias maculatus and environmental variables was studied in 52 sites 
located along 306 km of the main stemof the Santa Cruz River, the second largest river in Argentinean Patagonia. 
The abundance varied along the river, with three general sections clearly defined: upstream with minimum 
abundance increasing towards midstream and downstream areas. Distance to the sea and river wet width which 
were negatively significantly associated with abundance,and maximum depth explained the abundance in a 
polynomial shape – achieving a total explanation of 41.1%. The best predictive model also combined the river 
sinuosity.Our results suggested that the construction of two proposed hydroelectric dams will modify these 
variables, which might generate changes in G. maculatus distribution. The information obtainedduring the 
present study represents valuable information for conservation management of this species.  
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1. Introduction 
In lotic ecosystems, biological communities are structured primarily by physical habitat (Hynes, 1970). Habitat 
disturbance has an important role in constraining the types of ecological processes and patterns observed in 
streams (Ward & Stanford, 1983; Power et al., 1988; Resh et al., 1988; Poff & Ward, 1990). Understanding the 
habitat requirements of each species and the relationship with environmental variables is critical to 
comprehending their ecology in natural systems and to evaluate possible change scenarios (Argent, Bishop, 
Stauffer, Carline, & Myers, 2003; Jowett, Richardson, & Bonnett, 2005).  

Galaxiid srepresent one of the most abundant native fish species from Southern Hemispherefreshwaters 
(McDowall, 1990). Each galaxiid species has a habitat preference, being defined by the main variables identified 
as affecting its distribution: local and maximum depth, channel width, substrate size (Ault & White, 1994; 
Allibone & Townsend, 1997), current speed (García, González, & Habit, 2012; Bonnet & Sykes, 2002), and 
proximity to the sea (Bonnet & Sykes, 2002; Eikaas, Kliskey, & McIntosh, 2005). The type of habitat used by 
one species might also change in the presence of invasive species or along ontogeny (Hale, Downes, & Swearer, 
2008; Jellyman & McIntosh, 2008).  

The most abundant galaxiid species in Patagonia, Galaxias maculatus, whichexhibits two life-history strategies 
(land-lockedand diadromous individuals; McDowall, 1990; Carrea et al., 2013) was studied along 306 km of the 
main stem of the Santa Cruz River. Since two hydroelectric dams will be built soon and little is known about the 
local wildlife and the environment the aim of this study was to identify environmental variables that may affect 
the abundance of G. maculatus and the shape of the response by using generalized linear models (GLM). 
Secondly, we sought to identify the model that best predictedthe likely responses of the fish to possible change 
scenarios. 

The information on the un-degraded river condition is generally limited or absent, which make it difficult to 
determine appropriate restoration strategies. We expect the present research to generate useful information to 
evaluate conservation and management strategies. 
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2. Methods 
2.1 Study Area 

The Santa Cruz River (50°S; 70°W) originates in two oligotrophic to ultra-oligotrophic large glacial lakes, 
Viedma and Argentino, and flows uninterrupted for 382 km across the Patagonian plateau to drain into the 
Atlantic Ocean (Figure 1; Brunet et al., 2005). The river has an average discharge of 691 m3 s-1 (min. 278.1 m3 
s-1 in Septemberand max. 1,278 m3 s-1 in March), which is highly predictable due to a glacial dominated flow 
regime (Tagliaferro, Miserendino, Liberoff, Quiroga, & Pascual, 2013). Mean water temperature is 9 °C with 
maxima registered in January (15 °C) and minima in July (3 °C). 

 

 
Figure 1. Map of the Santa Cruz River, Patagonia Argentina 

Sampling sites are located between Charles Fuhr Bridge and Cte. L. Piedra Buena Town (between arrows). 

 

2.2 Environmental Variables 

A total of 17 variables were measured at each of the 52 sites along the river, including water and river physical 
characteristics, dissolved matter, and chlorophyll-a concentration on biofilms. Macro-scale variables of the river 
(i.e. altitude, bankfull and wet width, current speed, and bathymetry) were measured either continuously or every 
300 meters. Wet and bankfull widths were measured using a laser distance meter (TruPulse 200). Altitude and 
position were measured using an Oregon 550 Garmin GPS and from a digital elevation map, SRTM, 90 m pixel. 
The sinuosity was estimated as the ratio between the geographic distance and the river distance between pairs of 
points separated by 500 m (river distance). The bathymetry was recorded with a Lowrance LCX-15M 
Techosounder. Local variables, within a 15 meters radius from the sampling point (e.g. dissolved oxygen, depth, 
current speed, substrate size) were measured at each of the 52 sites following Gordon et al. (2004). Average 
depth was calculated from 3 measurements within the sampling area. Surface current speed was obtained by 
timing a half-submerged plastic cup over a distance of 5 meters at each sampling site. Temperature, conductivity 
and dissolved oxygen were measured using an YSI 85 multi-parameter probe. Substrate size composition was 
estimated following the Wolman Pebble count procedure (Wolman, 1954), by walking upstream along a zig-zag 
line across a working area of 100 meters long and 2 to 5 meters wide and measuring the width (the second 
largest axis) of 50 pieces randomly chosen. A standard area of 11 cm2 was scratched for biofilm from each of 
three randomly selected rocks (widthrange 5 to 30 cm) at each site and stored in a filter, from which chlorophyll 
a concentration was estimated (APHA, 1994). Water samples of 500 ml were collected below the surface, 
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filtered using a 47 mm diameter GF/F Munktell filter, and preserved at -10 °C to estimate total suspended solids. 
In the lab samples were dried at 60 °C for 24 h, weighed and burned at 500 °C for 4 h to assess suspended 
organic and inorganic matter.  

2.3 Sampling 

We sampled fish during September 2010 (low flowperiod) in 52 sites at intervals of 6 km along the Santa Cruz 
River (Figure 1). The uppermost site was located in Charles Fuhr (9.8 km downstream from Lake Argentino) and 
the lowermost site was located in Comandante Luis Piedra Buena, close to the river’sestuary and 315.8 km from 
LakeArgentino.We captured fish using standard single-passelectrofishing procedures from the littoral zone to 
depths of 0.7 m. The equipment used was a Smith-Root LR-24 electrofisher set to a frequency of 90 Hz and a 
pulse width of 3 ms. At each site, a 100 mtransect was sampled following a zig-zag track.Fish were euthanized 
with an overdose of MS222 and stored in a portable freezer at -18 °C. At the laboratory, all fish were counted, 
length-measured with a digital caliper (0.01 mm nearest unit), and weighed on a Mettler PC 440 Delta Range 
balance (0.003 g nearest unit). 

2.4 Data Analysis 

Abundancedata of G. maculatus and environmental variables at each site were arranged in a matrix, on which 
correlations andmultiple collinearity between variables were evaluated. Autocorrelations between abundances 
were assessed by using variograms and the comparison of residuals. Data over-dispersion was adjustedby using a 
scale Poisson distribution. Generalized Additive Models (GAMs) were applied in order to define the set of the 
environmental non-redundant variables that describe G. maculatus distribution along the Santa Cruz River 
during the period of study using the ‘mgcv’ library in the R statistical software (R Development Core Team, 
2012). Once the shape of the response was identified, GLMs were applied to the set of data, since these tool 
provide a more direct and robust technique to evaluate the goodness of fit and to interpret the results (Guisan & 
Zimmermann, 2000). Model selection was performed using multi-model inference “MuMIn” (Barton, 2013) and 
by a stepwise proceeding. Validation graphs (e.g., residuals versus fitted values, QQ-plots and residuals versus 
the original explanatory variables) were plotted in order to detect the existence of any pattern and possible model 
mis-specification.To evaluate the accuracy of the predictive model a leave-one-out cross-validation method was 
used. Observed and expected values were used to estimate the percentage of error of each estimation. The 
median of the set of 51 estimations were used to compare prediction models.  

3. Results 
A total of 1,183 individuals were captured with a range of length (40-90 mm) and weight (0.5-9 g). The 
distribution of fish showed a high abundance of G. maculatus at downstream and midstreamareas 
whichdecreasedupstream (Figure 2). 61.6% of the fish population was located in midstream areas which 
corresponded to 144 km of the river (including the sites where the dams will be placed); the downstream area (48 
km) sheltered 25.5%; while in upstream areas 12.9% of G. maculatus population was found along 114 km.  

 

 
Figure 2. Abundance of G. maculatus among the 52 sampling sites located 6 km from each other 
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Table 1. Physico-chemical variables measured at the sampling sites. Mean, standard deviation, and range of 
variables are consigned 

Variable Mean Std.Dev. Range 

Sinuosity 1.3 0.2 1.1 - 2.0 

Slope 0.6 0.2 0.1 - 0.9 

Bankfull (m) 188.6 40.0 110 - 281 

River wet width (m) 139.4 34.1 80 - 216 

Gravel bar (m) 48.0 28.0 6 - 158 

Maximum depth (m) 5.7 3.0 2.3 - 19.8 

Current speed (m s-1) 0.3 0.2 0 - 0.9 

Conductivity (µS cm-1) 26.6 1.9 22.8 - 31 

Substrate particles size (mm) 78.1 25.5 15.5 - 147.5 

Temperature (°C) 6.9 1.4 4.7 - 11.0 

pH 5.8 0.3 5.0 - 6.5 

Dissolved oxygen (mg L-1) 12.3 0.7 10.6 - 15.4 

Suspended inorganic matter (mg L-1) 22.2 19.0 5.2 - 117.0 

Suspended organic matter (mg L-1) 3.1 2.2 0.6 - 12.8 

Chlorophyll-a concentration (µg cm-2) 5.6 7.4 0.2 - 33.8 

 

Environmental characteristics of the Santa Cruz River are summarized in Table 1. No patterns were identified 
that could determine different sections or reaches (covering from 6 to 30 km) based on environmental variables. 
Some environmental variables remain fairly invariant along the river (slope and dissolved oxygen), other showed 
a smooth gradient (temperature and conductivity), whereas others showed variability at the local scale (e.g., 
chlorophyll-a, inorganic matter, substrate size, depth).  

Few variables showed a significant correlation or multiple collinearity and were removed from the analysis. Both 
the correlation value and the response of G. maculatus to the variableswere tested. When both variables showed 
a significant relationship with fish abundance (using both GAMs and GLM), the one with the lower multiple 
collinearity value was selected. Only the non-redundant variables were left: river wet width (ww), maximum 
depth (md), substrateparticle size (pe), sinuosity (sin), dissolved oxygen (od) and distance to Lake Argentino (d). 
GLM models components and explanations are synthesized in Table 2. The best model selected to explain theG. 
maculatusdistribution included the river wet width, distance from the lake and the maximum depth (polynomial), 
explaining 41.1% of the variance and producing an output not significantly different to the full model. While 
linear relationships were found with distance from the river headwaters (positive) and river wet width (negative), 
the response to maximum depth was quadratic, decreasing rapidly to a depth of 10 meters, being relatively stable 
and low at greater depths (Figure 3). The models selected under cross-validationpermitted explanation and 
prediction of changes in the abundance of G. maculatus along the Santa Cruz River with a 52.8 to 64.3% 
percentage of error (Table 2). The best prediction model included the polynomial (base 2) relationship of 
maximum depth, sinuosity, wet width and distance to Lake Argentino (Figure 4).  
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Figure 4. Predictions models for G. maculatus distribution along the Santa Cruz River 

Dashed lines indicate the model error (Table 2). Model A: includes distance to the Lake Argentino, river wet 
width, and maximum depth; model B also includes river sinuosity. 

 

4. Discussion 
The imminentloss of habitat due to human-induced changes along the watercourses has been extensively studied. 
However, in several studies on native fish populations, the absence of a baseline is a major problem when 
identifying management and conservation strategies (Brown, 2000; Bonnett & Sykes, 2002; Baker & Smith, 
2007). In the present study we identify valuable information on the associations between native fish and habitat. 
This information includes the direction of the relationship and the shape and formulating prediction models prior 
to the hydroelectric damconstruction.  

In the Patagonia, G. maculatus occupies a vast rangeof lotic and lentic environments: lakes, mountain streams 
and large plateau rivers. Though habitat use in each of these places differs (García et al., 2012; Montoya, Jara, 
Solis-Lufí, Colin, & Habit, 2012), because of its nature, it coincides in being low speed and shallow 
waters,sometimes associated with vegetation (Colin, Piedra, & Habit, 2012). In concordance with other authors 
who have conducted research on New Zealand counterparts,an association with river width, maximum depth 
(Bond & Lake, 2003; Baker & Smith, 2007; Akbaripasand, Nichol, Lokman, & Closs, 2011) and a negative 
influence of distance from stream mouth (Bonnett & Sykes, 2002; Jowett & Richardson, 2003; Joy & Death, 
2004; Eikaas et al., 2005) was found for G. maculatus in the Santa Cruz River. Whilst these studies and other 
made in Chile (Colin et al., 2012; Garcíaet al., 2012) found other important variables influencing galaxiid 
abundance - substrate composition, velocity, plant cover, elevation, discharge, and cattle farming activities - the 
results might be related to species specific requirements, study area or the scale of the study. Same genera were 
found to be associated with different habitat types in the same study area (Jowett & Richardson, 2003; Joy & 
Death, 2004; Jellyman et al., 2013) which might be related to niche differentiation. Regarding study areas, New 
Zealand and Chilean watercourses have a developed riparian area and might exhibit macrophyte accumulations 
which strongly differ from those in the Santa Cruz River, where vegetation cover is not present. Since this study 
tried to understand large scale patterns, other variables (e.g., substrate composition) which might have 
importance at microhabitat scale could be responsible for some abundance peaks visualized along 30-50 km 
reaches.  

The results found, primarily the decrease in G. maculatus with the distance to the sea, were expected since this 
species represents landlocked and diadromous populations that spawn in the Santa Cruz estuary and then move 
up to the mid and downstream river areas (Carrea et al., 2013). Moreover, McDowall (2000) explained that G. 
maculatus communities were generally confined to low altitudes close to the sea due tothe poor swimming 
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ability of this species. The rapid decrease with maximum depth to 10 m is consistent with the preference of this 
species forshallow waters and littoral areas. Also, prediction models using distance from the Lake Argentino, 
maximum depth and river wet width or these variables plus the river sinuosity captured the large-scale shape of 
the distribution of river along the river. Whilethe percentages of prediction error slightly differed, the sinuosity 
added another factor to the model related to the hydraulics, turbulence, and flow disturbance (Biggs, Nikora, & 
Snelder, 2005; Jellyman, Brooker, & McIntosh, 2013) which might change with the implementation of the 
hydroelectric dams. A high sinuosity value was identified as a positive factor in providing different microhabitats 
during the early ontogenetic development of the fish, and refuges along inshore retention areas during high 
discharge periods (Sedell, Reeves, Hauer, Stanford, & Hawkins, 1990; Schiemer, Keckeis, Reckendorfer, & 
Winkler, 2001; Hildrew, 1996).  

Once regulated, therivers experience controlled changes in hydrology that modify the sinuosity and consequently 
the shape of the inshore, where dramatically high discharge events lead to wash-out effects, causing high 
mortality and a unidirectional, downstream shift of the fish population (Schiemer et al., 2001; Jellyman & 
McIntosh, 2010). The effect of disturbance are especially evident in smaller species or stages; particularly, G. 
maculatus swimming performance from New Zealand showed that the degree of fish–turbulence interaction may 
depend on both the turbulence energy and size of fish (Nikora, Aberle, Biggs, Jowett, & Sykes, 2003). The two 
dams to be built on the Santa Cruz will have another great impact on fish population: the obliteration of 51% of 
the current lotic environment, and the flooding of the most productive sections of the river (Tagliaferro et al., 
2013). No information about possible development of fish passages for management projects wasavailable. 
However, G. maculatus showed to utilize a wide diversity of habitats of rivers and lakes (Barriga, Battini, 
Macchi, Milano, & Cussac, 2002; Cussac et al., 2004; Valdovinos et al., 2012). In consequence, we expect that 
most diadromous specimens willrestrict their development to the lower basin; while in the lake-dam basins we 
expect to find landlocked populations associated with the littoral zone. 

In conclusion, within the main-stem of the Santa Cruz River, G. maculatus was more abundant close to the sea 
and used shallow waters avoiding wide river areas.Since in other environments Galaxiids in general showed a 
strong preference for debris damsand waters covered with macrophytes, we anticipatethat G. maculatus above 
the dams toacclimate to those conditions and develop viable populations. Though the stability of these 
populations will depend on the operation of the dams and how that affects the exposure to predation and the 
availability of food resources.  

The informationfrom this study can form a basis for the developmentand application of viable strategies for 
managingpopulations and habitats, and for ensuring theprotection of the species. A larger supply of preferred 
habitats will provide better conditions for G. maculatus success, preservation or restoration (Garcia et al., 2012). 
In addition, water regulation should be performed in a way that replicates the natural seasonal flow cycle as 
closely as possible (Carlisle, Wolock, & Meador, 2010; Carlisle, Nelson, & Eng, 2012; Ward & Stanford, 1982) 
and fish passage construction should be consider to promote genetic exchange between populations separated by 
dams.  
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