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Abstract Streptomyces sp. MC1, previously isolated
from sugar cane, has shown ability to reduce Cr(VI)
in liquid minimal medium and soil samples. The
objective of this work was to demonstrate the
intracellular chromium accumulation by Streptomyces
sp. MC1 under different culture conditions. This
strain was able to accumulate up to 3.54 mg of Cr
(1IT) per gram of wet biomass, reducing the 98% of Cr
(VI) and removing 13.9% of chromium from the
culture medium supernatants. Streptomyces sp. MC1
chromium bioaccumulation ability was corroborated
by using Timm’s reagent technique, a low-cost
method, which has been used by first time to detect
chromium deposits in bacteria. The results of atomic
absorption spectrometry, scanning electron microsco-
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py, and energy dispersive X-ray analysis suggest that
the mechanism of Cr(VI) resistance observed in
Streptomyces sp. MC1 includes adsorption coupled
with reduction to Cr(IIl), and finally, Cr(Ill) bioaccu-
mulation. This mechanism have special relevance to
remediation of Cr(VI) contaminated environments by
Streptomyces sp. MC1.
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1 Introduction

Chromium (Cr) is a naturally occurring element that is
found in rocks, soil, plants, animals, volcanic dust, and
gasses. Cr exists in oxidation states ranging from —2 to
+6. Hexavalent chromium, Cr(VI), and trivalent chro-
mium, Cr(II), are ecologically important because they
are the most stable oxidation states in natural environ-
ments (Cefalu and Hu 2004; Megharaj et al. 2003).
Chromium is one of the most widely used metals in a
variety of industrial processes (steel production, leather
tanning, metal corrosion inhibition), mainly as Cr(VI)
(Bankar et al. 2009). Industrial effluents containing Cr
(VI) are release into natural water resources, mostly
without proper effluent treatment, resulting in anthro-
pogenic contamination (Cefalu and Hu 2004; Cheung
and Gu 2007; Viti et al. 2003).
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Cr(VD-induced acute and chronic toxicity, neurotox-
icity, dermatotoxicity, genotoxicity, carcinogenicity,
immunotoxicity, and general environmental toxicity
due to its strong oxidizing potential (Bagchi et al.
2002). Cr(VI) compounds are approximately 1,000-
fold more cytotoxic and mutagenic than Cr(III)
(Biedermann and Landolph 1990). Cr(VI) to Cr(III)
reduction, therefore, represents a significant immobili-
zation mechanism (Bagchi et al. 2001).

Development of suitable methods for cleaning up
contaminated environments is an important topic of
environmental restoration and protection. At present,
there are available physicochemical technologies to
remove Cr(VI) of industrial waste (Ho and Poddar
2001), but these methods are costly and require much
energy and specific equipment (Beleza et al. 2001).
Bioremediation is appropriate for large-scale application
on heterogeneous environments, such as ground water,
soil sludge, and industrial waste (Boopathy 2000).

The three processes by which the microorganisms
interact with toxic metals are biosorption, bioaccu-
mulation, and enzymatic reduction (Srinath et al.
2002). Biosorption is a metabolism-independent pro-
cess and thus can be performed by both living and dead
microorganisms. On the other hand, microbial heavy
metal accumulation generally comprehends two
phases, an initial rapid phase of biosorption followed
by slower, metabolism dependent active uptake of
metals. During the bioaccumulation, many features of
a living cell, like intracellular sequestration followed
by localization within cell components, metallothio-
nein binding, metal accumulation, extracellular pre-
cipitation, and complex formation can occur (Gadd
2004; Malik 2004).

In turn, biological transformation of Cr(VI) to Cr
(IIT) by enzymatic reduction has been recognized as a
means of chromium decontamination from effluents
(Laxman and More 2002; Polti et al. 2010).

Metal-resistant actinobacteria, and their potential
use for bioremediation strategies, have been described
before (Amoroso et al. 1998; Albarracin et al. 2005,
2008a, b; Kothe et al. 2005; Schmidt et al. 2005; Polti
et al. 2007, 2009). Among the soil filamentous
microorganisms, streptomycetes represent up to 20%
of soil bacteria (Kothe et al. 2005). They are
predominantly found in soil as spores, which are
resistant to desiccation and starvation and can
germinate and grow into a mycelial state for brief
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periods of time when nutrients became available.
Streptomycetes are known for their ability to produce
a wide variety of secondary metabolites, including
many pigments and antibiotics. Due to this active
secondary metabolism, streptomycetes also may be a
good source for the identification of heavy metal
binding components with possible future biotechno-
logical application (Albarracin et al. 2008b).

Recent progress has been made studying metal
resistance in streptomycetes isolated from polluted
areas (Albarracin et al. 2008b; Siferiz et al. 2009).
However, there are few studies on Cr(VI) reduction
and accumulation by Streptomyces; the first report on
Cr(VI) reduction by Streptomyces was from Das and
Chandra (1990) while Amoroso et al. (1998) reported
that metal resistance and biosorption capability may
be widespread among actinomycetes growing in
contaminated environments. Cr(VI) bioaccumulation
by Streptomyces strains was also revealed (Amoroso
et al. 2001). Later, Cr(VI) reduction was determined
by Streptomyces griseus (Laxman and More 2002)
and by Streptomyces sp. MC1, a sugar cane isolated
(Polti et al. 2007). This strain in particular was able to
reduce Cr(VI) in liquid minimal medium, soil extract,
and soil samples, demonstrating its potential use in
bioremediation processes (Polti et al. 2009). Also,
they characterized the chromate reductase enzyme
from this strain. Hence, evaluation of chromium
accumulation ability is needed to apply Streptomyces
sp. MC1 for chromium immobilization processes in
successful bioremediation technologies.

The aim of this study was to determine the
intracellular chromium accumulation by Streptomyces
sp. MC1 by performing a citochemical staining of
chromium deposits using the Timm’s reagent tech-
nique, coupled with metal analysis of atomic absorp-
tion spectrometry, scanning electron microscopy, and
energy dispersive X-ray analysis (EDXA).

2 Materials and Methods

2.1 Strain, Media, and Culture Conditions
Streptomyces sp. MC1 (PROIMI Collection, NCBI
accession number: AY741287), resistant to Cr(VI),

previously isolated and characterized, was used in this
work (Polti et al. 2007).
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Cr(VI) reduction and uptake assays were carried
out in liquid minimal medium (MM) containing
(g 1) glucose 10.0; L-asparagine 0.5; K,HPO, 0.5;
MgSO,4x7H,0, 0.20; FeSO4x7H,O 0.01 (Amoroso
et al. 1998). Alternatively, Streptomyces sp. MC1 was
grown in glycerol minimal medium (MMY) contain-
ing (g 1'"): glycerol 3.0; L-asparagine 0.5; K,HPO,
0.5; MgS0O4x7H,0, 0.20; FeSO4x7H,0, 0.01 (Polti
et al. 2007).

Cr(VI) was added as K,Cr,O, from a filter-
sterilized stock solution (1,000x).

Streptomyces sp. MC1 spore suspensions (100 pl
of 10°CFU ml ') were inoculated in flasks with MM
without Cr(VI) and MM supplemented with 50 mg 1™
of Cr(VI). Streptomyces sp. MCI1 culture without
chromium was used as controls. The cultures were
incubated at 30°C in an orbital shaker at 220 rpm.
Samples were collected by centrifugation at 3,000xg
for 10 min at 4°C and washed twice with distilled
water. The resulting cell pellet was used to prepare
sections for electron microscopy. Independent dupli-
cate and triplicate cultures were used to perform the
metal analysis and biomass determination (105°C).
Assays were carried out in triplicate.

2.2 Chromium Reduction and Uptake Assays

Chromium uptake by the cell was evaluated on
stationary growth phase culture samples of Strepto-
myces sp. MC1, grown in a Cr(VI) supplemented MM
or MMY.

Residual Cr(VI) was measured in MM and MMY
supernatants. Intracellular Cr(VI) was measured after
cell rupture with a French press at 20,000 psi (1,38 %
10°kN m?). The resulting broken cells were centri-
fuged at 3,000xg to eliminate whole cells. Super-
natants, containing fractions of cell walls, membranes,
and cytoplasm were used for Cr(VI) determinations,
which were carried out with the specific colorimetric
reagent for Cr(VI), 1,5-diphenylcarbazide, dissolved
in acetone at a final concentration of 0.05% (APHA
1989). The absorbance was measured at 454, and the
Cr(VI) concentration was calculated with a calibration
curve (0-50 mg 17").

Cr total concentration was measured in MM or
MMY supernatants and whole cells using atomic
absorption spectrophotometry, after mineralization
with HNO; (APHA 1989). After evaporation of the

acid, samples were resuspended in deionized water.
All assays were carried out in triplicate.

2.3 Morphological Studies and Ultrastructural
Determination of Chromium Deposits

Intracellular localization of chromium was examined
ultracytochemically using a modified procedure of
Timm’s reagent method for metal staining (Albarracin
et al. 2008a). Pellets of Streptomyces sp. MC1 cells
cultivated with and without Cr(VI) were fixed in a
solution containing 2% para-formaldehyde, 0.1%
glutaraldehyde adjusted to pH 7.4 in 0.1 M phosphate
buffer for 3 h at 4°C. Samples were then placed in
15% trichloroacetic acid solution for 15 min, rinsed
three times with distilled water, and stained using
Timm’s reagent (18% arabic gum, 2% hydroquinone,
0.1% silver nitrate in 0.03 M citrate buffer pH 3.8 for
30 min). After washing with saline phosphate buffer
(PBS), samples were incubated overnight in 1%
osmium tetroxide buffered with PBS, dehydrated in
a graded ethanol series, exchanged with acetone and
embedded in Spurr resin (Pelco, Int., 122 USA).
Ultrathin sections stained with uranyl acetate and lead
citrate were examined under transmission electron
microscope (Zeiss EM 109). The chromium ion
precipitates formed by the treatment with silver nitrate
(Timm’s reagent) were observed as electron opaque
deposits. Parallel samples cultivated without Cr(VI)
served as controls. Additionally, Streptomyces sp.
MCI cells cultivated with and without Cr(VI) were
processed without staining: fixation (glutaraldehyde
3% in phosphate buffer 0.1 M pH 7.4) for 3 h at 4°C
followed by osmium tetroxide (1% in the same
buffer). Samples were then dehydrated in an alcohol
series transferred to acetone and embedded in Spurr
resin (Albarracin et al. 2008a)

2.4 Scanning Electron Microscopy and EDXA

Bacteria cells were harvested with centrifugation
(10,000 rpm, 4°C, 30 min). Cell pellets were washed
with distilled water, fixed in Karnovsky's formalde-
hyde (8%), glutaraldehyde (16%), and phosphate
buffer (pH 7) over night at 4°C, the fixed samples
were washed three times with phosphate buffer and
CaCl for 10 min. Later, they were fixed with 2%
osmium tetroxide over night. The samples were

@ Springer



52

Water Air Soil Pollut (2011) 214:49-57

washed twice with ethanol 30% during 10 min. Finally,
the samples were dried at critical point and coated with
sputtering gold. Specimens were observed under vacu-
um using a Zeiss Supra 55VP (Carl Zeiss NTS GmbH,
Germany) scanning electron microscope. EDXA was
carried out using INCAPentaFET-x3 EDS detector
(Oxford, UK), EDXA spectra were analyzed using
INCAEnergy software interface.

2.5 Statistical Analyses

Statistical analyses were conducted using SPSS 11.0.0
for Windows (SPSS Inc.; Chicago, IL, USA). Paired ¢
test and variance analysis were applied. A probability
of p<0.05 was used throughout this study.

3 Results
3.1 Chromium Reduction and Uptake

Streptomyces sp. MC1 could tolerate high Cr(VI)
concentrations (890 mg 17') when testing by a
semiquantitative assay (Polti et al. 2007). The current
study evaluated the influence that would have the
glycerol on the Cr(VI) reduction and accumulation
ability by this strain.

Growth of Streptomyces sp. MCI1 in liquid MMY
supplemented with 50 mg "' Cr(VI) was assayed
with regard to metal ion reduction and uptake by

biomass from the culture supernatant. Streptomyces
sp. MC1 presented growth inhibition of 36% after
48 h of incubation, which diminished to 20% after
72 h of incubation; Cr(VI) reduction was approxi-
mately 52% and started during the exponential growth
phase and continued through the stationary phase
(Fig. 1).

For determining the long-term effect of Cr(VI)
sorption and reduction, Streptomyces sp. MC1 was
grown for 7 and 70 days in MM and MMY
supplemented with 50 mg ™' Cr(V1I), and total, extra,
and intracellular Cr and Cr(VI) concentrations were
measured (Table 1). Cr(VI) was reduced for approx-
imately 94% and 96% to Cr(Ill) in the presence of
glucose and glycerol, respectively. No intracellular Cr
(VI) was detected, assuming that the chromium inside
the cell corresponded to Cr(III; Table 1). After 70 days
of incubation, Streptomyces sp. MC1 was able to
accumulate 15% and 8% of chromium as Cr(IIl) with
glucose and glycerol, respectively. After 7 days of
incubation, the specific uptake of chromium was 1.48
and 1.56 mg per gram of wet biomass in MM and
MMY, respectively; and after 70 days, these values
were 3.54 and 2.32 mg g ' in MM and MMY.

3.2 Ultrastructural Study by Transmission Electron
Microscopy

Traditional transmission electron microscopy (TEM)
showed that Streptomyces sp. MC1 morphology was

Fig. 1 Growth of Streptomy- 1.2—?,} 150
ces sp. MC1 in MMY . P
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Cr(VL; --o--9) = 0'8'_ % g’
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Table 1 Cr distribution in Streptomyces sp. MC1 cultures after
7 and 70 days of incubation in minimal medium (MM) and
minimal medium with glycerol (MMY) supplemented with
50 mg 1" of Cr(VI)

Cr (%)

MM MMY
Time (days) Cell Supernatant Cell Supernatant
7 2.8 (0.0)> 97.2 (57.0) 2.0 (0.0) 98.0 (55.0)

70 139 (0.0) 86.1 (6.1) 8.0 (0.0) 92.0 (4.0)

#Total chromium
° Cr(VI)

not altered when it was grown in Cr(VI) supplemented
medium and lyses processes were not observed either
(Fig. 2a, b). Although electron microscopy is generally
a useful technique to detect metal accumulation in
cells, in this case it was not possible to identify any
chromium granules or deposits inside or near the cells
with the routine technique.

3.3 Evidence of Chromium Intracellular
Accumulation using TEM

Using the histochemical Timm staining method, Cr
appeared as a reaction precipitate of reduced silver.
Cells grown with Cr(VI); (Fig. 3b) showed higher
intracellular electrodensity than control cells (Fig. 3a).
Both in longitudinal and transversal hyphal sections,
reaction deposits were observed throughout the cells.
No clear deposits could be seen in cells cultured in the
absence of Cr(VI); (Fig. 3a).

Fig. 2 Transmission elec-
tron micrographs of
Streptomyces sp. MC1, after
7 days of growth in MM: a
control, without Cr(VI). (b)
supplemented with Cr(VI)
50mg 1!

3.4 Scanning Electron Microscopy and EDXA

SEM of Streptomyces sp. MC1 showed the typical
branching mycelia of the genus Streptomyces that
fragments into rod-like elements. Some spore-like
structures were observed and they presented smooth
surface while displayed in long straight to flexuous
chains (Fig. 4). There was a slight difference in
morphology between Cr(VI) exposed and non-exposed
Streptomyces sp. MC1. The exposed filamentous
bacteria were rounder and shorter than non-exposed
ones.

EDXA spectra of cells exposed to 50 mg 1" Cr
(VI) showed the presence of a Cr peak which was
absent in non-exposed control cells. The EDXA spectra
were also used to provide X-ray energy windows for Cr
mapping. The EDXA map showed a high density of red
dots corresponding to Cr, indicating a large chromium
concentration with homogeneous distribution on the
surface (Fig. 5). Non-exposed cells did not show this
pattern of Cr dots.

4 Discussion

The processes through which microorganisms interact
with toxic metals are biosorption, bioaccumulation,
and enzymatic reduction (Srinath et al. 2002).
Bacteria can reduce Cr(VI) to Cr(Ill) under both
aerobic and anaerobic conditions (Ackerley et al.
2004). Cr(VI) reduction in minimal medium is much
more time-consuming than in complex medium. Polti
et al. (2009, 2010) demonstrated the ability of
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Fig. 3 TEM micrographs of
Streptomyces sp. MC1, after
7 days of growth in MM: a
control, without Cr(VI). b
Supplemented with Cr(VI)
50 mg I, using Timm’s
reagent staining method.
Arrows indicate intracellular
aggregates

Streptomyces sp. MC1 to reduce Cr(VI) to Cr(II)
under different culture conditions: Cr(VI) reduction
reached 45% after 3 days in minimal medium with
glucose as carbon source. Francisco et al. (2002)
reported microbial Cr(VI) reduction of up to 46.4%
in nutrient broth after 3 days. Desjardin et al. (2003)
determined that the Cr(VI) reduction rate of Strepto-
myces termocarboxydus NH50 increased when glycer-
ol instead of glucose was utilized as carbon source.
Because the different nutrients of the culture medium
can affect Cr(VI) reduction, we decided to study the
influence that the carbon source would have on Cr(VI)
reduction and accumulation by Streptomyces sp. MC1.
In contrast to the results by Desjardin et al. (2003) no
significant difference could be observed in the reduc-
tion rate of Cr(VI) by Streptomyces sp. MC1 between
glucose and glycerol; Cr(VI) reduction showed similar
kinetics for both carbon sources. Reduction started in
both cases during the exponential growth phase and
continued through the stationary phase (Polti et al. 2009).
The ability of this strain to accumulate chromium
was also evaluated. There are few reports on chromium
biosorption or bioaccumulation by actinomycete strains.
Amoroso et al. (2001) determined Cr(VI) bioaccumu-
lation by two Streptomyces strains. Both strains were
able to accumulate 5-10 mg of chromium per gram cell
in minimal medium. Cr(VI) bioaccumulation by
Streptomyces griseus in complex medium was up to
3mg g " cell (Laxman and More 2002). In this work,
Streptomyces sp. MC1 was able to accumulate up to
1.48 mg g ' cell after 3 days in minimal medium.
Long-term incubation on chromium-amended media
is also an important factor to improve biopsortion and
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bioreduction. Kong et al. (1994) determined an increase
up to 200% in the chromium uptake capacity by
Pseudomonas after 50 days of incubation compared to
1 day. The specific chromium uptake by Streptomyces

Fig. 4 Scanning electron micrograph of Streptomyces sp.
MCI, after 7 days of growth in MM: a control, without Cr
(VD); b supplemented with Cr(VI) 50 mg 17!, showing
filamentous mycelium
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Fig. 5 a Scanning electron micrographs and EDXA maps of Streptomyces sp. MC1 exposed to Cr(VI). The EDXA maps show the
distribution of Cr. b EDXA spectra of elements adsorbed on the area indicated with a square in a, Cr peaks are labeled

sp. MCI after 70 days increased in 50-140%. No Cr
(IIT) re-oxidation could be observed after 70 days of
incubation indicating a potential application of the
microorganism in Cr(VI) removal from contaminated
soils and sediments.

Visualization of metal deposits by means of optic
or electron microscopy together with histochemical
methods has been widely used in higher eukaryotes
including human cells (Kodama et al. 1993; Horky et al.
2002; Kawamura et al. 2002). Recently, the same
methods have been applied to detect metal accumula-
tion in microorganisms (El-Helow et al. 2000; Naz
et al. 2005) and in some cases, X-ray microanalysis has
been proposed as another approach for visualization of
heavy metal deposits in bacteria (Kato et al. 2000; Lu
et al. 2006; Sharma et al. 2000).

Timm method is based on the conversion of
available metals into metal sulfide molecules upon
which the visible metallic silver is deposited by
appropriate incubation of the sample sections. This
method has been used successfully for localization of
metals in various vertebrate tissues using light and
electron microscopy. Application of the method for
ultrastructural studies requires modifications since the
essential steps of the reaction affect the structural
preservation of the tissue (Saloga et al. 1988).
Ultrastructural cytochemical visualization of chromi-
um was used for the first time by Saloga et al. (1988)
for metal detection in the skin of guinea pigs. The
authors demonstrated that adequate structural preser-
vation could be achieved when the tissue was
previously fixed with glutaraldehyde. This prefixation
did not affect the sensitivity or specificity of the

method. It was used for the first time by Albarracin
et al. (2008a) to detect metal deposits in unicellular
organisms. The authors detected copper accumulation
by Amycolatopsis tucumanensis ABO0, but there are no
records on determination of Cr with this method in
bacteria.

In the current study, the low-cost staining method,
originally proposed by Timm and modified by Saloga
et al. (1988), has been applied for the first time to
bacteria to detect chromium accumulation with high
sensitivity and specificity.

The results of Cr(VI) and total chromium determi-
nation are in accordance with intracellular chromium
deposits stained with the cytochemical method. Cr
(II) may be stored within the cell by chromium
binding proteins. Ksheminskaa et al. (2005) studied
the capacity of yeasts to accumulate chromium;
several strains were tolerant to Cr and were still able
to accumulate high levels of the metal under certain
conditions. Accumulation of Cr(IIT) was carried out
with an efficiency comparable to Cr(VI), either
indicating the existence of an independent transport
mechanism or permeability of the cell membrane to
Cr(IIl) species. They concluded that the problem of
Cr toxicity it is not likely closely and exclusively
related to Cr over accumulation, as was suggested by
several authors (Batic and Raspor 1988; Cervantes
et al. 2001; Raspor et al. 2000).

Bankar et al. (2009) showed surface sequestration
of Cr(VI) by the yeast Yarrowia lipolytica using SEM
equipped with an energy dispersive spectrometer. On
the other hand, Zhu et al. (2008) determined that
Leucobacter sp. CRB1 was surrounded by crystals
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and amorphous substances composed by Cr(III) using
SEM and EDXA. They concluded that extracellular
Cr(VI) reduction contributed to the high tolerance and
reduction ability of this strain. Similarly, chromium
was detected by EDXA on the surface of Streptomy-
ces sp. MCI1, but spectrophotometric determinations
demonstrated this was not as Cr(VI). Therefore, it is
assumed to be Cr(III).

The results of ultrastructural analysis and Cr(VI)
and total chromium determinations allow us to
assume that in the beginning Streptomyces sp. MC1
reduced Cr(VI) to Cr(IIT), and after that it sequestered
chromium from the culture medium and accumulated
it within the cell. These results are in accordance with
intracellular chromium deposits stained with the
cytochemical reaction.

So far, the general strategy for control of Cr (and
other heavy metal) pollution has relied upon dissimila-
tory metal reduction, that is the uptake of toxic and
permeable Cr(VI) molecules by microorganisms and
plants and their subsequent bioremediation and conver-
sion into less toxic trivalent forms (Ksheminskaa et al.
2005). The results of AA, SEM, and EDXA could
indicate that the mechanism of Cr(VI) resistance
observed in Streptomyces sp. MCI includes adsorption
coupled with reduction to Cr(Ill), and finally, Cr(III)
bioaccumulation. This mechanism could have special
relevance to remediation of Cr(VI) contaminated
environments by Streptomyces sp. MC1.
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