	Clinical Hemorheology and Microcirculation 00 (2008) 1–8 1 DOI 10.3233/CH-2008-1154	
1	IOS Press	1
3		3
4	Frythrocyte aggregation in rheumatoid	4
5	Li y unocy te aggregation in medinatora	5
6	arthritice Call and plasma factor's rale	6
7	arunnus. Cen and plasma factor s fole	7
8		8
9 10 11	A. Luquita ^{a,*} , L. Urli ^a , M.J. Svetaz ^b , A.M. Gennaro ^c , R. Volpintesta ^d , S. Palatnik ^d and M. Rasia ^a	9 10
12	A Cátadar da Efeira Dialásica Encultad da Ciencias Mádicas Universidad Nacional da Decemia	12
12	"Catedra de Física Biologica, Facultad de Ciencias Medicas, Universidad Nacional de Rosario,	12
14	Santa Fe 3100, 2000 Rosario, Argentina	1/
15	^o Sección Inmunidad Celular, Dept. Bioquímica Clínica, Facultad de Cs. Bioquímicas y Farmacéuticas,	15
16	Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina	16
17	^c Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) and	17
18	INTEC (CONICET-UNL), Güemes 3450, 3000 Santa Fe, Argentina	18
19	^d Área Reumatología, Cátedra de Reumatología, Facultad de Ciencias Médicas, Universidad Nacional	19
20	de Rosario, Santa Fe 3100, 2000 Rosario, Argentina	20
21		21
22	Received 4 June 2008	22
23	Accepted 29 July 2008	23
24		24
25	Abstract. Increase in erythrocyte aggregation (EA) is pathognomonic for rheumatoid arthritis (RA), and its estimation through erythrocyte sedimentation rate (ESR) is part of DAS 28.4 activity diagnosis, with low correlation with EA and that does not	25
26	discriminate the contribution of cell factors that increase aggregation.	26
27	Objective: To analyse cell and plasma factors that might be involved in EA increase, to understand how RA affects blood	27
28	components, thus modifying blood fluid behavior. Methodology: One hundred women presenting active RA were compared with age-matched controls (C) FA was measured	28
29	by transmitted light, obtaining two parameters: $2k_2n_0$, characterizing the aggregation process kinetics and s_0/n_0 , estimating	29
30	aggregates size. Cell factors assays: erythrocyte deformability, by filtration through nucleopore membranes, cell shape, by	30
31	microscopy, and membrane fluidity by EPR. Plasma: total proteins and CRP, albumin, fibrinogen (Fb), by gravimetry, and IgG and IoM by single radial immuno-diffusion	31
32	<i>Results</i> : AR and C ($x \pm$ SE). $2k_2n_0$: 31.83 \pm 2.84, 23.75 \pm 1.91; s_0/n_0 : 0.92 \pm 0.05, 0.87 \pm 0.04. Rigidity index (RI):	32
33	$14.79 \pm 4.71, 6.92 \pm 1.31$. Morphological index: $0.28 \pm 0.03, 0.30 \pm 0.05$, n.s. Fb (mg/dl): $382 \pm 80, 299 \pm 70$. IgG (mg/dl): $1500 \pm 210, 1200 \pm 150$ J M (mg/dl): $1200 \pm 1200 \pm 1200$ J M (mg/dl): $1200 \pm$	33
34	1300 ± 219 , 1290 ± 135 ; Igwi (mg/di) 235 ± 28 , 185 ± 23 ; albumin (g/di) 3.84 ± 0.44 , 3.77 ± 0.51 n.s. $p < 0.05$ accepted. Correlations: $2k_2n_0$ vs. Fb $r = 0.66$; s_0/n_0 vs. Fb $r = 0.51$; $2k_2n_0$ vs. Igs $r = 0.65$; s_0/n_0 vs. Igs $r = 0.56$ $2k_2n_0$ vs. RI	34
35	$r = -0.59; s_0/n_0$ vs. RI = $-0.52, p < 0.05.$	35
36	Conclusions: Plasma factors, Igs and Fb increased aggregation, since RI is altered, this reduces the process efficiency regard-	36
37	DAS 28-4, thus becoming an RA activity indicator.	37
38	Keywords: Rheumatoid arthritis activity, erythrocyte aggregation, DAS 28-4, membrane fluidity, erythrocyte deformability	38
39		39
4U ⊿1		40 40
41 40		41 10
42 19		42 10
43 44		43 11
45 46	[*] Corresponding author: Dr. Alejandra Luquita, Cátedra de Física Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, 2000 Rosario, Argentina. Fax: +54 341 448 4761; E-mail: luquitale@hotmail.com.	45 46

1386-0291/08/\$17.00 $\ensuremath{\mathbb{C}}$ 2008 – IOS Press and the authors. All rights reserved

1. Introduction

Erythrocytes in static human blood form loose aggregates similar to a stack of coin stacks, such aggre- gation is referred to as rouleaux formation and is due to their shape, deformability and surface properties. In saline solutions, erythrocyte stabilizes sterically and do not form rouleaux. For aggregation to occur requires the presence of macromolecules in the medium, with enough bridging effect to surpass the steric stability of erythrocytes. Within plasma, fibrinogen constitutes the main aggregating protein, assisted by globulins; but albumin, the most abundant plasma protein, is generally regarded as a hindering factor to this phenomenon [1,2].
In physiological conditions, blood flow's shearing effect is enough to produce erythrocyte disaggrega- tion; but in low-flow conditions and in certain pathological situations, increased erythrocyte aggregation can contribute to circulatory disorders and, particularly in the microcirculation, to the occlusions of microvessels.
Erythrocyte aggregation – usually related to blood flow resistance – is increased in different conditions associated to inflammatory processes [3,4] and to rheumatoid arthritis (RA) in particular [5]. Modifications in erythrocyte aggregation in RA patients are regularly studied through the increase ir erythrocyte sedimentation rate (ESR) as well as the increase in blood viscosity at low shear rate [6–9]. However, these methods are rough estimations that do no allow assessing whether the cause for such increase lies in cell factors or in the plasma ones [10].
On the contrary, there is no evidence of studies performed assessing cell factors that determine such modification in AR, nor of its tracking in relation to the progress of the disease. The aim of the present paper is to quantitatively estimate the erythrocyte aggregation kinetic in relation to the progress of the algorithm of the present paper is to quantitatively estimate the erythrocyte aggregation kinetic in relation to the progress of the algorithm.
involved in the erythrocyte aggregation increase, in order to shed light upon how RA affects blood components, and consequently modifies blood fluid behaviour.
2. Materials and methods
2. 1. Patients
 2. Materials and methods 2.1. Patients One hundred female RA patients were included in the present study (mean age 48 ± 17 yrs, range 31–65) attending an outpatient service at the Departamento de Reumatología, Universidad Nacional de Posario Arcentina
 2. Materials and methods 2.1. Patients One hundred female RA patients were included in the present study (mean age 48 ± 17 yrs, range 31–65) attending an outpatient service at the Departamento de Reumatología, Universidad Nacional de Rosario, Argentina. The patients were part of a follow-up study recruited between 2000 and 2003 [11]. RA diagnosis was established following the American College of Rheumatology criteria (formerly, the American Rheumatism Association) [12,13]. Patients with cardiovascular or liver disease, cancer, chronic infectious diseases, HIV positive serology, diabetes mellitus and heavy smokers (>20 cigarettes) and patients who were under medication for RA were excluded.
 2. Materials and methods 2.1. Patients One hundred female RA patients were included in the present study (mean age 48 ± 17 yrs, range 31–65) attending an outpatient service at the Departamento de Reumatología, Universidad Nacional de Rosario, Argentina. The patients were part of a follow-up study recruited between 2000 and 2003 [11]. RA diagnosis was established following the American College of Rheumatology criteria (formerly, the American Rheumatism Association) [12,13]. Patients with cardiovascular or liver disease, cancer, chronic infectious diseases, HIV positive serology, diabetes mellitus and heavy smokers (>20 cigarettes) and patients who were under medication for RA were excluded. Disease clinic activity was evaluated by means of the Disease Activity Score (DAS 28-4) [14], through the following equation:
2. Materials and methods 2.1. Patients One hundred female RA patients were included in the present study (mean age 48 ± 17 yrs, range $31-65$) attending an outpatient service at the Departamento de Reumatología, Universidad Nacional de Rosario, Argentina. The patients were part of a follow-up study recruited between 2000 and 2003 [11]. RA diagnosis was established following the American College of Rheumatology criteria (formerly, the American Rheumatism Association) [12,13]. Patients with cardiovascular or liver disease, cancer, chronic infectious diseases, HIV positive serology, diabetes mellitus and heavy smokers (>20 cigarettes) and patients who were under medication for RA were excluded. Disease clinic activity was evaluated by means of the Disease Activity Score (DAS 28-4) [14], through the following equation: DAS 28-4 = $0.56 \times \text{sqrt}(t28) + 0.28 \times \text{sqrt}(\text{sw}28) + 0.70 \times \ln(\text{ESR}) + 0.014 \times \text{GH}$,
2. Materials and methods 2.1. Patients One hundred female RA patients were included in the present study (mean age 48 ± 17 yrs, range $31-65$) attending an outpatient service at the Departamento de Reumatología, Universidad Nacional de Rosario, Argentina. The patients were part of a follow-up study recruited between 2000 and 2003 [11]. RA diagnosis was established following the American College of Rheumatology criteria (formerly, the American Rheumatism Association) [12,13]. Patients with cardiovascular or liver disease, cancer, chronic infectious diseases, HIV positive serology, diabetes mellitus and heavy smokers (>20 cigarettes) and patients who were under medication for RA were excluded. Disease clinic activity was evaluated by means of the Disease Activity Score (DAS 28-4) [14], through the following equation: DAS 28-4 = $0.56 \times \text{sqrt}(t28) + 0.28 \times \text{sqrt}(\text{sw28}) + 0.70 \times \ln(\text{ESR}) + 0.014 \times \text{GH}$, where: sqrt(t28) = square root of the number of painful joints from 28 joints; sqrt(sw28) = square root of the number of swollen joints from 28 joints; ln(ESR): natural logarithm of erythrocyte sedimentation

	A. Luquita et al. / Erythrocyte aggregation in RA 3	
1 2 3 4 5 6 7	rate in mm/h; GH: general health or patient's global assessment of disease activity on a 0–100 Visual Analogue Scale (VAS). Cut-off values for DAS 28-4 are as follows: high disease activity > 5.1 , remission < 2.6 . At inclusion, all patients received non-steroid anti-inflammatory drugs (NSAIDs). AR patients were chosen (DAS 28-4 > 5.1), and the modifications in aggregation parameters were studied in relation to the evolution of DAS 28-4 score during 4 years follow-up study.	1 2 3 4 5 6 7
8	2.2. Controls	8
9 10 11 12 13 14 15	The control group consisted of 40 females non-smoker healthy volunteers, age-matched (mean: 43 ± 12 yrs, range $31-55$). All samples were taken in an ambulatory outpatient setting using the same venepuncture technique from the antecubital fossa with a brachial tourniquet and put into gel activated serum separation tubes: most samples were taken during the morning. The study protocol was approved by the Ethics Committee of the Facultad de Ciencias Médicas,	9 10 11 12 13 14
16 17	Universidad Nacional de Rosario, and all participants signed an informed consent according to the rec- ommendations of the Declaration of Helsinki [15].	16
17	2.3. Blood sample collection and laboratory assays	17
19 20 21	Blood samples were obtained by venipuncture from healthy donors and RA patients, and collected in tubes containing EDTA (1.146 mg/ml, Sigma Chemical Co., St. Louis, MO, USA) as anticoagulant.	19 20 21
22 23 24 25 26	2.3.1. Determination of erythrocyte aggregation parameters A specific method is employed, that determines the changes in light transmitted through the blood sample during a stasis term following a disaggregating shakeup. The assessment of such registers allows to obtain two parameters $2k_2n_0$ (characterizing the aggregation process kinetics); and s_0/n_0 (estimates the size of the aggregates [16].	22 23 24 25 26
27 28	2.4. Cell factors	27 28
29 30 31 32 33 34 35	Erythrocyte filtration was performed in a computerised instrument [17] after Reid et al. technique [18]. A 10% suspension of washed erythrocytes was passed through a polycarbonate filter, 5 µm pore size (Nucleopore Corr, USA), using a negative filtration pressure of 10 cm of H ₂ O. The flow time for 1 ml of RBC suspension passing through the filter was measured. Results were expressed as rigidity index (RI) that is an estimation of erythrocyte rigidity (inverse of erythrocyte deformability): $T_{\rm b} = T_{\rm c} = 100$	29 30 31 32 33 34 35
36 27	$RI = \frac{-6}{T_s} \times \frac{-4}{Htc},$	36 27
38 39 40 41	 where: T_b – time of cell suspension passage through the filter; T_s – time of PBS passage. Htc – haematocrit (10%). 2.4.1. Erythrocyte membrane fluidity It was determined by electron paramagnetic resonance (EPR) [19], using the spin label 5-doxyl-stearic 	38 39 40 41
42 43 44 45 46	acid (Sigma Chemical Co., St. Louis, MO, USA), in a Bruker ER-200 spectrometer operating at X band (9800 MHz) using a flat quartz cell. The parallel component of the nitrogen hyperfine tensor $(T_{//})$ was evaluated from the outer hyperfine structures of the spectra, and it was taken as a representative parameter of lipid bilayer rigidity.	42 43 44 45 46

A. Luquita et al. / Erythrocyte aggregation in RA

1 2.4.2. Erythrocyte shape

An aliquot of 1% v/v RBC suspension in saline containing 0.25% bovine albumin was placed on a vinyl plastic slide. The cell shape was observed with an inverted microscope, assigning an index according to Bessis Classification [20]. The number of observed cells for each slide is 150, and the informed value is an average of the respective values. 2.4.3. Biochemical assays Total protein and albumin were measured by colorimetric method, plasma fibrinogen by gravimetry, immunoglobulins G and M by single radial immuno-diffusion technique and rheumatoid factor (RF) by turbidimetry (BioSystems S.A.) and C-reactive protein (CRP) by Singer and Plotz's technique [21]. Eritrosedimentation rate (ESR) was measured according to Westergreen. 2.4.4. Haematological indexes Erythrocyte count was assessed by a haemocytometer and haemoglobin by the cyanmetahaemoglobin method. From these values, mean corpuscular volume (MCV) and mean corpuscular haemoglobin con-centration (MCHC) were calculated. Haematocrit was assessed by microhaematocrit method; haemoglobin concentration by spectropho-tometry (cyanmethemoglobin method) and RBC count by manual method (Newbauer camera). From these values, mean corpuscular volume (MCV) and mean corpuscular haemoglobin concentration (MCHC) was calculated. 2.5. Statistical analysis Values in RA patients and their controls are presented as mean \pm standard deviation. Comparisons were performed by Student's t test for unpaired data. Pearson product-moment correlation coefficient was used for aggregation parameters $(2k_2n_0, s_0/n_0)$ and IgG, IgM, fibrinogen, rigidity index and T_{//}. In the follow-up study, association of erythrocyte aggregation parameters with DAS 28-4 was analysed using rank correlation coefficient (Spearmen's test). 3. Results Table 1 show the parameters characterizing erythrocyte aggregation. It can be observed that the kinetic rate $(2k_2n_0)$ and the aggregate size (s_0/n_0) are increased in erythrocytes from RA patients compared to normal controls (p < 0.001). Microscope observation showed that erythrocytes keep their regular shape and volume (see also Table 3). The concentration level of C-reactive protein, rheumatoid factor, immunoglobulins and fibrinogen (but not albumin) are significantly increased in RA patients in comparison to controls (Table 2). Table 1 Erythrocyte aggregation parameters in active-RA patients and controls (mean \pm standard deviation) Aggregation parameters* RA patients (n = 100)Controls (n = 40)p $2k_2n_0$ 31.8 ± 2.8 24.2 ± 1.9 < 0.001

44 Comparison performed by Student's t test for unpaired data.

45 * s_0/n_0 is an indicator of aggregate size, while $2k_2n_0$ estimates aggregation rate.

 0.92 ± 0.05

 0.85 ± 0.10

< 0.001

 s_0/n_0

Plasma agore	Plasma aggregation promoters factors in RA nations and controls (mean \pm standard deviation)					
Plasma factors Patients $(n = 100)$ Controls $(n = 40)$						
CDD (m = /l)	Table 1 actors Table 1 actors CRP (mg/l) 2.05 ± 1.38		$\frac{1}{2} \cos(n = 40)$	<u>p</u>		
CRP (mg/l)	2.05 ± 1	.38	0.50 ± 0.04	< 0.01		
RF (mUI)	/5.51±1	1.30	14.66 ± 2.06	< 0.000		
Iotal proteins (g/dl)	7.65 ± 0	.38	6.89 ± 0.41	<0.01		
Albumin (g/dl)	$3.84 \pm 0.44 \\ 2.87 \pm 0.25$		3.77 ± 0.51	NS		
lgs (g/dl)	2.87 ± 0	.25	2.56 ± 0.22	< 0.01		
Ig G (mg/dl)	1580 ± 219 233 ± 28		1296 ± 158	< 0.001		
Ig M (mg/dl)			186 ± 23	< 0.001		
ibrinogen (mg/dl) 382 ± 80 299 ± 47			< 0.01			
Comparison performed by St	tudent's t test for unpaired	ed data.				
		Table 3				
Cellular aggr	egation promoter factors	s in RA patients and con	trols (mean \pm standard deviation)		
Cellular factor	RA patients ((n = 100)	Controls $(n = 40)$	p		
RI	14.79 ±	4.71	6.92 ± 1.31	< 0.00		
MCV (µm ³)	$89.7\pm$	1.6	93.15 ± 7.7	NS		
Morphological index	$0.30 \pm$	0.05	0.5 ± 0.03	NS		
T _{//} (Gauss)	$29.13 \pm$	0.10	29.02 ± 0.20	NS		
Pearson correlation coefficie	nts between aggregation where residing the transformation $n = 1$	parameters and concer 00)	ntration of fibrinogen, C-reactive	protein and im		
munoglobulins and erythrocy	te ligiaity maen (// 1	[Fibrinogen]	[Inmunoglobulins]	DI		
munoglobulins and erythrocy Aggregation parameter	RCP			KI		
munoglobulins and erythrocy Aggregation parameter 2k2n0	$\frac{\text{RCP}}{r = 0.558}$	r = 0.658	r = 0.654	$\frac{RI}{r = 0.59}$		
munoglobulins and erythrocy Aggregation parameter 2k ₂ n ₀	$\frac{\text{RCP}}{r = 0.558}$ $p = 0.06$	r = 0.658 p < 0.001	r = 0.654 p < 0.001	r = 0.59 $p < 0.00$		
munoglobulins and erythrocy Aggregation parameter $2k_2n_0$	RCP $r = 0.558$ $p = 0.06$ $r = 0.45$	r = 0.658 p < 0.001 r = 0.51	r = 0.654 p < 0.001 r = 0.56	r = 0.59 $p < 0.00$ $r = 0.52$		
munoglobulins and erythrocy Aggregation parameter $2k_2n_0$ s_0n_0	RCP $r = 0.558$ $p = 0.06$ $r = 0.45$ $r = 0.07$	r = 0.658 $p < 0.001$ $r = 0.51$ $m < 0.001$	r = 0.654 p < 0.001 r = 0.56 n < 0.001			
munoglobulins and erythrocy Aggregation parameter $2k_2n_0$ s_0n_0 Table 3 shows erythr	$\frac{\text{RCP}}{r = 0.558}$ $p = 0.06$ $r = 0.45$ $p = 0.07$ ocyte's mechanical	r = 0.658 $p < 0.001$ $r = 0.51$ $p < 0.001$ properties related to	r = 0.654 $p < 0.001$ $r = 0.56$ $p < 0.001$ o those appearing in the bi	r = 0.59 $p < 0.00$ $r = 0.52$ $p < 0.00$ bliography a		

Note that a negative significant correlation is found between the aggregation parameters and RI, indi-cating that increased rigidity leads to decreased aggregation rate and aggregate size. No significant cor-relations were found between the erythrocyte aggregation parameters and membrane fluidity (p > 0.05), cell volume (p > 0.05) nor internal viscosity (estimated by MCHC) (p > 0.05) (data not shown). Taken

Asso	ciation between the ervthr	Table ocyte aggregation param	e 5 neters with DAS 28-4 in	the follow-up study (n.	= 16)
	Inclusion	1 yr	2 yr	3 yr	4 yr
$2k_2n_0$	0.84^{*}	0.96*	0.90*	0.91*	0.94*
$s_0 n_0$	0.81^{*}	0.93**	0.89**	0.87^{**}	0.92^{**}
Rank correlati	ion coefficient (Spearmen' ese data indicate that	s test) r_s statistical signi cell properties are no	ficance $*p < 0.05$; $**p$ ot related to the incr	< 0.01. rease in aggregation	tendency in
RĂ.					-
Table 5 s	shows the association	between the ervth	rocyte aggregation	parameters with D	DAS 28-4 or
16 patients	during the 4-yrs follo	w-up. DAS 28-4 de	creased steadily alo	ong this time, and it	can be seer
that the agg	regation parameters s	stayed highly correla	ated with the diseas	e score.	
		5 6 5			
4. Discussi	ion				
Erythrocy	yte aggregation depen	ds on both its mecha	anical properties and	1 on its surface chara	acteristics. I
takes place	in the presence of mac	cromolecules able to	trigger such pheno	menon in the mediu	m [4,22,23]
The eryth	rocyte disaggregation	is considered vital f	for the normal perfu	ision of the tissues [2	24]. In phys
iological co	nditions, the blood flo	ow shear keeps the c	ells disaggregated;	however, in low-flow	w conditions
and in certa	in pathological situati	ons, increased eryth	rocyte aggregation	can lead to circulate	ory disorder
and – in mi	crocirculation – to the	e occlusion of the m	icrovessels as well	as to tissue hypoxer	mia [25–28]
Along wi	th the known ESR inc	crease [3,7,9,11], ou	r results show that l	RA-active patients p	present a sig
nificant incl	rease in erythrocyte a	ggregation. Moreove	er, a follow-up stud	y of the treated pati	ents showed
that, in rem	ission, aggregation m	onotonically decrea	ses with the activity	y index (DAS 28-4)	(Table 5).
Several fa	actors could have a rel	levant role in increas	sed erythrocyte agg	regation. Specificall	ly, active RA
appears acc	ompanied by raised C	CRP, immunoglobuli	ins and fibrinogen c	concentrations [3,8,1	11].
Many rep	orts deal with the role	played by fibrinoge	en and CRP, as well	as several inflamma	ation-marke
proteins suc	ch as IgG, IgM, IgA a	nd ceruplasmine in t	he induction and m	aintenance of increa	ased erythro
cyte aggreg	ation in the blood of I	RA patients [29].	. 1 1 11		
In a form	her paper [11] we pro	posed that in RA,	a widespread cell i	nembrane damage	is expressed
in impaired	erythrocyte deformation	bility, turning naemo	orneological param	eters into reliable to	sols to study
In the pro-	IULION.	anota aun accumentia	n that an ly than i aid	ity inday charged m	adifications
riven that	sell volume meen of	orate our assumption	abin concentration	and membrane flui	idity did no
given that (figure differences from	m controls	oom concentration	and memorane nul	any ara no
The signi	ficant nagative correl	ation between PL on	d aggragation parar	notors indicates that	t the diminu
tion in ervth	rocyte deformability	do not favour agare	aggregation para	acted result leads us	to conclude
that plasma	tic factors play a pred	lominant role in the	increase of erythrow	cute aggregation in	$\mathbf{R} \Delta$ nationts
Resides the	e assessment of plag	ma proteins and the	in correlation with	the $s_0 n_0$ and $2k_0 n_1$	narameter
showed the	t the increase in ervit	hrocyte aggregation	in these nations is	and s_{010} and $2\kappa_{210}$	ed to the in
creased love	els of immunoglobuli	ns $(n < 0.001)$ and	fibringen $(n \ge 0.0)$	(01) than to CRP	
In conclu	ision the present wor	$\mu < 0.001$ all μ	ts with active \mathbb{R}^{Λ} r	vresent an increased	erythroevt4
aggregation	whose value modified	es along with the act	tivity index $D\Delta S 2S$	3-4 This fact makes	aggregation
narametere	reliable rheumatoid a	orthritis activity indi	cators	, -, 1115 last 111akes	uggicgatiol
parameters	renable meumatolu a	initio activity mut	cat015.		

1	Fron	n the assessment of the intervening factors, the results obtained demonstrate that plasma factors –	1
2	immun	noglobulins and fibrinogen in particular – are the determiners of the increased aggregation, given	2
3	that the	e cell factor altered, RI, reduces the process' efficacy in rate and size of the aggregates.	3
4			4
5			5
6	Refere	ences	6
7	543 G		7
8	[1] S. (Chien, Aggregation of red blood cells. Energy balance at the interface, Ann. N.Y. Acad. Sci. 27 (1983), 103–104.	8
9	[2] 1.V sta	ndard hematocrit: The influence of sex age, immunoglobulins and fibring on concentrations. Standardization of para-	9
10	me	eters, Clin. Hemorheol. Microcirc. 36 (4) (2007), 335–343.	10
11	[3] X.	Weng, G. Cloutier, R. Beaulieu and G.O. Roederer, Influence of acute-phase proteins on erythrocyte aggregation, <i>Am.</i>	11
12	[4] R.	Physiol. Hearl Circ. Physiol. 271 (1990), H2340–H2352. Ben Ami, G. Barstein, D. Zeltser et al., Parameters of red blood cell aggregation as correlates of the inflammatory state.	12
13	Am	n. J. Physiol. Heart Circ. Physiol. 280 (2001), H1982–H1988.	13
14	[5] P. I	Halberg, Rheumatoid Arthritis. History in Rheumatology, J.H. Klipped and P.A. Dieppe, eds, Mosby, London, 1997,	14
15	pp.		15
16	[6] E.	Ernst, W. Thies, A. Matrai, N. Seichert, P. Schops, I. Magyarosy, A. Kraft-Kupfer and M. Schattenkirchner, Hemorhe- oric abnormalities in chronic arthritis. <i>Clin Hemorheol</i> 7 (1987) 591–598	16
17	[7] M.	Gudmundsson and A. Bjelle, Plasma viscosity in the monitoring of therapy in rheumatoid arthritis patients, <i>Scand. J.</i>	17
18	Rh	neumatol. 24 (4) (1995), 219–224.	18
19	[8] M.	Gudmundsson, A. Oden and A. Bjelle, On whole blood viscosity measurements in healthy individuals and in rheuma-	19
20	[0] C	d arthritis patients, <i>Biorheology</i> 31 (4) (1994), 407–416. A Kelly I McClelland B Fail and D Walker Erythrocyte sedimentation rate, plasma and serum viscosity as measures	20
21	of of	disease activity in rheumatoid arthritis, Br. J. Rheumatol. 26 (2) (1987), 136–138.	21
21	[10] A.	Pribush, L. Hatzkelson, D. Meyerstein and N. Meyerstein, A novel technique for quantification of erythrocyte aggre-	21
22	gat	tion abnormalities in pathophysiological situations, <i>Clin. Hemorheol. Microcirc.</i> 36 (2) (2007), 121–132.	22
23	[11] A.	Luquita, L. Urli, A. Dominighini, M.J. Svetaz, A.M. Gennaro, R. Volpintesta, S. Palatnik and M. Kasia, Haemorheo- rical variables as a rhoumatoid arthritis activity indicator. <i>Clin. Hamacheol. Microcirc.</i> 30 (2004), 9, 17	23
24	[12] F.C	C. Arnett, S.M. Edworthy, D.A. Bloch et al., The American Rheumatism Association 1987 revised criteria for the	24
25	cla	assification of rheumatoid arthritis, Arthrit. Rheum. 31 (1988), 315–324.	25
26	[13] B.J	J. Harrison, D.P.M. Symmons, E.M. Barrett and A.J. Silman, The performance of the 1987 ARA classification criteria	26
27	for	r rheumatoid arthritis in a population based cohort of patients with early inflammatory arthritis, J. Rheumatol. 25 (1998),	27
28	[14] D.I	24–2530. M. Van der Heijde and J.W. Jacobs. The original "DAS" and the "DAS28" are not interchangeable. Comment on the	28
29	arti	icles by Prevoo et al., Arthrit. Rheum. 41(5) (1998), 942–945.	29
30	[15] Th	e International Response to Helsinki VI, The WMA's Declaration of Helsinki on Ethical Principles for Medical Re-	30
31	sea	arch Involving Human Subjects, as adopted by the 52nd WMA General Assembly, Edinburgh, October 2000.	31
32	[10] S.N 25((22) (1999) 338–348	32
33	[17] Y.	Kikuchi, T. Arat and T. Koyarna, Improved filtration method for red cell deformability measurement, <i>Med. Biol. Eng.</i>	33
34	Co	<i>omput.</i> 42 (1983), 127–135.	34
35	[18] H.I	L. Reid, A.J. Barnes, P.J. Lock, J.A. Dormandy and T.L. Dormandy, A sample method for measuring erythrocyte	35
36		Tormability, J. Clin. Pathol. 29 (1970), 855–858. Campbell and D.A. Dwek. <i>Biological Spectroscopy</i> Benjamin/Cummings Menlo Park. CA. 1984, pp. 196–197.	36
37	[19] I.D	Bessis, in: <i>Red Cell Shape. Physiology, Pathology, Ultrastructure</i> , Springer-Verlag, Heidelberg, 1973, pp. 1–23.	37
38	[21] J.N	M. Singer, C.M. Plotz, E. Parker and S.K. Elster, The latex fixation test, Am. J. Clin. Path. 28 (1957), 611.	38
39	[22] M.	L. Melamies, H.M. Ruutsalo and H. Nissila, Evaluation of a quantitative immunoturbidimetric assay for rheumatoid	39
40	[23] GI	XOIS, Clin. Chem. 32 (1986), 1890–1894. Β. Nash, S. Wenby, Ο. Sowememo, Coker and H.I. Meiselman, Influence of cellular properties on red cell aggregation	40
11	[23] G.I	in. Hemorheol. 7 (1987), 93–108.	11
40	[24] M.	W. Rampling, The great divide: From viscometer to vasculature, Clin. Hemorheol. Microcirc. 39 (2008), 9–20.	41
42 42	[25] T.L	L. Fabry, Mechanism of erythrocyte aggregation and sedimentation, <i>Blood</i> 70 (1987), 1572–1576.	42
43	[26] M.	Soutani, Y. Suzuki, N. Tateishi and N. Maeda, Quantitative evaluation of flow dynamics of erythrocytes in microves-	43
44	[27] G	Mchedlishvili, M. Varazashvili and L. Gobeijshvili, Local RBC aggregation disturbing blood fluidity and causing stasis	44
45	in	microvessels, Clin. Hemorheol. Microcirc. 26 (2002), 99–107.	45
46			46

1	[28] M. Cabel, H.J. Meiselman, A.S. Popel and P.C. Johnson, Contribution of red blood cell aggregation to venous vascular	1
2	resistance in skeletal muscle, Am. J. Physiol. Heart Circ. Physiol. 272 (1997), H1020–H1032.	2
3	[29] I.G. Varazashvili and M.G. Mc Hedlishvili, Local hemorheological disorders during chronic inflamation, <i>Clin.</i> Hemorheol Microcirc 30 (3/4) (2004) 427–429	3
4	nemorieou interocite. 50(311) (2001), 121-129.	4
5		5
6		6
7		7
8		8
9		9
10		10
11		11
12		12
13		13
14		14
15		15
16		16
17		17
18		18
19		19
20		20
21		21
22		22
23		23
24		24
25		25
26		26
27		27
28		28
29		29
30		30
31		31
32		32
33		33
34		34
35		35
36		36
37		37
38		38
39		39
40		40
41		41
42		42
43		43
44		44
45		45
46		46
-		-