
A HIERARCHICAL PRODUCT-PROPERTY MODEL
TO SUPPORT PRODUCT CLASSIFICATION AND
MANAGE STRUCTURAL AND PLANNING DATA

Diego M. Giménez1, Gabriela P. Henning1, Horacio P. Leone2

1 INTEC (UNL-CONICET), Güemes 3450, Santa Fe S3000GLN, Argentina

2 INGAR (UTN-CONICET), Avellaneda 3657, Santa Fe S3002GJC, Argentina
dgimenez@fiq.unl.edu.ar, ghenning@intec.unl.edu.ar, hleone@conicet-santafe.gov.ar

Abstract. Mass customization is one of the main challenges that managers face
since it results in a proliferation of product data within the various
organizational areas of an enterprise and across different enterprises. Effective
solutions to this problem have resorted to generic bills of materials and to the
grouping of product variants into product families, thus improving data
management and sharing. However, issues like product family identification
and formation, as well as data aggregation have not been dealt with by this type
of approach. This contribution addresses these challenges and proposes a
hierarchical data model based on the concepts of variant, variant set and family.
It allows managing huge amounts of structural and non-structural information
in a systematic way, with minimum replication. Besides, it proposes an
unambiguous criterion, based on the properties of variants, for identifying
families and variant sets. Finally, the approach can explicitly handle aggregated
data which is intrinsic to generic concepts like families and variant sets. A case
study is analyzed to illustrate the representation capabilities of this approach.

Keywords: Product Data Model, Multiple Levels of Abstraction, Product
Properties, Product Classification.

1 Introduction

Today’s enterprises are forced to offer products which fulfill individual customer
needs. Because of the growing mass customization, industrial environments are
characterized by a large product variety. Therefore, an efficient treatment of product
data is required in order to deal with the huge amount of product-related information
that is managed daily within an enterprise and exchanged across different enterprises.

Several authors have proposed alternative solutions to the management of massive
product data, based on the concepts of Product Family and Generic Bill of Materials
[1,2]. In this direction, Giménez et al. [3] presented a novel product ontology named
PRONTO. The core of this approach is a three-level abstraction hierarchy, where the
lower level concerns physical products, which are handled through the concept of
variant. The upper level abstracts a population of variants with some similar
characteristics and is managed through the concept of family. The intermediate level,

handled through the concept of variant set, represents a set of variants with many
similar characteristics. Thus, the abstraction hierarchy is constructed by grouping
variants into variant sets and them into families according to their “similarity”. This
abstraction approach is helpful to share and not replicating common information. It is
also very useful when carrying out planning activities at different levels (strategic,
tactical and operational) since aggregated information can be generated along the
hierarchy. Nevertheless, some issues, like product classification have not been treated
in this line of research.

In this paper an unambiguous criterion for product classification is formalized.
Despite many works in the specialized literature addressed issues regarding
classification [4], the novelty of this work lies in that the proposed classification
mechanism is compatible with the approaches for managing common structural and
non-structural information as well as generating product data of different granularity.
Specifically, the classification criterion focuses on the properties that are defined in
order to describe the attributes of variants.

The paper is organized as follows. The concepts, relations and conditions on which
the proposal is based are explained in Section 2. Section 3 presents a case study to
illustrate the representation capabilities of the proposed approach. To conclude, some
final remarks are presented in Section 4.

2 Proposed Approach

2.1 Product Classification

The proposed representation relies on an abstraction hierarchy having three levels,
which are represented in the class diagram of Fig. 1 by the Variant, VariantSet and
Family classes.

Property

Abstraction

VariantFamily

eliminatedVariantProperty

AbstractionProperty
value: Value

VariantProperty
range: RestrictedValue

NarrowedValueRange
range: RestrictedValue

VariantSetmemberOf memberOf

individualOf

Property

Abstraction

VariantFamily

eliminatedVariantProperty

AbstractionProperty
value: Value
AbstractionProperty
value: Value

VariantProperty
range: RestrictedValue

NarrowedValueRange
range: RestrictedValue
NarrowedValueRange
range: RestrictedValue

VariantSetmemberOf memberOf

individualOf

Fig. 1. The three-level abstraction hierarchy.

According to the classification criterion to be formalized in this section, a family is
defined as a set of actual products or variants with several common properties,
having values within a specified range. Similarly, a variant set is defined as a subset
of variants, within a given family, which have the same properties and whose values

are within a given range, included in the one defined for the family. Thus, the variant
set notion can be seen as a subfamily concept.

Regarding the abstraction hierarchy, any concept (Abstraction) is of just one type
(family, variant set or variant). If A denotes the entire set of abstractions and I, J, and
K a partition of A representing the subsets of families, variant sets and variants,
respectively; then, conditions specified in (1) must be satisfied.

{ } { } { }=∩=∩=∩∪∪= KJKIJIKJIA)d(;)c(;)b(;)a((1)

In turn, each product instance or variant is a member of only one variant set and
each variant set is a member of just one family. If Kj and Ji denote the set of members
(variants) of variant set j and the set of members (variant sets) of family i,
respectively, conditions prescribed in (2) and (3) are imposed.

'jjkk,k)b(;k:jk)a(jjj =⇔∈∧∈∈∀∈∈∃∈∀ 'KKKKJ K (2)

'iijj,j)b(;j:ij)a(iii =⇔∈∧∈∈∀∈∈∃∈∀ 'JJJJI J (3)

Consequently, each variant belongs to only one family, as clauses in (4) prescribe.

'iikk,k)b(;kjk:k)a(iiiij =⇔∈∧∈∈∀∈⇒∈∧∈∈∀ 'KKKKJKK (4)

where Ki denotes the set of individuals of family i.
Properties play an essential role in product classification mechanisms. Two kinds

of properties are proposed: (i) The ones associated with the individuals of a family,
which are represented by the Variant Property concept (Fig. 1). This notion allows
specifying for each family the properties of its population, as well as their ranges of
possible values. Likewise, at the variant set level, the subset of properties shared by
all its members is specified by removing those variant properties, associated with the
corresponding family, that do not belong to the members of the variant set (eliminated
VariantProperty). Though variant properties are specified at the family level, they
generally assume values at the level of specific instances or variants. (ii) Properties
that are particular or intrinsic to a generic concept, like family or variant set; hence,
they are assigned values at the level of their definition. This notion is modeled by the
AbstractionProperty association (Fig. 1). Property concepts are formalized in (5),

K
jkj

K
i

K
ji PPKKPPJJ =⇒∈∈∀⊆⇒∈∈∀ k:k)b(;j:j)a((5)

where Pi
K is the set of variant properties associated with family i, Pj

K the subset of
variant properties shared by the members of variant set j, and Pk the set of properties
of variant k. Moreover, the value range of a given variant property, specified at the
family level, can be reduced when defining a variant set (NarrowedValueRange).

Properties are classified into qualitative and quantitative ones. In both cases the
value type is specified, and for quantitative properties, the unit of measure must be
indicated (see Fig. 2a).

The value range of variant properties is represented by the class RestrictedValue
which, in turn, is specialized into quantitative and qualitative categories (see Fig. 2b).

Within these subclasses a discrete set of allowed values can be specified. It is also
possible to define a continuous range for quantitative values.

QualitativeProperty
valueType: QualitativeValue

QuantitativeProperty
valueType: QuantitativeValue
unitOfMeasure: UOM

Property

RestrictedQualitativeValue
allowedValue: QualitativeValue

RestrictedQuantitativeValue

minValue: QuantitativeValue
maxValue: QuantitativeValue

allowedValue: QuantitativeValue

RestrictedValue

(a) Property categories (b) Value Range categories

QualitativeProperty
valueType: QualitativeValue

QuantitativeProperty
valueType: QuantitativeValue
unitOfMeasure: UOM

Property

QualitativeProperty
valueType: QualitativeValue

QualitativeProperty
valueType: QualitativeValue

QuantitativeProperty
valueType: QuantitativeValue
unitOfMeasure: UOM

QuantitativeProperty
valueType: QuantitativeValue
unitOfMeasure: UOM

Property

RestrictedQualitativeValue
allowedValue: QualitativeValue

RestrictedQuantitativeValue

minValue: QuantitativeValue
maxValue: QuantitativeValue

allowedValue: QuantitativeValue

RestrictedValue

RestrictedQualitativeValue
allowedValue: QualitativeValue

RestrictedQuantitativeValue

minValue: QuantitativeValue
maxValue: QuantitativeValue

allowedValue: QuantitativeValue
RestrictedQuantitativeValue

minValue: QuantitativeValue
maxValue: QuantitativeValue

allowedValue: QuantitativeValue

RestrictedValue

(a) Property categories (b) Value Range categories
Fig. 2. Property and Restricted Value specializations.

As mentioned before, if a particular variant is a member of a given variant set,
then each variant property must assume values belonging to the range specified by
the variant set, as prescribed in (6).

K
jp,kp,kj VVPKK ⊆∈∀⇒∈∈∀ ,pk:k (6)

where Vp,k is the set of values that property p assumes for variant k and Vp,j
K in the

range of possible values for property p set by variant set j. Fig. 3a conceptualizes this
idea.

Variant
Variant Set j1

ValuesK
j,pn

V
1

1k,pn
V

K
j1P∈np

1jK∈1k

Values

V
ar

ia
nt

 P
ro

pe
rti

es

K
i,pn

V
1

K
j,pn

V
1

Variant Set
Family i1

1iJ∈1j

K
j1P∈np

V
ar

ia
nt

 P
ro

pe
rti

es

(a) Variant classification (b) Variant set classification

Variant
Variant Set j1

ValuesK
j,pn

V
1

1k,pn
V

K
j1P∈np

1jK∈1k

Values

V
ar

ia
nt

 P
ro

pe
rti

es

K
i,pn

V
1

K
j,pn

V
1

Variant Set
Family i1

1iJ∈1j

K
j1P∈np

V
ar

ia
nt

 P
ro

pe
rti

es

(a) Variant classification (b) Variant set classification
Fig. 3. Variant and Variant Set classification conceptual notions.

Similarly, if a given variant set is a member of a certain family, then, for each
variant property pertaining to such variant set, the range of possible values must be
included within the range fixed by the family. This specification is formalized in (7).

K
ip,

K
jp,

K
ji VVPJJ ⊆∈∀⇒∈∈∀ ,pj:j (7)

where Vp,i
K is the value range corresponding to property p, which is defined by family

i. This notion is conceptually shown in Fig. 3b.

2.2 Product Unambiguous Definition

One basic assumption of the proposed model is that each product concept must be
unambiguously identified. This would allow implementing proper classification
mechanisms. Thus, at the lower level of the hierarchy it is implied that all variants
must be different. In the context of this approach two variants are considered distinct
if either their sets of properties are different or there exists at least one property which
assumes dissimilar values for each of these variants, as formalized in (8).

k'p,kp,kk'k VVPPP'K' ≠∈∃∨≠⇔≠∈∀ :pkk,k,k (8)

Fig. 4(a) conceptualizes various properties and their corresponding values for three
different variants. As it can be seen, Pk1=Pk2≠Pk3 and Vpn,k1≠Vpn,k2, therefore k1≠k2≠k3.
Likewise, all variant sets must be strictly different. This occurs if either they specify
distinct subsets of variant properties or there exists at least one associated variant
property for which the intersection between their corresponding value ranges is
empty. This notion is formally specified in (9).

{ }=∩∈∃∨≠⇔≠∈∀ K
j'p,

K
jp,

K
j

K
j'

K
j VVPPP'J' :pjj,j,j (9)

Fig. 4(b) conceptualizes several variant properties and their corresponding value
ranges for three different variants sets. As it can be seen, Pj1

K=Pj3
K≠Pj2

K and
Vpn,j1

K≠Vpn,j3
K, therefore j1≠j2≠j3.

Variant k1
Variant k2V

ar
ia

nt
 P

ro
pe

rti
es

Values

Variant k3
np

2k,pn
V

1k,pn
V Values

V
ar

ia
nt

 P
ro

pe
rti

es

np

K
j,pn

V
1

K
j,pn

V
3

Variant Set j1
Variant Set j2
Variant Set j3

(a) Variant uniqueness (b) Variant Set uniqueness

Variant k1
Variant k2V

ar
ia

nt
 P

ro
pe

rti
es

Values

Variant k3
np

2k,pn
V

1k,pn
V Values

V
ar

ia
nt

 P
ro

pe
rti

es

np

K
j,pn

V
1

K
j,pn

V
3

Variant Set j1
Variant Set j2
Variant Set j3

(a) Variant uniqueness (b) Variant Set uniqueness
Fig. 4. Variant and Variant Set uniqueness schematic representations.

Finally, families should be strictly different. This occurs if they specify distinct sets
of variant properties or there exists at least one associated variant property for which
the intersection of their corresponding value ranges is empty, as prescribed in (10).

{ }=∩∈∃∨≠⇔≠∈∀ K
i'p,

K
ip,

K
i

K
i'

K
i VVPLL'I' :pii,i,i (10)

Fig. 5 conceptually shows various variant properties and their corresponding value
ranges for three different families. As it can be seen, Pj1

K=Pj3
K≠Pj2

K and Vpn,j1
K≠Vpn,j3

K,
therefore j1≠j2≠j3. These assumptions assure an unambiguous classification criterion.

In consequence, each variant should be a member of a unique variant set and each
variant set should be a member of a unique family. Therefore, each variant would
belong to a unique family.

Values

V
ar

ia
nt

 P
ro

pe
rti

es

np

K
i,pn

V
2

K
i,pn

V
3

Family i1
Family i2
Family i3

Values

V
ar

ia
nt

 P
ro

pe
rti

es

np

K
i,pn

V
2

K
i,pn

V
3

Family i1
Family i2
Family i3

Fig. 5. Family uniqueness schematic representation.

2.3 Product Structure

Another essential challenge of product modeling is the representation of product
structures. Regarding this issue, families are classified into compound and simple
families. In the first case, compound families can be decomposed into other families (a
set of “parts” can be identified). On the other hand, simple families cannot be further
decomposed. Along the same line of reasoning, variant sets and variants are
classified into compound and simple variant sets, and compound and simple variants,
respectively. These notions are formally stated in (11) and (12).

SCSCSC KKKJJJIII ∪=∪=∪=)c(;)b(;)a((11)

{ } { } { }=∩=∩=∩ SCSCSC KKJJII)c(;)b(;)a((12)

where IC/JC/KC is the subset of compound families/variant sets/variants and IS/JS/KS
is the subset of simple families/variant sets/variants.

To keep model consistency, it is assumed that low-level compound/simple
abstractions are members of high-level compound/simple abstractions. These
assumptions are prescribed in (13) to (15).

SSCC JKKJKK ∈⇒∈∈∀∈⇒∈∈∀ jk:k)b(;jk:k)a(jj (13)

SSCC IJJIJJ ∈⇒∈∈∀∈⇒∈∈∀ ij:j)b(;ij:j)a(ii (14)

i
SS

i
CC KIKKIK ∈∈∃∈∀∈∈∃∈∀ k:ik)b(;k:ik)a((15)

According to the proposal of Giménez et al. [3], generic structures are defined for
compound families, which in turn can be modified by compound variant sets in order
to allow the construction of particular BOMs for compound variants. Specifically, one
or more generic structures are associated with each compound family. Then, each

variant set specifies one generic structure of the corresponding family and from this
particular one it derives the structure shared by all its members. Finally, actual BOMs
(at the variant level) are obtained from the structure defined at variant set level.

Generic structures are classified into composition and decomposition structures
depending on whether the compound family is composed of generic components
(families) or it is decomposed into generic derivatives (families), as indicated in (16).

{ }=∩∪=∈∈∃∈∀ DCDC
i

C SSSSSSSI)c(;)b(;s:si)a((16)

where S is the set of structures, Si is the subset of structures associated with family i,
and SC/SD the subset of composition/decomposition structures.

The class diagram shown in Fig. 6 illustrates the specialization of the family
concept (Family) into compound and simple family (CFamily and SFamily,
respectively), the specialization of the generic structure concept (Structure) into
composition and decomposition structures (CStructure and DStructure,
respectively), and the definition of generic structures through structural relations
(StructuralRelation), which are classified into composition and decomposition
structural relations (CStructuralRelation and CStructuralRelation, respectively).

CStructure DStructure

Structure

CStructuralRelation

Family

gStructure
CFamily SFamily

StructuralRelation
quantityPer: QuantitativeValue
range: RestrictedQuantitativeValue
unitOfMeasure: UOM
type: StructuralRelationType

DStructuralRelation
CStructure DStructure

Structure

CStructuralRelation

Family

gStructure
CFamily SFamily

StructuralRelation
quantityPer: QuantitativeValue
range: RestrictedQuantitativeValue
unitOfMeasure: UOM
type: StructuralRelationType

StructuralRelation
quantityPer: QuantitativeValue
range: RestrictedQuantitativeValue
unitOfMeasure: UOM
type: StructuralRelationType

DStructuralRelation

Fig. 6. Generic structure representation.

A structural relation is established between the generic structure and the
corresponding generic components/derivatives (compound or simple families). This
relation provides information about the quantity of the generic component/derivative
required/obtained per unit of compound family. In addition, the range of possible
values for the quantity mentioned above, its unit of measure, and the relation type are
also defined.

Three types of structural relations are adopted: mandatory, optional and selective.
The chosen type determines whether a given structural relation can be removed from
a generic structure by a variant set. Thus, when it is mandatory, the relation must
exist; if it is optional, it can be eliminated; and when it is selective, only one relation
of this type must be chosen (the other ones must be removed). See clauses (17)-(18).

GCs
s

GCo
s

GCm
s

GC
s

GC
s

C IIIIIIS UU=∈∈∃∈∀)b(;i:is)a((17)

GDs
s

GDo
s

GDm
s

GD
s

GD
s

D IIIIIIS UU=∈∈∃∈∀)b(;i:is)a((18)

where Is
GC/Is

GD is the set of generic components/derivatives for structure s,
Is

GCm/Is
GCo/Is

GCs the subset of mandatory/optional/selective generic components for

structure s and Is
GDm/Is

GDo/Is
GDs the subset of mandatory/optional/selective generic

derivatives for structure s. As mentioned before, a given compound variant set
specifies one (and only one) of the generic structures associated with the family of
which it is member, being able to eliminate some structural relations, but just those
that are not mandatory. See clauses (19)-(23) representing these concepts.

'ssjj,j)b(;j:sj:j)a(=⇔∈∧∈∈∀∈∈∃∈∈∀ C
s'

C
s

CC
sii

C JJJJSJJ (19)

GC
j

GC
s

CC
s IISJ ∈∈∃∈∈∀ i:is:j (20)

GC
j

GCm
s

GC
s

GC
j

CC
s IIIISJ ⊆∧⊆⇒∈∈∀ s:j (21)

GD
j

GD
s

DC
s IISJ ∈∈∃∈∈∀ i:is:j (22)

GD
j

GDm
s

GD
s

GD
j

DC
s IIIISJ ⊆∧⊆⇒∈∈∀ s:j (23)

where Js
C is the subset of compound variant sets whose structure derives from

generic structure s and Ij
GC/Ij

GD is the set of generic components/derivatives (families)
from which the variant sets taking part in the structure of variant set j are selected.

Thus, a particular variant set must be selected for each non-eliminated generic
component/derivative. In other words, for each family assuming the role of generic
component/derivative in a non-eliminated structural relation, a variant set being
member of such a family must be specified, as prescribed in (24).

GD
ji

GD
j

GC
ji

GC
j JJ'IJJ'I ∈∈∃∈∀∈∈∃∈∀ 'j:ji)b(;'j:ji)a((24)

where Jj
GC/Jj

GD is the set of components/derivatives of variant set j. Fig. 7 depicts the
representation of the structure of a compound variant set.

Structure

StructureSelection

gComponentElimination

StructuralRelation
VariantSet

CVariantSetSVariantSet

VSSelection
quantityPer: QuantitativeValue
range: RestrictedQuantitativeValue

Structure

StructureSelection

gComponentElimination

StructuralRelation
VariantSet

CVariantSetSVariantSet

VSSelection
quantityPer: QuantitativeValue
range: RestrictedQuantitativeValue

VSSelection
quantityPer: QuantitativeValue
range: RestrictedQuantitativeValue

Fig. 7. Compound variant set structure representation.

When a variant set selection is carried out, a new “quantity per” value and a new
range of possible values can be specified. The condition to be satisfied is that the new
range must be included within the range stipulated by the associated structural
relation.

Finally, each compound variant adopts the structure defined by the variant set of
which it is a member of, and specifies a particular member (variant) of each variant
set assuming the generic component/derivative rol in such a structure. See (25)-(26).

C
kj'

GC
j

CC
sj KKJ'SJK ∈∈∃∈∀⇒∈∧∈∈ 'k:'kjsj:k (25)

D
kj'

GD
j

DC
sj KKJ'SJK ∈∈∃∈∀⇒∈∧∈∧∈ 'k:'kjsjk (26)

where Kk
C/Kk

D is the set of components/derivatives of variant k. Fig. 8 shows the
single-level BOM representation corresponding to a compound variant.

Variant

SVariant

VSelection
quantityPer: QuantitativeValue

CVariant

Variant

SVariant

VSelection
quantityPer: QuantitativeValue

VSelection
quantityPer: QuantitativeValue

CVariant
Fig. 8. Variant BOM representation.

3 Case Study

In this section, the proposed approach is employed to represent the data associated
with the set of cookware products illustrated in Fig. 9.

ORDINARY SAUCEPANS

DELUXE SAUCEPANS

O-1Q O-2Q O-3Q

SAUCEPANS

D-1Q D-2Q D-3Q

size: {1-quart, 2-quart, 3-quart}
lid?: {no}
steel line: {regular}
no. of pan handles: {1}
handles line: {basic}

PROFESSIONAL SAUCEPANS

P-1Q P-2Q P-3Q

1-quart
no
regular
1
basic

2-quart
no
regular
1
basic

3-quart
no
regular
1
basic

size: {1-quart, 2-quart, 3-quart}
lid?: {yes}
steel line: {clad}
no. of pan handles: {1}
lid handle shape: {knob}
handles line: {executive}

1-quart
yes
clad
1
knob
executive

2-quart
yes
clad
1
knob
executive

3-quart
yes
clad
1
knob
executive

size: {1-quart, 2-quart, 3-quart}
lid?: {yes}
steel line: {clad}
no. of pan handles: {2}
lid handle shape: {loop}
handles line: {executive}

1-quart
yes
clad
2
loop
executive

2-quart
yes
clad
2
loop
executive

3-quart
yes
clad
2
loop
executive

Variant Properties

Variant Properties

Variant Properties

Intrinsic Properties

Intrinsic Properties

Intrinsic Properties
total demand: 120
total revenue: 4.44

total demand: 60
total revenue: 3.00

total demand: 20
total revenue: 1.24

Intrinsic Properties
total demand: 200
total revenue: 8.68

size: {1-quart, 2-quart, 3-quart}
lid?: {yes, no}
steel line: {regular, clad}

Variant Properties
no. of pan handles: {1,2}
lid handle shape: {loop, knob}
handle line: {basic, executive}

ORDINARY SAUCEPANS

DELUXE SAUCEPANS

O-1Q O-2Q O-3Q

SAUCEPANS

D-1Q D-2Q D-3Q

size: {1-quart, 2-quart, 3-quart}
lid?: {no}
steel line: {regular}
no. of pan handles: {1}
handles line: {basic}

PROFESSIONAL SAUCEPANS

P-1Q P-2Q P-3Q

1-quart
no
regular
1
basic

2-quart
no
regular
1
basic

3-quart
no
regular
1
basic

size: {1-quart, 2-quart, 3-quart}
lid?: {yes}
steel line: {clad}
no. of pan handles: {1}
lid handle shape: {knob}
handles line: {executive}

1-quart
yes
clad
1
knob
executive

2-quart
yes
clad
1
knob
executive

3-quart
yes
clad
1
knob
executive

size: {1-quart, 2-quart, 3-quart}
lid?: {yes}
steel line: {clad}
no. of pan handles: {2}
lid handle shape: {loop}
handles line: {executive}

1-quart
yes
clad
2
loop
executive

2-quart
yes
clad
2
loop
executive

3-quart
yes
clad
2
loop
executive

Variant Properties

Variant Properties

Variant Properties

Intrinsic Properties

Intrinsic Properties

Intrinsic Properties
total demand: 120
total revenue: 4.44

total demand: 60
total revenue: 3.00

total demand: 20
total revenue: 1.24

Intrinsic Properties
total demand: 200
total revenue: 8.68

size: {1-quart, 2-quart, 3-quart}
lid?: {yes, no}
steel line: {regular, clad}

Variant Properties
no. of pan handles: {1,2}
lid handle shape: {loop, knob}
handle line: {basic, executive}

Fig. 9. Set of products considered in the case study.

As it can be seen, the set of products corresponds to the family of saucepans. Three
variant sets were identified: ordinary, deluxe and professional saucepans; each one
grouping three variants. The first variant set represents the economical line of
saucepans. They are characterized by having only one pan handle, not having a lid
and being manufactured with medium-quality materials. The second variant set
represents the intermediate product line. In this case, saucepans are characterized by
having one pan handle, a lid with knob handle and being manufactured with high-
quality materials. The last variant set represents the most complete line of products,
which are recognized by having two pan handles, a lid with loop handle, apart from
being manufactured with high-quality materials. Variants within a given variant set
differ only in size. The three standardized sizes of saucepans are “one-quarter”, “two-
quarter” and “three-quarter”. The abstraction hierarchy regarding this case study is
depicted in Fig. 10.

<<CFamily>>
Saucepan

<<CVariantSet>>
ProfessionalSaucepan

<<CVariantSet>>
DeluxeSaucepan

<<CVariantSet>>
OrdinarySaucepan

<<CVariant>>
O-1Q

<<CVariant>>
O-2Q

<<CVariant>>
O-3Q

<<CVariant>>
D-1Q

<<CVariant>>
D-2Q

<<CVariant>>
D-3Q

<<CVariant>>
P-1Q

<<CVariant>>
P-2Q

<<CVariant>>
P-3Q

memberOf memberOf memberOf

memberOf

<<CFamily>>
Saucepan

<<CVariantSet>>
ProfessionalSaucepan

<<CVariantSet>>
DeluxeSaucepan

<<CVariantSet>>
OrdinarySaucepan

<<CVariant>>
O-1Q

<<CVariant>>
O-2Q

<<CVariant>>
O-3Q

<<CVariant>>
D-1Q

<<CVariant>>
D-2Q

<<CVariant>>
D-3Q

<<CVariant>>
P-1Q

<<CVariant>>
P-2Q

<<CVariant>>
P-3Q

memberOf memberOf memberOf

memberOf

Fig. 10. Abstraction hierarchy associated with the case study.

Clearly, family, variant sets, and variants are compound abstractions, since they
are composed of other abstractions representing subassemblies. Fig. 9 also presents
some of the properties associated with the different levels of abstraction. Two
intrinsic properties were exemplified for the family of saucepans (total demand and
total revenue) and six variant properties were included in such a family (size, lid?,
steel line, no. of pan handles, lid handle shape and handle line). Besides, the same
intrinsic properties were defined for all variant sets (i.e. total demand and total
revenue).

In relation to variant properties, the lid handle shape one was eliminated from
ordinary saucepans since they have no lids. Property values and value ranges are also
shown in Fig. 9. Some examples of the concepts and relations presented in Figs. 1 to 3
are given in Figs. 11 and 12. Basically, Fig. 11 shows the definition of a specific
variant property by a given family and the elimination of such a variant property by a
particular variant set. It is also shown the narrowing of its value range. In turn, Fig.
12 illustrates examples of intrinsic properties associated with product abstractions.

From Fig. 9 it can be seen that the ranges specified for variant properties at the
variant set level are comprised within the range stipulated for each variant property at
the corresponding family level. Alike, values of variant properties specified at the
variant level are comprised within the range established by the corresponding variant
set.

On the other hand, it is verified that all variant sets are strictly different. Ordinary
saucepans are different from deluxe and professional ones because the sets of variant
properties are distinct. Despite possessing the same variant properties, deluxe and
professional saucepans are also different because the value ranges defined for some

variant properties have no common elements (values). For example, the number of
pan handles is fixed to one for deluxe saucepans and to two for professional ones.
Moreover, all variants are dissimilar since, within each variant set, they vary in size,
as mentioned before.

<<CFamily>>
Saucepan

<<QualitativeProperty>>
LidHandleShape

valueType: String

<<VariantProperty>>
S-I-LHShape

range: S-LHShape

<<RestrictedQualitativeValue>>
S-LHShape

allowedValue: {Knob, Loop}

<<CVariantSet>>
OrdinarySaucepan

variantPropertyElimination

<<CVariantSet>>
ProfessionalSaucepan

<<NarrowedValueRange>>
PS-C-S-I-LHShape

range: PS-S-I-LHShape <<RestrictedQualitativeValue>>
PS-S-I-LHShape

allowedValue: {Loop}

<<CFamily>>
Saucepan

<<QualitativeProperty>>
LidHandleShape

valueType: String

<<QualitativeProperty>>
LidHandleShape

valueType: String

<<VariantProperty>>
S-I-LHShape

range: S-LHShape

<<VariantProperty>>
S-I-LHShape

range: S-LHShape

<<RestrictedQualitativeValue>>
S-LHShape

allowedValue: {Knob, Loop}

<<RestrictedQualitativeValue>>
S-LHShape

allowedValue: {Knob, Loop}

<<CVariantSet>>
OrdinarySaucepan

variantPropertyElimination

<<CVariantSet>>
ProfessionalSaucepan

<<NarrowedValueRange>>
PS-C-S-I-LHShape

range: PS-S-I-LHShape <<RestrictedQualitativeValue>>
PS-S-I-LHShape

allowedValue: {Loop}

<<RestrictedQualitativeValue>>
PS-S-I-LHShape

allowedValue: {Loop}

Fig. 11. Variant property definition.

<<CFamily>>
Saucepan

<<QuantitativeProperty>>
TotalDemand

valueType: Real
unitOfMeasure: 103units/year

<<AbstractionProperty>>
SaucepanTotalDemand
value: 200

<<QuantitativeProperty>>
TotalRevenue

valueType: Real
unitOfMeasure: 106$/year

<<AbstractionProperty>>
DSaucepanTotalRevenue
value: 3.00

<<CVariantSet>>
DeluxeSaucepan

<<QualitativeProperty>>
SteelLine

valueType: String

<<AbstractionProperty>>
P-1QSteelType

value: Clad

<<CVariant>>
P-1Q

<<CFamily>>
Saucepan

<<QuantitativeProperty>>
TotalDemand

valueType: Real
unitOfMeasure: 103units/year

<<QuantitativeProperty>>
TotalDemand

valueType: Real
unitOfMeasure: 103units/year

<<AbstractionProperty>>
SaucepanTotalDemand
value: 200

<<AbstractionProperty>>
SaucepanTotalDemand
value: 200

<<QuantitativeProperty>>
TotalRevenue

valueType: Real
unitOfMeasure: 106$/year

<<QuantitativeProperty>>
TotalRevenue

valueType: Real
unitOfMeasure: 106$/year

<<AbstractionProperty>>
DSaucepanTotalRevenue
value: 3.00

<<AbstractionProperty>>
DSaucepanTotalRevenue
value: 3.00

<<CVariantSet>>
DeluxeSaucepan

<<QualitativeProperty>>
SteelLine

valueType: String

<<QualitativeProperty>>
SteelLine

valueType: String

<<AbstractionProperty>>
P-1QSteelType

value: Clad

<<AbstractionProperty>>
P-1QSteelType

value: Clad

<<CVariant>>
P-1Q

Fig. 12. Representation of abstraction properties.

Regarding product structures, the generic composition structure associated with
the family is represented in Fig. 13. Saucepans are generically composed of a pan
assembly (mandatory) and a lid assembly (optional). In both cases the “quantity per”
is exactly equal to 1.

<<CFamily>>
Saucepan

<<CStructure>>
SaucepanGS

structure

<<CFamily>>
PanAssembly

<<CFamily>>
LidAssembly

<<RestrictedQuantitativeValue>>
S-PanAssembly

allowedValue: 1
minValue:
maxValue:

<<RestrictedQuantitativeValue>>
S-LidAssembly

allowedValue: 1
minValue:
maxValue:

<<CStructuralRelation>>
S-C-PanAssembly

quantityPer: 1
range: S-PanAssembly
unitOfMeasure: Unit
relationType: Mandatory

<<CStructuralRelation>>
S-C-LidAssembly

quantityPer: 1
range: S-LidAssembly
unitOfMeasure: Unit
relationType: Optional

<<CFamily>>
Saucepan

<<CStructure>>
SaucepanGS

structure

<<CFamily>>
PanAssembly

<<CFamily>>
LidAssembly

<<RestrictedQuantitativeValue>>
S-PanAssembly

allowedValue: 1
minValue:
maxValue:

<<RestrictedQuantitativeValue>>
S-PanAssembly

allowedValue: 1
minValue:
maxValue:

<<RestrictedQuantitativeValue>>
S-LidAssembly

allowedValue: 1
minValue:
maxValue:

<<RestrictedQuantitativeValue>>
S-LidAssembly

allowedValue: 1
minValue:
maxValue:

<<CStructuralRelation>>
S-C-PanAssembly

quantityPer: 1
range: S-PanAssembly
unitOfMeasure: Unit
relationType: Mandatory

<<CStructuralRelation>>
S-C-PanAssembly

quantityPer: 1
range: S-PanAssembly
unitOfMeasure: Unit
relationType: Mandatory

<<CStructuralRelation>>
S-C-LidAssembly

quantityPer: 1
range: S-LidAssembly
unitOfMeasure: Unit
relationType: Optional

<<CStructuralRelation>>
S-C-LidAssembly

quantityPer: 1
range: S-LidAssembly
unitOfMeasure: Unit
relationType: Optional

Fig. 13. Saucepans´ generic structure.

An example of a variant set structure is shown in Fig. 14(a). In this case, ordinary
saucepans are composed of only ordinary pan assemblies. The family of lid
assemblies was eliminated from the generic structure. In turn, the set of ordinary pan
assemblies was selected as a generic component. An example of a variant single-level
BOM is depicted in Fig. 14(b). As it is shown, a two-quarter ordinary saucepan is
composed of a two-quarter ordinary pan assembly.

<<CVariantSet>>
OrdinarySaucepan

<<CStructure>>
SaucepanGS

<<StructureSelection>>
OSaucepanStructure

<<CVariantSet>>
OrdinaryPanAssembly

<<VSSelection>>
OS-C-OPA

quantityPer: 1
range: S-PanAssembly

<<CVariant>>
O-2Q

<<CVariant>>
OPA-2Q

<<VSelection>>
O-2Q-C-OPA-2Q
quantityPer: 1

<<CStructuralRelation>>
S-C-LidAssembly

gComponentElimination

(a) Ordinary saucepans structure (b) 2-Q ordinary saucepan BOM

<<CVariantSet>>
OrdinarySaucepan

<<CStructure>>
SaucepanGS

<<StructureSelection>>
OSaucepanStructure

<<CVariantSet>>
OrdinaryPanAssembly

<<VSSelection>>
OS-C-OPA

quantityPer: 1
range: S-PanAssembly

<<VSSelection>>
OS-C-OPA

quantityPer: 1
range: S-PanAssembly

<<CVariant>>
O-2Q

<<CVariant>>
OPA-2Q

<<VSelection>>
O-2Q-C-OPA-2Q
quantityPer: 1

<<VSelection>>
O-2Q-C-OPA-2Q
quantityPer: 1

<<CStructuralRelation>>
S-C-LidAssembly

gComponentElimination

(a) Ordinary saucepans structure (b) 2-Q ordinary saucepan BOM
Fig. 14. Examples of the Variant Set structure and Variant BOM generation concepts.

4 Final Remarks

In this paper, a novel model for product data management is presented. The proposal
is based on a three-level abstraction hierarchy. It differs from similar approaches
because an unambiguous criterion to classify product concepts along the hierarchy is
defined. At the same time, it provides foundations to handle data (dis)aggregation
processes in a systematic way. Moreover, the proposed model attempts to offer more
expressiveness, flexibility and reuse of information at the different levels of
abstraction.

Regarding model validation, a prototype of a Distributed Product Data
Management (DPDM) system that supports the classification criterion described in
Section 2 is currently under development. Several case studies of different complexity
are being addressed in order to validate the conceptual model and the classification
procedure as well as to evaluate its practical applicability. Preliminary results show
that many of the complexities associated with the management of massive product
data can be effectively tackled by implementing this novel hierarchical product-
property model.

Acknowledgments. This work has been supported by CONICET, UTN, and UNL.

References

1. De Lit, P., Danloy, J., Delchambre, A., Henrioud, J-M.: An Assembly-Oriented Product
Family Representation for Integrated Design. IEEE Transactions on Robotics and
Automation, 19, 75–88 (2003)

2. Du, X., Jiao, J., Tseng, M.M.: Architecture of Product Family: Fundamentals and
Methodology. Concurrent Engineering: Research and Application, 9, 309–325 (2001)

3. Giménez, D.M., Vegetti, M., Henning, G.P., Leone, H.P.: PRoduct ONTOlogy: Defining
product-related concepts for logistics planning activities. Computers in Industry, 59, 231–
241 (2008)

4. Yan, W., Chen, S-H., Huang, Y., Mi, W.: A data-mining approach for product
conceptualization in a web-based architecture. Computers in Industry, 60, 21–34 (2009)

