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ABSTRACT
There is an unmet need for interventions with better compliance that prevent the adverse effects of sex steroid deficiency on the
musculoskeletal system. We identified a blueberry cultivar (Montgomerym [Mont]) that added to the diet protects female mice from
musculoskeletal loss and body weight changes induced by ovariectomy. Mont, but not other blueberries, increased the endogenous
antioxidant response by bypassing the traditional antioxidant transcription factor Nrf2 and without activating estrogen receptor
canonical signaling. Remarkably, Mont did not protect the male skeleton from androgen-induced bone loss. Moreover, Mont
increased the variety of bacterial communities in the gut microbiome (α-diversity) more in female than in male mice; shifted the phy-
logenetic relatedness of bacterial communities (β-diversity) further in females than males; and increased the prevalence of the taxon
Ruminococcus1 in females but not males. Therefore, this nonpharmacologic intervention (i) protects from estrogen but not androgen
deficiency; (ii) preserves bone, skeletal muscle, and body composition; (iii) elicits antioxidant defense responses independently of
classical antioxidant/estrogenic signaling; and (iv) increases gut microbiome diversity toward a healthier signature. These findings
highlight the impact of nutrition on musculoskeletal and gut microbiome homeostasis and support the precision medicine principle
of tailoring dietary interventions to patient individualities, like sex. © 2020 American Society for Bone and Mineral Research (ASBMR).
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Introduction

Musculoskeletal deterioration upon sex steroid deficiency or
aging is a major cause of bone fractures worldwide. Cur-

rent therapies have poor compliance, are not suitable for all
patients, and exhibit increased risk of damaging side effects.(1–6)

6) Lower medication adherence is also influenced by socioeco-
nomic factors, including high costs and insufficient medical
insurance.(1,3) Further, the mechanisms underlying bone loss,
therapeutic response, and overall morbidity/mortality may differ
between women andmen.(7–11) Thus, there is an unmet need for

interventions with better compliance, fewer side effects, and tai-
lored to individualities, like sex, to meet the goals of precision
medicine.

Accumulation of reactive oxygen species (ROS) in bone under-
lies the skeletal fragility ensuing with loss of sex steroids and
aging.(12,13) ROS stabilizes the transcription factor Nrf2 (nuclear
factor, erythroid derived 2, like 2), which triggers an endogenous
antioxidant response (EAR) in an attempt to mitigate cellular
effects of ROS.(14–16) The EAR is genetically controlled by the anti-
oxidant enzymes that degrade ROS, thioredoxin reductase
1 (Txnrd1), and superoxide dismutase 1 (Sod1) and by the phase
II detoxifying enzymes that indirectly neutralize ROS by
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conjugating xenobiotics, heme oxygenase 1 (Hmox1), ferritin
light chain 1 (Ftl1), and glutathione S-transferase phosphate
1 (Gstp1).

The fundamental impact of nutrition on skeletal health is fully
accepted.(17–22) However, how dietary components regulate
skeletal homeostasis is far from being elucidated. Beyond min-
erals and vitamins, polyphenolic compounds found in natural
plant products might benefit the skeleton by mechanisms asso-
ciated with their antioxidant properties. In particular, diets
enriched in blueberries have been shown to protect against
bone loss in some(23–26) but not all studies.(27) In addition, the
degree of protection markedly varies among subjects. Therefore,
the factors controlling why some diets, but not others, are effec-
tive and why some individuals, but not all, are fully responsive
remain unknown.

To address these unsolved issues, we utilizedhere the preclinical
model of gonadectomy in themouse that recapitulates the effects
of sex steroid deficiency in humans, geneticallymodifiedmice lack-
ing the Nrf2 transcription factor, and diets supplemented with dry
extracts of three different cultivars of blueberries. The current study
identifies a cultivar of blueberries (Montgomery [Mont]) that, unlike
two other blueberry types, when incorporated into the diet fully
protected female mice from the damaging effects of estrogen loss
on bone, muscle, and body composition leading to peripheral fat
accumulation. Only theMont diet effectively increased the skeletal
EAR and the underlying mechanism appears to be unique as it is
independent of the traditional antioxidant transcription factor
Nrf2 and does not result from activation of canonical estrogenic
signaling. These benefitswere linked to a healthier gutmicrobiome
signature characterized by increased diversity of bacterial commu-
nities as quantified by richness, evenness, and phylogenetic relat-
edness. In contrast to the effects in females, Mont diet was
minimally effective in protecting the skeleton from androgen defi-
ciency and in increasingmicrobiome diversity inmales. These find-
ings provide an explanation for the varied effectiveness of dietary
interventions and emphasize the importance of adapting thera-
peutic approaches to patient individualities, such as sex. Further,
they strongly suggest that skeletal EAR and the gut microbiome
signature are suitable predictors of individual responses to inter-
ventions targeting the musculoskeletal system.

Materials and Methods

Mice and diets

Wild-type (WT) andNrf2 knockout (KO) littermatemicewere gener-
ated by breeding Nrf2 heterozygousmice (B6.129X1-Nfe2/2tm1Ywk/
J) from Jackson Laboratory (Bar Harbor, ME, USA), and genotyping
was performed by PCR, using the primers and the nucleotide-free
UltraPure distilled water (ref #10977–023, Invitrogen, Carlsbad,
CA, USA) with controls as published earlier.(28) Skeletally mature,
4-month-old mice were sham operated (SHAM), ovariectomized
(OVX) or orchidectomized (ORX), and fed a control diet (Modified
AIN-93 M Rodent Diet With Corn Oil, product #D00031602,
Research Diets Inc., New Brunswick, NJ, USA) or a control diet con-
taining 10% lyophilized (freeze-dried) Wild Blueberry, Ira, or Mont-
gomery blueberries obtained by the North Carolina State
University, Plants for Human Health Institute (Kannapolis, NC,
USA). Wild Blueberry is a composite of lowbush wild blueberries
(V. angustifolium, Aiton) harvested from sites, as earlier.(29) Ira and
Montgomery are two different cultivars of rabbiteye blueberries
(V. asheii, Reade). Supplemental Tables S1 to S3 shows the polyphe-
nolic concentrations and Supplemental Table S4 compares diets’

nutritional contents. All diets contained the recommended levels
for rodents of 0.5% calcium and 0.2% phosphorus. Mice received
food andwater ad libitum, and foodwas replaced every 2 to 3 days.
Animals were maintained on a 12-hour light/dark cycle in polycar-
bonate cages. The study was ended when statistically significant
decreases in bonemineral density (BMD) upongonadectomywere
detected in control-fed animals (6 weeks for females and 4 weeks
for males). Euthanasia was performed by sedation with 2% isoflur-
ane (Abbott Laboratories, Chicago, IL, USA), followed by cervical
dislocation. All animal procedures were approved by the Institu-
tional Animal Care andUse Committee of IndianaUniversity School
of Medicine, and animal care was carried out in accordance with
institutional guidelines.

BMD measurement and micro-CT analysis

Lean body mass and BMD of the total body (excluding head and
tail), lumbar spine (L1 to L6), and femur were measured by dual-
energy X-ray absorptiometry (DXA) using a PIXImus II densitom-
eter (GE Medical Systems, Lunar Division, Madison, WI, USA).
Initial BMD was taken 3 days before and 6 or 4 weeks after
gonadectomy for female or male mice, respectively. Mice were
randomized at the beginning of the study based on initial spinal
BMD to assure no statistical differences among experimental
groups. BMD was expressed as percent change per month using
the following equation: % change in BMD/mo = 30d × [100 ×
[(Final BMD – Initial BMD) / Initial BMD] / d]. Total body weight
and fat mass were also expressed as percent change per month.
For micro-CT analysis, soft tissue was removed, and bones were
fixed in 10% neutral-buffered formalin and stored in 70% etha-
nol until scanned at 10-μm resolution (SCANCO 35, SCANCO
Medical, Brüttisellen, Switzerland). Cancellous bone measure-
ments were taken for the entire vertebral body excluding the
60-μm region adjacent to the growth plates, and cortical bone
measurements were taken in a 0.2-mm region located at the
femoral midpoint.(30,31) Nomenclature follows the recom-
mended guidelines.(32)

Serum biochemistry

Blood was collected from the jugular vein of 3-hour fasted mice.
C-terminal telopeptides of type I collagen (CTX) and N-terminal
propeptide of type I procollagen (P1NP) was measured using
enzyme-linked immunosorbent assays with the positive and neg-
ative controls provided by themanufacturers (Immunodiagnostic
Systems Inc., Gaithersburg, MD, USA).(30,33)

Quantitative PCR

Total RNA was extracted from vertebral lumbar bones (L6) that
were carefully cleaned from soft tissues and qPCR was per-
formed as earlier.(33) Briefly, cDNA was synthesized using high-
capacity cDNA reverse transcription (Applied Biosystems Inc.,
Foster City, CA, USA). Primer and probe sets were from Applied
Biosystems or Roche Applied Science (Indianapolis, IN, USA). Rel-
ative mRNA expression was quantified and normalized to Gapdh
expression using the ΔCt method. Ratios are expressed as fold
change versus WT SHAM mice of the corresponding sex fed
the control diet. No statistical differences were detected in bone
mRNA expression levels for Gapdh in SHAM, OVX, ORX, WT, and
Nrf2 KO mice fed with any of the diets. Similar results we found
when CT values were normalized by a different housekeeping
gene (Rplp2, a ribosomal protein).
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Microbiome analysis

Fecal gDNA was extracted using FastDNA Spin (MP Biomedicals,
Santa Ana, CA, USA). Quality was evaluated by Nanodrop 1000
spectrophotometry (Thermo Fisher Scientific, Wilmington, DE,
USA) and agarose gel analysis. DNAwas quantified using a Nano-
drop 3300 fluorospectrometer after Hoechst dsDNA dye staining.
The 16S rRNA gene was PCR amplified using primers targeting
region V3 to V4: 343-forward TAC GGR AGG CAG CAG and
804-reverse CTA CCR GGG TAT CTA ATC C.(34,35) Primers with dual
index tags were used to differentiate multiple samples in a single
run (Illumina, San Diego, CA, USA), as earlier.(36) Reactions were
carried out using ~10 ng of template DNA in Q5 High Fidelity
DNA Polymerase 2X master mix (New England Biolabs, Ipswich,
MA, USA). PCR amplicons were purified using AxyPrepMag PCR
clean-up kit (Axygen Scientific, Big Flats, NY, USA) and quantified
using a Nanodrop 3300 fluorospectrometer after staining with
the QuantiFluor dsDNA System (Promega, Madison, WI, USA).
Equimolar amounts of amplicons from each sample were com-
bined and sequenced using a MiSeq Illumina system (Purdue
Genomics core facilities). Sequences were analyzed using the
QIIME 2 pipeline (version 2017.6.0),(37,38) and included quality
check, denoising, and merging of paired end reads, and ampli-
con sequence variants (ASV) were selected using DADA2.(39) Tax-
onomic assignments were made using the Silva data set (version
132_99).(40) The lowest number of reads among the samples was
chosen to rarefy data sets to use equal number of reads for all
community comparisons. α-diversity measurements were used
for richness and evenness (Shannon diversity).(41,42) Complete-
ness of ASV representation was estimated by Good’s coverage,
and ranged from 99.999% to 100%, indicating that the analysis
included almost all taxa. Differences in α-diversity metrics were
determined using nonparametric ANOVA equivalent, Kruskal–
Wallis test with 999 permutations. β-diversity measures were cal-
culated using principal coordinate analysis (PCoA) of weighted
phylogenetic UniFrac distances(43) and nonphylogenetic Jaccard
distance.(44) Significant differences in β-diversity among commu-
nities were determined using 999 permutations of analysis of
similarity (ANOSIM). Potential taxa differentiating diet and sex
was determined using analysis of composition of microbiomes
(ANCOM).(45)

Statistical analysis

Scientific rigor was achieved by performing analyses in a blinded
manner and validating the results by at least a second investiga-
tor. Data are expressed as means� standard deviation (SD). Sta-
tistical analysis was performed using SigmaPlot 12.0 (Systat
Software Inc., San Jose, CA, USA). Previous studies showed that
spinal BMD reductions after ovariectomy inmice are on the order
of 1.5 standard deviations and that at least sevenmice per group
are required to confer an 80% power to detect a difference in
means of this size using a one-sided significance test at the
0.05 level. Three-way ANOVA was performed for the indepen-
dent variables of diet (control, Wild Blueberry, Ira, Montgomery),
genotype (WT, KO), and operation (SHAM, OVX, ORX), followed
by a Tukey post hoc test when appropriate. Two-way ANOVA
was used when the three-way ANOVA detected interactions
between independent variables, followed by a Tukey post hoc
test when appropriate. Each main effect and interaction in the
ANOVAs was tested using a significance level of 0.05. Outliers
were identified by the 1.5 interquartile range rule for BMD(46)

and the two SD range rule for other measurements.

Results

A diet containing Montgomery blueberries fully prevents
bone loss and architectural deterioration induced by
estrogen deficiency but not by androgen deficiency
in mice

We examined the skeletal effect of three different diets con-
taining 10% dry weight of three distinct cultivars of blueberries
fed to WT skeletally mature female or male mice. Overall there
was not a genotype effect on BMD, with exception for an
increase in spinal BMD of Nrf2 KO, SHAM-operated females
fed the Ira diet compared with the corresponding WT mice
(Supplemental Fig. S1). Mice fed a control diet exhibited the
expected loss of BMD upon gonadectomy, as quantified by
DXA and expressed as % change BMD/mo (Fig. 1). Only one
of the three blueberry-enriched diets, the one containing
berries from the Mont cultivar, prevented bone loss induced
by estrogen deficiency in OVX mice at all sites (total, spinal,
and femoral) (Fig. 1A; Supplemental Fig. S1A). However, OVX
mice fed the other blueberry-enriched diets (Ira and Wild Blue-
berry) exhibited reductions in BMD similar to OVX mice fed the
control diet versus the respective SHAM-operated mice,
although mice fed the Wild Blueberry diet or WT, but not
Nrf2 knockout, mice fed the Ira diet showed protection in the
spine (Supplemental Fig. S1A). In contrast, none of the berry-
containing diets prevented the bone loss induced by ORX in
male mice (Fig. 1B; Supplemental S1B), except for a minimal
effect of the Mont diet on femoral BMD observed in theWTmice,
but not in the Nrf2 KO mice. Further, the response of Nrf2 KO
either female or male mice was indistinguishable from that of
the respective littermate WT mice regarding the effect of gonad-
ectomy and diets (Fig. 1A, B; Supplemental Fig. S1A, B).

Microarchitectural deterioration induced by estrogen defi-
ciency was also prevented in female mice fed the Mont diet, as
quantified by micro-CT (Fig. 2A; Supplemental Fig. S2A, B). The
reduction in both cancellous and cortical bone volume (BV/TV
and Ct.Ar/Tt.Ar,(32) previously named BA/TA, respectively), the
trabecular and cortical thinning (Tb.Th and Ct.Th, respectively),
and the decrease in trabecular number (Tb.N) exhibited by OVX
mice (either WT or KO) was prevented in mice fed the Mont diet
(Supplemental Fig. S2A, B). Although no statistical differences
were detected in trabecular spacing (Tb.Sp) by three-way
ANOVA, a tendency for increased Tb.Sp in OVX WT and KO mice
fed the control diet was observed. Further, a main effect of OVX
increasing the size of themarrow cavity was detected inmice fed
the control diet but not in mice fed the Mont diet (Supplemental
Fig. S2B). Thus, the average marrow area (Ma.Ar) in OVX (WT and
KO) mice fed the control diet was increased compared with the
average Ma.Ar of SHAM (WT and KO) mice. Moreover, this differ-
ence became significant in the KO mice when WT or KO mice
were compared individually. In contrast, ORX induced similar
microarchitecture deterioration of bone (in both WT and KO
mice) fed with either control or Mont diet (Supplemental
Fig. S5A–C). Nevertheless, and similar to the small effect of the
Mont diet found in the femoral BMD (Fig. 1B), ORX mice fed the
Mont diet lost less bone comparedwith ORXmice fed the control
diet (Supplemental Fig. S5A–C).

Taken together, these findings indicate that the female, but
not the male, skeleton of mice fed the Mont diet was fully pro-
tected from loss of bone mass and architectural deterioration
induced by sex steroid deficiency, through a mechanism inde-
pendent of the transcription factor Nrf2.
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Preservation of the female skeleton by the Montgomery
diet is mediated by inhibiting bone resorption without
activating canonical estrogenic signaling

Consistent with the recognized pro-resorptive effect of sex ste-
roid deficiency, circulating levels of the bone resorption marker
CTX were elevated in OVX (WT and KO) mice fed the control diet
(Fig. 2B). However, OVX mice fed the Mont diet exhibited similar
CTX levels as SHAM-operated mice. No significant differences in
circulating P1NP levels were detected by OVX, Nrf2 deficiency, or
the Mont diet (Fig. 2C). However, a main Mont diet effect was

detected compared with control diet (Fig. 2C). The effect of
resorption parallels the preservation of bone microarchitecture
in OVXmice fed the Mont diet (shown in Fig. 2A and Supplemen-
tal Fig. S2A, B) and is consistent with the notion that thinning of
trabecular and cortical bone is a recognized consequence of
increased resorption. In contrast and consistent with the sys-
temic bone loss induced by ORX in mice fed with any diet
(Fig. 1B; Supplemental Fig. S5A–C), CTX was elevated to a similar
extent in ORX mice fed either control or Mont diet, as detected
statistically by a main group effect (all sham versus all ORX)
(Supplemental Fig. S5D).

Fig 1. Mont diet fully prevents bone loss induced by estrogen deficiency but not by androgen deficiency in mice. Percent change in BMD/mo in gonad-
ectomized WT and Nrf2 KO mice fed with the indicated diets. C = control diet; Mont = Montgomery diet; Ira = Ira diet; Wild = Wild Blueberry diet;
OVX = ovariectomized mice; ORX = orchiectomized mice; SHAM = SHAM-operated mice. The p values are comparisons versus the corresponding C-fed
mice by three-way ANOVA, Tukey post hoc test. (A) N values for WT-SHAM, WT-OVX, KO-SHAM, and KO-OVX are for C: 20, 19, 14, and 15; for Mont: 9, 9,
7, and 7. (B) N values for WT-SHAM, WT-ORX, KO-SHAM, and KO-ORX are for C: 26, 16, 29, and 28; for Mont: 10, 10, 11, and 10.
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Skeletal protection by certain dietary components (like soy) is
accompanied by activation of similar signaling pathways as
those triggered by estrogen, with the potential increased risk
of negative side effects in other tissues.(47–49) In contrast, the pro-
tective bone effect of Mont diet was not accompanied by
increased estrogenic canonical signaling. Indeed, OVX (WT and
KO) mice fed control diet showed the expected lower expression
of the estrogen response element (ERE)-containing gene Com-
plement component 3 (C3) in bone compared with SHAM-
operated mice (Fig. 2D). C3 expression remained low in OVX
mice fed with Mont diet (as well as in mice fed any of the other
diets). Similarly, bones from ORX (WT and KO) mice exhibited
lower expression of the androgen response element (ARE)-
containing gene Reproductive homeobox 5 (Rhox5), which was
not altered by any of the diets (Supplemental Fig. S5E).

The EAR in bone is regulated by Nrf2 and sex steroid
deficiency only in the female skeleton, and it is amplified
by the Montgomery diet

Our earlier studies demonstrated that the skeletal EAR (antioxi-
dant and phase II detoxifying enzymes) is controlled by Nrf2 in
a distinct manner depending on sex.(28) Specifically, whereas
EAR expression in bone is reduced in both growing and skeletally
mature female Nrf2 KOmice, EAR expression is low only in grow-
ing KO male mice. Consistent with this evidence, in the current
study using skeletally mature mice, only female, but not male,
Nrf2 KO mice fed control diet exhibited lower EAR in bone
(Fig. 3A, B; Supplemental Fig. S3A, B). Further, gonadectomy
increased the EAR in bone only in females but not in males fed
control diet (Fig. 3A, B; Supplemental Fig. S3A, B). In addition,

the Mont diet increased EAR in both female and male mice com-
bined, whereas the Ira and Wild Blueberry diets reduced EAR
expression in bone as detected by main group effects (Fig. 3A,
B; Supplemental Fig. S3A, B).

Taken together, these results indicate that Nrf2 regulates EAR
in a sex-dependent manner under physiological and sex steroid–
deficient conditions. Thus, loss of Nrf2 downregulates EAR in the
female but not male skeleton, and sex steroid deficiency only
upregulates EAR in the female skeleton. Remarkably, even
though the Mont diet increases the EAR in both female and male
bone, Mont only protects the female skeleton. These findings
suggest that EAR is not part of the skeletal response to androgen
deficiency and that increased EAR by the diet is not sufficient to
achieve full protection of the male skeleton.

The Montgomery diet also protects against weight gain,
fat mass accumulation, and loss of muscle mass induced
by estrogen deficiency

Female mice (both WT and KO) exhibited changes in body com-
position upon OVX, with increased weight and accumulation of
peripheral fat mass, but only when fed control, Ira, or Wild Blue-
berry diets (Fig. 4). In contrast, OVX mice fed the Mont diet were
protected from these changes. In addition, OVX mice fed the
control diet showed reductions in the wet weight of the gastroc-
nemius muscle (Fig. 4), whereas mice fed the Mont (or Wild Blue-
berry) diet were protected. In contrast, the decreased body
weight exhibited by male mice that underwent ORX were not
altered by any of the diets (although the decrease in body
weight in WT mice fed the Ira diet did not reach significance)
(Supplemental Fig. S6A). In addition, fat mass was not altered

Fig 2. Mont diet protects against architectural deterioration and increased resorption induced by estrogen deficiency without activating canonical estro-
genic signaling in bone. (A) Representative 3D reconstruction images of L4 lumbar vertebral samples with the calculated closest absolute values to the
mean for the corresponding experimental groups are shown, analyzed by micro-CT. Serum bone resorption marker CTX (B) and bone formation marker
P1NP (C) after 6 weeks of operation. (D) Expression of C3 gene in lumbar vertebra (L6). C = control diet; Mont = Montgomery diet; Ira = Ira diet; Wild =Wild
Blueberry diet; OVX = ovariectomized mice; SHAM = SHAM-operated mice. The p values are comparisons versus the corresponding C-fed mice by three-
way ANOVA, Tukey post hoc test. (B, C) N values for WT-SHAM, WT-OVX, KO-SHAM, and KO-OVX are for C: 13, 12, 11, and 11; for Mont: 9, 9, 7, and 7. (D) N
values for WT-SHAM,WT-OVX, KO-SHAM, and KO-OVX are for C: 12, 12, 12, and 12; for Mont: 8, 9, 6, and 6; for Ira: 8, 8, 8, and 9; and forWild: 11, 12, 11, and 9.
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by androgen deficiency overall, except for a decrease in KO mice
fed control diet (Supplemental Fig. S6B). Regarding changes in
muscle weight, ORX increased the%muscle weight to total body
weight, although this effect was driven by the loss of body
weight rather than by an effect of androgen deficiency on mus-
cle (Supplemental Fig. S6C). Further, the only diet-related action
in males was an overall increase in muscle mass induced by the
Mont diet, detected as a main effect compared with control-
fed mice.

Protection from musculoskeletal loss and peripheral fat
accumulation by the Mont diet is linked to higher gut
bacterial diversity—a hallmark of healthy intestinal
microbiome

Hormonal changes as well as dietary components might impact
the gut microbiome, which in turn could affect homeostasis of
several tissues. In the current study, loss of sex steroids (OVX or
ORX versus respective SHAM) did not induce significant changes
in the variety of bacterial communities, named α-diversity and

measured by the Shannon index,(41) in mice fed either control
or Mont diet (Supplemental Fig. S4A). Because of the lack of
impact of sex steroid status, all female (OVX and SHAM) or male
(ORX and SHAM) mice were pooled to examine the potential
effect of the diet on the microbiome (Fig. 5A–D; Supplemental
Fig. S4A–C). The Mont diet increased gut microbiome α-diversity
compared with the control diet (Fig. 5A), and the response was of
higher magnitude in female than in male mice. In addition, Mont
diet shifted the relatedness among bacterial communities,
named β-diversity, further in female than in male mice (Fig. 5B;
Supplemental Fig. S4B). This Mont diet effect was detected when
relatedness was assessed by PCoA, accounting for both the
absence or presence of taxa (Jaccard distance)(44) (Fig. 5B) and
by the relative taxa abundance (weighted UniFrac)(43) (Fig. 5C;
Supplemental Fig. S4B). Detailed analysis of the phylogenetic
diversity using ANCOM(45) detected lower prevalence of the bac-
terial communities Bifidobacterium and Coriobacteriaceae UCG-
002 in Mont-fed female, but not male, mice (Supplemental
Fig. S4C). Further, females exhibited even higher abundance of
both of these taxa than corresponding males in control diet–

Fig 3. The endogenous antioxidant response (EAR) in bone is regulated by Nrf2 and sex steroid deficiency only in the female skeleton, and it is amplified
by the Mont diet. (A, B) EAR gene expression in lumbar vertebral L6 bones from female and male mice fed the indicated diets. C = control diet;
Mont = Montgomery diet; Ira = Ira diet; Wild = Wild Blueberry diet; OVX = ovariectomized mice; ORX = orchiectomized mice; SHAM = SHAM-operated
mice. The p values are comparisons versus the corresponding C-fed mice by three-way ANOVA, Tukey post hoc test. (A) N values for WT-SHAM, WT-
OVX, KO-SHAM, and KO-OVX are for C: 12, 12, 12, and 12; for Mont: 8, 9, 6, and 6; for Ira: 8, 8, 8, and 9; and for Wild: 11, 12, 11, and 9. (B) N values for
WT-SHAM, WT-ORX, KO-SHAM, and KO-ORX are for C: 14, 12, 12, and 12; for Mont: 9, 10, 9, and 9; for Ira: 9, 9, 9, and 9; and for Wild: 11, 11, 11, and 9.
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fed mice, indicating sex-specific distinctions in gut microbiome
biodiversity. ANCOM also detected amain effect of theMont diet
inducing higher prevalence of the bacterial communities Rumi-
nococcus 1 (starch fermenters), Prevotellaceae UCG-001, and the
unclassified taxon Coriobacteriales Incertae, when male and
female Mont-fed mice were analyzed all together (Fig. 5D). In
addition, the magnitude of the increased prevalence induced
by the Mont diet was higher in females than inmales for Rumino-
coccus 1 and Prevotellaceae UCG-001 bacterial communities.

Discussion

The negative impact of musculoskeletal frailty on the health and
quality of life of the aging population is fully recognized. How-
ever, there is a substantial treatment gap for diseases of bone
and muscle mainly because the current pharmacologic standard
of care presents varying effectiveness, low compliance, and high
costs. The present study identifies a nutritional intervention that
protects bone, skeletal muscle, and body composition from the
undesirable effects of estrogen deficiency. The underlying pro-
tectivemechanism of the diet is sex-specific, involves stimulation
of non-traditional/Nrf2-independent antioxidant responses, and
does not encompass activation of canonical estrogenic signaling
(Fig. 6). Further, musculoskeletal protection was linked to health-
ier manifestations in the gut microbiome signature with higher
diversity in number and phylogenetic relatedness of bacterial
communities. Because dietary interventions might have higher
compliance(50) and lower costs compared with pharmacologic
agents, nutrition-based approaches could be more accessible
than pharmacological interventions and contribute to narrowing
the treatment gap for musculoskeletal diseases.

Diet- and sex-specific musculoskeletal protection

The cause for the effective musculoskeletal protection and pre-
vention of peripheral fat accumulation with the Mont diet, but
not with other blueberry types, is not fully understood and is
the subject of ongoing studies. Differences in either composition
or component bioavailability may explain the distinct properties

of Mont compared with the other blueberry cultivars. Indeed, the
total phenolic and anthocyanin content by weight of the Mont
diet is lower compared with the other berries used in our study.
However, bioavailability of some of the Mont components is
three- to eightfold higher as indicated by the levels of anthocya-
nins found in the circulation in a rat study.(51) In any event, the
disparities among berry types in this study might explain the
varying response and effectiveness to dietary supplements
reported in human populations as well as in preclinical animal
models.(23–27,52–54) Furthermore, the Mont diet unexpectedly
did not protect against androgen deficiency, providing an addi-
tional source of variation in the reported response to dietary
interventions. Taken together, these considerations highlight
the importance of tailoring therapies to patient individualities,
including sex.

The ROS/Nrf2/EAR axis in bone

Cellular increases in ROS activate Nrf2, which in turn mounts an
EAR consisting of increased expression of enzymes that neutral-
ize ROS effects.(14–16) It remains unknown whether there is a
direct relationship between ROS levels and the EAR, or whether
the ROS/Nrf2/EAR axis is regulated in a similar or different man-
ner dependent on sex, and particularly in bone. The current find-
ings shed light on these unanswered questions. ROS levels are
increased in the bone/bone marrow compartment with loss of
sex steroids in both female and male mice.(12) In the current
study, we found that enhanced EAR in bone is only triggered
by depletion of estrogens in females, whereas depletion of
androgens inmales did not elicit changes in skeletal EAR. In addi-
tion, although the Mont diet increased EAR in bone from both
female and male mice, it only protected the female skeleton
from gonadectomy-induced bone loss. These findings raise the
possibility that the susceptibility of the skeleton to hormonal
changes, age, or even therapies might not depend on ROS levels
in the bone/bone marrow microenvironment as proposed ear-
lier, but depend rather on expression levels of EAR enzymes in
the skeleton, which are also altered by individual qualities,
like sex.

Fig 4. Mont diet prevents weight gain, fat mass accumulation, and loss of muscle mass induced by estrogen deficiency. (A) Body weight and (B) fat mass
expressed as percent change by month. (C) Wet weight of gastrocnemius muscles normalized by total body weight. C = control diet; Mont = Montgomery
diet; Ira = Ira diet; Wild = Wild Blueberry diet; OVX = ovariectomized mice; SHAM = SHAM-operated mice. The p values are comparisons versus the corre-
sponding C-fedmice by three-way ANOVA, Tukey post hoc test. (A–C) N values for WT-SHAM, WT-OVX, KO-SHAM, and KO-OVX are for C: 20, 19, 14, and 15;
for Mont: 9, 9, 7, and 7; for Ira: 8, 8, 9, and 9; and for Wild: 12, 12, 11, and 9.
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Fig 6. Dietary protection from estrogen deficiency–induced bone loss is achieved by boosting the endogenous antioxidant response (EAR) and is linked
to promotion of gut microbiome diversity. Nutritional intervention with the Montgomery blueberry diet protects bone, skeletal muscle, and body com-
position from the undesirable effects of estrogen deficiency by heightening the EAR. The underlying protectivemechanism is sex-specific, independent of
the classical antioxidant transcription factor Nrf2, and unrelated to canonical estrogenic signaling. Furthermore, diet-inducedmusculoskeletal benefits are
linked to higher α- and β-diversity, hallmark characteristics of a healthier gut microbiome signature.

Fig 5. Mont diet–fed WT mice exhibit higher gut bacterial diversity in a sex-specific manner. α-diversity quantified by the Shannon index (A). β-diversity
calculated by principal coordinate analysis (PCoA) of (B) Jaccard distance or (C) weighted UniFrac distances. (D) Prevalence of specific taxa in bacterial
communities, detected by ANCOM analysis of microbiome composition. C = control diet; Mont = Montgomery diet. (A–D) N values for female WT for
C: 20; for female WT Mont: 16. N values for male WT for C: 35; for male WT Mont: 20. The p values are comparisons versus the corresponding C-fed mice
by Kruskal–Wallis for A, by ANOSIM for B and C, and by ANCOM analysis of microbiome composition for D.
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Our previous findings demonstrated that the EAR was regu-
lated by the transcription factor Nrf2 in both female and male
skeletons and in growing and adult skeletons.(28) Taken together
these findings demonstrate that the EAR in bone is indeed
responsive to the traditional antioxidant transcription factor
Nrf2 but that in the frame of estrogen deficiency and dietary
interventions, Nrf2 is not required to elicit a skeletal response,
either for the bone loss due to estrogen deficiency or for the
bone protection by the diet. Thus, the underlying protective
mechanism is not only sex-specific but also involves activation
of nontraditional, Nrf2-independent defense responses.

Dietary protection and independence from canonical
estrogenic signaling

Another remarkable feature of the Mont diet’s skeletal protec-
tion is the lack of canonical estrogenic activation. These findings
contrast with other dietary supplements that elicit skeletal pro-
tection by mimicking classical estrogenic signaling.(47,55) Estro-
gen receptor signaling has protective effects on the skeleton;
however, it also causes deleterious side effects in other organs,
including the uterus and breast. Therefore, the independence
from canonical estrogenic signaling by the Mont diet in prevent-
ing bone loss induced by estrogen deficiency represents an
important advantage compared with hormone replacement
therapies. Future studies beyond the scope of the current study
will address whether the skeletal protection by the diet is a con-
sequence of activation of non-classical ER-dependent mecha-
nisms in bone cells (such as kinase signaling or anti- versus
pro-apoptotic signaling in osteoblasts/osteocytes versus osteo-
clasts, respectively) or results from ER-independent compensa-
tory actions.

The microbiome, diets, and the musculoskeletal system

Protection of the musculoskeletal system from the effects of
estrogen loss by the Mont diet was linked to changes of the
gut microbiome signature toward higher diversity—a hallmark
of intestinal health. An association between gut microbiome
and skeletal changes has been shown to involve leakage of the
intestinal blood barrier and increased circulating endotoxin in
estrogen deficiency, glucocorticoid excess, and parathyroid
hormone–induced bone anabolism.(56–58) Whether the intestinal
barrier is affected in mice fed the Mont diet is the subject of cur-
rent studies and would support a connection between activation
of anti-inflammatory pathways and nutrition. Future studies in
humans are warranted to examine the effectiveness of blueberry
diets on the skeleton, the linkage with microbiome diversity, as
well as the sexual dimorphism found inmice in the current study.
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