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1 Introduction

Born-Infeld equation,

(1 − b−2 c−2 u2t ) uxx + 2 b−2 c−2 ut ux utx − (1 + b−2 u2x) c
−2 utt = 0 , (1.1)

(ux stands for ∂xu, etc.) is a non-linear wave equation which is derived from the Lagrangian

L =
√

1− b−2
(

c−2u2t − u2x
)

and appears in several physical contexts. It descends from the

Nambu-Goto action for a string in 2+1 dimensions when a proper parametrization is cho-

sen [1]. Besides, its solutions can be mapped into solutions of the Galileo-invariant Chaply-

gin gas in 1+1 dimensions, since Chaplygin gas is another descendent of the Nambu-Goto

action [2, 3]. Born-Infeld equation (1.1) also takes part in Born-Infeld electrodynamics [4, 5]

when electromagnetic waves depending just on two variables are considered. Born-Infeld

equation is integrable [6, 7] and has a multi-Hamiltonian structure [8]; the corresponding

Cauchy problem is studied in ref. [9].

Eq. (1.1) is very close to the quasilinear elliptic equation

(1 + b−2 u2y) uxx − 2 b−2 ux uy uxy + (1 + b−2 u2x) uyy = 0 . (1.2)

This equation was firstly obtained by Lagrange in 1762 when he studied the problem of min-

imizing the area of a surface whose boundary is a given closed curve in R
3 (Plateau’s prob-

lem) [10, 11]; such problem is a natural generalization of the problem of geodesics. In fact,

the minimal surface equation (1.2) comes from the Lagrangian L =
√

1 + b−2
(

u2x + u2y
)

,
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so the action is the area of the surface ζ = b−1 u(x, y) (ζ is the third Cartesian coordi-

nate).1 Eq. (1.2) says that minimal surfaces have vanishing mean curvature. The solutions

of eq. (1.2) can be expressed through a parametric representation where each solution

is determined by the choice of a pair of related complex functions (Weierstrass-Enneper

parametrization [12]). The Dirichlet problem for the eq. (1.2) is studied in ref. [13].

Eq. (1.2) could be regarded as a deformed Laplace equation. Also the equation

(1 − b−2 u2y) uxx + 2 b−2 ux uy uxy + (1 − b−2 u2x) uyy = 0 , (1.3)

which appears in two-dimensional Born-Infeld electrostatics, is a deformed Laplace equa-

tion. Eq. (1.3) is derived from the Lagrangian L =
√

1− b−2
(

u2x + u2y
)

. Their solutions

were characterized by Pryce [14, 15] through a complex method where each solution is

associated with a holomorphic function (see also References [16–18]). Eq. (1.3) is the equa-

tion for maximal surfaces, which are space-like surfaces in (2+1) Minkowski space with

vanishing mean curvature. Maximal surfaces defined on a domain D of the complex plane

ς also admit a Weierstrass-Enneper parametrization [19]:

(x(ς), y(ς), ζ(ς)) = Re

∫ (

1

2
f(1 + g2),

i

2
f(1− g2), −fg

)

dς , (1.4)

where f is holomorphic and g is meromorphic on D such that fg2 is holomorphic on D

and |g(ς)| 6= 1 for ς ∈ D.

Since the solutions of each one of the equations (1.1), (1.2) and (1.3) can be trans-

formed into the others by properly renaming the variables and b2, we will focus just on

the eq. (1.3). In the following sections we will explain the method for finding the solutions

of eq. (1.3). We will show in a few steps that the equation governing the two-dimensional

electrostatic Born-Infeld field can be put into the compact form (3.6), where e is an auxil-

iary complex field associated with the real 1-form E ≡ du, and z, z are complex coordinates

(z = x + i y). In section 4 we will connect the solutions of eqs. (1.1), (1.2) and (1.3) to

field configurations of Born-Infeld electrodynamics.

2 Born-Infeld Lagrangian

The Born-Infeld Lagrangian density for a scalar field is

L[u] =
√

|g|
√

1− b−2 gkj ∂ku ∂ju (2.1)

So the Lagrange equation is

∂i

(

√

|g| gij ∂ju
√

1− b−2 gkj ∂ku ∂ju

)

= 0 . (2.2)

1Vectors ~δA = (dx, 0, b−1 ux dx) and ~δB = (0, dy, b−1 uy dy) are tangent to the surface ζ = u(x, y).

Thus, the vector product ~δA × ~δB defines the area of the surface immersed in R
3. The infinitesimal area

then is | ~δA× ~δB| =
√

1 + b−2
(

u2
x + u2

y

)

dx dy, which leads to the action for the eq. (1.2).

– 2 –
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We introduce the related 1-forms

Ej ≡ ∂ju , Dj ≡
Ej

√

1− b−2 gkl Ek El

. (2.3)

According to eq. (2.2) the field Dj accomplishes the equation

∂i

(

√

|g| gij Dj

)

= 0 . (2.4)

In geometric notation, the dynamics of the field is summarized in the equations2

dE = 0 , d ∗D = 0 , (2.5)

where the 1-forms E and D accomplish the constitutive relation

D ≡ E
√

1− b−2 ‖E‖2
. (2.6)

One should solve the system (2.5), (2.6) and then retrieve the scalar potential u from

E = du.

Remarkably, the constitutive relation (2.6) is automatically fulfilled if E and D are

written in the suggestive form

E =
e

1 + ‖e‖2

4b2

, D =
e

1− ‖e‖2

4b2

, (2.7)

where e is an auxiliary 1-form field. By replacing eq. (2.7) in eq. (2.5) one gets two equa-

tions for e:
(

1 +
‖e‖2
4b2

)

de − d

(

‖e‖2
4b2

)

∧ e = 0 , (2.8)

(

1− ‖e‖2
4b2

)

d ∗ e + d

(

‖e‖2
4b2

)

∧ ∗e = 0 . (2.9)

3 Two-dimensional Euclidean geometry

In two-dimensional Euclidean geometry,

ds2 = dx2 + dy2 , gij = diag (1, 1) , (3.1)

the second order equation (2.2) becomes the eq. (1.3). With regard to the equivalent system

of first order equations (2.8), (2.9), we can take advantage of the fact that both e and ∗e
are 1-forms if n = 2. Thus, we can condensate these equations in a sole complex equation

d(e+ i ∗ e) +
‖e‖2
4b2

d(e− i ∗ e) − d

(

‖e‖2
4b2

)

∧ (e− i ∗ e) = 0 , (3.2)

2∗ is the Hodge operator which converts the 1-formD into a (n−1)-form (n is the dimension). If αi1.......ip

are the components of the p-form α then ∗αµp+1.......µn
= 1

p!

√

| det(gµν)| εµ1.......µp µp+1.......µn
αµ1.......µp

where ε is the Levi-Civita symbol whose value is 1 (−1) for even (odd) permutations of the natural order

of its indexes and vanishes for repeated indexes.

– 3 –
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Notice that the complex 1-form e− i ∗e is quite elemental in the coordinate basis (dz, dz),

where z = x+ i y:

e− i ∗ e = (ex dx+ ey dy)− i (ey dx− ex dy) = (ex − i ey) dz . (3.3)

We will call

e ≡ ex − i ey . (3.4)

Therefore, the field equation (3.2) becomes

− e d

( |e|2
4b2

)

∧ dz + d(e dz) +
|e|2
4b2

d(e dz) = 0 , (3.5)

where we replaced ‖e‖2 = e2x + e2y = |e|2 = ee. Eq. (3.5) simplifies to

de ∧ dz =
e2

4b2
de ∧ dz . (3.6)

This complex equation summarizes the dynamics of the field. It can be tackled from a

double perspective. If the auxiliary field e is regarded as a function of (z, z) (i.e., as a

function of (x, y)), then one gets

∂e

∂z
= − e2

4b2
∂e

∂z
. (3.7)

Instead, if the coordinate z is regarded as a function of (e, e) one obtains

∂z

∂e
=

e2

4b2
∂z

∂e
. (3.8)

Remarkably, this last form is linear in z(e, e), and can be rewritten as

∂z

∂ξ
= − ∂z

∂(1/ξ)
, ξ ≡ e

2b
. (3.9)

The general solution has the form

z = f(1/ξ) + g(ξ) , (3.10)

with

g′(ξ) = −f ′(1/ξ) (3.11)

(the prime means derivative with respect to the argument).

Eq. (2.5) says that D is singular when ‖E‖ = b (i.e., when |ξ| = 1). Let us study the

behavior of the solution (3.10), (3.11) at these values of the field. We want to know whether

|ξ| = 1 happens at isolated points or not. For this, we will evaluate dz at ξ = exp[i θ]; since

dz = f ′(1/ξ) d(1/ξ) + g′(ξ) d(ξ) = −g′(ξ) d(1/ξ) + g′(ξ) d(ξ) , (3.12)

then,

dz|ξ=exp[i θ] =
[

−g′(exp[i θ]) + g′(exp[−i θ])
]

d(exp[−i θ]) . (3.13)

– 4 –
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Therefore the singularities occurs at isolate points (i.e., dz = 0) whenever it is

Im[g′(ξ)]|ξ|=1 = 0 . (3.14)

In ref. [18], the reality condition (3.14) has been carried out by choosing functions g′ that

do not change under the transformation ξ −→ 1/ξ (for instance, any function with real

coefficients that depends just on ξα + 1/ξα). In fact, ξ and 1/ξ are complex conjugate if

ξ = exp[iθ]; so, such functions are automatically real on the circle |ξ| = 1. Even so, it

could happens that Im[g′(exp[i θ])] results ill-defined for some values of θ. In such cases

dz in eq. (3.13) could be non-null for such particular field directions (see the multipolar

structures in ref. [18]). If g′(1/ξ) = g′(ξ), then the eq. (3.11) means that f ′(ξ) = −g′(ξ);

so the solution of eq. (3.9) becomes

z = −g (1/ξ) + g
(

ξ
)

+ constant , (3.15)

where g(ξ) is any holomorphic function such as

g′(ξ) = g′(1/ξ) . (3.16)

The choice of g(ξ) is constrained by boundary conditions; for instance, it can be required

that e goes to zero for z going to infinity. Moreover, in ref. [18] it is shown that the single-

valuedness of the solution z(ξ, ξ) and the isolation of the singular points are guaranteed by

functions g′(ξ) which do not possess branch cuts reaching the circle |ξ| = 1.

3.1 Complex potential

The scalar field u is a potential for the field E. Besides, the closed 1-form ∗D (see eq. (2.5))

can be also associated with a potential v,

∗D ≡ −dv . (3.17)

Then, the complex potential

w ≡ u + i v (3.18)

satisfies

dw = E − i ∗D . (3.19)

Using eqs. (2.7) and (3.3) one obtains

(2b)−1 dw =
ξ dz − |ξ|2 ξ dz

1− |ξ|4 . (3.20)

Eq. (3.6) implies that de ∧ dw = 0, which means that w is a holomorphic function of e:

w = w(e). In fact, using eq. (3.15) one gets

dw =
2b

ξ
g′(ξ) dξ . (3.21)

Since the function g′(ξ) accomplishes the eq. (3.16), the complex potential satisfies

w(ξ) = −w(1/ξ) + constant . (3.22)

– 5 –
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Figure 1. Equipotential lines and field lines for the field of eq. (3.26).

3.2 Example: field between grounded conductors

As explained in the previous subsection, each solution u(x, y) = Re[w] of eq. (1.3) is deter-

mined by the choice of the holomorphic function g′(ξ) or, alternatively, the holomorphic

function w(ξ); both functions are related by the eq. (3.21). We will illustrate the procedure

with an example differing from those considered in ref. [18]. Let us choose the function

g′(ξ) =
d

π

ξ

1 + ξ2
, (3.23)

where d is a constant with units of distance. g′(ξ) accomplishes the eq. (3.16). The complex

potential in eq. (3.21) becomes

w =
2bd

π
arctan[ξ] . (3.24)

Thus the solution (3.15) yields

2π

d
z = Log

[

1 + ξ
2

1 + 1/ξ2

]

. (3.25)

This result can be solved for ξ2:

ξ2 = − exp
[

2π
d
z
]

− 1

exp
[

−2π
d
z
]

− 1
. (3.26)

This field reaches the maximum value |ξ| = 1 on the y-axis. In fact if z = i y one gets

ξ2 = −1. The fact that the maximum value is reached not at an isolated point but on a

line is due to the poles the function g′(ξ) displays on the circle |ξ| = 1.

We can also realize that the lines y = ± d/2 are equipotential lines. In fact, by

replacing z = x± i d/2 one gets ξ2 < 0:

ξ2 = − exp
[

2π
d
x
]

+ 1

exp
[

−2π
d
x
]

+ 1
; (3.27)
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this means that the field is ξ = −iξy, so it is normal to the lines y = ± d/2. One can

check in eq. (3.24) that u = Re[w] vanishes when ξ is pure imaginary. To make a figure of

the equipotential lines, we replace ξ(w) = tan[wπ/(2bd)] in eq. (3.25), with w = uo + iv;

then v plays the role of a parameter for the line u = uo. Some equipotential and field

lines are shown in figure 1. Actually, only the x ≤ 0 region should be considered in the

solution (3.26) since |ξ| > 1 for x > 0. However, in figure 1 the field has been continuously

extended to the semi-space x > 0, by choosing g′(ξ) = −(d/π) ξ/(1 + ξ2) in this region.

The change of sign in g′(ξ) implies the change z −→ −z in the solution (3.26) and a change

of sign in the expression (3.24) for the complex potential.

Figure 1 is the field of a point-like charge between two parallel grounded conductors

separated by a distance d. It could also be regarded as the field of a succession of alter-

nating charges at a distance d on the y-axis. These image charges are joined by lines of

maximum field, as it happens in the multipolar solutions studied in ref. [18]. The fact that

v ranges between −∞ and ∞ implies that the point-like charge at the origin is infinite,

which is also a characteristic of the multipolar solutions.3

The field E(x, y) = du can be computed by differentiating u = Re[w(ξ(z, z))] or directly

replacing e in eq. (2.7) with the result (3.26) for the complex auxiliary field.

3.3 Approximate solution

In general, we will hardly invert eq. (3.15) to get an expression like (3.26) for the field

ξ(z, z). However we could approach the field ξ(z, z) by iterating the solution of eq. (3.7).

At the lowest order in b−2 the solution is e = F (z), where F is an analytic function. It is

easy to check that the following order is

e(z, z) = F (z)− 1

4b2
∂F (z)

∂z

∫

F (z)2 dz +O(b−4) . (3.28)

At this order of approximation, the complex potential w(z, z) is obtained from eq. (3.20):

dw = e dz − e|e|2
4b2

dz +O(b−4) . (3.29)

Therefore

w(z, z) =

∫

F (z) dz − 1

4b2
F (z)

∫

F (z)2 dz +O(b−4) . (3.30)

4 Born-Infeld electrodynamics

Born-Infeld electrodynamics is a non-linear extension of Maxwell electromagnetism [4, 5].

In both theories the electromagnetic field is an exact 2-form F = dA in Minkowski space-

time, where the 1-form A is the electromagnetic potential; so it is dF = 0. But, differing

from Maxwell’s field, Born-Infeld electromagnetic field is governed by the dynamical equa-

tions

d





∗F + P
b2

F
√

1 + 2S
b2

− P 2

b4



 = 0 , (4.1)

3The charge is the flux of ∗D: 2πQ =
∮

Dx dy −Dy dx =
∮

dv.
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where S and P are the invariants

S ≡ 1

4
Fij F ij =

1

2
(|−→B |2 − |−→E |2), (4.2)

P ≡ 1

4
∗Fij F ij =

−→
E · −→B. (4.3)

The dynamical equations can be derived from the Lagrangian density

L[A] =
b2

4π

√

|g|
(

1−
√

1 +
2S

b2
− P 2

b4

)

. (4.4)

Notice that Maxwell’s theory is recovered in the limit b −→ ∞. Born-Infeld La-

grangian (4.4) is exceptional because, together with another unphysical Lagrangian, is the

only function of S and P ensuring the absence of birefringence and shock waves [20–23].

Except for the field of a point-like charge [5] and the essentially two-dimensional so-

lutions we are going to show in this section, it is very hard to find exact solutions for

Born-Infeld electrodynamics. Maxwell’s plane waves are trivial solutions because they have

vanishing invariants S and P ; so no difference remains between Maxwell and Born-Infeld

equations in such case. The exact solution for a plane wave interacting with a static uniform

field has been obtained in ref. [24]. The case for a cylindrical wave has been recently worked

out [25]. Stationary solutions were studied under the form of perturbative series [26]; the

uniqueness of such solutions was also examined [27]. It has been shown that Born-Infeld

dynamics can be thrown into a form similar to MHD equations by promoting the Poynting

vector and the energy to the status of unknown variables [28]. The chance of detecting ef-

fects of Born-Infeld electrodynamics in laser-plasma experiments is analyzed in refs. [29, 30].

As we will show in this section, the eqs. (1.1), (1.2) and (1.3) describe some Born-Infeld

field configurations with P = 0. By replacing P = 0 in eq. (4.1), the dynamical equations

become
(

1 + b−2 2S
)

d ∗ F − b−2 dS ∧ ∗F = 0 . (4.5)

4.1 Pure electric field

Let us consider the electromagnetic potential

A = u(x, y) c dt . (4.6)

Then F = ux c dt ∧ dx + uy c dt ∧ dy is an electrostatic field whose field lines lie on the

(x, y)-plane. The electric components of the field are F0α = Eα = ∂αu. Thus,

2S = −u 2
x − u 2

y , (4.7)

∗F = ux dy ∧ dζ − uy dx ∧ dζ (4.8)

(ζ is the third Cartesian coordinate). In this case the dynamical equation (4.5) turns out

to be the eq. (1.3). This is because the Lagrangian (4.4) is essentially

√

1− b−2|−→E |2, so
it coincides with the Lagrangian in section 3.
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The simplest example is the cylindrically symmetric field associated with a charge

density λ distributed along the ζ-axis. According to the definition of e (see eq. (3.4)),

such a radial symmetry requires that arg(z) = − arg(ξ). Then, g(ξ) in eq. (3.15) has to

be linear; thus g′(ξ) is a real constant and accomplishes the reality condition (3.14). The

value of the constant g′ is dictated by the Coulombian limit b → ∞; we will see that

g′ = λ/(2b). Therefore the cylindrically symmetric solution (3.15) is

z =
λ

2b

(

1

ξ
− ξ

)

. (4.9)

In this case, the function z(ξ, ξ) is easily inverted to obtain

ξ(z, z) =
b

λ
z

(
√

1 +
λ2

b2 z z
− 1

)

=
λ

b z

(
√

1 +
λ2

b2 z z
+ 1

)−1

. (4.10)

To compute the potential u(x, y), let us integrate the eq. (3.21) for g′ = λ/(2b); it results

w(ξ) = −λ Log[ξ] . (4.11)

Then, by replacing the expression (4.10) one gets

u(x, y) = Re

{

λLog

[

λ

b (x+ i y)

]

− λLog

[
√

1 +
λ2

b2(x2 + y2)
+ 1

]}

= −λ log
[
√

b2λ−2r2 + 1 + |λ|−1b r
]

, (4.12)

where r2 = x2+ y2. When b −→ ∞ one recovers the Coulombian potential u = −λ log[r]+

constant.

4.2 Pure magnetic field

The electromagnetic potential

A = u(x, y) dζ (4.13)

(ζ is the third Cartesian coordinate) leads to a pure magnetic field whose field lines lie on the

(x, y)-plane. In fact, the field F is deprived of components F0α: F = ux dx∧dζ+uy dy∧dζ.
Since Bα = ǫαβγF

βγ , then it is Bx = uy and By = −ux. Thus,

2S = u 2
x + u 2

y , (4.14)

∗F = −ux c dt ∧ dy + uy c dt ∧ dx . (4.15)

The dynamical equation (4.5) becomes eq. (1.2), which differs from eq. (1.3) in the

sign of b−2; this is because now the Lagrangian is basically

√

1 + b−2|−→B |2 instead of
√

1− b−2|−→E |2. Any solution u(x, y) obtained through the procedure explained in the

previous section can be converted in a solution of eq. (1.2) by changing b2 −→ − b2.

Alternatively, one can also change x −→ i x, y −→ i y, which is equivalent to change

z −→ i z and z −→ i z in u(z, z) = Re[w(z, z)].

– 9 –
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For instance, according to eq. (4.12) the potential for a neutral straight steady current

has the form

u = −λ log
[
√

b2λ−2r2 − 1 +
√
b2λ−2r2

]

= −λ

∣

∣

∣

∣

arccosh

[

b r

λ

]∣

∣

∣

∣

, (4.16)

which represents a catenoid in R
3 (a well known minimal surface [11]). The field F =

(du/dr) dr∧dζ diverges at r = b−1λ. This result could mean that pure Born-Infeld magne-

tostatic fields are just an approximation to be used far from the sources. Near to the sources

one should not ignore the true nature of the charges that constitute the steady current.

Notice that the replacement b2 −→ − b2 in the Lagrangian (2.1) amounts the exchange

of roles between E and D in eq. (2.7). Thus, the association between the Born-Infeld

magnetostatic field Bx = uy, By = −ux and the complex field e turns out to be

−By − i Bx = ux − i uy =
2b

2b
e
− e

2b

. (4.17)

The auxiliary field e(z, z) is now governed by the equation

∂z

∂e
+

e2

4b2
∂z

∂e
= 0 , (4.18)

whose general solution is

z = f(1/ξ) − g(ξ) , where − g′(ξ) = f ′(1/ξ) . (4.19)

According to eq. (4.17),
−→
B is singular where |ξ| = 1.

4.3 Stationary waves

Let us start with the electromagnetic potential

A = u(x, t) dy . (4.20)

The field has now electric and magnetic orthogonal components, F = c−1 ut c dt ∧ dy +

ux dx ∧ dy. Then, Ey = c−1 ut and Bζ = ux. Therefore,

2S = u 2
x − c−2 u 2

t , (4.21)

∗F = c−1 ut dx ∧ dζ + ux c dt ∧ dζ . (4.22)

In this case the dynamical equation (4.5) yields the Born-Infeld equation (1.1). This

equation becomes eq. (1.3) by replacing y −→ i ct and b −→ i b.

We will look for stationary waves between two parallel conductors. We will apply

the expression (3.28) to get approximate solutions. Stationary waves can be obtained by

starting from the holomorphic function F (z) = eo cos kz. In fact, according to eq. (3.30)

this choice implies the potential

u = Re[w] = Re
[

−eo
k

sin kz
]

|y=i ct +O(b−2) = −eo
k

cos kct sin kx+O(b−2) . (4.23)
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So, for b −→ ∞ one obtains the Maxwellian potential for stationary waves. Let us use the

eq. (3.28) to compute the next order of approximation:

e(z, z) = eo cos kz +
e3o

16 b2
sin kz (2kz + sin 2kz) + O(b−4) . (4.24)

Although we expected an oscillating solution, the approach (3.28) produced a secular term

2kz. This means that the result (4.24) is valid just for k|z|e2ob−2 ≪ 1. The secular term

can be healed by replacing kze2ob
−2/8 with sin(kze2ob

−2/8). In fact, it is easy to verify that

the field

e(z, z) = eo cos kz + eo sin kz sin
e2okz

8 b2
+

e3o
16 b2

sin kz sin 2kz + O(b−4)

= eo cos k

(

z − e2o
8 b2

z

)

+
e3o

16 b2
sin kz sin 2kz + O(b−4) . (4.25)

accomplishes the eq. (3.7) at the considered order of approximation. The secular term

then expresses a correction to the frequency of the stationary wave.

We can use the eq. (3.30) to compute the complex potential w(z, z). After healing the

secular term, we get the complex potential fulfilling the eq. (3.29) for the field (4.25):

w(z, z) =
eo
k

sin kz − eo
k

cos kz sin
e2okz

8b2
− e3o

16 k b2
cos kz sin 2kz +O(b−4)

=
eo
k

sin k

(

z − e2o
8 b2

z

)

− e3o
16 k b2

cos kz sin 2kz +O(b−4) . (4.26)

We now get the real potential u(x, y) = Re[w] that accomplishes the eq. (1.3), and pass to

the solution of Born-Infeld equation (1.1) by changing y −→ i ct and b −→ i b:

u(x, t) =
eo
2k

sin k

(

x− c t+
e2o
8 b2

(x+ c t)

)

+
eo
2k

sin k

(

x+ c t+
e2o
8 b2

(x− c t)

)

(4.27)

+
e3o

32kb2
cos k(x−ct) sin 2k(x+ct)+

e3o
32kb2

cos k(x+ct) sin 2k(x−ct)+O(b−4).

At the considered order of approximation, the result can be reorganized as

u(x, t) =
eo

k
sin

[(

1+
e2o
8b2

)

kx

]

cos

[(

1−
e2o
8b2

)

kct

]

+
e3o

16kb2
sin kx cos kct(cos 2kx+cos 2kct)+O(b−4)

=
eo

k
sin

[(

1 +
e2o
8 b2

)

kx

]

cos

[(

1−
e2o
8 b2

)

kct

](

1 +
e2o
16b2

(cos 2kx+ cos 2kct)

)

+O(b−4) . (4.28)

To fulfill boundary conditions u(0, t) = 0 and u(d, t) = 0, corresponding to two parallel

grounded conductors at a distance d, we choose

k =
nπ

d

(

1− e2o
8 b2

)

+O(b−4) . (4.29)

Then, as a consequence of the non-linearity, the resonant frequencies in a cavity depend

on the amplitude.

The obtained solution can be boosted along the parallel conductors to get propagating

waves in a waveguide [31, 32].
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5 Conclusion

We have shown a method to build solutions of Born-Infeld equation (1.1) and its rela-

tives (1.2), (1.3). The method exploits the power of exterior calculus in the complex basis

of R2, which is the natural language for this problem. Although the method was developed

for the eq. (1.3), the obtained solutions are converted into solutions to the other equations

by properly changing the variables or the Born-Infeld constant b2.

Remarkably, eq. (1.3) becomes Laplace equation at the points where the first deriva-

tives ux, uy vanish. This distinctive feature prevents the existence of smooth extremes in

static Born-Infeld configurations. In fact, Laplace equation could not be fulfilled at an ex-

treme since uxx and uyy should have the same sign. This means that Born-Infeld dynamics

does not harbor smooth static solutions going to zero at the boundaries (i.e., no solitary

waves exist other than those traveling at the speed of light). These aspects of extremes in

Born-Infeld electrostatics can be recognized in the examples shown in sections 3.2 and 4.1.

Since eq. (3.6) is linear in z, the general solution (3.15) expresses z as a function of the

auxiliary complex field. In most of the cases, it will be very hard to invert this function for

obtaining the field as a function of the coordinates. However, since non-linear effects are

expected to be very weak, just an expression at the lowest order in b−2 would be enough

for experimental tests. This is the case of the approximate expressions (3.28) and (3.30)

that we applied in section 4.3 to study Born-Infeld stationary waves in a cavity.
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