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Abstract

Cut-leaved teasel is an invasive weed thriving in roadside
environments and needs to be detected for implementation
of management programs. This study tested several com-
monly applied classifiers to map teasel with an aerial
hyperspectral image along the Interstate Highway 70 in
central Missouri. A teasel/non-teasel mask was first built to
exclude dominant land-covers that had distinct spectral
differences from teasel. The spectral angle mapping (SAM)
had the best results of delineating teasel from herbaceous
background with its user’s and producer’s accuracies of

80 to 90 percent. Large commission errors of teasel were
observed in the probability-based maximum likelihood
classifier (MLC) and spectral information divergence (SID)
methods. Compared with a regular land-use/land-cover
classification in an unsupervised/supervised hybrid method,
the post-masking SAM had much easier process of training
data collection and achieved similar accuracies. It could be
an optimal approach for mapping teasel and other weeds in
highway environments.

Introduction

Cut-leaved teasel (Dipsacus laciniatus L.), hereafter
referred as teasel, is an invasive, biennial weed that often
infests roadside environments (Solecki, 1993). Following
emergence, it grows as a rosette in the first year and bolts
and flowers in the second year (Werner, 1975). A flowering
plant is able to produce 33,500 seeds distributed within
one meter around the parent plant (Bentivegna, 2008). As
plants die after seed production, newly developed rosettes
fill in the open areas. As a result, teasel patches observed
in natural environments are often composed of flowering
plants up to 2 to 3 meters and understory rosettes, produc-
ing a dense canopy with a leaf area index up to 3
(Bentivegna, 2008).
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Teasel patches could reduce traffic visibility on
highways. The aggressive colonization of teasel patches also
eliminates desirable grass species along roadsides (Solecki,
1993). In the United States, teasel has been declared as
noxious weed in four states including Missouri (USDA,
2008). Responsible for management of vegetation along
roadsides, the Missouri Department of Transportation
(MoDOT) often chooses site-specific or selective herbicide
applications to optimize herbicide use efficiency. The
conventional in-situ surveys to locate teasel invasion,
however, are time consuming and are impractical for
statewide road systems. Field visits are also extremely
hazardous to highway workers.

Remote sensing techniques provide an efficient way for
large-area mapping of weed infection. Multispectral imagery
has been widely applied to detect invasive plants in various
open areas (Carson et al., 1995; Lass et al., 1996; Medlin
et al., 2000; Shaw, 2005). However, few applications have
been attempted in roadside environments. Due to low
maintenance along roadside right-of-ways, teasel often
establishes into small, heterogeneous patches mixed with
native species. As herbaceous vegetation, teasel has similar
spectral properties as grasses such as tall fescue (Festuca
arundinacea) that are commonly observed along roadsides in
Missouri. Therefore, it is often difficult to discriminate teasel
patches from dominant grasses with typical aerial photos. For
this reason, hyperspectral imagery is necessary to identify the
subtle spectral differences among vegetation types in mixed
environments (Ustin et al., 2004, Wang et al., 2008).

Another aspect that is often considered in weed detec-
tion is the unique phenological features of the weed in
certain growth stages (Lawrence et al., 2006; Nagendra,
2001; Underwood et al., 2003). For example, Lass et al.
(1996) reported that yellow starthistle (Centaurea solstitialis)
could be best mapped with remote sensing imagery acquired
in the flowering stage, when yellow flowers exhibited
distinctively different spectra from other vegetation. Teasel
grows in compact patches and white flowers could be
observed in mid-late July in Missouri. Imagery acquired in
this period may provide optimal information for mapping
teasel along highways.

With multispectral imagery, various classification
algorithms have been developed in vegetation studies.
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Among these algorithms the most commonly applied one is
the maximum likelihood classifier (MLC), a supervised
classifier that examines the statistical properties of training
data and assigns a pixel to the class with the highest
probability (Jensen, 2004). When hyperspectral imagery
became available, new classifiers were developed to take
advantage of the nearly continuous spectra. These classifiers
treat each pixel as an n-dimensional vector to compare the
spectral similarity between image spectra and reference
spectra, the so-called endmemebers. The spectral angle
mapping (SAM) is the most widely applied classifier in
hyperspectral remote sensing. It calculates the angles
between each pixel vector and endmember, and then assigns
the pixel to the class with the smallest angle (Kruse et al.,
1993). As a result, it is a deterministic measure of the n-
dimensional Euclidean distance between the pixel and
endmember. Contrarily, the newly developed spectral
information divergence (SID) performs a stochastic measure
that examines statistical properties of endmembers (Du et
al., 2004). Different from the MLC, the SID does not consider
the second-order statistical moments (e.g., variance, covari-
ance) of endmembers. Rather, it defines a probability vector
for each pixel by calculating the probability distribution of
digital numbers in the spectrum, and then compares the
divergence between the pixel and endmember. The pixel is
assigned to the class with least divergence. Therefore, the
SID follows a combined decision rule of the MLC (probabili-
ties) and the SAM (continuous vectors).

The application of these classifiers in roadside environ-
ments is uncertain. Due to the heterogeneous distribution of
land-covers, weed patches are often small and narrowly
distributed along highways. Although modern aerial images
could reach pixel size of one meter or less, mixed pixels are
inevitable in these patches. Moreover, the MLC assumes that
each class has an equal probability of occurring in the
landscape (Jensen, 2004). It is not valid in this study
because the invasive teasel is not dominant in highway
environments. For the SAM and the SID, it is often difficult to
find representative endmembers in these patches. Calcula-
tion of angular distances or divergences in these classifiers
may be largely negated by mixed pixels and large spectral
variation when teasel grows in a composition of flowering
plants and rosettes. In mixed environments the SAM could
result in much lower accuracy than the conventional MLC
algorithm (Shafri et al., 2007).

This study tested the feasibility of teasel mapping in
roadside environments with these three classifiers. A
stepwise decision tree was first built to mask out trees,
healthy grasses, water, and impervious surfaces that had
distinct spectral differences from teasel. The MLC, SAM, and
SID classifiers were then applied to map teasel/non-teasel
using an aerial hyperspectral image acquired along the
Interstate Highway 70 (I-70) in central Missouri. Spectral
signatures of teasel were collected from ground reference
data and error matrices were built to compare the accura-
cies of these classifiers. The optimal classifier was sug-
gested to MoDOT for practical weed mapping in highway
environments.

Materials and Methods

Study Area and Data Set

The study area was along I-70 in Cooper County, Missouri.
A 2.5 km section close to Exit 89 was selected because the
area was heavily infested with teasel. White flowers in
teasel patches could be observed in mid-late July in Mis-
souri. Soil was a silt loam distributed along steep slopes
with scattered rocks. Tall fescue was the most common grass
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species growing in the study area. Undesirable herbaceous
species, such as sericia lespedeza (Lespedeza cuneata),
johnsongrass (Sorghum halepense L.), and common milk-
weed (Asclepias syriaca L.) could also be observed. Tall
fescue-dominated pastures/hayfields and trees were common
land-covers off the highway.

A hyperspectral image was acquired on 25 July 2006
by the Center for Advance Land Management Information
Technologies (CALMIT), University of Nebraska, using the
Airborne Imaging Spectroradiometer of Applications (A1SA)
(Plate 1A). The AISA image contained 63 bands in the
spectral range of 401 to 981 nm (visible-near infrared
(NIR)) at 1 m spatial resolution. The spectral resolution
was approximately 10 nm. The image delivered by cALMIT
had been geometrically corrected, radiometrically cali-
brated, and atmospherically corrected using the Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) algorithm (ENVI, 2006). Several field surveys
were conducted in 2006. Ground control points were
collected with a differential GPS unit that could reach an
accuracy of one meter. It was found that the root-mean-
square error (RMSE) of these points in the AISA image was
less than one pixel.

With a digital camera mounted on a low-altitude light
airplane, a set of true-color aerial photos along I-70 in the
study area were collected on 19 July 2007. At a flight height
of 1,500 meters, the photos reached a fine pixel size of 0.5
m. Without built-in positioning and moving compensation
capability in the system, it was extremely difficult to correct
the geometrical distortions of these photos. In this study,
these photos were primarily used to visually compare with
the AISA image to locate ground reference data. One photo
taken at Exit 89 showed the largest teasel patch in the study
area (Plate 1B). An example ground picture of teasel patch is
displayed in Plate 1C.

Twenty rectangular plots along I-70 in the study area
were selected during field surveys for studies of herbicide
treatment (Bentivegna, 2008). Except for one plot that was
out of the image extent, locations of these plots are marked
in Plate 1A. Teasel covered more than 50 percent of these
plots. Constrained by topography along I-70, these plots
ranged from 5 to 13 meters wide and 10 to 34 meters long
with an average area of 190 meter?. Teasel in each plot was
vigorously green during the AISA image acquisition and
could be identified by visualizing the image and the match-
ing 0.5 m aerial photos. As an example of demonstration,
teasel patches in the largest two plots at Exit 89 are outlined
in Plate 1B. It has to be noted that the aerial photos were
taken one year after the AISA image. A majority of flowering
teasel plants were killed with herbicide treatment by MoDOT
in early-July 2007, although some rosette remained green
when aerial photos were taken. These two teasel patches
served as training data to build teasel signatures for classifi-
cation of the AISA image. Teasels in other plots were treated
as ground validation data.

Theoretical Basis of Classifiers

For an image with n bands, any pixel could be defined as a
vector X = (xg, X5 . ... x,)7, in which the components are the
reflectance values of band 1 to n. A classifier compares
image vector with reference vectors under stochastic (MLC,
SID) or deterministic (SAM) rules.

Maximum Likelihood Classifier (MLC)

The MLC decision rule is based upon the probability that a
pixel belongs to each class. For class i, training pixels are
extracted from the image and the mean vector m;, as well as
inter-band covariance matrix V;, are calculated. Under the
assumption of normal distribution of training data in each
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Plate 1. (a) The AIsA image (wavelengths of 472.35 nm, 544.67 nm, and 638.19 nm are
displayed) in the study area, and (b) a 0.5 m aerial photo of a large teasel patch at Exit 89.
A teasel picture taken on the ground (July 2006) is displayed in (c). Ground teasel polygons
are marked in red in (a), and the two largest teasel polygons are outlined in (b).

class, the probability that a pixel vector x belongs to class i
could be calculated as (Jensen, 2004):

Coxp| —~ (x—m) Vi x—mp) | (1)

MLC(x), =
v 2

(2m)?

The pixel is assigned to the class in which it has the highest
probability of occurring.

Spectral Angle Mapping (SAM)

The SAM is an n-dimensional distance measure between a
pixel and each reference endmember. For class i, the
endmember vector (e;) is composed of mean reflectance
value of all training pixels in each band. The angle between
x and e; is calculated as (Kruse et al., 2003):
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where X; and e;; are the reflectance values of x and e; in
band j, respectively. The pixel is assigned to the class with
the smallest angle.

-1
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Spectral Information Divergence (SID)

The sID is endmember-based as the sAM while it follows a
stochastic rule as the MLC. For a pixel vector x, the probabil-
ity of a reflectance value (p) that occurs at band b can be
calculated as (Chang, 2000):

Pb

P
2!’1
=1

The cross entropy, or directed divergence, between the
probability vectors of the pixel and each endmember is then
calculated. Please refer to Chang (2000) for a detailed
calculation. The pixel is assigned to the class with the
smallest divergence.

Dy = (3)

Image Preprocessing: A Stepwise Teasel/Non-teasel Mask

As a first attempt to map teasel in the study area, Ben-
tivegna (2008) performed a hybrid unsupervised/super-
vised classification using the AISA image. Without a priori
knowledge, the research first grouped all pixels in the
image into 300 clusters using the ISODATA (Iterative Self-
Organizing Data Analysis Techniques) algorithm. These
300 clusters were further grouped into 20 classes based
upon the clusters’ spectral variability, the analyzer’s
familiarity with the study area, and visualization of the
0.5 m aerial photos. As shown in Figure 1, the 20 classes

May 2010 569



08
—Teasel (1)
0.7 - ——Water (2) /
06 - ——Bare surface (3)
' —Tree (4) V4
© 05 - Grass (10)
=
© =
S 04 -
@
®
03 -
0.2 -
0.1
0 bt
401 454 509 563 619 676 732 790 847 905 962
wavelengths (nm)
Figure 1. The 20 training signatures after the ISODATA clustering. These training
spectra were applied in a regular 20-class LULC mapping with the MLC and sAM
algorithms (Modified from Bentivegna, 2008).

are: (1) teasel, (2) water, (3) bare surface, (4) tree, and

(10) grass. Bare surfaces are composed of paved roads and
ground surfaces without vegetation cover. Trees include
broadleaves, conifers, and shrubs that are commonly
observed along I-70. As the dominant land-covers, grasses
are represented by 10 classes because of the heterogeneous
composition of species and greenness in the highway
environments.

In Figure 1, the spectrum of teasel is clearly different
from water, paved bare surfaces and trees, but could be
confused with some grasses. Water has low reflectance and
impervious surfaces have high reflectance in the visible-
NIR region. Trees and very healthy dense grasses are
characterized with high reflection in near infrared and
high absorption in red bands. For these vigorous vegeta-
tion types, there is an apparent water absorption trough at
933 nm, a feature that is able to be identified in narrow
bandwidths of the AiSA image. This absorption trough
cannot be observed in teasel and sparse, less healthy
grasses.

The normalized difference vegetation index (NDVI) could
differentiate most non-vegetation and healthy vegetation.
However, at 1 m pixel size, the AISA image reveals large
areas of shaded tree canopies and grasses. By normalizing
the spectral responses in red-NIR region, the NDVI was
designed to reduce the effects of soil background (Tucker,
1979). It was also not sensitive to shadows in forest stands
(Huemmrich, 1996; Wang et al., 2005). In the AISA image,
the shaded healthy vegetation reaches similar NDVI values as
teasel and non-healthy grasses. Similarly, the water absorp-
tion trough at 933 nm is not clear in shaded areas. When
examining the spectral profiles of shaded vegetation, we
noticed that its reflectance in blue-green region was much
lower than teasel. Using the same formula as NDVI, we
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defined a normalized difference shadow index (NDSI) to
extract shaded areas in this study:

NDVI = P761 — Pe76
P761 + Pe76

(4)
NDSI = Ps54 — Pa3e
Ps54 T+ Pase

where p,s6,0554, Ps75, and p,e; are reflectance values at
wavelengths of 436 nm, 554 nm, 676 nm, and 761 nm,
respectively.

The NDVI and NDsI of different classes are compared in
Figure 2. It is obvious that healthy tree canopies in the
woodland, as well as some green herbaceous patches along
I-70, reaches the highest NDvI (Figure 2a). Water and paved
driveways have the lowest NDVI values. The shaded vegeta-
tion (e.g., at the edges of woodland) shows dramatic differ-
ences in NDVI and NDSI images. Its NDVI values tend to be
similar as those of pasture grasses while its NDSI values are
much lower (dark tones in Figure 2b).

As described in the flow chart in Figure 3, a stepwise
mask is built using criteria of the reflectance at 933 nm,
NDVI and NDSI. A combined rule of “NDVI >0.5 & pgssnm =
local minimum?” is used to detect trees and healthy grasses.
The results are not optimal when these rules are applied
independently. With “NDvI >0.5" itself, large areas of grasses
in pastures/hayfields could not be masked, which increases
the possibility of teasel overestimation. With “pg33,,=1ocal
minimum” itself, some teasel pixels are included, resulting
in teasel underestimation. The “NDVI <0.2” detects non-
vegetation such as water and bright bare surfaces. The “NDsI
<0.3” detects shaded vegetation and some non-vegetation
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Figure 2. Example images of (a) NDvl, and (b) NDSI in a subset area in north of I-70. A water
body, pasture field, and a piece of woodland are covered in the subset.

(b)
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Figure 3. Framework of a stepwise masking process to
extract dominant land-covers of trees, healthy grasses,
water, and impervious surfaces in the AISA image. The

Po33 nm represents the reflectance at wavelength 933 nm.

that cannot be selected in previous steps. After trees,
healthy grasses, water and impervious surfaces are masked
out of the AISA image, the remaining pixels are primarily
teasel and non-healthy grasses. These two classes are
hereafter referred to as teasel and non-teasel. The post-
masked AISA image is processed with the MLC, SAM, and SID
algorithms to perform a simplified teasel/non-teasel mapping
in the study area.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Results

Regular LULC Classification: Teasel Mapping in a Past Study (Bentivegna,
2008)

With the 20 training signatures extracted after the

ISODATA clustering (Figure 1), Bentivegna (2008) performed
the MLC classification using the AISA image. The resultant
20 classes were re-grouped into five land-covers: teasel,
water, bare surface, grass, and tree. Using the 20 signatures
as endmembers, the SAM classification was also performed.
The maximum angle threshold of 10° was used as it
provided optimal results when the threshold was tested in
a range of 5° to 30°. The pixel was defined as “unclassi-
fied” if the spectral angle between this pixel and each
endmember was larger than this threshold. Similarly, the
resultant 20 classes were regrouped into the five land-
covers mentioned above. The study found that only teasel
patches at relatively large sizes along I-70 could be
detected using both MLC and SAM algorithms. Water, bare
surfaces, and trees were easily classified, but strong
confusion between teasel and grasses was observed in
both classifiers. Large areas of grasses (even those in
pastures/hayfields) were misclassified as teasel in the sAM
class map.

Bentivegna (2008) also performed accuracy assessment
of the two class maps. Adopting a stratified random sam-
pling method (Congalton, 1991), a total of 250 points (50 for
each class) were randomly selected all over the study area.
Each point represented the major class in an area of 5 X 5
pixels centered at this point. The reference classes of these
points were identified using field observations and visuali-
zation of the 0.5 m aerial photos. In the error matrices of the
two classifiers (Table 1), teasel and grasses always had the
lowest accuracies compared to water, bare surfaces, and
trees. When all classes were considered, the overall accuracy
of the MLC (92.4 percent) was much higher than that of the
SAM (76.8 percent). However, the overall accuracy was not
representative in teasel mapping because teasel was not the
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TABLE 1.

ERROR MATRICES OF THE MLC AND SAM CLASS MAPS IN A REGULAR LAND-USE/LAND-COVER CLASSIFICATION IN THE STUDY AREA

(FROM BENTIVEGNA (2008)). DIAGONAL VALUES ARE IN BOLD TO EMPHASIZE THE CORRECT ALLOCATIONS

Ground Reference

Teasel Grasses Bare surfaces Trees Water Row _total User’s accuracy
Teasel 41 5 4 0 0 50 82%
Grasses 2 47 1 0 0 50 94%
Bare surfaces 2 2 46 0 0 50 92%
Trees 1 2 0 47 0 50 94%
MLC class map Water 0 0 0 0 50 50 100%
Column_total 46 56 51 47 50 Total: 250
Producer’s 89.1% 83.9% 90.2% 100% 100%
accuracy
Overall classification accuracy: 92.4%
Kappa value: 0.91
Teasel 29 7 3 0 0 39 74.4%
Grasses 15 43 2 3 0 63 68.3%
Bare surfaces 1 4 40 0 0 45 88.9%
Trees 1 2 0 42 0 45 93.3%
SAM class map Water 0 0 0 0 38 38 100%
unclassified 0 0 6 2 12 20
Column_total 46 56 51 47 50 Total: 250
Producer’s 63% 76.8% 78.4% 89.4% 76%
accuracy

Overall classification accuracy: 76.8%
Kappa value: 0.71

dominant class in the study area. For teasel itself, the user’s
and producer’s accuracies in the MLC map were 82 percent
and 89.1 percent, respectively. The respective accuracies
were only 74 percent and 63 percent in the SAM class map.
This indicated that, when all land-covers were considered in
a regular LULC classification, the ISODATA/MLC algorithm was
better applied for mapping teasel in highway environments.

Post-masking Classification: Teasel/Non-teasel Mapping

After trees, water, and impervious surfaces were masked out
of the AISA image, training data of teasel and non-teasel
(mostly non-healthy grasses) were visually selected based on
the 0.5 m aerial photos. The training area of teasel contained
247 pixels in the two teasel plots at Exit 89. The training
data of non-teasel contained 214 pixels along vegetated
roadsides in the north of the teasel plots. Areas farther away
from I-70 were not considered in training area selection. All
training pixels were used in the MLC classification. The
mean spectrum of training pixels of the classes served as
endmembers in the SAM and SID approaches.

The MLC assigned each pixel in the post-masking AISA
image to teasel or non-teasel. There was an obvious overesti-
mation of teasel in the MLC class map (Plate 2). A large
number of patches along I-70 were classified as teasel. Large
grass fields, such as the ones in the middle of the image
(north of I-70) and the lower right of the image (south of I-
70), were also assigned as teasel. Since there was no
“unclassified” category in the MLC algorithm, pixels with
low probability values in the training data were also
processed. For example, there was a large pond in pastures
in the middle of the study area. Its border areas could not be
masked out because the shallow, muddy water often had
high chlorophyll content from phytoplankton or wetland
vegetation, which resulted in high NDvI values. These areas
were assigned as teasel in the MLC map.

The post-masking SAM and SID algorithms dramatically
reduced the overestimation of teasel in the study area. In the
SAM map, major teasel patches along I-70 right-of-ways were
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detected (Plate 2). Most grass fields that were misclassified in
the MLC map were correctly assigned as non-teasel. The above-
mentioned pond was identified as “unclassified.” The SID map
was similar as the SAM map, but there was a slightly higher
overestimation of teasel in pastures/hayfields, although the
overestimation was much lower than the MLC map (Plate 2).

Accuracy Assessment

In the stepwise masking process, the NDvI and NDsI thresh-
olds of non-teasel classes were selected in a way to maxi-
mally avoid assigning teasel in the mask. As shown in the
class maps in Plate 2, large areas of non-healthy grasses
were not masked out because of their spectral similarity
with teasel plants. It was also discovered in the past study
that the confusion between teasel and other classes (except
grasses) was small (Table 1). For the 20 ground-observed
teasel plots, we found that none of them were masked out.
Therefore, the accuracy of the masking map was acceptable
in this study.

Due to limited teasel population and small patch sizes
along highways, it was not possible to randomly select a
large number of ground reference data of teasel for its
accuracy assessment. For this reason, a randomized cluster
sampling strategy (Congalton, 1988) was applied to extract
ground reference data from the selected teasel plots. In each
plot, pure teasel polygons were traced by comparing the
AISA image with the matching 0.5 m aerial photos. These
teasel polygons were mostly in size of 10 to 20 pixels.
Although spatial autocorrelation among these teasel pixels
were inevitable, it was reported in Congalton (1988) that the
effect of spatial dependency of clustered samples in accu-
racy assessment could be reduced when cluster sizes were
small. A total of 372 teasel pixels in 17 plots were extracted
as ground validation data. Similarly using photo visualiza-
tion, seven patches of non-healthy grasses were randomly
selected (five along 1-70 and two in pastures/hayfields off
I-70) in the AISA image. A total of 377 pixels were extracted
as ground reference data of non-teasel.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING
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With these ground data, the error matrix approach
(Congalton, 1991) was used to assess the accuracies of the
MLC, SID, and SAM class maps. In the error matrices of the
three teasel/non-teasel maps (Table 2), the MLC had the
lowest overall accuracy (61.2 percent) while the SAM reached
the highest accuracy (86.8 percent). The obvious overestima-
tion of teasel in the MLC class map in Plate 2 resulted in its
high producer’s accuracy (94.6 percent) and low user’s
accuracy (56.5 percent). Similarly, the SID class map had high
producer’s accuracy of 92.5 percent and low user’s accuracy
of 65.9 percent. The sAM class map achieved much better
results of teasel mapping with high values in both producer’s
(82 percent) and user’s (90.5 percent) accuracies. The
accuracies were also evaluated based on the kappa coeffi-
cient of agreement derived for each classification. As listed
in Table 2, the MLC, SID, and sAM had the Kappa values of
0.22, 0.45, and 0.74, respectively. The Kappa analysis may
not be appropriate in comparing the three classifications
with the same set of ground data because it assumed inde-
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pendent samples in different assessments (Foody, 2004). The
uncertainties rising from this situation, however, could be
small in this study when the kappa values varied largely
among the three classifications.

With much easier process of training data selection, the
post-masking SAM approach in this study reached similar
accuracies as the complicated unsupervised/supervised
(1sobaTAa/MLC) hybrid classification in the past study (Table
1). It indicated that, when only teasel and non-teasel classes
were considered, the SAM might be better applied for
mapping teasel in highway environments.

Discussion

Weed detection along roadsides is different from open-area
environments because of the distinctive dynamic of land-
covers in long, narrow ground surfaces. Spectral properties
of the same vegetation type may vary dramatically in
different locations, due primarily to the heterogeneity in
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TABLE 2.

ERROR MATRICES OF THE MLC, SAM, AND SID CLASS MAPS IN THE POST-MASKING TEASEL/NON-TEASEL MAPPING IN THIS

STUDY; DIAGONAL VALUES ARE IN BOLD TO EMPHASIZE THE CORRECT ALLOCATIONS

Teasel Non-teasel Row_ total User’s accuracy

MLC class map Teasel 352 271 623 56.5%
Non-teasel 20 106 126 84.1%
Column_total 372 377 Total: 749
Producer’s accuracy 94.6% 54.6%

Overall accuracy: 61.2%

Kappa Coefficient: 0.22

SAM class map Teasel 305 32 337 90.5%
Non-teasel 67 345 412 83.7%
Column_total 372 377 Total: 749
Producer’s accuracy 82% 91.5%

Overall accuracy: 86.8%

Kappa Coefficient: 0.74

SID class map Teasel 344 178 522 65.9%
Non-teasel 28 199 227 87.7%
Column_total 372 377 Total: 749
Producer’s accuracy 92.5% 52.8%

Overall accuracy: 72.5%
Kappa Coefficient: 0.45

species, density, growth stages, soil fertility, water availabil-
ity, and other biophysical conditions. Agricultural lands
close to the I-70 in Missouri are mostly a mixture of peren-
nial crop fields, whose spectra also vary upon different
management activities such as haying and grazing. Regular
supervised classification in these environments is highly
limited because of the difficulties in collecting representa-
tive training data sets.

Bentivegna (2008) demonstrated the feasibility of an
unsupervised/supervised hybrid classification method to
map teasel patches in highway environments. The process is
time consuming and subjective when re-grouping ISODATA-
resulted clusters into representative classes. Uncertainties
are introduced with large spectral variation in small teasel
populations in the study area. It takes full consideration of
all teasel pixels in one image to build a training signature to
reach accuracies of 82 to 89.1 percent for teasel. Because of
the complexity in processes, this approach could not be
easily adopted by end-users such as the MoDOT for statewide
application.

Many studies have shown that the sam classifier with
hyperspectral imagery can reach much higher accuracies in
land-use/land-cover mapping (Kruse et al., 1993; South
et al., 2004; Du et al., 2004; Ustin et al., 2004). This classi-
fier, as well as the newly developed SID method, however,

did not reach the expected results in highway environments.

Compared with the regular multi-class MLC method, these
algorithms resulted in higher confusion between teasel and
grasses. The low accuracy is primarily attributed to mixed
pixels and large spectral variation in small, narrow teasel
patches along roadside right-of-ways. Results in this study
agree with Shafri et al. (2007) who reported that, for a
seven-class tree mapping in mixed forests with hyperspec-
tral imagery, the overall accuracy of the SAM method was
less than 50 percent while the MLC reached 85 percent.
Specifically in weed detection, the complexity of land-
cover mapping in highway environments is reduced by
applying a mask to exclude the dominant classes that have
distinct spectral differences from target weeds. The stepwise
teasel/non-teasel mask in this study excludes trees, healthy
grasses, water, and impervious surfaces. While only two
classes (teasel and non-healthy grasses) are considered in
the classification, the process of training data selection is
much easier and the requirement of pure endmembers in
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classifiers with hyperspectral imagery is reduced. By simply
identifying a small subset of training area for teasel and non-
teasel classes in the image, the saM algorithm reached
similar accuracies as the unsupervised/supervised hybrid
(1sobATA/MLC) method in a regular multi-class classification.
Contrarily, with the same training data of teasel and non-
teasel, the MLC algorithm resulted in large commission errors
of teasel in the study area.

Different accuracies of these classifiers are rooted in
their decision rules. The probability-based MLC algorithm in
teasel/non-teasel mapping could not reach the expected
accuracy. Due to teasel’s large spectral variation in small
training areas, its probability distribution of training data is
much wider than that of the non-teasel, which results in
high overestimation of teasel patches in the study area. The
SAM approach compares the n-dimensional spectral similar-
ity between a pixel and endmembers. The inter-class
confusion is dramatically reduced when there are only two
classes. The in-class spectral variation is also reduced when
training data sets are averaged into two endmembers.
Therefore, the confusions in the SAM are much lower than
the MLC. Following a combined decision rule of the MLC and
SAM, the SID algorithm has higher overestimation of teasel
than the saM, although the extent of overestimation was
much lower than the MLC.

This study indicated that the post-masking SaMm algorithm
could reach relatively high accuracy in teasel/non-teasel
mapping in highway environments. Compared with the
complicated training data collection in the ISODATA/MLC
method that has to be performed in each image, the SAM is
more advantageous in roadside applications because endmem-
bers collected in one image could be applied in adjacent
ones. This is extremely useful in highway systems where
mapped areas are narrow and long, covering a large number
of scenes. Teasel mapping demonstrated in this study
provides important inputs for site-specific weed management
for agencies like MoDOT. Instead of heavy workflow of field
visits, the MoDOT people only need limited training efforts to
monitor highway teasel invasion and treatment when proper
imagery becomes available.

Despite of its great potential, statewide application of
hyperspectral remote sensing is highly limited by image
availability. Some research has been investigated to select
the most weed-sensitive spectral bands to promote the less
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expensive multi-spectral application. The unique water
absorption wavelength centered at 933 nm in this study also
reveals the possibility of selecting spectral regions in teasel
detection. Moreover, plant phenology plays an important
role in weed detection. As more and more high-resolution
airborne and spaceborne imagery becomes available, the
mapping approaches examined in this study could poten-
tially become practical in weed control in highway environ-
ments. Further investigation will be conducted to examine
the effectiveness of wavelength selection and multi-temporal
image analysis in operational teasel mapping along Missouri
highways.

Conclusions

This study compared the MLC, SAM, and SID classifiers to
map invasive cut-leaved teasel in highway environments
using an aerial hyperspectral image that covers 63 bands in
visible-NIR region. The uniqueness of the research was the
small, narrow teasel patches with large spectral variation
along roadside right-of-ways. Major findings about roadside
teasel mapping included:

1. For a regular multi-class LULC mapping, the
unsupervised/supervised (ISODATA/MLC) hybrid approach
provided much higher accuracies than other classifiers.
However, the training data selection was time-consuming
and the classification process was complicated;

2. A stepwise mask was built with combined criteria of NDVI,
NDSI and a near-infrared narrowband (centered at 933 nm, at

which healthy vegetation has an apparent absorption trough).

Large areas of trees, healthy grasses, water, and impervious
surfaces were removed to simplify the process of teasel
mapping;

3. With much easier process of training data collection, the SAM
teasel/non-teasel mapping achieved similar accuracies (80 to
90 percent) as the ISODATA/MLC method. Due to spectral
variation of teasel in small and mixed patches, the probability-
based classifiers such as MLC and SID resulted in large
overestimation of teasel. The SAM may be an optimal algo-
rithm for extended teasel mapping in highway environments.
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