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Abstract

The Edwards–Anderson site order parameter, q, or its generalizations have been considered
to study the partial spin-glass behavior of ±J Ising lattices. These parameters vanish if all 2W
ground states are taken into account, so an ergodic separation must be done in order to emulate
nature. Here, we follow a recently proposed criterion to do ergodic separation in spin glasses. The
method relies upon: (i) the complete knowledge of the physical properties of the ground level
and (ii) a new algorithm to calculate the diluted lattice that remains after removing all bonds
that frustrate in any of the ground states. With this new methodology, reproducible values of
the order parameters have been obtained. Size e�ects and tendency towards the thermodynamic
limit are established.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The two-dimensional Edwards–Anderson (EA) ±J scheme [1,2] is a model for spin
glasses which has been attracting a great deal of interest over the last decades. How-
ever, its nature is still not well understood. Complementary to addressing the problem
with the help of analytical calculations and computer simulations at Anite temperature,
it is also possible to obtain a substantial amount of useful information by means of
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exact results for the ground states of the system obtained by alternative methods. Vari-
ous methods for Anding the ground-state structure have been proposed. Some examples
are: steepest descent algorithms [2,3], intelligent enumeration using “branch and bound
techniques” to avoid high-energy states [3], cluster-exact approximation (iterating clus-
ters of spins) [4], genetic algorithms and ballistic search (sampling of conAguration
space) [5,6] and recent algorithms [7] combining aspects of previous techniques plus
knowledge of properties of conAguration space of these systems.
The calculation of physical observables such as the total energy, energy Huctua-

tions, correlation functions, etc. is rather straightforward. However, the calculation of
order parameters like the EA site order parameter or the recently reported parameter
p [3] requires (i) the exact knowledge of the ground-state level and (ii) to break the
ergodicity in some way, separating states from its mirror states. Consequently, order
parameters are much diIcult to evaluate and it is of interest and of value to inquire
how a speciAc ergodic separation inHuences the tendency of order parameters towards
the thermodynamical limit. In this context, the present paper has four main objectives:
(1) to present a strategy to do ergodic separation in spin glasses, which maximizes the
order parameters; (2) to make use of a new algorithm to calculate the diluted lattice
and parameters p and h [8] (the calculation of the diluted lattice plays a fundamen-
tal role in the ergodic separation proposed); (3) to discuss the behavior of the order
parameters in a wide range of lattice sizes; and (4) to bring out the advantage of the
new algorithm in terms of computer time needed to reach stable results.

2. Basic de�nitions

In this work, two-dimensional EA ±J Ising lattices are investigated. They consist
of N spins Si =±1, described by the Hamiltonian

H =
N∑

〈i; j〉
JijSiSj ; (1)

where the sum runs over all pairs of nearest neighbors. The spins are placed on a
two-dimensional (d = 2) square lattice of linear size L and periodic boundary condi-
tions in all directions. Original lattices (samples) are formed by randomly distribut-
ing antiferromagnetic (AF) and ferromagnetic (F) bonds in equal concentration. After
bonds are allocated they remain Axed at their positions. Then, the 2W states forming
the ground manifold are reached by calculating all spin conAgurations minimizing the
total energy.
±J Ising lattices have been studied for about 3 decades as simple models for spin

glasses [1,2]. The original order parameter q to characterize such phase was introduced
by Edwards and Anderson and it can be expressed as [1]

q=
2

W (W + 1)N

W∑
�

W∑
�¿�

N∑
i=1

Si(�)Si(�) ; (2)

where � and � run over the W states that belong to half of the conAguration space
(HCS) after breaking ergodicity in a predetermined way. So the case q = 1:0 deAnes
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an ideal spin glass, with total site memory, while q = 0:0 is a system with no site
memory, like a paramagnet.
Later on, other order parameters have been introduced and we would like to consider

here the parameter p, which can be deAned in the following way [3]:

p=
1
N

N∑
i=1

{∣∣∣∣∣
W∑
�

Si(�)

∣∣∣∣∣ divW

}
; (3)

where | · · · | means absolute value, while div is an operator meaning integer division,
so the expression inside { } can take values 0 or 1 only. In a simple way, p can be
also obtained by the ratio of the number of spins that never alternate in the half of the
ground manifold after ergodic separation over the total number of spins in the lattice.
From the deAnitions above it follows that states that contribute fully to q also con-

tribute to p. However, states that give partial contribution to q do not contribute
anything to p, so 06p6 q6 1. Since p is more drastic than q we will restrict from
now on to parameter p only.
In all magnetic systems (even a ferromagnet), site order parameters vanish if all

ground states are taken into account. So an ergodic separation must be considered. In
the case of ideal ferromagnetism there is a singlet ground state, plus its corresponding
mirror state (all spins reversed). In such magnet, ergodicity has been broken by nature
and we see either the state or the mirror state only. In spin glasses, the application of
an external magnetic Aeld to break ergodicity is of no help and there is more than one
way of separating states from its mirror states, so ergodicity can be broken in many
ways. This point a�ects signiAcantly results of physical quantities.

3. Results and discussion

The most naive way to do ergodic separation is to Ax the position of one spin
(i.e., Si = +) on the original lattice, then choosing the W ground states with Si = +
(for the W mirror states Si = −). As an example, we calculate p and q by Axing
the position of one spin (in Fig. 1a three possible positions have been selected for
illustrative purposes). This methodology provides not reproducible data, since values
of order parameters depend strongly on the way the pivot spin is chosen to do ergodic
separation. This diIculty can be easily understood by appealing to the concept of
“diluted lattice” (DL). The DL associated to an original ±J Ising lattice is formed by
removing all bonds that frustrate at least once through the ground manifold. In Fig. 1b
we show the DL corresponding to the original lattice of Fig. 1a. If we designate by BDL
the number of bonds in the DL, parameter h can be expressed as h= BDL=2N [8]. In
the case of the lattice illustrated in Fig. 1 it can be easily seen that h= 75

128 =0:5859375.
In the example, DL is formed by three islands with 60 (39), 11 (9) and 4 (4) bonds

(spins), respectively. The spins connected within each island are solidary to each other.
Then, if we anchor over the largest island forming the DL (position # 1), the spins
belonging to this island remain Axed while the rest modify its state in at least one of
the W ground states. Thus, the corresponding value of p can also be calculated by
simply evaluating the ratio of the number of spins in the largest unfrustrated domain
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Fig. 1. (a) ±J square Ising lattice for size 8 × 8. Single (double) lines represent ferromagnetic (antiferro-
magnetic) exchange interactions and open circles indicate the position of the spins. The values of qx and
px reported in the Agure correspond to the values of the order parameters as the ergodic separation is done
by Axing the orientation of the spin at site x (x = 1; 2; 3). (b) Diluted lattice corresponding to the original
lattice (a).

in DL over the total number of spins in the lattice. When this is applied, we get
p= 39

64 = 0:6094, which is exactly the maximum value reported for this example. This
is equivalent to saying that a considerable energy and time would be needed to overturn
a large number of solidary spins. On the other hand, if other ergodic separations are
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used (positions # 2,3 in Fig. 1), the existence of such solidary group of spins could be
overlooked, thus producing lower values for order parameters, depending on the size
of the island we anchor on.
If we consider the largest unfrustrated island only, we get what has been called

“maximum” ergodic separation and, consequently, the “maximum” possible value of p.
Therefore, it has been proposed a criterion to do ergodic separation in spin glasses,

which takes into consideration the largest cluster in the DL [7]. Then, it is necessary
to know the DL of each sample before proceeding to actual calculation of any order
parameter. Accordingly, we present next a summary of a new computational algorithm
to obtain the DL:

1. An initial state � is chosen at random.
2. By using a steepest descent algorithm, eventually a new state �, belonging to the

ground manifold (GM), is obtained.
3. Beginning with state �, a large number of states of the GM is reached by using a

single spin Hip dynamics at no energy cost. This strategy is continued to generate
all interconnected ground states in what is called invasion [7]. The lattice that
remains after removing all bonds that frustrate in any of the visited states is
stored. We called preliminary diluted lattice (PDL) to this set of bonds.

4. A bond, J ∗ij , belonging to the PDL is chosen at random.
5. A conAguration of spins is set at random with the restriction that J ∗ij remains

frustrated in this state.
6. Under these conditions, i.e., with Axed Si, Sj and J ∗ij SiSj = 1, a steepest descend

is tried.
• If GM is reached, J ∗ij is removed from the PDL, a new invasion is invoked
and PDL is updated.

• If GM is not reached, J ∗ij belongs to the DL.
7. Repeat from point 4, searching for a new bond belonging to the PDL.

This iteration scheme is repeated until eventually the DL is determined. This can be
the only possible way of achieving this purpose in the case of large enough lattices
where exact calculations are not available.
Fig. 2 shows the tendencies of both h and p as a function of the size N , calculated

by using the algorithm described above. Values reported for each size correspond to
average value over results for 2000 independent samples generated randomly. Sizes
vary from N = 16 to 256. Comparison of new data coming from the above algorithm
with exact evaluations obtained by direct enumeration of states [8] has been a test
for the correctness and accuracy of the new algorithm. This comparison can be done
for limited lattice sizes (up to N = 64), where exact values of physical quantities are
available. For larger sizes we rely exclusively on the new method.
The algorithm proposed above to reach the DL is very eIcient and allows us to cal-

culate larger lattice sizes as compared to the capabilities of exact enumeration schemes.
Thus, to obtain the DL for 500 samples for N=36, it is necessary to run 1075 s the pro-
gram on a PENTIUM III, 850 MHz using exact calculations based on branch-and-bound
algorithm. To obtain the same DL, for the same set of samples using the algorithm
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Fig. 2. Parameters h and p as a functions of the size N .

proposed here in the same computer, such time drops to 202 s. This time economy
e�ect is more relevant as size increases.
Finally, as it can be observed from Fig. 2, h remains almost constant, at about

0:50 for lattice sizes ranging between 16 and 121. However, the largest sizes show a
smooth decreasing tendency toward the thermodynamic limit. This tendency is better
reHected in the behavior of the site order parameter p. With our present computational
capabilities, it is not possible to discern whether this result represents a monotonous
decrease, or whether its simply a Huctuation.

4. Concluding remarks

Ergodic separation must be done before reporting order parameters to obtain repro-
ducible results. The ergodic separation method called “maximum” has the most clear
physical meaning leading to maximum values for p. Such ergodic separation can be
easily done once the DL is reached, since then it suIces to anchor on the largest
unfrustrated island. To obtain such DL for any sample we propose here an algorithm
which proves to be notably more eIcient than other previous exact methods. This
allows to reach size N = 256, where only approximate calculations are possible
using “intelligent” enumeration methods. Once the DL is obtained, ergodic separa-
tion is possible and calculation of order parameters is easy. Such order parameters do
not show a deAnite tendency toward the thermodynamic limit in the studied range of
N . However, rather than attempting a determination of the values of the parameters h
and p for L→ ∞; the main points of the present paper have been: (1) to emphasize
the importance of an adequate ergodic separation in evaluation of order parameter,
(2) to establish a criterion for doing the more convenient ergodic separation in order
to maximize the numerical values of the order parameters, and (3) to present a new
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algorithm which implements the criterion mentioned in (2) in an eIcient way. If no
attention is paid to ergodic separation, nonreproducible values of order parameters are
obtained.
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