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We study the nature of spin excitations of individual transition metal atoms (Ti, V, Cr, Mn, Fe, Co
and Ni) deposited on a Cu2N/Cu(100) surface using both spin-polarized density functional theory
(DFT) and exact diagonalization of an Anderson model derived from DFT. We use DFT to compare
the structural, electronic and magnetic properties of different transition metal adatoms on the
surface. We find that the average occupation of the transition metal d shell, main contributor to the
magnetic moment, is not quantized, in contrast with the quantized spin in the model Hamiltonians
that successfully describe spin excitations in this system. In order to reconcile these two pictures, we
build a zero bandwidth multi-orbital Anderson Hamiltonian for the d shell of the transition metal
hybridized with the p orbitals of the adjacent Nitrogen atoms, by means of maximally localized
Wannier function representation of the DFT Hamiltonian. The exact solutions of this model have
quantized total spin, without quantized charge at the d shell. We propose that the quantized spin
of the models actually belongs to many-body states with two different charge configurations in the
d shell, hybridized with the p orbital of the adjacent Nitrogen atoms. This scenario implies that the
measured spin excitations are not fully localized at the transition metal.

PACS numbers: 75.10.Dg, 75.10.Jm, 75.30.Gw, 71.15.Mb

I. INTRODUCTION

The Cu(100) surface coated with a Cu2N monolayer
has turned out to be a remarkable system1–17 to probe
and engineer the electronic properties of individual tran-
sition metal atoms using scanning tunneling microscopy
(STM) and inelastic electron tunneling spectroscopy
(IETS). A variety of breakthroughs have been reported
on this system, such as the first measurement of the mag-
netic anisotropy of an individual quantized spin by means
of IETS,2 the demonstration of single atom spin torque,5

the fabrication of nano engineered chains both with
antiferromagnetic7 and ferromagnetic11 broken symme-
try ground states, probed by means of spin-polarized
STM, the measurement of spin excitations in spin chains
with strong quantum fluctuations that prevent spin sym-
metry breaking,1,8 the measurement of single spin re-
laxation time by means of voltage pulse pump-probe
technique,6 the observation of renormalization of mag-
netic anisotropy due to Kondo exchange interactions9

and the imaging of spin wave modes with atomic scale
resolution.11

The system has been studied from the theoretical
standpoint, using a variety of approaches.2,18–41 Im-
portantly, both the spin excitation spectra of individ-
ual atoms2,3,14 and multi-atom structures,1,4,7–9,11–13 as
well as their spin relaxation dynamics have been suc-
cessfully described using model Hamiltonians18–26 where
quantized spins interact with each other via Heisen-
berg coupling,1,11,18,20 and are Kondo coupled both to
the tunneling electrons18,19 and to the substrate.9,22–24

Treating Kondo coupling up to second order in per-
turbation theory accounts for spin relaxation22,23 and

magnetic anisotropy renormalization.9,24 Furthermore,
calculations25,26 up to third order are also able to account
for non-trivial IETS line shapes, including Kondo peaks.
Numerical renormalization group non-perturbative cal-
culations for the anisotropic spin Kondo model also pro-
vide very good description for both the finite energy
spin excitations and the zero bias Kondo peak in these
systems.21,42,43 The origin of the Kondo couplings in
these systems can be traced down to a multi-orbital An-
derson model for these S > 1/2 systems,27 in line with
the very well known results for the mapping44–46 of the
single orbital Anderson model47 to the Kondo model.

In spite of the success of quantized spin Hamiltoni-
ans to describe many experiments of transition metals
on Cu2N, there is a problem of principle that we address
in this paper. Density functional theory (DFT) calcu-
lations, most of them2,21,28–35 dealing with Ti, Mn, Fe
and Co adatoms on Cu2N/Cu(100), show that nor the
charge, neither the magnetic moment of these magnetic
atoms are quantized.

Here we provide a comprehensive and comparative
study of the electronic and structural properties of the en-
tire series of 3d transition metals (Ti, V, Cr, Mn, Fe, Co
and Ni). To the best of our knowledge, no DFT calcula-
tions have been reported for V and Ni on Cu2N/Cu(100).
Our calculations confirm the fractional nature of the av-
erage occupation of the d levels in these systems, which
is not surprising given their conducting nature, but it
poses an apparent contradiction with the quantized spin
model description. In the second part of the manuscript
we provide a solution to this apparent conflict. We build
a zero bandwidth multi-orbital Anderson model, using as
starting point the representation of the DFT Kohn-Sham
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Hamiltonian in a basis of maximally localized Wannier
functions. The Anderson model includes spin-orbit in-
teractions, crystal field interactions, on-site Coulomb re-
pulsion and hybridization of the d shell of the transition
metal with its Nitrogen neighbors. We solve the model
by exact numerical diagonalization within a restricted
Hilbert space that includes both dn configurations with
dn+1pm configurations, where n stands for the number
of electrons in the d shell and m stands for the num-
ber of electrons in the Nitrogen p orbitals. Our numerics
show that the low energy excitations of the model can
be mapped into quantized spin Hamiltonians. Within
this picture, it is apparent that this quantized spin S
describes the quantum number of many-body wave func-
tions that mix states with n and n+ 1 electrons in the d
shell, and have thereby non-integer average occupation.
The paper is organized as follows. In Sec. II we

describe DFT calculations for different transition metal
(TM) atoms at Cu2N paying particular attention to the
structural properties (II B), electronic properties (II C)
and magnetic properties (IID). In Sec. III we build the
zero bandwidth multi-orbital Anderson model, using as
starting point the DFT calculations and we analyze the
connection with the Spin Models. Finally, Sec. IV con-
tains a summary and a discussion of our most important
findings.

II. DENSITY FUNCTIONAL CALCULATIONS

A. Methods

Most of our DFT calculations of 3d transition metal
adatoms adsorbed on Cu2N/Cu(100) were done using the
generalized-gradient approximation (GGA) and GGA+U
for exchange-correlation energy,48 using plane-wave basis
sets and Projector Augmented-Wave (PAW)49 as imple-
mented in QUANTUM ESPRESSO (QE) code.50 Addi-
tionally, in some particular cases we have performed com-
plementary calculations using Local Spin Density Ap-
proximation (LSDA)51 for exchange-correlation energy,
using all-electron full-potential linearised augmented-
plane wave (FP-LAPW) as implemented in ELK.52

In order to test the size convergence, we have used two
super cells with different sizes. Both cells have 4 slabs
of Cu(100), separated by a vacuum region of 15 Å. The
smaller cell has 37 atoms (1 TM, 4 N and 32 Cu ) and
a bigger supercell, has 82 atoms (1 TM, 9 N and 72 Cu
). The corresponding structures are shown in Fig. 1. In
the smallest structure, the intercell distance between TM
atoms along the N direction is 7.2Å, while in the bigger
one this distance is 10.8Å.
QE calculations are done in two stages, structural re-

laxation and electronic structure calculation. In the re-
laxation stage, the mesh in k space for the small and big
cells were 6×6×1 and 4×4×1 respectively. In both cases
the relaxation was performed until the forces acting on
atoms were smaller than 10−3 a.u.. In the second stage,

FIG. 1. (Color online) Top-view for the structure of the
TM@Cu2N. (a) Small supercell where a, the intercell distance
between TM atoms along the N direction, is 7.2Å. (b) Big
supercell, with a = 10.8 Å.

the meshes used were 8×8×1 for the small supercell and
6× 6× 1 for the big one. In all the calculations we used
a smearing with a broadening parameter of 0.005− 0.02
Ry, in line with previous work,21,29,31 and we fixed the
cutoff energies for the wave function and charge density
at 40-80 Ry and 400-800 Ry respectively. For the Elk
calculations, we started from the relaxed structures ob-
tained with QE. In this case the mesh in k space was
4 × 4 × 1, the product of the muffin-tin radius and the
momentum cutoff is RMT kmax = 6 and we employed Lo-
cal Spin Density Approximation (LSDA)51 for exchange-
correlation and DFT+U with Yukawa screening.53

In the case of Fe and Co we have also obtained
the so so called maximally localized Wannier functions
(MLWF).54–59 associated to the Bloch states of the DFT
calculation, using the package Wannier90. The Wan-
nier functions form an orthogonal and complete basis set
that we can use to describe our system. Importantly,
the representation of the Kohn-Sham Hamiltonian in the
DFT basis provides an effective tight-binding model to
describe the electronic states of the system, that we use as
a starting point to build a zero bandwidth multi-orbital
Anderson model, as described in Sec. III.

B. Structural properties

We now discuss the structural properties of a single 3d
TM atom bonded to the Cu site of the Cu2N/Cu(100)
surface. This is the binding site most frequently reported
in the literature.2,8,10,29,31–33 In order to refer to the dif-
ferent TM atoms we shall use indistinctly their chemical
formula (Ti, V, Cr, Mn, Fe, Co, Ni) or the nominal charge
on the d shell qd = 2, 3, 4, 5, 6, 7, 8.
Cu2N is known2,33 to form a weakly buckled square

lattice on top of the Cu(100), consistent with our DFT
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FIG. 2. (Color online) Schematic diagram of the Cu2N ( Cu
atoms in brown, N atoms in blue) surface with the TM atom
(green). dN is the distance from the TM atom to the nearest
neighbors N atoms, dCu refers to the distance from the TM
atom to the Cu atom lying just below the magnetic atom, θ
is the angle formed by the N-TM-N trimer and the red arrow
shows the position of the Cu atom used to define the surface.

calculations. In all cases considered, the adsorption of
the TM introduces a local distortion on the Cu2N lattice,
shown in Fig. 2: the underneath Cu atom is pushed
towards the bulk, and the N atoms are pulled out. These
results are in line with previous works.21,33,60 In order
to characterize this structural distortion, we introduce 3
distances: the TM- N distance (dN ), the TM-Cu distance
(dCu) and the TM-surface vertical displacement, z, that
we take as the z component of the vector that joins the
TM with the farthest Cu surface atom, marked with an
arrow in Fig.2. In addition we also introduce the angle
formed by the N-TM-N trimer (θ).

Our calculations, performed both for the small and
large supercell (see Fig. 1) show how these structural
values are similar for different TM atoms, but with clear
and systematic variations as a function of the number of
d electrons. Whereas both the TM-N and the TM-Cu
distances undergo minor variations across the TM series,
the θ angle has a much more marked change, going from
structures where the TM is clearly a protrusion and the
N atoms are weakly detached from surface, for small qd,
to structures where TM is almost collinear with the N
atoms, for Co and Ni. The tendency to form collinear
N-TM-N structures is particularly clear in the case of Co
and Ni chains (small cells). In the case of Co, the marked
difference between the small and big cells suggests that
there is a cooperative distortion in the case of Cobalt
chains along the N direction,17 also visible for Ni, and
clearly absent in the case of the lighter TM, such as Fe, for
which these chains have been studied experimentally.7,8
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FIG. 3. (Color online) Comparative study of structural prop-
erties of TM atoms on Cu2N. (a) Distance form the TM atom
to the nearest neighbors N atoms dN as a function of the TM
atom. (b) Distance from the TM atom to the Cu atom lying
just below the magnetic atom (dCu) . (c) Distance from the
TM atom to the Cu2N surface (z) as a function of the TM
atom. (d) Angle formed by the N-TM-N trimer. Blue (red)
line shows the result with the small (big) cell.

C. Electronic Properties

We now discuss the electronic properties of the ad-
sorbed TM on the Cu site of Cu2N/Cu(100). Our cal-
culations for the pristine surface show that the Cu and
N atoms in the Cu2N layer have charge qCu = +0.2 and
qN = −0.4. The adsorption of the TM atom results in a
charge transfer mostly from the TM s orbitals to the N
ligands, increasing their negative charge. The TM atoms
lose practically all the 4s-electrons. The outermost elec-
trons are thereby in the d shell.

A naive interpretation of the picture that arises from
the use of quantized spin models to describe these sys-
tems would lead to conclude that the charge in the d shell
of the TM is quantized. Our calculations show that this
is not the case. A hint of this can be already seen by in-
spection of the spin-resolved density of states projected
over the d orbitals of the adsorbed TM atoms, shown in
Fig. 4, obtained with QE, for the small cell. For in-
stance, the occupancy of the majority spins (left-panel)
is not 5 for Ni and Co. The presence of very broad peaks
indicates strong hybridization of some of the d orbitals
with the rest of the system, as we show below.

In Fig. 5 we show the integrated density of states up
to the Fermi energy, that gives the occupation of the d-
shell for the different TM atoms, using both GGA and
GGA+U , for several values of U . The results are plotted
together with the charge of the isolated atom. In all
instances we find that the d shell is more charged than
in the free atom case.
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FIG. 4. (Color online) (a) DOS projected (PDOS) over d-
orbitals of the different magnetic atoms, for majority spin
(left panel) and minority spin (right panel). The results shown
correspond to U = 0.
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FIG. 5. (Color online) GGA+U calculation of the total charge
of the 3d-levels for the different TM atoms and different values
of U . Black dashed line show the result for the isolated atoms.
Inset: deviation of the charge in the d levels with respect to
the isolated atom

The difference between the computed charge and iso-
lated charge, ∆q, is shown in the inset for U = 0 and
U = 5eV. Expectedly, increasing U reduces ∆q. Inter-
estingly, ∆q increases as we move away from half filling
(the Mn atom). Varying U does not yield large changes
in these results, except for the Mn atom, in line with re-
sults obtained in reference33 for Co and Mn. We have
also verified that ∆q is stable with respect to changes in
the size of the supercell.

D. Magnetic Properties

We now discuss the evolution of the magnetic mo-
ments, µ, of the series of 3d TM adsorbed atoms. In
Fig. 6, we show the magnetic moment of the free atoms,
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FIG. 6. (Color online) GGA+U calculation of magnetic mo-
ment of the TM atoms (in units of µB), for different values
of of U . (a) Atomic (b) Unit cell. In both panels the black
dashed line shows the expected magnetic moment for the free
(isolated) atom (µfree).

µfree, as given by Hund’s. The largest free atom moment
is µ = 5µB , for the half-filled shell (Mn) and goes down as
we move away from half filling. The upper panel of Fig 6
shows the GGA+U calculation of the magnetic moment
of the TM atoms. With the only exception of Cr, the
magnetic moment for the adsorbed TM is always smaller
than the free atom case. The deviations become par-
ticularly severe as we move away from half filling. For
instance, the magnetic moment of adsorbed Ni is half
the value of the free atom case. In contrast with the case
of ∆q, the value of the magnetic moment depends more
strongly on the value of U , yet, the atomic limit is only
reached in the case of Cr for U = 5eV.

Whereas most of the spin is localized on the magnetic
atoms, a substantial amount of the spin density is not
located at the d-levels of the atom. Therefore, we also
plot the cell magnetic moment and compared them with
the free atom case (see Fig. 6b). It is apparent that, in
the case of the cell moment, the deviations from the free
case are very small for V, Cr, Mn and Fe. In the case
of Ti and Ni, the deviation from the free case is still a
factor of two. The overall trend is that, close to half-
filling, our DFT results are closer to the free case, where
it is assumed that the s-shell is completely filled and the
d-electrons are in the high spin configuration. It is worth
to note that this last assumption is not true for a free
Cr atom, whose 4s2 state is not the ground state but a
excited one.

Fig. 7 shows the Spin polarization of the different d
orbitals as a function of the TM atom. Whereas at half
filling the magnetic moment has to be evenly distributed
in the 5 d orbitals, away from half filling this is no longer
the case. The orbital composition of the magnetization
is interesting because it affects the magnetic anisotropy
and because only one of the d orbitals, the d2z, couples to
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FIG. 7. Orbital breakdown of the spin polarization, calculated
using the small cell and U = 0.

Spin polarization of TM atoms

Atom d-shell TM atom Cell Free atom

Ti 0.62 0.71 0.6 1

V 1.32 1.45 1.41 1.5

Cr 1.98 2.10 1.97 2

Mn 2.25 2.36 2.47 2.5

Fe 1.62 1.75 1.91 2

Co 1.05 1.1 1.25 1.5

Ni 0.46 0.47 0.57 1

TABLE I. DFT calculation of the spin polarization for (U = 5
eV).

the s orbital of the last atom in STM tip. This results
particularly interesting in the case of Ti, Co and Ni where
we can appreciate that the d2z orbital has a very small spin
polarization. These calculations were performed for the
small cell, then we should expect interesting features in
STM experiments when dealing with Co and Ni chains.17

The difference between the atomic and the cell mag-
netization, summarized in Table I, implies that the sur-
rounding atoms gain some magnetic moment as well. Our
results, shown in Fig. 8 also show that their alignment
with the N atoms can be both ferromagnetic (FM) or
antiferromagnetic (AFM) depending on the TM. In par-
ticular, the correlation is AFM below half-filling and FM
above half-filling. At half filling the results depend on
the value of U . Below we provide an explanation to this
sign, based on a zero bandwidth multi-orbital Anderson
model.
Finally, calculations for Co atoms were performed us-

ing ELK for different values of U in order to check the
magnetic properties obtained with QE. The results ob-
tained with both codes were in very good agreement.

III. CONNECTION WITH THE SPIN MODELS

The DFT results of the previous section clearly show
that the charge and spin of the d shells are not quantized.
There is thus an apparent conflict between the DFT cal-
culations and the use of spin Hamiltonian models with
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FIG. 8. (Color online) GGA+U calculation of the magnetic
moment of the nearest neighbor N atom as a function of the
TM atom, for different values of U.

quantized spins.1,2,18 In this section we address this im-
portant topic and provide a solution for this conundrum.
First, we build a zero bandwidth multi-orbital Anderson
model starting from the DFT results. The zero band-
width Anderson model describes the d orbitals of the TM
atom, their hybridization to their neighbors, the crystal
field splitting due to electrostatic interactions, intra-shell
Coulomb repulsion, and the spin-orbit coupling. Most
of these parameters are obtained from the DFT calcula-
tions, as we discuss below. Second, we solve the Anderson
model exactly within a restricted multi-particle Hilbert
space that includes both dnp12 and dn+1p11 configura-
tions, where dn stands for n electrons in the d shell of
the TM and the pm stands for m electrons in the p shells
of the Nitrogen first neighbors (without charge transfer
there are 6 electrons in each p-shell of the N atoms).
Charge fluctuations were shown to be important in the
case of Cobalt adatoms on MgO/Ag.61 Including charge
fluctuations in the zero bandwidth Anderson model gives
rise to a non-integer occupation of the d shell but still pre-
serves many-body states with a quantized spin S, that is
identified with the spin of the quantum spin Hamiltoni-
ans.

A. Maximally localized Wannier functions as

atomic like basis set

The derivation of an effective zero bandwidth Ander-
son model starting from the DFT calculations requires a
representation of the Kohn-Sham Hamiltonian in a ba-
sis set that contains atomic-like d states localized around
the transition metal atom. Our DFT calculations are
performed with a plane-wave basis whereas the zero
bandwidth multiorbital Anderson Hamiltonian demands
a local basis. Thus, to go from plane wave to a local
basis, we represent the DFT Kohn-Sham Hamiltonian
in the basis of maximally localized Wannier functions
(MLWF),54–57,59,62 computed using the code Wannier90,
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FIG. 9. (Color online) Wannier orbitals for Fe and Co atoms
at Cu2N. (a) py-orbital of a nearest neighbor N atom for Fe
at Cu2N close to the atom (isosurface 3). (b) py-orbital of a
nearest neighbor N atom for Fe at Cu2N far from the atom
(isosurface 1). (c) py-orbital of a nearest neighbor N atom for
Co at Cu2N close to the atom (isosurface 3). (d) py-orbital of
a nearest neighbor N atom for Co at Cu2N far from the atom
(isosurface 1).

as described in reference.57

The computation of the MLWF is implemented as fol-
lows. First, we select a group of Bloch bands from a spin
unpolarized63 calculation for a given TM/Cu2N system.
An energy window of 16eV around the Fermi energy is
taken, and the band disentanglement procedure is per-
formed. The selected Bloch bands are initially projected
over the s, p and d orbitals of both the TM atom and the
copper atoms and over the p and s orbitals of the nitro-
gen atoms. The total number of states involved in this
procedure is 313, corresponding to the 4 Nitrogen atoms
(4 orbitals each), 32 Copper atoms and the TM atom (9
orbitals each).

An iterative procedure yields a total of 313 MLWF
including 3 p-like and 5 d-like MLWFs localized around
the Nitrogen atoms and the TM atom respectively. They
are shown in Fig. 9 and Fig. 10, where two different
iso-surfaces of the MLWF with y and x2 − y2, for Fe
and Co, are represented. In the case of iso-surfaces with
larger value, corresponding to the wave-function close to
atomic cores, these MLWF have the same symmetry as
the real spherical harmonics with L = 1 and L = 2. In
comparison, the iso-surfaces with small value do not show
the symmetry of the Cartesian atomic orbitals.

The zero bandwidth Anderson model is build in a basis
of single particle states that involves the 5 d orbitals of
the TM and the 6 p orbitals of the two first neighbor
nitrogen atoms. The representation of the Kohn-Sham

FIG. 10. (Color online) Wannier orbitals for Fe and Co atoms
at Cu2N. (a) dx2

−y2 -orbital of a nearest neighbor N atom for
Fe at Cu2N close to the atom (isosurface 3). (b) dx2

−y2 -
orbital of a nearest neighbor N atom for Fe at Cu2N far from
the atom (isosurface 1). (c) dx2

−y2 -orbital of a nearest neigh-
bor N atom for Co at Cu2N close to the atom (isosurface 3).
(d) dx2

−y2 -orbital of a nearest neighbor N atom for Co at
Cu2N far from the atom (isosurface 1).

Hamiltonian HKS in this basis can be written as:

HCF +Hhyb =

(

Hdd Hdp

Hpd Hpp

)

(1)

where we identify the crystal field Hamiltonian for the
d orbitals HCF = Hdd and the pd hybridization Hamil-
tonian with the off-diagonal blocks Hdp and Hpd. Im-
portantly, Fig. 9 and Fig. 10 show how the MLWF
for Cobalt have bigger overlap with the MLWF of the
N atom than those of Fe, both for the x2 − y2 and y
orbitals. This accounts for the fact that the hybridiza-
tion between the TM d orbitals and Nitrogen p orbitals
is larger for Co than for Fe. In particular, the matrix
element 〈x2−y2|HKS |y〉 is twice as large for Co than for
Fe.

B. Zero bandwidth Multi-orbital Anderson model

We now introduce the zero bandwidth multi-orbital
Anderson model for the TM on the Cu2N substrate de-
scribing the electrons in the 5 d orbitals hybridized with
the p orbitals of the two adjacent N atoms. The Hamilto-
nian is the sum of 4 terms, the Kohn-Sham Hamiltonian
of the previous section, plus the Coulomb repulsion of
the electrons in the d shell, the Coulomb attraction of
the d levels with the TM nucleus, and their spin-orbit
coupling:

H = HKS +HCoul +HZ +HSO (2)
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In the following we label the five d-like MLWF of the
TM with the index m, and 6 p-like MLWF of the two Ni-
trogen atoms with the index n. The second quantization
representation of the first term reads:

HKS +HZ =
∑

m,m′,σ

(〈m|HKS|m
′〉+ Edδm,m′) d†mσdm′σ +

+
∑

n,n′,σ

〈n|HKS|n
′〉p†nσpn′σ +

+
∑

m,n,σ

(

〈m|HKS|n〉d
†
mσpnσ + h.c.

)

(3)

The matrix Hdd =
∑

m,m′,σ〈m|HKS|m
′〉 describes the

crystal field.63 The Ed energy scale accounts for the
Coulomb interaction with the positive charge in the nu-
cleus and has to be included to offset the excess in the
Coulomb repulsion in the configurations dn+1 with an ex-
tra electron64. The matrix Hpp = 〈n|HKS|n

′〉 describes
the single-particle p levels of the first neighbor Nitro-
gen atoms and Hdp = 〈m|HKS|n〉 describes their hy-
bridization with the d levels, responsible of the charge
fluctuation. Hdd, Hpp and Hpd are obtained from the
DFT Hamiltonian using the wannierization procedure de-
scribed above.
The electron-electron Coulomb repulsion in the d shell

reads:

HCoul =
1

2

∑

m,m′

m′′,m′′′

Vmm′′m′m′′′

∑

σσ′

d†mσd
†
m′′σ′dm′′′σ′dm′σ,

(4)
For the evaluation of the Coulomb integrals Vmm′′m′m′′′

we transform the angular part to a basis of eigenstates
of ℓ = 2. For the radial part we take an effective radial
hydrogen-like function ( with effective charge Z and a
effective Bohr radius aµ) to avoid the otherwise cumber-
some numerical integration of the actual Wannier func-
tions. In the basis of eigenstates of ℓ = 2, all the Coulomb
integrals scale linearly with the value of V0000 ≡ U .63

Altought the numerical evaluation of U in terms of the
parameters Z and aµ is straight-forward, for the sake of
generality, U will be considered a parameter, taken to sat-
isfy the atomic Hund’s rule. For a given choice of U , Ed

is adjusted so that the average charge in the ground state
of the many-body calculation described below equals the
charge obtained in the DFT calculations.
The spin-orbit term in the TM reads:

HSO = λSO

∑

mm′,σσ′

〈mσ|~ℓ · ~S|m′σ′〉d†mσdm′σ′ , (5)

where λSO is the atomic spin-orbit coupling of the d-
electrons. This term is the only one that does not com-
mute with the total spin operator and is the ultimate
responsible of the lifting of the 2S + 1 degeneracy of the
spin multiplets.
In the following we shall show results for the case of

Fe on Cu2N. Given the small size of the single particle
basis (5 d orbitals and 6 p orbitals) and the fact that

we restrict the Hilbert space to the configurations dnp12

and dn+1p11, with n = 6 for Fe, with a total of 1650
multi-electron states, the zero bandwidth multi-orbital
Anderson model can be solved by exact numerical diag-
onalization.

C. Effective spin model

In the seminal work2 of Hirjibehedin et al., the spin
excitations measured with STM- IETS were found to be
described with the following spin Hamiltonian:

H = D
(

~e1 · ~S
)2

+ E

[

(

~e2 · ~S
)2

−
(

~e3 · ~S
)2

]

(6)

with S = 2 and ~e1 = (0, 1, 0) along the Nitrogen di-
rection, and ~e2 and ~e3 are the off-plane and the hollow
directions. The experimental results could be fitted with
D = −1.55meV and E = 0.31 meV. Thus, the wave func-
tion of the ground state and first excited state would be
given by linear combinations of the rates of |2,±2〉, with a
small mixing with the state |2, 0〉 in the case of the ground
state. The height of the inelastic steps was found to be
related to the matrix elements of the spin operators, giv-
ing additional support to the notion that the quantized
spin Hamiltonian (6) provides a quite good description
of the spin excitations of iron on this surface. Recent
experiments14 with a detailed study of the IETS of sin-
gle Fe/Cu2N as a function of the three components of
the magnetic field show that the addition of extra terms
in the Hamiltonian (6) yields an even better agreement
with the experiment. Spin chains formed with Fe atoms
in this system can also be modeled successfully with this
Hamiltonian and the addition of interatomic Heisenberg
coupling.8,11 Altogether, these results support the notion
that Fe can be described with a quantized anisotropic
spin S = 2.

D. Adiabatic continuity and spin conservation

argument

We now address the crucial question: given that ac-
cording to DFT, both charge and spin of the d electrons
in the transition metal are not quantized, what is the ori-
gin of the quantized spin in the model Hamiltonian?. We
now show that the quantized spin belongs to the many-
body wave function that combines configurations with
different charge states in the d shell. In the case of Fe,
these would be configurations d6p12 with S(d) = 2 and
configurations with d7p11 and S(d) = 3

2 , where S
(d) is the

spin of the d electrons. These many-body states yield
non-integer charge and magnetic moment in the TM, in
agreement with DFT, but they have a well defined to-

tal quantized spin, in agreement with the spin quantized
models. This is strictly true in the absence of spin-orbit
interactions, and remains true when spin-orbit splittings
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FIG. 11. (Color online) Numerical diagonalization of the
zero bandwidth multi-orbital Anderson model for Fe atom at
Cu2N. (a) Average charge of the d-levels of Fe atom for the
Ground State as a function of Ed in atomic units (U = 5.5
eV and λSO = 50 meV). (b) Sy (y is the N atoms axis) of
the d electrons for the 5 lowest eigenvalues as a function of
Ed (U = 5.5 eV and λSO = 0). (c) Excitation energies corre-
sponding, for small Ed, to the 2 lowest multiplets with S = 2,
as a function of Ed (U = 5.5 eV and λSO = 50 meV) .

are much smaller than the energy gap between different
multiplets, which we show to be the case in a wide range
of parameters.
In order to understand the results of our numerical

calculations, it is convenient to remind that atomic iron,
with 6 d electrons, has a ground state with S = 2 and
L = 2, and a total degeneracy of (2L+ 1)(2S + 1) = 25.
The former ground state is captured by the zero band-
width multi-orbital Anderson model when switch off the
Hdd crystal field, the Hpd hybridization, the SOC, con-
sidering configurations with 6 electrons. The crystal field
Hdd quenches the orbital moment, so that in the absence
of spin-orbit coupling, the ground state of the model has
S = 2 and no orbital degeneracy. This multiplet is sep-
arated from the next higher energy multiplets, also with
S = 2, by a gap of at least 300 meV, although this num-
ber depends on U .
We now discuss the effect of mixing configurations with

a different number of electrons in the d shell. On one
hand, the relative weight of the configurations d6p12 and

d7p11 depends on U , which is taken to be U = 5.5eV in
line with recent calculations for Co/Cu(100).65 On the
other hand, Hpp, Hdd, Hpd, are obtained from DFT and
Ed remains as the only adjustable parameter in the cal-
culation. We start with a value of Ed so that the charge
at Fe is q = 6 and ramp up Ed, so that q increases, as
shown in Fig. 11(a). In Fig. 11(c) we plot the evolution
of the excitation energies as a function of Ed. For q = 6
the ground state has a multiplicity of 5. The next mul-
tiplet lies 300 meV above. As we ramp up q, these two
multiplets remain well separated in energy, quite beyond
the point where q = 6.4, the value obtained from DFT.
We thus see that the ground state multiplet at q = 6.4
is adiabatically connected to the ground state multiplet
at q = 6. The effect of spin-orbit coupling, that we dis-
cuss in detail below, is to create a small splitting and to
mix different states within the multiplet as Ed is varied,
implying a change in the magnetic anisotropy tensor.
The total spin is preserved as we ramp Ed. However,

by changing the relative weight of d6p12 and d7p11 config-
urations, the magnetic moment in the d levels is expected
to be reduced, moving from S(d) = 2 towards S(d) = 3/2
. This is reflected in our calculations (see Fig. 11(b)),
taking λSO = 0 and a finite magnetic field By that lifts
the 2S + 1 degeneracy. As Ed is increased, the expec-
tation value of the operator describing the spin of the

d electrons along the y axis, S
(d)
y , calculated with the 5

lowest energy states, evolves from the eigenstates of Sy

for S = 2 to non-quantized values, in agreement with
DFT results.
Further increase of Ed yields that the mixing between

d6p12 and d7p11 is so large that the splitting between the
ground state S = 2 multiplet and the first excited mul-
tiplet vanishes. When such regime is reached, the spin
of the ground state changes, breaking the adiabatic con-
nection with the state with S = 2 and quantized charge.
In our calculations this happens for q ≃ 6.8, larger than
the DFT charge, q > 6.4. Thus, the model captures the
crossover from the weak coupling limit, where the ground
state adiabatically connected with the q = 6, S = 2,
state, to the strong coupling limit in which the spin of the
ground state multiplet changes and the adiabatic connec-
tion is lost.

E. TM-Nigrogen spin correlation

The fact that the quantized spin corresponds to con-
figurations with two charge states involving both d elec-
trons in the TM and p electrons in the first neighbor
Nitrogen atoms has implications on the spin correla-
tion of the TM and N magnetic moments. Since both
dnp12 and dn+1p11 have the same total spin, we have
S(dn) = ST = S(dn+1) ± 1

2 . The sign, and thereby the
spin-correlation between the unpaired electron in the lig-
and and the magnetic moment of the atom, depends on
whether S(dn) is larger or smaller than S(dn+1). Thus,
for Fe we have that S(d6) = 2 and S(d7) = 3/2, so that
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the unpaired fermion must couple ferromagnetically with
the S = 3/2 of the d7 configuration, to keep S = 2.
In contrast, for Cr we have S(d4) = 2 mixing with
S(d5) = 5/2 configurations, to bring up the charge, so
that the unpaired fermion in the Nitrogen must couple
antiferromagnetically with the atomic magnetic moment.
This argument accounts for the trend obtained in our

DFT calculations, shown in Fig. 8, where the small mag-
netization of the first-neighbor nitrogen atoms is antipar-
allel to the TM magnetic moment for Ti, V, and Cr, and
is ferromagnetic in the case of Fe, Co and Ni. In the case
of Mn we obtain both signs, depending on U . From the
argument of the previous paragraph we would expect a
ferromagnetic coupling. Incidentally, the same argument
can be applied to the conventional Anderson model with
S = 1/2, predicting correctly the well known44 antiferro-
magnetic interaction between the local moment and the
adjacent electrons.

F. Spin-orbit coupling, magnetic anisotropy and

symmetry of the wave functions

The discussion above has ignored the role of spin-
orbit coupling, even if the numerical results shown in
Fig. 11(a) and Fig. 11(c) are obtained with a spin or-
bit coupling λSO = 50meV. These calculations show that
the spin-orbit coupling splits the otherwise (2S + 1) de-
generate multiplets. However, the splittings between the
different multiplets are still much larger than the energy
gaps between them, so that a well defined total spin S can
be atributed, even in the presence of spin-orbit coupling.
The fine structure within the lowest energy multiplet can
be described with an effective spin Hamiltonian, like the
one in Eq. (6).
We now discuss the symmetry of the wave functions

obtained from the exact diagonalization for two values of
Ed, corresponding to having either exactly q = 6 elec-
trons at the d shell or q = 6.4, the average charge ob-
tained from DFT. For that matter, we use the fact that
the eigenstates ψn of the multi-orbital Hamiltonian can
be written as linear combinations of configuration states
with well defined total Sy:

|ψn〉 =
∑

Sy,γ

χn(γ, Sy)|γ, Sy〉 (7)

where γ labels all the other quantum number necessary to
characterize the basis set. In figures 12(a,b), 13(a,b) and
14(a) we plot the projection of the 5 lowest energy states
of the zero bandwidth multi-orbital Anderson model over
the eigenstates of |S = 2, Sy〉. In the case of q = 6 it is
apparent that the ground state wave function is domi-
nated by Sy = 0 states, in disagreement with the exper-
iment (see Fig. 12(a)). The arrangement of the energy
levels seems to indicate that the Nitrogen direction (y
axis) is a hard axis in the problem (~e1 = (0, 1, 0) and
D > 0 in Eq. (6)). Given that the charge fluctuations
are negligible in this limit, the main contribution to the

0

0.5

1

|χ
0
|
2

S
y
=2

S
y
=1

S
y
=0

6.2 6.4 6.6 6.8
q

0

0.5

1

|χ
1
|
2

(a)

(b)

FIG. 12. (Color online) Numerical diagonalization of the zero
bandwidth multi-orbital Anderson model for Fe atom at Cu2N
(U = 5.5 eV and λSO = 50 meV). Eigenvectors projection
over Sy for the ground state (upper panel) and the first excited
state (lower panel) as a function of the charge in the d-shell.
Blue lines show projection over |±2〉, red lines show projection
over | ± 1〉 and green line shows projection over |0〉. Blue
dashed line shows the projection over |±2〉 obtained from the
spin model.2

magnetic anisotropy comes from the interplay between
the crystal field term in the Hamiltonian, Hdd and the
spin-orbit coupling. Interestingly, when Ed is ramped
so that q increases, the content of the wave functions
evolves and for q = 6.4 the wave functions (Fig. 12, Fig.
13 and Fig. 14(a)) are in good agreement with those
obtained from the spin model2 in which the Nitrogen di-
rection is the easy axis in the problem (~e1 = (0, 1, 0) and
D < 0 in Eq. (6)). In particular, we note that the five
lowest energy states of the Anderson model have wave-
functions with strong overlap with those of the effec-
tive spin Hamiltonian.2 We thus see that the ligand field
contribution, coming from the dp hybridization, changes
qualitatively the magnetic anisotropy tensor. Interest-
ingly, in the case of Fe/Cu2N we find that the inclusion
of charge fluctuations is essential to capture the correct
easy axis within the zero bandwidth multi-orbital Ander-
son model.

We finally analyze the low energy excitation spectrum,
En −E0, where E0 is the energy of the ground state. In
the range of Ed considered, such that q moves from the
nominal value q = 6 to the DFT value q = 6.4, the
five energy levels of the lowest energy multiplet are al-
ways split. This is expected in the case of a integer spin
(S = 2) described with Hamiltonian Eq. (6). Interest-
ingly, the low energy splittings increase as q is increased
towards the DFT value, as shown in Fig. 14(b). This
is related to the fact that the energy gap between the
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FIG. 13. (Color online) Numerical diagonalization of the zero
bandwidth multi-orbital Anderson model for Fe atom at Cu2N
(U = 5.5 eV and λSO = 50 meV). Eigenvectors projection
over Sy for the second excited state (upper panel) and the
third excited state (lower panel) as a function of the charge
in the d-shell. Blue lines show projection over |± 2〉, red lines
show projection over | ± 1〉 and green line shows projection
over |0〉. Red dashed line shows the projection over | ± 1〉
obtained from the spin model.2

first and second five-fold degenerate multiplet decreases,
as shown in Fig. 11(c). This behavior can be understood
in terms of degenerate perturbation theory, where spin-
orbit coupling only splits the states in the lowest energy
multiplet through virtual transitions to the higher state
multiplets. We note that the spin excitation energies ob-
tained from our calculation are a 25 percent smaller than
those observed in the experiment. So, whereas the model
captures the right symmetry, it can only give a rough de-
scription of the excitation energies, which is probably due
to the approximations in the model, such as the restric-
tions taken in the many-body Hilbert space.

IV. CONCLUSIONS

In this work we have undertaken a systematic study of
the electronic properties of the 3d transition metals on
the Cu2N surface. We systematically find that the charge
and spin of the d electrons are not quantized, and are
thereby different from the one in isolated atoms, which
is expected given the conducting nature of the substrate.
We have then addressed the issue of how to reconcile
these results with the fact that quantized spin models
account for the spin excitations of Mn, Fe and Co ad-
atoms. For that matter we propose a zero bandwidth
multi-orbital Anderson model in which many-body states
that mixes configurations with two charge states in the
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FIG. 14. (Color online) Numerical diagonalization of the zero
bandwidth multi-orbital Anderson model for Fe atom at Cu2N
(U = 5.5 eV and λSO = 50 meV). (a) Eigenvectors projection
over Sy for the fourth excited state as a function of the charge
in the d-shell. Blue lines show projection over |± 2〉, red lines
show projection over | ± 1〉 and green line shows projection
over |0〉. Green dashed line shows the projection over |0〉
obtained from the spin model.2 (b) Low energy spectrum as
a function of the charge in the d-shell.

d shell are considered. Importantly, even if the charge
is not well defined in the d shell, these multi-electron
wave functions have a well defined total spin S. We find
that the states with a quantized charge in the d shell
are adiabatically connected with the actual many-body
states that mix configurations dnp12 and dn+1p11 in the
sense that both have the same total spin S and there is
no mixing with higher energy multiplets as the addition
energy is varied numerically.

We thus conclude that quantized spin S of the model
actually refers to the spin of these many-body states that
include both the d electrons and the ligand electrons. It
is thus fair to say that the magnetism in this system
is not strictly atomic, which connects with previous re-
sults in the case of magnetic atoms on metallic surfaces,66

for which sophisticated theoretical treatments have been
proposed.67,68 Our picture provides a natural explanation
to the sign of the spin correlation between the TM and
the nitrogen atoms obtained in the DFT calculations and
reconciles the use of quantized spin Hamiltonians with
the results of DFT calculations. Our Anderson model
calculations for Fe/Cu2N also indicate that a charge fluc-
tuations in the Fe d shell, due to the hybridization to the
ligands, are essential to capture both the symmetry and
the magnitude of the magnetic anisotropy observed in
the experiment.

Finally, we expect that our analysis should also be ap-
plicable to other systems with magnetic adatoms and
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molecules deposited in conducting surfaces whose spin
excitations can be described in terms of quantized spin
models.66,69–72
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