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The deviations of B-meson decays measured in RZQ} and R’l‘:(,) can be explained by the presence of two

scalar leptoquarks, a singlet S| and a triplet S5, mostly coupled to the third generation. We consider a theory
of resonances, as an effective description of a strongly interacting theory, that generates the leptoquarks and
the Higgs as Nambu-Goldstone bosons, with the rest of the resonances at a scale of order 10-30 TeV.
We assume anarchic partial compositeness for the flavor of the SM fermions. Under this hypothesis, we
study whether it is possible to reproduce the deviations in the B decays without being in conflict with flavor
and electroweak bounds. We find a tension between Rg(x) and some flavor observables, dominated by flavor

violating 7 decays and Amy , that require a tuning of order 10%-25%. We also compute the potential of the

scalars showing that leptoquarks with masses O(2-3) TeV can be naturally expected in the model. We
discuss briefly the phenomenology of the other resonances.
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I. INTRODUCTION

Despite the lack of direct evidence of new physics at
LHC, in the last years several deviations from the Standard
Model (SM) predictions have been measured in the decay
of B mesons, pointing toward the violation of lepton flavor
universality (LFU). The deviations, also referred in the
literature as anomalies, are observed in charged current
processes involving b — czi, as well as in neutral current
interactions involving b — suji. The first ones, which show
deviations from /¢ universality slightly larger than 3o,
have been measured in the ratio RZ’/’}*) in different experi-

ments [1-3]. The second ones, which show deviations of
order 46 from p/e universality, have been measured at
LHCb and Belle in the ratio Rl;:w [4-7].

Although there is no evidence of a common origin of the
deviations, given that both involve LFU violation in B
decays, it seems interesting to attempt a common explan-
ation. However, the deviations in the aforementioned
semileptonic B decays are rather large, compared with
the SM amplitudes, no effects have been observed in K and
7 decays, as well as in 7 decays.
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The interpretation of the B anomalies as an effect of new
physics has triggered a lot of work in the last years. Under
this hypothesis, the deviations could be explained if the
new physics interacts mostly with the third generation, with
small but non-negligible interactions with the second one,
and tiny or zero interactions with the first one. This
hierarchy of interactions can be naturally obtained if the
mediators are resonances of a strongly interacting theory at
a few TeV scale, with the SM fermions being partially
composite. This scenario is similar to modern composite
Higgs models, where the new dynamics stabilizing the
Higgs potential is mainly coupled to the heavy fermions of
the SM. Even though there is no reason for a connection
between these issues, it seems appealing to study them in a
common framework.

There have been several proposals for a common
explanation of the B anomalies, from the perspective of
effective field theories [8—17] and also with models con-
taining new states and interactions [15—42]. One of the
most appealing hypotheses is the presence of leptoquarks
(LQs) at the few TeV scale; see Ref. [43] for a general
review on TeV LQs. The most economical case is the
presence of a spin-1 state U; ~ (3,1),5; however, Rg}*)
requires a low mass scale, m, ~2 TeV, being in tension
with some observables, as the Z couplings of third gen-
eration fermions [8,44]. Besides, one can expect a whole
set of spin-1 resonances at that scale, that generically
induce too large AF =2 operators, and eventually also
large deviations in electroweak (EW) precision observ-
ables. Another possibility is the presence of two scalar LQs:
a singlet Sy ~ (3,1); 3 and a triplet S3 ~ (3,3), 5. Several
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phenomenological analyses have shown the structure of
couplings required for these states, most of them assuming
interactions with left-handed fermions only [22,32,35], but
there are also some references that have included inter-
actions with the right-handed ones [15,16,18,27,36].
Besides, as discussed in Ref. [45] and computed in
Ref. [46] for S;, if the scalars are Nambu-Goldstone bosons
(NGBs) of the new sector, that become massive at loop
level after interacting with the SM, their masses can be
decoupled from the new sector scale mg < m,, alleviating
the bounds compared with the U, solution.

There have been a few attempts to obtain the scalar LQs
from ultraviolet complete theories [34,37]. We will con-
sider that there is a new strongly coupled sector that
generates resonances at a scale of order few tens of TeV,
with the LQs and the Higgs emerging as NGBs, after
spontaneous symmetry breaking by the strong dynamics.
Instead of the fundamental description, we will consider the
effective weakly coupled theory of resonances, showing a
coset that generates only these states as NGBs. The SM
gauge bosons will gauge a subgroup of the global sym-
metry of the new sector and the SM fermions will be
assumed to interact linearly with it. We will study, assum-
ing flavor anarchy of the new sector, if it is possible to
explain the B anomalies, simultaneously passing flavor and
EW bounds.

Our paper is organized as follows: in Sec. II, we will
describe the effective theory of resonances, the one-loop
potential of the scalars, and the low energy theory,
necessary to compute the contributions to flavor physics.
In Sec. III, we will show the predictions of the model for
the set of observables that receive the largest contribu-
tions, compared with the present bounds, and in Sec. IV
we will show the numerical predictions. In Sec. V, we will
describe the spectrum of fermion and vector resonances,
and we will conclude. We leave some technical details for
the Appendixes.

II. A MODEL WITH COMPOSITE LQs AND HIGGS

We are interested in the formulation of a model able to
deliver the Higgs and the LQs S, and S5 as pseudo-NGB
(pNGB) resonances, generated by the spontaneous break-
ing of the global symmetry of a strongly coupled field
theory (SCFT). The SM fermions and gauge bosons are
assumed to be elementary fields, external to the strong
dynamics, and weakly coupled to it. This is similar to the
popular Minimal Composite Higgs Model (MCHM) [47],
but with a larger set of light scalars, to include the LQs at a
smaller scale than the rest of the resonances of the SCFT.

We assume that the SCFT has an exact global symmetry
G, spontaneously broken by the strong dynamics to a
subgroup H. After properly embedding the SM gauge
symmetry into H, the spontaneously broken generators
transform exactly as the Higgs boson and the required LQs.
Besides these composite NGBs, the SCFT produces

massive resonances characterized by a scale m,, that we
take of order 10-30 TeV. The currents associated to the
global symmetry can create massive spin-1 states, trans-
forming with the adjoint representation of G. We assume
that the SCFT also produces fermionic massive resonances,
generically at the same scale m,. These fermions are
assumed to transform with linear irreducible representa-
tions of G, realizing the symmetry at linear level. However,
their representations are not fixed, leaving freedom for
model building. All the resonances are taken to interact
with typical couplings g,, which are large compared with
the SM ones, but still perturbative: ggy < g, < 4x. For
simplicity, we take the decay constants of the different
NGBs of the same order,

The elementary gauge fields weakly gauge a subgroup of
the global symmetry of the SCFT, interacting with the
corresponding currents in the usual way. These interactions
induce mixing between the elementary gauge fields and the
spin-1 resonances, leading to interactions with the NGBs.

The elementary fermions are assumed to interact linearly
with operators of the SCFT at a high energy scale:
L D wyOSCFT, Assuming approximate scale invariance,
the running of the coupling w is driven by the anomalous
dimension of OSYFT Jeading to hierarchical couplings for
different anomalous dimensions at low energy [48]. At the
scale ~m,, the operators create fermionic resonances and
the linear interactions induce mixing with the elementary
fermions, realizing partial compositeness [49],

Emix 2 ’Ifl/_/LPv (2)

A is determined by w(m,) after rescaling.

The interactions with the elementary fields explicitly
break the global symmetry of the SCFT, generating a
potential for the Higgs and LQs at one-loop level. For
that reason, we will refer to them as pNGBs. Their masses
can be estimated of order mixgg ~ g%/ (47)* x m3, with g
the couplings between both sectors that explicitly break
the global symmetries. The fermions can produce a
negative Higgs mass squared, breaking dynamically the
EW symmetry.

A. Global symmetries of the composite sector
We consider the following coset G/H of the SCFT:

[SO(10) x SO(5)]/[SO(6) x SU(2),, x SU(2) x SO(4)]
(3)

that can deliver exactly S;, S3, and H as pNGBs. Below
we describe it in detail. We will use uppercase letters for
representations of G and lowercase letters for those of H.
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The adjoint representation of a group G decompo-
ses in representations of a subgroup H as Adj(G) —
adj(H) & ry, with ry the representation of the NGBs,
that can be reducible. Considering that SO(4) ~ SU(2)x
SU(2)g, where the subindices are used to distinguish the
different SU(2) subgroups in Eq. (3), the SO(5)/SO(4)
factor delivers a set of fields that transform as a singlet of
SO(6) x SU(2), x SU(2), and as a bidoublet of SO(4),
and can be identified with the Higgs as in the MCHM.

Regarding the other factor SO(10)/SO(6) x SU(2),x
SU(2)g, the adjoint representation of SO(10) decompo-
ses as

45~ (15,1,1) & (1,3,1) & (1,1,3) & (6,2,2), (4)

where the first three representations correspond to the
adjoint of the unbroken subgroup and the last one to the
broken generators.

Joining the two factors, we then have that the coset
transforms as

rn=(622116 (11122 =rs+r, (5)

Now we discuss the embedding of the SM gauge
symmetry, Ggyy, inside the subgroup H. The factor SO(6) ~
SU(4) contains a subgroup SU(3), x U(1)y, where we
have identified the first factor with the color of Ggy;. Using
that a 6 of SU(4) decomposes under SU(3), x U(1)y as

6~3,®3, (6)

and that for SU(2) doublets 2 ® 2 ~ 3 @ 1, the singlet and
triplet LQs, as well as the Higgs, can be obtained by
identifying SU(2), =SU(2),,5,c and Y = X/6 4+ T3k
Notice that the embedding of SU(2), is different from the
usual one in SO(10) grand unification, since in that case
SU(2) is a subgroup of SO(10).

Under the unbroken global symmetry of the SCFT, both
LQs are indistinguishable, as they are contained into a
single irreducible representation. Since under SU(2), they
split in a triplet and a singlet, the weak interactions of the
SM distinguish them.

B. Representations of fermions

The elementary fermions interact with the pNGBs after
mixing with the fermionic resonances of the SCFT, Eq. (2).
In order to preserve the local symmetry Ggy, these
resonances must transform with representations of the
global symmetry of the SCFT that contain the representa-
tions of the SM fermions. For simplicity, we assume that
each elementary fermion mixes with just one operator,
except in the case of leptons, where we explicitly consider
two mixings: £L2(w; Ol +w;, O")+e(w, O% +w, O%).
We choose the same set of representations for all the
generations.

There is another requirement that guide us in the choice
of the representations of the fermions of the SCFT: we
demand Yukawa interactions with the pNGBs to reproduce
the standard Higgs interactions, as well as interactions with
the LQs needed for the phenomenology of the B mesons.

We will consider the following SO(10) representations
and their decompositions under SO(6) x SU(2) , x SU(2) g:

16~ (4.2,1) ® (4.1,2),
144~ (4.2,1) 0 (4.1,2) @ (4.3.2) ® (4,2.3)
@ (20,2,1) @ (20,1,2), (7)

as well as the fundamental representation of SO(5) and its
decomposition under SO(4),

5~(2,2)® (1,1). (8)

To follow the color charges of the fermions, it is also useful
to know the following branching rules of SO(6) to
SUB3),. xU(1)y:

4~3 +1_5, 15~8,+3,+3,+1,,
20~3,4+35+6, +8_;. 9)

In Table I, we define the representations of the fermionic
operators of the SCFT and the resonances created by them.
Each row is associated with an elementary fermion and the
corresponding resonance mixing with it, as indicated by the
subindices. On the first column, we show the representa-
tions of the resonances under the full global symmetry G,
in the second column we show the component under H
containing the degrees of freedom (d.o.f.) with the same
quantum numbers as the elementary fermions, while in the
third and fourth columns we show the X and 7°F charges of
the components mixing with the elementary fermions.

By making use of Egs. (7)—(9) and the algebra of SU(2),
it is straightforward to show that these massive resonances
contain components with the same quantum numbers as the
SM fermions. For r, ; and r, , one must select the singlet

TABLE I In the different columns, we show the embeddings of
the states with the same quantum numbers as the SM fermions,
and the rows indicate which elementary fermion mixes with them.
We also show the charges X and T3 of those components.

SO(10) x SO(5) SO(6) x SU(2)* X T3R
R, = (16,5) r,=(42111) 1 0
R,,=(16.5) r,=(4212.2) 1 +1/2
R, = (E, 5) r, = (4,1,2,1,1) -3 0
R, = (16.5) r, =(4,1,2,2,2) -3 -1/2
R, = (144,5) r, =(4.3.211) -3 0
R,, = (144,5) r, =(4,3,2,2,2) -3 —-1/2
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contained in 2, ® 2, and 25 ® 2., respectively, whereas
for r;, and r,, one chooses the doublet in 3, ® 25 and the
singlet in 3, ® 25 ® 2, respectively, with the subindex
labeling the corresponding SU(2) factors.

Let us comment on several aspects of the chosen
embedding. First, with respect to the SO(10) factor, it is
possible to embed all the SM fermions either in 16 or 144
and one of their conjugates. Second, for the representation
(144,5), besides the component (4,3,2,1,1), it is also
possible to embed /; in the component (4,1,2,1,1), as in
the case of (16, 5). We will assume that the mixing with the
components shown in the second column of Table I
dominates over the others, and for simplicity we will
consider only those interactions. Third, the symmetry
SU(2), x SU(2), does not allow diquark interactions of
type qgS; 3 and dusS,; we will elaborate more on this topic
at the end of this section.

The unbroken global symmetry allows the following
interactions between resonances:

ﬁ* o) yE*I:HE+yU*QﬁU+yD*QHD +y3*QC€0aS§lL
+y1*QC€SIL +yU*UCS1E+H.C., (10)

where y, ~ g, denotes the couplings with the pNGBs and
€ = io,. Here we have used capital letters for the compo-
nents of the multiplets of resonances that have the same
quantum numbers as the elementary fermions; for example,
if ¥, transforms as R, thus ¥, = Q + - - -, where Q is the
component that mixes with the elementary fermion ¢;,
meaning that it transforms as (3, 2), 5 under Ggy;. A similar
notation is assumed for the other states.

The embedding of the fermions can lead to relations
between the couplings of the LQs. Embedding L into 16 of
SO(10) leads to y,, = y3,, whereas embedding it into 144
gives yi, = —3ys,, as is shown explicitly in Appendix A.
The first case leads to a cancellation of the contributions
to R, to leading order; instead, one can consider either
both embeddings, mixing [; with two resonances and
obtaining independent linear combinations of couplings
with the scalar LQs, or just the second one.

C. Flavor structure: Anarchic partial compositeness

Let us discuss now the flavor structure of the theory. We
consider an anarchic SCFT, meaning that there is no flavor
structure and all the flavor transitions are of the same order.
In this case, the Yukawa couplings of Eq. (10) are tensors in
flavor space that can be parametrized as y,;; = g, X ¢;j,
with all the coefficients of the anarchic matrices being of
the same size, c¢;; ~ O(1).

The hierarchy of Yukawa couplings needed to explain
the masses and mixings of the SM fermions is generated by
the structure of the mixing between the elementary and
composite fermions 4 in Eq. (2). Although 4 is a matrix in

flavor space, it can be diagonalized by rotations of the
elementary and composite fields [S0]. For our work, it is
enough to assume that 1 is diagonal and hierarchical.

The elementary-composite mixing can be diagonalized
by performing a rotation of them, leading to partially
composite massless fermions, that can be identified
with the SM ones [51]. We define their degree of com-
positeness as

A
€=—, 11
G (1

with € ~ 1 for a large degree of compositeness and ¢ < 1
for mostly elementary fermions. After electroweak sym-
metry breaking (EWSB), these fermions become massive
as in the SM. The Yukawa couplings with the Higgs are
modulated by the mixing y, ~ €, g.€,,.

The hierarchy of masses and mixings of the quark sector
can be reproduced by taking

3 2
€q1~AcEp,  Eqp~Aceg,

m, 1 m, 1 m; 1
€u1 ™~ 3 > €u2N—12 > I— s

UsmAcY«€43 UsMACY«€43 Usm 9«€43

mg 1 my; 1 my 1
€d1 ~ 3 ) ~N— 2 5 ~— .

UsMACY€43 UsMACY€43 VsmY+€43

(12)

For the sector of leptons, there are two mixings per
elementary multiplet, labeled by subindices a, b in Table 1.
We will assume that €, =~e¢,,, although it is also
possible to consider the situation with ¢, <€, , and in
the following we will not write this subindex anymore.
Reproducing the masses of the charged leptons requires

m, 1 m, 1 m, 1
€e1 ™~ s €e2 ~ s €e3 ™~ .
Usm 9«€11 Usm 9«€12 Usm 9+€13
(13)

The mixings depend on the realization of neutrino masses;
thus, the relation between ¢;; is model dependent. Guided
by the B anomalies, we will consider hierarchical left-
handed mixing, €;; < € < €53, as well as ¢,; < ¢;. In
Sec. IV, we will show the numerical values favored by
flavor observables.

After integration of the fermionic resonances, at zero
momentum, one obtains an effective Lagrangian

‘C/eff D X3qz€GaSglL + quié'SllL + xuﬁfeSleR + H.C.,
(14)
where we only show the terms involving the LQs, similar

interactions with the Higgs are present. If vy is included,
there are new interactions containing this state.
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Anarchic partial compositeness generates a hierarchy of
flavor in the LQ couplings, that is related with the hierarchy
of the fermion masses,

X3.ia ~ 94€¢iC3 iaClas
myme,

— 5, (15)

€4i€laVsm I+

Xlia ~ 9+€4iC1,ia€la>

Xujia ~ Cuia
where we have written y,,, = g.c,, forn =1,3, U.

D. Constraints

We consider now some general constraints, as proton
stability and EW precision tests.

Grand unified theories usually lead to proton decay by
exchange of LQs that also interact with diquarks, demand-
ing a huge mass scale for these states. In the present model,
the LQs have masses <O(30) TeV, depending on whether
they are pNGB as §; and S;3, or spin-1 resonances.
However, it is straightforward to show that, given the
embeddings chosen for the fermions, at tree level there are
no interactions of type gqLQ. In fact, there is a discrete
symmetry that forbids those interactions and makes the
proton stable, a parity under which the quark resonances
and S ; are odd, whereas the leptonic resonances are even,
allowing ¢S and forbidding g¢S. One possibility to build
such a transformation is by considering a 2z rotation with
SU(2),, under which objects with half-integer spin, as
quarks and S, are even, whereas objects with integer spin,
as leptons, are singlets, as shown in Eq. (5) and Table I.
By demanding the elementary quarks (leptons) to be
odd (even), this symmetry is preserved by the fermionic
mixings.

The previous symmetry does not forbid n — 71 oscilla-
tions, that can be mediated by dimension-9 operators
containing six fermionic resonances that mix with the
quarks of the first generation [52]. However, Ref. [45]
has shown that in anarchic partial compositeness, with
resonances in the TeV scale and couplings g, ~ 4z, the
bounds on the Wilson coefficients (WCs) of these operators
can be satisfied.

Below we discuss briefly the corrections to Zbb cou-
pling and flavor observables arising from the presence of
heavy massive resonances. The effect of the lighter pPNGB
LQs is considered in detail in the next section.

The Zb, b, coupling has been measured in agreement
with the SM at the level of ~0.25%. Corrections in
composite Higgs models characterized by one scale and
one coupling can be estimated as 89y, /gy, ~ €305 /.f*-
As we estimate in Sec. IE2, v},/f?~0.05 for our
benchmark region of parameters; thus, for e, ~ 1, the
bound is saturated. Although it is possible to protect this
coupling with symmetries, the fermion embedding that we
have chosen does not protect it; thus, for the largest values
of €308/ f* considered in this work, some extra tuning

should be present, whereas for the smallest values the
estimate is an order of magnitude below the bound.

As is well known, meson phenomenology, as mixing and
decays, put very strong limits on partial compositeness with
flavor anarchy, demanding m, = 10-30 TeV [53,54]. We
take this scale for the resonances, at the price of increasing
the amount of tuning demanded by the EW scale. Besides
the mesons, the corrections to the neutron dipole moment
and u — ey require f = O(5) TeV and O(20-40) TeV,
respectively [50]. There are different proposals to satisfy or
alleviate these bounds [53-55], most of them require
departures from anarchy. However, some interesting sol-
utions for the lepton sector involving U(l) and CP
symmetries have been discussed, for example, in
Ref. [56], whereas Ref. [57] considers vanishing right-
handed mixing for the first generation, €, 41 .4 ~0, and
tiny bilinear interactions.

E. Potential

In order to estimate the masses of the LQs and analyze
EWSB, it is useful to study the effective theory that contains
the elementary fields and the NGBs, obtained after integra-
tion of the heavy resonances, and compute the potential
induced at one loop. Since the structure of this effective
theory is determined by the symmetries assumed for the
underlying theory, it is possible to make some generic
estimates without knowing more details of its dynamics [58].

The NGB unitary matrix is one of the main ingredients of
this description. It is given by the exponential of the NGB
fields I1%, with & running over the broken generators,

U=, I = 11474, (16)
with 7 generators of the global symmetry group. U
transforms nonlinearly under the action of an element
GeG: U— GUH', with H € H a function of G and II.
This transformation rule of U is used extensively to build
the effective theory.

The kinetic term of the NGBs is built by using the
Maurer-Cartan form, defined as iU'D,U = e4T* 4 d2T?,
with @ running over the unbroken generators and D, being
the covariant derivative that contains the elementary gauge
fields. The kinetic term is (f?/4)d%d**.

In this section, we will consider only the fermions of the
third generation, that, having the largest degree of com-
positeness, give the dominant contribution to the potential.
Given that in our setup the degree of compositeness of by
and 7y is much smaller than the compositeness of the other
fermions, we will not include them in this section.

In order to build the effective theory, it is useful to
promote the elementary fields to complete multiplets of the
global symmetry of the SCFT: G = SO(10) x SO(5). We
do that by adding spurious elementary fields, which after
the calculation must be set to zero. According to Table I, we
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embed ¢ and u iny, , ~ (16, 5), whereas for [ we consider
two embeddings y; ~ (16,5) and y;, ~ (144, 5). Only one
linear combination of the components of y; and v, ,
transforming as (1,2)_;, of Ggy, is dynamical. Further
details can be found in Appendix C.

The nonlinear transformation properties of U allow to
build G invariants that superficially look only H invariant.
To build them, one has to dress the fermionic embeddings
with the NGB matrix Uy, decompose it under irreducible
representations of H: ry, and build H invariants by
multiplication of dressed fields. At quadratic level in the
elementary fermions and in momentum space,

Lox 2 Y Zepgpyy+ D D I (p) (5, U) Py, (Ulyrp)
f ff TH

+ H.;;""' (P) (@, U)Py, (UTy )] + Hee.
o =qu .1y, (17)

where P, is a projector used for the decomposition on
irreducible representations of H and the construction of H
invariants. The first term contains a kinetic contribution from
the elementary sector. H}r,’j,,( p) is a singlet; it depends on
momentum and codifies the information of the resonances
that was integrated, and its specific form depends on the
realization of the SCFT or the theory of resonances, as, for
example, discrete composite models or extra dimensions.
Armed with this effective Lagrangian, it is straightfor-
ward to compute the contribution of the elementary
fermions to the Coleman-Weinberg potential at one loop,

V() = —% / (jﬂ];logdeth(H), (18)

where /C(IT) is the NGB-dependent matrix obtained by
writing Lo = FIC(INF, with F = f, f and f = q, u, L.

1. Masses of the LQs

Expanding Eq. (18) in powers of II, one can obtain the
masses of the LQs as momentum integrals of combinations
of the correlators H;f;,( p). More details are shown in
Appendix B. We get

M} =M?>+AM?, M3 =M*>+AM;, (19)
with M? and AM? ; defined in Eq. (B4) of Appendix B.

The splitting between the LQs is driven by ¥,. For
positive values of M? and M3, there is no color breaking
and Eq. (19) gives the LQ masses to O(2°). By noticing
that TT/% ~ O(e7), the order of these masses can be
estimated as

g

1672

2
M2, ~ T et = (3 TeV)2< M 9 €—f> . (20)

20 TeV 4 1/2

2. Breaking of the EW symmetry

We start this analysis with some simple considerations
about the gauge contributions to the Higgs potential. Since
the Higgs arises as a NGB from the spontaneous breaking
of the SO(5) factor, its interactions with the EW gauge
bosons are as in the MCHM, the SO(10) factor does not
play any role at one loop. The gauge contributions to the
potential can be found, for example, in Refs. [47,59]. The
matching with the SM Higgs vacuum expectation value
(VEV) is given by

2 22
Usm = Sos

s, =sin(v/f), (21)

with v = (h) and vgy ~ 246 GeV. For m, ~20 TeV and
g, ~ 4, one gets s, ~ (0.05, requiring a larger tuning than in
the case of f ~0.5-1 TeV.

The fermionic contribution to the potential can induce
EWSB. To study this breaking, it is useful to evaluate
Eq. (17) in the Higgs VEV,

Lo D Z fipZs + ﬁf(p)]fL

f=udvt
+ ﬁRﬁ[Zu + ﬁu(p)]uR + ﬁLMu(p)uR +H.c. (22)
The correlators I1;(p) and M(p) can be obtained by

matching L. in the general background with the one with
EWSB,

2 _ Ty H
1, = i,
ry
M, =Y i,
ry

I, = Z(i;ZHZf,“ + I ), f=uvt. (23)

ry

f=u.d,

Y § Dy T,
Mu - ]MH Hq’; )
Ty

The functions 7}(v) and j}(v) contain the dependence
with the Higgs VEV, given in Table I, with ¢, = cos(v/f).

Let us make a brief comment on the relation with the
MCHM. The fermionic invariants are determined by the
embedding of the elementary fermions in the larger

TABLEII. Fermionic invariants evaluated in the Higgs VEV. The
first column indicates the representation under SO(6) x SU(2)*, as
defined in the second column of Table I.

H iuL id,‘ iuR iu,(a if,‘u Ly b if,‘b ju
r, c? c2 157 0 0 0 0 - ifjv
| sl2 s% 7+862" 0 0 0 0 %
r, 0 0 0 & & 0 0 0
r, 0 0 0 &2 2 0 0 0
r, 0 0 0 0 0 & & 0
r, 0 0 0 0 0 2 s 0
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symmetry of the SCFT. Given the identification of SU(2),,
the SM doublets/singlets are embedded into singlets/
doublets of SU(2)., as shown in Table I. Thus, taking
into account this subtlety and up to possible normalization
factors, the v dependence of the fermionic invariants can be
obtained from the invariants of the MCHM with fermions
in the fundamental representation.

Using the correlators, it is straightforward to compute the
Coleman-Weinberg potential that determines v at one loop.
Expanding in powers of s,,

V(v) = —as? + pst, (24)
where the quadratic and quartic coefficients can be written

as integrals of the correlators, as shown in Appendix B, and
are estimated as

N
¢ 42 ¢ 44
a5 e, B~ TS (25)

For e;, one must take the dominating fermionic mixing,
typically f = g, u of the third generation; in the present
case, f = [ can also be large.

The Higgs VEV can be approximated by

2, %
1205 (26)
requiring a tuning of order 1/s2 if we demand vgy < f.
The different scaling of a and  with €, has been considered
in Ref. [60] and is typical of fermionic embeddings in the
fundamental and adjoint representations of SO(5). If the
dominating €, is smaller than 1, it can lead to a problem of
double tuning.
The Higgs mass can be estimated by using Egs. (25)
and (26) as

44,2
9+€rUsm

5 8a(/3—a)~NC

my =

P 2
N 9. \2 ([ € \2]?
pmoa(4) ()], @

Notice that using Eq. (12), y, ~e€ 36,39, thus taking
similar mixings for both chiralities of the top quark and
g. =4, one obtains €,3,3~0.5. In this case, Eq. (27)
denotes some tension with mj; ~ 125 GeV. Notice, in
Eq. (BS), that there are some O(1) factors inherited from
Clebsch-Gordan coefficients, whose contributions to « are
a factor 2-8 larger than in S, which can alleviate this
tension. Calculations in explicit models of resonances,
as, for example, in extra dimensions [47,61] and discrete
composite Higgs models [59,62], have shown that this
mass can be correlated with the presence of light fermionic
resonances, usually <1 TeV, also called custodians.

In the framework where one coupling g, and one scale
m, characterize all the first level of resonances, fixing m,
and g, and using Eq. (1), one can obtain a lower bound for
the tuning associated to (26). For m, 2 10-30 TeV, as
demanded by contributions of gluon resonances to ex [53],
taking ¢, ~ 4 leads to a tuning at least of order (1-0.1)%.

If the potential is dominated by the fermionic contribu-
tions, when the fermionic resonances are lighter than the
spin-1 resonances, some amount of tuning associated to
Eq. (27) can be alleviated, since in this case the Higgs
potential can be regulated by a lighter fermionic state [60].
Trading m, — m,, = g, f amounts to changing g, by g, in
(27), that for g, = k,g,, leads to a suppression factor k&,.
For k,, ~ 0.5, one can expect a Higgs mass of O(100 GeV).
A similar argument can be applied to the masses of the
scalar LQs in Eq. (20); in this case, the masses are also
rescaled by kg,, such that for k, ~0.5 one can expect
masses of O(1 TeV). On the other hand, the tuning from
Eq. (26) depends on the relative size of « and f. Thus, it is
not expected to decrease with k,,; instead, in the present
model for ¢, < 1, one obtains a problem of double tuning.
It is known that in this case the double tuning helps in
reducing the Higgs mass [60].

F. Low energy effective theory

We consider now the effective theory at scales lower
than the masses of §; and S3. Given the large value of
m, > M, 5, we do not consider in our analysis the effect
of the heavy spin-1 resonances on the low energy observ-
ables. At low energies, integrating out the LQs and Fierzing
leads to

c .
LA > ZPO +H.c., (28)
with O given by

Oy = (@10 ay) (137011,

O;’aij = (ﬁ}}qi)e(@ﬁli),

OSi; = (@Ly,q1) 1" 1)), (29)
and
Cgaij _ _xl.ifxT,ja x3,iﬁx§,ja C/liaij _ Xuip X ja
A? 4M3 am3 A? am3
Cgaij _ xl,iﬂxT,ja x3$iﬁx§,ja (30)
A? am? am3i

where i, j and «, f stand for generation indices of quarks
and leptons, respectively.1

'Notice that CST are normalized different from Ref. [35].

115007-7



LEANDRO DA ROLD and FEDERICO LAMAGNA

PHYS. REV. D 103, 115007 (2021)

Below the EW scale we rotate the fermions to the mass
basis, replacing yi — Vl’)g’ijwf( fory =u,d,?,vand X =
L, R. For simplicity, we choose the basis where V¢ =
V¢ = I, the identity in three dimensions. It is straightfor-
ward to write the WCs of Eq. (30) in the new basis.

Other related operators that we are interested in, now
written in the mass basis, are

9(10 a - —
ff,f,-Zl,-dk = ?[dj}’#PLdk] [Chyu(ys)ils (31)
e _

Ozjdk = ka[djO'””Pde]Fﬂw (32)
OF) = [ (rs)d)[Car, Pl (33)
LR — & 12,6"P, 0 ) F (34)

Ol 1622 h L(R)Y il >
f}hLy(,.Izuk = [;Prr)di][£1 P, (35)
O, = (dy,dj ). (36)

In what follows, we will denote by a capital letter C,
with indices denoting the effective operator name, the new
physics (NP) contributions to the Wilson coefficients.
Otherwise, the SM contribution to these WCs will be
explicitly stated.

For our estimations, it is enough knowing that the masses
of the LQs are of the same order, as discussed in the
previous section; thus, for simplicity, we will take

M, = M3 = M. We find it useful to define
2,2
_ 9xUsm
6= . 37
4M? (37)

Looking at the definition of & above, and taking into
account the estimate for the LQ masses in Eq. (37), we
expect 0 to be approximately in the range [0.02, 0.3].

ITII. OBSERVABLES

In this section, we analyze the impact of the new physics
on low energy observables. We start with the so-called B
anomalies, R, and Ry, and after them we consider
constraints from other observables. We write the contribu-
tions in terms of the LQ couplings and then, making
extensive use of partial compositeness, we show their
dependence on the mixings, § and M, as well as on the
combinations of ¢ parameters defined in Eq. (15), that are
taken of O(1). In the next section, we will use these results
for a combined numerical analysis of all the observables.

In this section, we mostly follow the calculations of
Refs. [35,36].

In what follows, expressions for Rg) and R’Z/_fc actually

refer to the ratio of its value with respect to the SM value,
thus being equal to 1 in the absence of NP contributions.

A. Ry

Being a b — czv process, this observable involves the
operator OVl — OAL that is generated at tree level by the
LQ states. Following Ref. [35], we obtain

T b
Ry =1+ 2Ch; + 25 u C3T%23
~] 4 sM vim (|1, 33| _ %333
B 2\ M2 M

2 *
VesUsm (X123%133  ¥323%333
2V . M% M%

+

~1 +25{ exsen ezl —leszl?)
Ves 5 . *
+ V_b€l3€q2€q3(C1'23Cl’33 - C3.2BC3,33) . (38)
c

For the last estimate, that is valid up to coefficients of O(1),
we used partial compositeness. The coefficients c; ;. are of
O(1), as discussed in Sec. IIC. They are assumed to be
anarchic. Notice that all the corrections are of the same
order given our flavor scheme. As reference value, we use
Rg’;*)’exp = 1.14 £ 0.057. This is done by using HFLAV

2019 average [63] to calculate the ratio of experimental to
SM value, averaging between Rp and Rp+, due to the
contribution being a symmetric one.

B. Ry

This process requires a transition b — supu, involving the
operator 0°—O'0, These operators can be written in terms
of OT and O3, which are in turn expressed as a function of
the LQ couplings as [35]

9 — 10 T S
C2223 - _C2223 - (C2223 + C2223)

-
Pem th V;ks
4z Vg
aem Vi Vi 4M 2
47

~—————§€h€, €,3C3.2C) (39)
w OV12%4,%q3%3,22¢43 32+
aemvtbvts

X322X3 3

The estimate of the third line is a consequence of the
assumed flavor structure, and we show the dependence on
the O(1) coefficients c; j.

The fitted value consistent with experiment is [64]

CHo? = —0.61 £ 0.12.
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C. Rﬂ/e

b—c
This observable is related to R, and is also generated at tree level by the LQs. The main contribution is [35]

RS —1= 2Ch5 — 25y 2 Chas

b—c

Vis
USM <|x1 2l |x3,32|2> i Vs Vi (X1,22xT,32 _X3.22x§,32>
> 2 T W, \ M M
V
~ 25{ 3612(|Cl nl’ =lesml?) + VCZ €heq,€43(C122€1 30 = 03,220§,32)}~ (40)
.
The experimental value is [65] R’,ff(.’exp —1=0.00=0.02.

D. By.,;

This observable also receives contributions at tree level in our model. The branching ratio of B — K (*)1/17, normalized to
the SM, is [35]

2 T s
BK%; =1+ _—*SM (C3323 C3323 + C2223 C2223)

3a Aem th C

-1 +% z U%_M X123%33 | X323%333 | X12¥a | X320¥aa
30V ViCM 2\ M3 M3 M3 e
4 V3

~l o eke, €,5(C1 23CT 12 F C303CE 21) + (13 = 12), 41
3aemvth;<sC1§M 13%q, q3< 1,23¢1,33 3.23 3.33) ( ) ( )

where CSM = —6.4.

The experimental constraint is By(),; o, < 2.6 [66] at 90% C.L.

By using the estimated values for § above, we can check how relevant this bound is. For § ~0.02, we have
By —1~ 0.11(2¢)*, which does not greatly restrict the degree of compositeness of the third-generation fermions. For
larger values of 8, this observable becomes more restrictive, but its importance still remains below that of other observables.

E. B - Kty and B, — tu

The scalar LQs induce b — sty transitions that contribute to the decays B — Kzu and B; — zu with the operators
of Eq. (31).
We start with B — K7y, in terms of their WCs [36,67],

Br(B — K7**] = 107°{9.6(|Co3p3]> + [C3p5]7) + 10(|Ca3p5 > + |C3505*) }- (42)
With the contribution of S5 to these WCs. we have C° = —C'* with

2
Ugm

Chans = VoVeal ™ 323 23+ (43)
Using the estimates of anarchic partial compositeness for the couplings, we get
Br[B — K™ p™| ~ 0.066°¢ 3 pers (|e333 e300 + €332 €33]) (44)

the experimental bound being 4.8 x 107>, at 90% C.L. This observable is not expected to be too relevant under
partial compositeness, as the combination above, for 6§ ~0.2, €,43,€;3 ~0.5, € ~ 0.2 gives 1.5 x 1076, which is well
below the bound.
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For B, — 7y, using again C° = —C'°, one obtains [36]

2
a
1280° 8 Vi Vis|*f5, 75, (me +m, )y

m;
— Chops*F(m,.m,), (45
(e ) PO (45

Br(B; — tu) =

with n(x,y) = /1 =2(x +y) + (x —y)? and

m,—n,\2 m,—m,\ 2 m,+m,\?2
e () ) (- 05))
mg. m,—l—mﬂ mpg

(40)

Using fp = 0.225 GeV,
5.36 GeV, we get

75, = L.4T x 107125, mp =

_ 9. TeV\*
Br(B, — i) ~5.3 x 1073V2 (—>

M
X 6‘3361226123 le333les
~0.0378 €} peples sl lesml’ (47)

The experimental bound is Br(B, — 74)e,, <4.2 % 1073
at 95% C.L. Same as above, we estimate the contribution to

this observable to be 9.2 x 1077, which is also safely below
the bound.

F.B, - 1t
For this decay, we have the branching ratio [36]
Br(B CIO 2
BriB, > ) _ ' + 238 <8108 (95% C.L.).
Br(B; — 7)gy Cias

(48)
|

W

Br(B =0.02 <
f(Be > w) (430 GeV

The prediction for the ratio of coefficients is

Clo 1)2
3323 SM " ) *
~ X333X4 52 ~ 17000€%,€7% €3 33C5 .
10,SM — 7 X3.3343 23 3613333323
C3323 VtsV b(XM

(49)

In this case, for the range of values of 5, €,3, and ¢€;3 of
Sec. II, we estimate the ratio of the WCs to be of order
~((20), which gives a contribution to the branching ratio
that in general is 1 order of magnitude below the bound,
although in some cases it can reach the bound.

G.7—- u

A contribution to this process is generated by dd¢7
operators. The branching ratio can be expressed in terms of
left-handed couplings of S3 as [68]

_f(2/)m1%TT (x3,22x§,23)2 {/; ¢
= I-—— )| 1+2—
1287 Mg m?2 m?2

(50)

Br(z— ¢u)

We use f, = 0.225 GeV, my = 1.02 GeV, and we get

Br(t — ¢u) ~

~ 4 x 10708 gsenei33,(c33) (51

The experimental bound is 8.4 x 1078 at 90% C.L.
Typical values for the parameters give a contribution
of ~O(10719),

H. B, - w

The branching ratio of B, — zv can be expressed in
terms of WCs as [69,70]

) 14 €Y%+ 43(CSR — S5 ). (52)

Both LQs contribute to CVX, whereas only S, contributes to C5¢ as

*
VaX] i3X1.33

Vckx3 k3X3.33

2

—0U
CVL, = UMy (DAL
T4V, M3

i)

2 * 2 * 2
=Usm [ Ves¥iasXias + Ve xi 3l n VesX303%333 + Vep X3 33] (53)
4v., M? M? '
2 *
st —Usm X1.33%,23
C‘L"L’Cb - 2 ’ (54)
4V My

while for right-handed coefficients, without including vg: C5® = 0. Besides, renormalization group equation running
down, from the M ~ TeV, induces mixing between different WCs, such that the value of CS% gets corrected by an additional
factor of 2.9, whereas the CVZ coefficient has no correction [71].
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The estimates in our model are given by

CVL ~15x% 102 (g*TeV

tthc

2 %
_ TUsm*1.33%,23 -

CSL —
tthe 4Vcb M2

Combining both estimates, we get

2
M > 6336123(03,33C§,23 + |C3.33|2 —C133:C1 3 — |Cl,33|2)’ (55)
mem; ~x%
- C133CT 5a. 56
4Vts Vch2 1,33¢1.23 ( )

Br(BC — TU) st 002'1 + 0.9956336‘[23(6’3’336’;23 + |C3,33|2 - C|.33C41<‘23 - ‘C1.33|2),

TeV

2
+42%x1073 (M> €133¢] 23

This result has to be compared with an experimental
bound Br(B, — 7v),y, < 0.1at90% C.L. We do not expect
this observable to play a significant role, as for the left-
handed contribution we estimate the branching ratio to be
of ~0.02, while its right-handed contribution also gives
~0.02 for M € [1,3] TeV.

I. Am B,

The contribution to this observable comes from the four-
quark operator 09 of Eq. (36), whose WC is generated at
loop level by the scalar LQs, through a box diagram. For
the B, — B, system, we have the following ratio:

Ampg, Cyp
AmS _‘1 " crsml (58)
with the coefficients being [72]
(Vi Vis)* (mw\?
CM =235 7%’ Ly (a4 (59)
T Vsm
and [36]
1 1 * 2,2 * 2,2
C, = 1282202 (%7 23)7%1 33 + 5(x3 53) %3 33
+ 207 2373 23%133%3.33)- (60)

Among these three terms, when using anarchic partial
compositeness, the one with the factor 5 will dominate the
sum. We get

Ci TeV) 2 .
CI,SZ;\/I ~ 300( M_) 526236?3(03,2303,33)2~ (61)
sb

The most stringent bound is on the imaginary part of the
WC [73]. We assume maximally violating phases of the LQ
couplings, such that their effects on Amp_are restricted to

2

(57)

|
be at most 20% (95% C.L.). We expect this observable to
play a role, as the value of the WC ratio for 6 ~0.2,
€43,€3~0.5, and M ~2 TeV is ~0.18, which is close to
the experimental limit.

J. Leptonic interactions of the Z

We consider the flavor diagonal and flavor violating
interactions of the Z with charged leptons and neutrinos
that receive corrections at loop order; in particular, we
will be interested in the processes Z — 7,77, Z — vyuy,
Z — tu, Z — uu. We follow the results of Ref. [36]; see
Ref. [74] for the inclusion of subleading effects.

We consider the interaction terms at zero momentum
transfer,

7 =

int —

g -
o (€T L0, (0)/"PLE) +{L > R}

+ 1, 0) @ Prui)]Z,, (62)
with g the weak coupling and cy, being the cosine of the
Weinberg angle. At one-loop level, the dominant correc-

tions from the LQs are dominated by the contribution
containing the top,

N.m? [VaX] 1 V53X m?
Cieye,=T0085+7 ’[ Lif 31 z<1+10g<ﬁtz>>

3272 M3 1
+{S1 = S3.x144 —’x3,ia}] ) (63)
N m? Xy, 53X, 3 m?
Trpp =TSM g, — STt (g 4 oo Z0) )
REE = REOTT T 302 A g3
(64)
N m? VX3 o ViXa m?
r Mg, g D TSRS Sy o ( 20 ) ).
I L TR V. oo
(65)
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Writing these flavor diagonal couplings in terms of the
parameters of the model, we have

Upee— Fﬁl\f ~—0.04(|cy 33> + |C3,33\2)5€?,3€123v (66)

TeV\ 2 [¢53]2
M 2 x 10 8(;) |§33|2, (67)
€q3€l3

Uy = TN ~ =0.04(|cy 50> + |e33]?)8€el5¢5,  (68)

1—‘R T T

SM
FRv,”,” - FR,;( ~ —6 X

The right-handed contributions to the couplings are
heavily suppressed, the left-handed contribution to the
muon coupling is suppressed too, due to the small value
for €, compared with €;. The SM predictions and the
corresponding measurements can be found in Ref. [75].
Regarding the 6I', bound, there is a recent paper which
gives an updated bound N, = 2.9963 £+ 0.0074 [76]. By
using the relation N, = 3 4+ 46I",, we get the bound

o', = —0.000925 + 0.00185. (70)
The expression in terms of the parameters of the model is
5Fl/ ~ —0.09|C3,33|25€?]36123. (71)

For the Z — 7y transition, we have

K
BI‘(Z - Tl“) = FZ(lrL,wP + ‘FR,W|2>’ (72)

with 'y = 2.5 GeV the total Z width and K = 0.67 GeV.
Replacing with the usual anarchic partial compositeness
relations, we have

{9, TeV\2
FL,ﬂT ~—6.9 x 10 4 (T)

x exsenen(cizcipn +e3mcsy)  (73)
and

12 X 10_951 335* 32(m)2
Tpoue ~ LM (74)
€43€1€3

Joining everything, we obtain

(¢13387 3,)*
W

~2.8x 1071
(TeV 3603

Br(Z — u)

+8.46 x 107° (c133¢i3 + 63,330332)2

X 5262361226123, (75)

to be compared against an experimental value of 1.2 x 107>,
at 95% C.L. Looking at its expression, we see that for values
of order €3 ~ 0.5, €,3 ~ 0.5, € ~ 0.1, M ~ TeV, the right-
handed contribution to this branching ratio is heavily sup-
pressed with respect to the left-handed one.

K. t’i d t’fy
These flavor violating decays are produced by operators
Op% of Eq. (34). Following Ref. [36], the LQs give a
contribution to the WCs of these operators at one-loop level
that can be written as

* *
cL = Mg Xy 32130 + My Xy 35X 3i
v M3

M, 3¢ V35X ki m?
w3 3R g A loe [ L
* 4M3 los M3

£3
3mffx3‘3fx3q3i
a2

(76)

with CR = CLT due to Hermiticity. The branching ratio for
the transition is written as

Br(¢; — ¢yy) = (| o P HICELP). (T7)

256 4

We want to estimate the size of the transition 7 — uy and
u — ey. For the first one, supposing only left-handed S
couplings dominate, we get

Br(t — py) ~ 1.4 x 10735 43612613‘03 1 |c3, nl (78)

whereas if right-handed couplings dominate, we get

TeV\ 4 e my,\ 2
Br(z — uy) ~ 1.7 x 10~ f’(M) 6;2 <c33c§32+<m’:>

3

e\ 4
X <£> C%zc% %3) (79)
€n

For this contribution to the branching ratio, we note first
that it has an explicit dependence on M that goes like M~*;
thus, the contribution grows for smaller values of the LQ
masses. Also, we recognize two regimes that contribute to
this quantity. For €); 2 €3, the second term is suppressed by

the ratio of muon to tau mass. For €3 = \/§612’ the second
»

term starts to dominate.

The experimental bound from Ref. [77] is Br(z —
1Y )exp < 44 x 1078 at 90% C.L.

In the case of u — ey, we use the expressions above,
changing the lepton flavors and m, ~ 511 keV, 7, ~ 2 us.
For the left-handed contribution, we get an expression
similar to Eq. (78),
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Br(u — ey) ~7 x 1078%€gz¢f €| c3 3 es 51 2. (80)

However, for right-handed couplings, the contribution is

TeV\4e?
Br(u — ey) ~8 x 107 (—) -4 (agzc%n
M 6‘122 ”

my\2 (ep\*

() @) ad) o
The experimental bound is Br(u — ey) < 4.2 x 10713 [78]
at 90% C.L. The left-handed contribution, taking as an
example similar degree of compositeness of both chiralities
of the electron, €, ~¢€,; ~7 x 107, and other typical
values for the parameters, is of order 3.6 x 10715, The
right-handed contribution, however, is a bit more compro-
mised. Equation (81) has a minimum for €;;/¢; ~ 0.07,
leading to Br(u — ey) ~4 x 1078(TeV/M)*. In this setup,
for M = 1 TeV, a cancellation of order 107 is required,
otherwise M = 20 TeV. Another possibility is to decouple
the electron mass from partial compositeness, assuming
that its degree of compositeness is much smaller than the
previous estimates and that its mass is generated by
anarchic tiny bilinear interactions of the elementary fer-
mions with the Higgs [57] (see also [55,79] for other related
approaches). In the following, we will assume this to be
the case.

L. fi - 3t’f

We consider here observables 7 — 3y and u — 3e,
which have loop level contributions, induced by the
flavor violating Zur and Zeu couplings, and four-lepton
operators [35,80],

=25 x 1074(C] ;33 = Cip33)?

2 * 2 * 2
_s [ UsmX13iX13F  UsmA33iX33¢
:6.25x105<SM & &
2 p
Mi M;
~0.0018%€;3€7,€7, (¢ 3¢130 + €3 37¢331)% (82)

For 7 — 3u decay, we have i — 3, f — 2 in the expression

above. The experimental bound is Br(z — 3u),, < 1.2 x

1078 at 90% C.L. This value, along with the 7 — uy, is
expected to increase in sensitivity by an order of magnitude
in Belle II [81].

For the u — 3e decay, we set i > 2, f— 1. The
experimental limit at 90% CL is Br(y — 3e),,, < 1.0 x

exp
10712 [82]. The expected size of this observable now
depends on the size of the mixing to first-generation
leptons, €;;. For €, ~e¢,, 6~0.02-0.2, €¢,3~0.5, and
€p ~ 0.2, the size of this branching ratio is at least 2 orders
of magnitude below the experimental limit. For

nonsymmetric mixing, €;; can be taken of order 0.003
or 0.03 if §~0.2 or 0.02, respectively. In the case of
negligible linear mixing, this process does give interesting
constraints.

M. LFU in W couplings

The LQs generate contributions to W couplings at one
loop that violate lepton universality. In the present model,
the relevant modifications are for the leptons of the third
generation [35,80],

gW
j = 1-0.084CL,,,
v2 V2
=1-0.084 <SM ¥y 332 = >4 |x3.33|2>
4M3 " 4M3
~ 1= 0.0845e25€% (|c 537 — [e3.332). (83)

The ratio |g¥/g¥| is measured to be 1.0000 £ 0.0014
[83] at 95% C.L.

IV. NUMERICAL RESULTS FOR
FLAVOR PHYSICS

We wish to test if the B anomalies and the flavor
constraints detailed above can be made compatible with
an anarchic partial compositeness scenario. For this pur-
pose, we will explore if Ry and R can be fitted
simultaneously to within 1o of their experimental values,
with the bounds being satisfied at the confidence levels
specified in the previous section.

The observables depend on different combinations of
the parameters ¢ 4, €34, and ¢y ;,; we will refer to those
combinations as Ag>, with O the observable and i an index
labeling the number of independent combinations of that O.
For example, for R, we have the combinations

(O 2 2 2 _ * *
ARD(*) = [c1 3] —[es ) ARDM = C1.23€133 7 €3.23C333-

(84)

For each observable that has a different combination of the
parameters ¢y j,, €34 OF €1 ;o> as We are working under the
assumption of flavor anarchy, we will take all these
coefficients as independent and of the same order. For
particular values of these coefficients, the model can pass
all flavor constraints and simultaneously explain the B
anomalies; however, we will explore whether this happens
for generic O(1) coefficients. Whenever some A, is
required to deviate from O(1), the assumption of anarchic
partial compositeness is in tension with that observable.
Typically, the bounds from flavor observables are expected
to favor A, < O(1), showing the need of some alignment
or tuning, since in the limit of vanishing A, the new
physics contributions vanish. On the other hand, an
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explanation of the B anomalies requires sizable Ap o and
D *
Ag 0’ and for some regions of the parameter space, they
e

can be required to be A, > O(1), deviating from the
assumption of flavor anarchy.

Besides A, the observables depend on 8, defined in
Eq. (37), on the LQ mass M, as well as on the left-handed
mixings of the top and the leptons, since we have used
Egs. (12) and (13) to fix the size of the other mixings.

To estimate the amount of tuning one expects in the O(1)
coefficients contributing to the B anomalies, we proceed in
the following way: for a given point of the parameter space,
we compute which are the values of Ay that cause the
observables to fall within the 16 experimental value and the
corresponding C.L. intervals. In those cases where there is
more than one Ay, as in Ry or 7 — py, we consider either
the largest contribution, if they are of different order, or
consider them separately, if their ordering depends on the
particular region of the parameter space. Then we select the
points that can reproduce all the flavor bounds with A, of
order 1, allowing for a certain threshold. To do this, we
perform a random scan over the free parameters; we take
ep.€3 €[0.5,1], €, €[0.08,0.25], §€[0.02,0.2], and
M € [1,3] TeV. Scanning over 200k initial points, we
select the ones that have min(Ay) > 0.95, obtaining
~10k points. There are four observables that have the
smallest A, and can thus be identified as the most sensitive;
these are Amp_on 35% of the points, followed by g¥ on
28% of the points, followed by 7 — uy ) on 23% of the
points, and by 7 — 3u with the remaining 14%. These are
the observables that impose the most stringent bounds on

the parameter space. Then, to estimate the amount of tuning
required to explain the B anomalies, we plot the required
values for ARD(*) and A R ., ON these points. We show our

results in the distribution of Fig. 1, where we have truncated
the upper limits of the graph to have a better focus on its
densest region, as the tails of the distribution go to higher
values but with a very small density. In this figure, we see
that explaining R at 1o level requires some tuning, since
the peak of A R is in the range 3—6, whereas R, can be

explained with ARK(*) ~ 0.25-1. This result shows that the

former observable is in tension with the flavor constraints.
Similarly, by allowing for higher tuning in the flavor
constraints, that is, allowing their A, ~ 0.05-0.3, one
can take ARD(*) ~ ]. Besides we find that the distribution

of M is peaked around 1.8 TeV.

We can explain the shape of the lower limit of this region
by looking at what flavor constraint those points corre-
spond to. Let us consider 7 — 3u; we have to check this
observable’s expression along with that of Ry and R ).
We see that 7 — 3u depends on four of the five parameters
in the random scans. Furthermore, we can multiply the
expressions for Ry« and R, taking into account the
lower 1o limits for the observables. In this product, we then

replace the combination of parameters §%€j;efe; that

saturates the bound in 7 — 3p, getting

0.49 x 0.083V 2, A
RYCRY T 1.2 x 10758x

o~ A, (85)

— T =3
— T = HYR)
— T = WY(R)
— aV/gl"

_— AmBS

FIG. 1. Distribution of required values for A

colored curves show the estimates of the boundsbébming from Eq. (85) and below for M = 1.5 TeV. The regions excluded following

those approximations have been shaded.

and Ap Y for points passing all flavor observables with the other Ay ~ 1. The
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This partially explains the shape of the lower limit
as seen in Fig. 1 above. Making a similar analysis
with g%, we obtain ARD(*) % 2.5A w. The other observ-

ables depend also on M; from Amp, we obtain

ARm*) > 1.6M AlA/nigr’ and from 7 — uy we obtain a lower
limit A | 2 18(TeV/M)*Ag ALK, and a lower limit
Ag, . S3.5(M/TeV)*Ag /A", where the superindi-
ces indicate the different combinations of coefficients
present in the right-handed contribution to this process.
For M < 1.3 TeV, the bounds from 7 — uy are not com-
patible with A =~ 1, whereas g/ and Amp give a lower
bound ARDm = 2.5.

The previous results show that there is a minimum
amount of tuning, since Ag “’ expected to be O(1), must
ol

be of O(2.5-7) when the other Ay are of O(1), requiring
some alignment or tuning. We will consider a scenario
referred as minimal tuning, in which ARKM’ARM*) <5,

whereas Ay > 0.3. In the case of the B anomalies, we plot a
contour line for those points that require A Ry = 5 and/or

and we

or RK(*> exp?

Ag, ., = 3 in order to explain Ry .,
show in green the region where any of those A, are
required to be larger than 5. For the other observables, this
is done by plotting a contour line with A, = 0.3, while
in red we show the region with A, < 0.3. In the white
region, the observables can be reproduced with minimal
flavor tuning.

In Fig. 2, we fix 6§ =0.1 and M =2 TeV, which are
expected values according to the estimates of Sec. 1I. We
also fix in each case one of the compositeness fractions e
and scan along the other two. We include all three of those
sections for a better picturing of this dependence. Looking
at the first section of Fig. 2, in the plane €3 — € 3, we see
that the allowed region is limited by 7 — 3u, Amg , and
Rpe. As can be seen from Eqgs. (82), (61), and (38), the
window moves with 6 and powers of €;. As 7 — 3pu
depends quadratically on ¢, this limit moves faster with
increasing 6 than the others. As the dependence is on
positive powers of these €,, an increase in ¢ will translate
into a decrease of the allowed values of these coefficients,
thus lowering the location of the window. The remaining
fixed parameters in this figure are €, and M. Although not
all the quantities depend explicitly on the LQ mass M, there
are those that do in different ways. For example, Eq. (61)
shows that Amp depends quadratically on M, whereas
7 = py(R) has an M~* dependence shown in Eq. (79). This
means that the same figure, with a smaller value for M, will
have a less stringent bound imposed by Amg , but a much
more restrictive bound imposed by 7 — py(R). The
dependence on €, can be seen by looking at the other
sections in Fig. 2, or by looking at the expressions above.
For example, as Ry, depends on €, we see how a lower
value of €, will make the bound imposed by Rg on the

minimum €3 to increase, eventually becoming one of the
bounds on the allowed window. The same reasoning can be
applied to the other sections on the figure. In the plane
€p —€p, we can see the two limits imposed by the
two contributions to 7 — uy(R), where one dominates
for €, = €53 and the other in the limit €53 > €. These
bounds are not as relevant for M = 2 TeV; however,
decreasing the value of the LQ mass to 1 TeV makes
them become two of the most important bounds for the
allowed window, surpassing the limits imposed by Ry
and by 7 — 3u.

The bounds will change in the future, as the precision of
experiments improve, particularly interesting is 7 — 3pu.
For instance, in Belle II, the expected sensitivity for the
branching ratios in LFV searches in 7 decays improves by
either 1 or 2 orders of magnitude [81]. We expect

Br(z —» uy) =44 x107% - 5x107°
Br(z = 3u) = 1.2x 1078 = 3 x 10710

(90% C.L.),
(90%C.L.).
(86)

We can then check how the new bounds look on our two-
dimensional scans in €, space. For example, for €, = 0.15,
we show the current and the expected bounds, side by side
in Fig. 3. There we use a different value for one of the
parameters, compared with Fig. 2, 6§ = 0.2. On the left,
we show how some of the curves get modified by the
enlargement of &, whereas on the right we show the
expected increase in sensitivity. The limit imposed by
7 — 3u rules out the selected window, meaning that either
a higher tuning would be needed to pass the constraints, or
that some violation of this quantity would have to be
observed. We can tune some parameters to recover the
window, for instance, by lowering ¢;, = 0.08 and increas-
ing M =3 TeV; we get a small window for ¢;3 ~ 1. In this
case, the window is small and located around €,3 ~ 0.3, a
somewhat low degree of compositeness compared with the
usual scenarios of composite Higgs models.

V. SPECTRUM OF RESONANCES

In this section, we describe the phenomenology of the
composite model, focusing on the spectrum of resonances,
both spin 1 and 1/2. The scale of the masses of these
resonances is m, ~ g, f ~ 10-30 TeV. The quantum num-
bers of the resonances are set by the group theory alone in
the case of the spin-1 resonances, or by the embeddings of
the SM fermions in irreducible representations of the global
symmetry group of the SCFT.

Before describing those resonances, we analyze very
briefly the LHC phenomenology of the spin-0 states. Pair
production of S§; and S;3 by QCD interactions depend
only on the LQ masses to leading order, whereas single
production is more model dependent, being subleading
for masses below ~1.1-1.5 TeV [35]. Given the flavor
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§=0.1, ¢, =0.15, M =2 TeV

0=0.1, €, =05, M =2 TeV

1.0 1.0
T—3 . AT)’lB_!7
T = WY (Rr)
0.8
0.6
Rpe
&
0.4
Rk
0.2 T = WY(R)
0.0
0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
€3 €1y
0=0.1, ¢, =0.5, M =2TeV
1.0 I
ATTLB5
0.8
0.6
Rpe
WQ
0.4
0.2 T = HY(R)
Ry
1 —
0.0
0.0 0.2 0.4 0.6 0.8 1.0
€1,

FIG. 2. Scans in each pair of compositeness fraction ¢, for fixed 5 = values.

structure of the couplings to SM fermions, the LQs decay
predominantly to fermions of the third generation; more-
over, the charge —1/3 states decay to bv and 7 with similar
branching fractions [84]. ATLAS [85,86] and CMS [87]
have searched for these LQs in different final states, CMS
taking into account contributions from double and single
production, in the last case with couplings of order 1.5-2.5,
that are of similar size as the couplings expected in the
present model. Those analysis exclude masses below
~1.1-1.2 TeV, leading to the most stringent bounds today
from direct searches. Although in our model some bounds
from flavor physics require masses above the limits from

LHC my 4 2 1.5 TeV, there are two LQs with charge —1/3
that could add and give a larger cross section than in the
case of just one state, perhaps strengthening the bounds.
This interesting situation deserves a careful analysis that is
beyond the scope of this paper.

A. Spin-1 resonances

To obtain the quantum numbers of the spin-1
resonances, we use that Adj[SO(10)x SO(5)] =
(Adj[SO(10)],1) & (1, Adj[SO(5)]), and we decompose
these adjoint representations under the SM symmetry
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§=0.2, ¢, =0.15, M =2 TeV

1.0

0.8
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€3

§=02, e, =0.15 M =2 TeV
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T = HY(L)

1.0

€14

FIG. 3. Left panel: current bounds. Right panel: expected increase in sensitivity for LFV in 7 decays.

group. Regarding the SO(5) adjoint representation, it is as
in the MHCM, leading to resonances transforming under
Ggum as
(1L,3)g + (L) 4013 + (1’2)1%- (87)

Thus, before EWSB, there are multiplets that transform as
the Ws and B of the SM, along with new states trans-
forming as charged weak doublet and singlet. After EWSB,
we get states with charges 41 and 0, similar to heavy
resonances of W and Z bosons.

When looking at the SO(10) adjoint representation, using
Egs. (4), (6), and (9), we get the following representations
under Ggy; for the remaining vectorial resonances:

(L3)g+ @311+ (3.3) 1+ (L1, + (3.1);

+(8.1), + (He.). (88)

Here we recognize W-like, Z-like, and gluonlike resonances,
along with three representations transforming as color
triplets and charged. If we look at their quantum numbers,
we can identify them with LQs as

(3, 1)_% g Ul’
(3’ 1)% - Ul?

(3.3) — X. (89)

The state transforming as (3,3)_; 3, which we call X, does
not couple to the SM fermions through d = 4 operators, and
hence all possible interactions will be suppressed by powers

of a higher scale. At the same order, the LQ U, only has
interactions involving right-handed neutrinos vy, whereas
U, has coupling with the doublets ¢; and [; . However, if we
look at the SU(2), x SU(2), structure of the representa-
tions, we see there is no way to couple U, to both ¢; and /;
at tree level, without further insertions of fields. This is
because, under SU(2), x SU(2)g, U, ~ (1,1), whereas
qr ~(2,1) and I; ~(1,2); hence, there is no singlet
combination when multiplying these three fields.

We consider now the decay of these LQs. They are
embedded in two different representations of SO(6): U is
in 15, whereas U, and X are in the 6. The lowest
dimensional operator respecting the H symmetry that
allows the decay of U, requires one insertion of a scalar
LQ. Using that for SO(6): 4 x 4 x 15 x 6 D 1, the follow-
ing operators can be considered:

O = (50,,1.)$,04 U, O = (@50,,0°1,)S:0U".
(90)

The decay into SM particles proceeds then through a scalar
LQ, with a final state containing four SM fermions:

Uy~ gfSs,y—aqee.
Regarding the LQs present in representation (6, 2,2), we
can write dimension-5 operators,

O3 = (20, )T, 0% = (250,001, 0"XY"

o1
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These two other states decay into a quark and a lepton,
without a scalar LQ insertion.

The WCs of these operators are expected to be generated
at loop level, requiring also insertions of the mixing factors
€4€;, that are dominated by those of the third generation;
thus, the final fermions are preferentially of the third
generation.

We can investigate the effect of these operators on the
phenomenology by integrating out the spin-1 states and
estimating the size of their contributions to other WCs.
Starting from the Lagrangian for a massive U; and the
interactions given by CUO?—], at low energies, we get the
effective dimension-8 interaction,

2
3 ¢}

Loy =—=—2
qlql 2
2MU]

8ﬂ(qia””lL)6P(5125pylL), (92)

that is expected to be suppressed compared with the
effect of dimension-6 operators. To estimate its effect on
meson physics, one has to make use of Fierz identities to
transform the Lorentz structure into the more familiar
(g Mq)(I,MI,). This is a somewhat involved process,
as the matrix structure is not the usual ,,6*" one, this one
having two free Lorentz indices that are contracted with
derivatives. Although the analysis of dimension-8 operators
is beyond the scope of this work, one can make an estimate
of the size of their WCs assuming that the energies are
of order GeV, obtaining a coefficient (8)%%1 /M2 ~
(GeV)zc%-]1 /M?. These WCs can be compared with those

generated by the scalar LQs for dimension-6 operators at
tree level, that are of order ~x?/M? ;. Assuming that cg is
generated at loop level ¢y ~ (g./47)*g.€,6,/M., one can
estimate the ratio to be

g* 4 GCV 2 M]~3 2
¥4 M, M,
4/M;3\2 /10 TeV\*
~1.06x 10712 (&) ( 213 .
06 x 10 ( 1 > <TeV M. (93)

If the operator (9?-] were generated at tree level, then this

ratio would be enhanced by a factor (47/g,)*, giving a ratio
of ~107'°, We therefore can expect the effect of the vector
LQs on the meson phenomenology to be suppressed, since
their interactions with the SM fermions arise from operators
of dimension 5 or 6.

B. Fermionic resonances

In the case of fermion fields, one can proceed in a similar
way to study their quantum numbers, decomposing their
representations under Ggy.

For (16, 5), we obtain

(16,5) D (3,2) + (1,2)_% =+ (3, 1){%_%} + (3,3){%_%}

1
6

+ (L g1y + (1,3)0_1y + He, (94)

leading to massive resonances with the same quantum
numbers as the SM fields: ¢q;, [}, ug, dg, g, as well as a
singlet. Besides these states, we find fields similar to ug,
dg, €, and vg, with the exception that they transform as
triplets under SU(2),, instead of singlets. This gives rise,
after EWSB, to states with exotic charges, the color triplets
with Q = 5/3,—-4/3, and the color singlet with Q = 2.
When decomposing (144, 5) under the SM group, we
find a set of fields having, under Ggy, the same properties
appearing in (16, 5). Besides them, with the appearance of
representations (4, 3,2) and (4,2, 3), we get similar states
but forming different multiplets under SU(2),. For exam-
ple, we get a quarklike state with quantum numbers
(3.4), /6» along with other states that transform as singlets,
triplets, and quintuplets under the weak group. Finally,
when observing the representations that come from the
decomposition of the 20 of SO(6), we get
(3, 1){%’_ } + (3, 2)% + (3,3){%._%} + (3, 1)
+ (3, )% + (3,3){%%} + (6, 1){% 1 + (6,2)
(

wl—

The 20 contains the conjugate representations, that,
besides the aforementioned states, leads to a new exotic
color triplet with Q = —7/3. This state decays into another
exotic-charged state of Q = —4/3, which then decays
into SM states. In addition, we find other states that
transform as a sextet of SU(3).. Given the algebra of
SU(3): 3x3=3+6,a 62/3 decays into two color anti-
triplets: a scalar LQ and a SM quark, leading to a final state
with two quarks and one lepton after the decay of the scalar
LQ. Notice that these interactions are allowed by the
SO(6) x SU(2), x SU(2); subgroup of SO(10), since
20 x 6 x 4 D 1; thus, an invariant can be formed with a
resonance in a sextet, one LQ, and one SM antiquark. The
treatment for the octet is similar; it decays through an
intermediate scalar LQ. The octet with Q = —2 decays
through a LQ of charge —4/3 and an antitop.

VI. CONCLUSIONS

We proposed a model to explain the B anomalies, inves-
tigating its capacity to simultaneously pass the bounds from
other flavor observables. We considered a strongly coupled
theory based on a global symmetry group SO(10) x SO(5),
spontaneously broken to SO(6) x SU(2), x SU(2), x
SO(4) by the strong dynamics. This pattern of symmetries
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has several properties: it contains the SM gauge symmetry
group, it develops only the LQs S and S5, and the Higgs, as
NGBs, and it contains a custodial symmetry. We determined
the embeddings of the SM fermions into the larger symmetry
group, selecting by phenomenological reasons (16, 5) and
(144,5), as well as their conjugates. We showed that the
embedding of all the fermions in (16, 5) and its conjugate
results in left-handed LQ interactions that are equal for S,
and S3; thus, they could not accommodate simultaneously the
flavor constraints and the B anomalies. We also showed that
mixing the lepton doublet with a 144 x 5 can solve this
problem. Moreover, mixing it with resonances in both
representations allows for couplings with S; and S5 that
are independent. We considered an anarchic flavor structure
of the SCFT that, along with partial compositeness, gives a
rationale for the SM fermion spectrum and mixings, and
contains a Glashow-Iliopoulos-Maiani-like mechanism sup-
pressing flavor transitions. As is well known, this flavor
framework does not pass some bounds from meson mixing;
thus, we assumed a scale of resonances of order 10-30 TeV,
increasing the amount of tuning required for the EW scale,
that is estimated to be at least of order 0.1%—1%.

We considered an effective description of the dynamics
where only the NGBs and the SM fields are kept, armed
with it we showed how to compute the one-loop potential,
estimating the masses of the leptoquarks in the range of
few TeV. We also computed the Higgs potential, which is
similar to the MCHM based on SO(5)/SO(4). Besides,
we estimated the corrections of the heavy resonances to
the Zb; b, coupling, which, due to the large degree of
compositeness of the third-generation quarks, gets correc-
tions that are near the saturation of the bound. This signals
that certain amount of tuning could be required for this
observable. We also discussed briefly the proton decay that
is forbidden by a discrete symmetry.

We estimated the size of the contributions of the scalar
LQs to the B anomalies and flavor observables that pose the
most stringent constraints; some of these contributions arise
at tree level and others at loop level. For that analysis, we
used the hypothesis of anarchic partial compositeness. We
performed scans in the degrees of compositeness of second
and third generation of leptons, the third generation of
quarks, the masses of the LQs, and the strength of the
coupling between composite resonances. We found that a
tension arises between an explanation of R, and some
flavor observables, mostly 7 — 3y, but also Zvv and
T — uy, that requires a tuning of order 10%-25%. We
defined a window in parameter space with “minimal
tuning”’; this window requires sizable degrees of compos-
iteness for third-generation /; and ¢;, but the amount of
compositeness is also bounded from above by some flavor
constraints, particularly 7 — 3y and Amg . We showed how
some of these flavor constraints are expected to change in
the future, introducing even more tension with R, and
also the change in this window accordingly. We also

considered observables u — 3¢ and u — ey. We found
that the former can be easily accommodated by our model,
while the latter comes into conflict with the expected
degree of compositeness for the electron. This can be
solved with the introduction of small bilinear couplings,
that for the first generation allow to decouple its mass from
its degree of compositeness.

Several authors considered the possibility to explain also
the anomalous magnetic moment of the muon with the
presence of scalar leptoquarks. In anarchic partial com-
positeness, the estimate for the correction to this quantity is
independent of the fermion degree of compositeness,
depending only on the mass of the LQs. An explanation
of the experimental result would require a rather small LQ
mass, M <250 GeV, incompatible with direct search
bounds, or a higher amount of tuning in the anarchic
coefficients.

We analyzed the spectrum of resonances, finding heavier
copies of SM particles, as well as exotic states. Regarding
vector resonances, we found resonances of the W and Z
bosons, as well as heavy gluons, plus three colored states
that can be associated with leptoquarks. However, none of
these leptoquarks can couple to SM fermions with d = 4
operators, either because of their quantum numbers, or
because of the SU(2), x SU(2), symmetry. We showed
the smallest dimensional operators that allow these lep-
toquarks to decay into SM particles. Regarding fermionic
resonances, besides the states with the same charges as
the SM ones, there are exotic states with charges
—7/3,-4/3,5/3, that are color triplets or sextets, as well
as color octets and singlets with integer charges.

Finally, let us comment on a few possible directions that
could be investigated. We estimated many quantities
assuming generic properties of the theory of resonances;
it would be interesting to compute them by considering
specific realizations, as discrete composite models, or extra
dimensions. On a different direction, since some of the
leading constraints are related with modifications of Z
couplings, it would be interesting to explore other repre-
sentations of fermions that could protect them and even-
tually relax the tension between the anomalies and some of
the flavor constraints.
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APPENDIX A: EMBEDDINGS OF /;
AND LQ COUPLINGS

Putting ¢, in (4,2,1) and /; in (4, 1,2) is problematic
when constructing the interaction term for the LQs, because
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the Lagrangian couples S; and S; to ¢;[; with equal
strength. This is in Eq. (14); we get that x; = x3. This
alignment is insufficient when trying to explain the B
anomalies: for example, it gives no correction to R, as
can be seen in Eq. (38).

To solve this problem, we have to consider different
fermion representations. First, we have to understand why
we get the same couplings for §; and S; when using
the representations above. It is enough to look at the
SU(2), x SU(2), representations, as the color contraction
is straightforward between ¢ and S, and regarding SO(5)
they are all in trivial representations.

In the scheme previously defined, we have the LQ
belonging in a bidoublet S5 ~ (2,2), whereas quark and
lepton are embedded in a single doublet g, ~(2,1),
lup~(1,2). To write an invariant, we start with the
combination

Saﬂqa’ la,ﬂ’ Gaﬂa’ﬂ’ .

We use the following Clebsch-Gordan coefficients for
2x2—->1+3:

Ot 0| — OuOu
90104 | al Od 1
Cga’_ \/5 ’

51 5 / +5l 5 /
C‘l”dk = 010101 + 5k,ow

\/z + 5k,—15a¢ 50@ s

(where we represent spin-half with up and down arrows
and integer spin with the integer k). As we are combining
doublets, the invariant combination we have 1is

Gopap = Cga, Cgﬁ,. Replacing in the above formula,

S(lﬂ 9o la,/i’ Gaﬁa’/}’
I
=5 Smlaray + S lardr = Syilardy = Siplayar)-

We can rewrite these LQ states in terms of the triplet and the
singlet,

St = S5,
_ S5+, _85-5,
SN—T7 SH—T'

By doing this, we get (omitting an overall factor of %)

Sy =55

larq, + 14191
V2

S%la,iéu =+ Sglla.TQT - Sg

larqy — o191

V2

And here we see the same size of coupling for the SU(2)
singlet and triplet.

_Sl

Let us consider now a different embedding for the /; that
can differentiate between S; and S3 couplings. We start by
considering the representation (3, 2). We write [, ;5 for the
degrees of freedom of a field transforming in that repre-
sentation. If we take the full representation to be
(4,3,2,1,1), the dynamical degrees of freedom of this
lepton doublet will be those of 2 € 3 x 2.

Once again, we construct an invariant using ¢, [, and S.
We write

Saﬁq(z’lb,kﬂ’éaﬁ(/ﬂ’k-

The way to combine these fields into an invariant is now by
the use of the CG: 2 x 2 — 3. We also have to make use of
a matrix corresponding to a =z rotation around the y axis
(which corresponds to the Clebsch-Gordan (CG) for
I3Ix3-1),

0 0 1
Rkk/ = O _1 0 )
1 0 O

in order to correctly contract two triplets. Now, we write the
combination as

~ 1,k
Gaﬂn/[)” k= Rkk’ Caa/ C/(;ﬂ/

By replacing these matrices, we get

Srpdy + S 159
<lb,1ﬂ’Siﬁql + lb*_lﬂ/STﬂqT — lb,oﬂ,% Cgﬂ’

Again taking away an overall factor of 1, we have

S1r(V2h 21y = lhoyay) + Sy borar = V2Us11qy)

+ S84y (horqy — V2 -10q1)

+ 810 (V200,q) = Lho,40)-
We can drop out the fields [, ;| and [}, 4 as they are the
highest (and lowest) spin components of the fourplet of

SU(2), of spin 3/2. Regarding the other components, we
can use CG table to write

2 1
lh,l,L = \/;IT* lh.O,T = _ﬁlT’

2 1
lb,—],T - - gll, lb,O,l, :7§l¢

Here we only turn on the dynamical d.o.f. belonging to the
doublet of SU(2), . Using this and rewriting the LQ states
in terms of S, 3, we arrive to
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1 l q, + liqT
—(=SY,q, - S5'1,qp + SQEE AL
\/§< LA} 3 gy 3 \/§
la, - l¢q¢>

v2 o)

Comparing to the previous formula, we find both a relative
sign difference and a different weight for the couplings of
S and S3. This extra representation then allows us to have
independent couplings for each of the LQs. If we name the
couplings for /, and [, as x;, and x;,, we have

- 38,

all xp < x;, + \/gxlb. (A1)

7

Thus, we see how two embeddings for the lepton doublet
allow for independent couplings for S; and S; LQs.

X3 X .Xla -

APPENDIX B: POTENTIAL

In this appendix, we describe some of the details involved
in the calculation of the pNGB potential. Starting from
Eq. (18), we have the definition of the Coleman Weinberg
potential. We want to calculate the fermionic contributions to
the effective potential, particularly of the scalar LQs.
However, as the quantity log det K(IT) does not have in
general a closed form, we must expand the potential in
powers of the pNGB. Moreover, as this potential contains a
constant divergent term, we regularize it by subtracting the
same expression but evaluated at IT = 0. Here we can make
use of an operator identity

log det K(IT) — log det K£(0)

In order to expand in powers of the pNGB fields, we can
introduce a factor w accompanying the scalar fields,
IT - wll, and expand the matrix X in powers of w; at
the end of the calculation, we set w = 1,

= Za)”ICn.

n>0

(B2)

In this manner, one can expand the expression above in
powers of w. As we are interested mainly in the quadratic
terms, for the leptoquark masses, we can write

Tr log (K(IK~'(0))

Tr(K,) + 0*Tr(K, = K3/2) + O(0®),  (B3)

where for briefness we have defined K, = K,.K5'. In the
same way, one can write all the higher order interaction
terms. This way, the problem of expanding the potential in
powers of the pNGB fields reduces in expanding the
effective Lagrangian in Eq. (17), writing the corresponding
matrices, and taking traces. The linear term in the potential is
zero, because no invariant can be formed by a single field.

We choose a basis for writing these matrices
{u§,dS, u%, ¢, v}, with ¢ being a color index, obtaining
11 x 11 matrices. We choose these degrees of freedom
because they have the largest mixing angles and thus the
highest contribution to the potential.

In the following, we will change H}’;.,( p) — IJH;?, (p)

for correlators involving elementary fermions with the

= Tr log K(IT) — Tr log K(0) = Tr log K(T1)K~'(0). same chirality.
(B1) For the masses of the LQs, defined according to Eq. (19),
we get
J
i — / dip [ W, =T, Mg — T Thi - T (I, — T )2 ]
Qa)* lz,+ 1y +10 Z,+ TG, Z, 4+ 2(Z,+ Hr’“ + H,, ' Zy + Tgy)

AM2 _ / d4 331—[[6,[, + 101—[(20 1,2,2.2) 4 5H§412 3.1.1) 48HZ’}}7 . (45 36\/7)( ) 4 36\/—1—1 H;ll,,n:|

1 (2n)* | 9(z, Hzl'} + Hl,,l,,] 72(Z; + Hr]” + thz, WZ, + Iy})
. / dp [+ 10M7 222 4 st e, L BH12v5@ 5)(IL;, )% — 12\/§nf13bn;';a] -

3 (27)* Z,+ 10 +10" 72(2, HIDY I )(Z, +THgy) 1

When calculating the potential for the Higgs component that acquires a VEV, the pNGB matrices can be calculated to all
orders in this field. Hence, we can calculate the one-loop potential to all orders in ». We can write the following quadratic
and quartic coefficients in Eq. (24) as integrals of the fermionic correlators:
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. / d*p {4(117;” FIG TG T 12 -0 3 (g —T)? | 3( -1 )}
(27)* Z,+ 10 +11," Z,+M0y  2(Z,+ 1) (Z, + 1) 2(Z, +T0)
5 / { L T ST 6T T 3 (M T 3 (T T
Z + 1T 4 I (Z, +10)° 16 (Z,+ 107 16(Z, + Ty (2, + L)

3 (Mgt = Mg (I — Hu“) _ 2 (Mgt = T1G)* (I

8 (Z, 4+ 11)(Z, + T )2

APPENDIX C: GROUP REPRESENTATIONS

In this appendix, we briefly comment on the represen-
tations used in the calculations above and on how to
construct some of those representations. In this work, we
use a group consisting of the product of two groups, SO(10)
and SO(5). Regarding SO(5), we concern ourselves with
the fundamental and the adjoint representations, whereas
for the SO(10) factor we also have spinorial representations
16, 144 and their conjugates. The generators of an
SO(N) group in the fundamental representation can be
parametrized in a simple fashion by a set of matrices
{(Tin)j:l <m;m=2,... N},

(Tim) jre = 1(61j0mk — 011Omj)- (C1)

IN=0,Q®0; @05 Q03 Q o3,
F2:H®02®03®63®03,

F5:H®H®H®H®027

One also needs to define I';; = (—i)° [[, %, which anti-
commutes the other ten matrices. With these matrices, one
can build the generators in the spinorial representation by
use of the commutators

— e,

z
ab 4[

(C3)

Now this produces 32-by-32 matrices which we need to
disentangle into representations 16 and 16. We can do this
by noting that I'y; commutes with all generators, and its
eigenvalues are +1. Thus, by diagonalizing I'{;, we get
block diagonal generators X,, corresponding to both
representations [88].

Finally, in order to have different g; [; S| 3 couplings, we
need to consider representation 144. One way to construct
this representation is by the multiplication of smaller
representations. We find the following product is the
smallest that contains this representation:

11y
" .
u

3 (2, +1G (2, + 1)

(BS)

The adjoint representation can be constructed from the
structure constants, or also by using the generators of the
algebra as a basis for the vector space. As SO(N) has
N(N —1)/2 generators, one defines a vector transforming
in adjoint representation as a linear combination of said
generators.

More interesting is how to build the spinorial represen-
tations 16 and 16. This can be achieved by constructing
a 32-dimensional Clifford algebra of matrices I'?,
a € {1...10}. These I' matrices can be built by tensor
products of five Pauli matrices. They follow a simple
structure as

F6:—01®63®G3®U3®03,
Ih=-I1Qac ®c; o5 R o3,

IlNy=-IRIQIRKIR o,. (C2)

16 x 10 — 144 + 16. (C4)

We start from these two representations; we have matrices

{T&“’)} and {T(am)}. We construct the product representa-
tion of this algebra by taking the Kronecker product
between these matrices and the identity matrix,

Tgléo) _ 7010 ® 100 + 100 g Tl(llﬁ)

(C5)
These matrices generate the algebra in a reducible repre-
sentation of dimension 160. We need to split them into
two blocks corresponding to irreducible representations
(irreps) 144 and 16. This amounts to finding the two
orthogonal subspaces corresponding to these irreps. One
way of finding these subspaces is by using the quadratic
Casimir. It so happens that the eigenvalues of the quadratic
Casimir of these two representations are distinct. Thus, we
write this Casimir element and then diagonalize it,
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C, =Y 181! ~ v, = c5. (o)

This unitary transformation is the one that defines the two
orthogonal subspaces and thus makes each of the gener-
ators to split into the two blocks corresponding to each one
of the irreps,

(160)

U 0yl = 70 @ 119 (C7)

In this manner, one can easily build the 144-dimensional
representation of SO(10).
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