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The deviations of B-meson decays measured in Rτl
Dð�Þ and Rμe

Kð�Þ can be explained by the presence of two

scalar leptoquarks, a singlet S1 and a triplet S3, mostly coupled to the third generation. We consider a theory
of resonances, as an effective description of a strongly interacting theory, that generates the leptoquarks and
the Higgs as Nambu-Goldstone bosons, with the rest of the resonances at a scale of order 10–30 TeV.
We assume anarchic partial compositeness for the flavor of the SM fermions. Under this hypothesis, we
study whether it is possible to reproduce the deviations in the B decays without being in conflict with flavor
and electroweak bounds. We find a tension between Rτl

Dð�Þ and some flavor observables, dominated by flavor

violating τ decays and ΔmBs
, that require a tuning of order 10%–25%. We also compute the potential of the

scalars showing that leptoquarks with masses Oð2–3Þ TeV can be naturally expected in the model. We
discuss briefly the phenomenology of the other resonances.

DOI: 10.1103/PhysRevD.103.115007

I. INTRODUCTION

Despite the lack of direct evidence of new physics at
LHC, in the last years several deviations from the Standard
Model (SM) predictions have been measured in the decay
of B mesons, pointing toward the violation of lepton flavor
universality (LFU). The deviations, also referred in the
literature as anomalies, are observed in charged current
processes involving b → cτν̄, as well as in neutral current
interactions involving b → sμμ̄. The first ones, which show
deviations from τ=l universality slightly larger than 3σ,
have been measured in the ratio Rτl

Dð�Þ in different experi-
ments [1–3]. The second ones, which show deviations of
order 4σ from μ=e universality, have been measured at
LHCb and Belle in the ratio Rμe

Kð�Þ [4–7].
Although there is no evidence of a common origin of the

deviations, given that both involve LFU violation in B
decays, it seems interesting to attempt a common explan-
ation. However, the deviations in the aforementioned
semileptonic B decays are rather large, compared with
the SM amplitudes, no effects have been observed in K and
π decays, as well as in τ decays.

The interpretation of the B anomalies as an effect of new
physics has triggered a lot of work in the last years. Under
this hypothesis, the deviations could be explained if the
new physics interacts mostly with the third generation, with
small but non-negligible interactions with the second one,
and tiny or zero interactions with the first one. This
hierarchy of interactions can be naturally obtained if the
mediators are resonances of a strongly interacting theory at
a few TeV scale, with the SM fermions being partially
composite. This scenario is similar to modern composite
Higgs models, where the new dynamics stabilizing the
Higgs potential is mainly coupled to the heavy fermions of
the SM. Even though there is no reason for a connection
between these issues, it seems appealing to study them in a
common framework.
There have been several proposals for a common

explanation of the B anomalies, from the perspective of
effective field theories [8–17] and also with models con-
taining new states and interactions [15–42]. One of the
most appealing hypotheses is the presence of leptoquarks
(LQs) at the few TeV scale; see Ref. [43] for a general
review on TeV LQs. The most economical case is the
presence of a spin-1 state U1 ∼ ð3; 1Þ2=3; however, Rτl

Dð�Þ

requires a low mass scale, m� ∼ 2 TeV, being in tension
with some observables, as the Z couplings of third gen-
eration fermions [8,44]. Besides, one can expect a whole
set of spin-1 resonances at that scale, that generically
induce too large ΔF ¼ 2 operators, and eventually also
large deviations in electroweak (EW) precision observ-
ables. Another possibility is the presence of two scalar LQs:
a singlet S1 ∼ ð3̄; 1Þ1=3 and a triplet S3 ∼ ð3̄; 3Þ1=3. Several
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phenomenological analyses have shown the structure of
couplings required for these states, most of them assuming
interactions with left-handed fermions only [22,32,35], but
there are also some references that have included inter-
actions with the right-handed ones [15,16,18,27,36].
Besides, as discussed in Ref. [45] and computed in
Ref. [46] for S3, if the scalars are Nambu-Goldstone bosons
(NGBs) of the new sector, that become massive at loop
level after interacting with the SM, their masses can be
decoupled from the new sector scale mS ≪ m�, alleviating
the bounds compared with the U1 solution.
There have been a few attempts to obtain the scalar LQs

from ultraviolet complete theories [34,37]. We will con-
sider that there is a new strongly coupled sector that
generates resonances at a scale of order few tens of TeV,
with the LQs and the Higgs emerging as NGBs, after
spontaneous symmetry breaking by the strong dynamics.
Instead of the fundamental description, we will consider the
effective weakly coupled theory of resonances, showing a
coset that generates only these states as NGBs. The SM
gauge bosons will gauge a subgroup of the global sym-
metry of the new sector and the SM fermions will be
assumed to interact linearly with it. We will study, assum-
ing flavor anarchy of the new sector, if it is possible to
explain the B anomalies, simultaneously passing flavor and
EW bounds.
Our paper is organized as follows: in Sec. II, we will

describe the effective theory of resonances, the one-loop
potential of the scalars, and the low energy theory,
necessary to compute the contributions to flavor physics.
In Sec. III, we will show the predictions of the model for
the set of observables that receive the largest contribu-
tions, compared with the present bounds, and in Sec. IV
we will show the numerical predictions. In Sec. V, we will
describe the spectrum of fermion and vector resonances,
and we will conclude. We leave some technical details for
the Appendixes.

II. A MODELWITH COMPOSITE LQs AND HIGGS

We are interested in the formulation of a model able to
deliver the Higgs and the LQs S1 and S3 as pseudo-NGB
(pNGB) resonances, generated by the spontaneous break-
ing of the global symmetry of a strongly coupled field
theory (SCFT). The SM fermions and gauge bosons are
assumed to be elementary fields, external to the strong
dynamics, and weakly coupled to it. This is similar to the
popular Minimal Composite Higgs Model (MCHM) [47],
but with a larger set of light scalars, to include the LQs at a
smaller scale than the rest of the resonances of the SCFT.
We assume that the SCFT has an exact global symmetry

G, spontaneously broken by the strong dynamics to a
subgroup H. After properly embedding the SM gauge
symmetry into H, the spontaneously broken generators
transform exactly as the Higgs boson and the required LQs.
Besides these composite NGBs, the SCFT produces

massive resonances characterized by a scale m�, that we
take of order 10–30 TeV. The currents associated to the
global symmetry can create massive spin-1 states, trans-
forming with the adjoint representation of G. We assume
that the SCFTalso produces fermionic massive resonances,
generically at the same scale m�. These fermions are
assumed to transform with linear irreducible representa-
tions of G, realizing the symmetry at linear level. However,
their representations are not fixed, leaving freedom for
model building. All the resonances are taken to interact
with typical couplings g�, which are large compared with
the SM ones, but still perturbative: gSM ≪ g� < 4π. For
simplicity, we take the decay constants of the different
NGBs of the same order,

f ¼ m�=g�: ð1Þ

The elementary gauge fields weakly gauge a subgroup of
the global symmetry of the SCFT, interacting with the
corresponding currents in the usual way. These interactions
induce mixing between the elementary gauge fields and the
spin-1 resonances, leading to interactions with the NGBs.
The elementary fermions are assumed to interact linearly

with operators of the SCFT at a high energy scale:
L ⊃ ωψ̄OSCFT. Assuming approximate scale invariance,
the running of the coupling ω is driven by the anomalous
dimension of OSCFT, leading to hierarchical couplings for
different anomalous dimensions at low energy [48]. At the
scale ∼m�, the operators create fermionic resonances and
the linear interactions induce mixing with the elementary
fermions, realizing partial compositeness [49],

Lmix ⊃ λfψ̄Ψ; ð2Þ

λ is determined by ωðm�Þ after rescaling.
The interactions with the elementary fields explicitly

break the global symmetry of the SCFT, generating a
potential for the Higgs and LQs at one-loop level. For
that reason, we will refer to them as pNGBs. Their masses
can be estimated of order m2

pNGB ∼ g2=ð4πÞ2 ×m2�, with g
the couplings between both sectors that explicitly break
the global symmetries. The fermions can produce a
negative Higgs mass squared, breaking dynamically the
EW symmetry.

A. Global symmetries of the composite sector

We consider the following coset G/H of the SCFT:

½SOð10Þ × SOð5Þ�=½SOð6Þ × SUð2ÞA × SUð2ÞB × SOð4Þ�
ð3Þ

that can deliver exactly S1, S3, and H as pNGBs. Below
we describe it in detail. We will use uppercase letters for
representations of G and lowercase letters for those of H.
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The adjoint representation of a group G decompo-
ses in representations of a subgroup H as AdjðGÞ →
adjðHÞ ⊕ rΠ, with rΠ the representation of the NGBs,
that can be reducible. Considering that SOð4Þ ∼ SUð2ÞC×
SUð2ÞR, where the subindices are used to distinguish the
different SU(2) subgroups in Eq. (3), the SOð5Þ=SOð4Þ
factor delivers a set of fields that transform as a singlet of
SOð6Þ × SUð2ÞA × SUð2ÞB and as a bidoublet of SO(4),
and can be identified with the Higgs as in the MCHM.
Regarding the other factor SOð10Þ=SOð6Þ × SUð2ÞA×

SUð2ÞB, the adjoint representation of SO(10) decompo-
ses as

45 ∼ ð15; 1; 1Þ ⊕ ð1; 3; 1Þ ⊕ ð1; 1; 3Þ ⊕ ð6; 2; 2Þ; ð4Þ

where the first three representations correspond to the
adjoint of the unbroken subgroup and the last one to the
broken generators.
Joining the two factors, we then have that the coset

transforms as

rΠ ¼ ð6; 2; 2; 1; 1Þ ⊕ ð1; 1; 1; 2; 2Þ≡ rS þ rH: ð5Þ

Now we discuss the embedding of the SM gauge
symmetry, GSM, inside the subgroup H. The factor SOð6Þ ∼
SUð4Þ contains a subgroup SUð3Þc × Uð1ÞX, where we
have identified the first factor with the color of GSM. Using
that a 6 of SU(4) decomposes under SUð3Þc × Uð1ÞX as

6 ∼ 3−2 ⊕ 3̄2 ð6Þ

and that for SU(2) doublets 2 ⊗ 2 ∼ 3 ⊕ 1, the singlet and
triplet LQs, as well as the Higgs, can be obtained by
identifying SUð2ÞL ≡ SUð2ÞAþBþC and Y ¼ X=6þ T3R.
Notice that the embedding of SUð2ÞL is different from the
usual one in SO(10) grand unification, since in that case
SUð2ÞR is a subgroup of SO(10).
Under the unbroken global symmetry of the SCFT, both

LQs are indistinguishable, as they are contained into a
single irreducible representation. Since under SUð2ÞL they
split in a triplet and a singlet, the weak interactions of the
SM distinguish them.

B. Representations of fermions

The elementary fermions interact with the pNGBs after
mixing with the fermionic resonances of the SCFT, Eq. (2).
In order to preserve the local symmetry GSM, these
resonances must transform with representations of the
global symmetry of the SCFT that contain the representa-
tions of the SM fermions. For simplicity, we assume that
each elementary fermion mixes with just one operator,
except in the case of leptons, where we explicitly consider
two mixings: L⊃ l̄ðωlaO

laþωlbO
lbÞþēðωeaO

eaþωebO
ebÞ.

We choose the same set of representations for all the
generations.

There is another requirement that guide us in the choice
of the representations of the fermions of the SCFT: we
demand Yukawa interactions with the pNGBs to reproduce
the standard Higgs interactions, as well as interactions with
the LQs needed for the phenomenology of the B mesons.
We will consider the following SO(10) representations

and their decompositions under SOð6Þ×SUð2ÞA×SUð2ÞB:

16 ∼ ð4; 2; 1Þ ⊕ ð4̄; 1; 2Þ;
144 ∼ ð4̄; 2; 1Þ ⊕ ð4; 1; 2Þ ⊕ ð4; 3; 2Þ ⊕ ð4̄; 2; 3Þ

⊕ ð20; 2; 1Þ ⊕ ð20; 1; 2Þ; ð7Þ

as well as the fundamental representation of SO(5) and its
decomposition under SO(4),

5 ∼ ð2; 2Þ ⊕ ð1; 1Þ: ð8Þ

To follow the color charges of the fermions, it is also useful
to know the following branching rules of SO(6) to
SUð3Þc × Uð1ÞX:

4 ∼ 31 þ 1−3; 15 ∼ 80 þ 34 þ 3̄4 þ 10;

20 ∼ 31 þ 3̄5 þ 6̄1 þ 8−3: ð9Þ

In Table I, we define the representations of the fermionic
operators of the SCFT and the resonances created by them.
Each row is associated with an elementary fermion and the
corresponding resonance mixing with it, as indicated by the
subindices. On the first column, we show the representa-
tions of the resonances under the full global symmetry G,
in the second column we show the component under H
containing the degrees of freedom (d.o.f.) with the same
quantum numbers as the elementary fermions, while in the
third and fourth columns we show the X and T3R charges of
the components mixing with the elementary fermions.
By making use of Eqs. (7)–(9) and the algebra of SU(2),

it is straightforward to show that these massive resonances
contain components with the same quantum numbers as the
SM fermions. For ru;d and rea , one must select the singlet

TABLE I. In the different columns, we show the embeddings of
the states with the same quantum numbers as the SM fermions,
and the rows indicate which elementary fermion mixes with them.
We also show the charges X and T3R of those components.

SOð10Þ × SOð5Þ SOð6Þ × SUð2Þ4 X T3R

Rq ¼ ð16; 5Þ rq ¼ ð4; 2; 1; 1; 1Þ 1 0
Ru;d ¼ ð16; 5Þ ru;d ¼ ð4; 2; 1; 2; 2Þ 1 �1=2
Rla ¼ ð16; 5Þ rla ¼ ð4; 1; 2; 1; 1Þ −3 0

Rea ¼ ð16; 5Þ rea ¼ ð4; 1; 2; 2; 2Þ −3 −1=2
Rlb ¼ ð144; 5Þ rlb ¼ ð4; 3; 2; 1; 1Þ −3 0

Reb ¼ ð144; 5Þ reb ¼ ð4; 3; 2; 2; 2Þ −3 −1=2
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contained in 2A ⊗ 2C and 2B ⊗ 2C, respectively, whereas
for rlb and reb one chooses the doublet in 3A ⊗ 2B and the
singlet in 3A ⊗ 2B ⊗ 2C, respectively, with the subindex
labeling the corresponding SU(2) factors.
Let us comment on several aspects of the chosen

embedding. First, with respect to the SO(10) factor, it is
possible to embed all the SM fermions either in 16 or 144
and one of their conjugates. Second, for the representation
ð144; 5Þ, besides the component (4; 3; 2; 1; 1), it is also
possible to embed lL in the component (4; 1; 2; 1; 1), as in
the case of ð16; 5Þ. We will assume that the mixing with the
components shown in the second column of Table I
dominates over the others, and for simplicity we will
consider only those interactions. Third, the symmetry
SUð2ÞA × SUð2ÞB does not allow diquark interactions of
type qqS1;3 and duS1; we will elaborate more on this topic
at the end of this section.
The unbroken global symmetry allows the following

interactions between resonances:

L� ⊃ yE�L̄HEþ yU�Q̄ H̃ U þ yD�Q̄HDþ y3�Q̄cϵσaSa3L

þ y1�Q̄cϵS1Lþ yU�ŪcS1Eþ H:c:; ð10Þ

where y� ∼ g� denotes the couplings with the pNGBs and
ϵ ¼ iσ2. Here we have used capital letters for the compo-
nents of the multiplets of resonances that have the same
quantum numbers as the elementary fermions; for example,
if Ψq transforms as Rq, thus Ψq ¼ Qþ � � �, where Q is the
component that mixes with the elementary fermion qL,
meaning that it transforms as ð3; 2Þ1=6 under GSM. A similar
notation is assumed for the other states.
The embedding of the fermions can lead to relations

between the couplings of the LQs. Embedding L into 16 of
SO(10) leads to y1� ¼ y3�, whereas embedding it into 144
gives y1� ¼ −3y3�, as is shown explicitly in Appendix A.
The first case leads to a cancellation of the contributions
to RDð�Þ to leading order; instead, one can consider either
both embeddings, mixing lL with two resonances and
obtaining independent linear combinations of couplings
with the scalar LQs, or just the second one.

C. Flavor structure: Anarchic partial compositeness

Let us discuss now the flavor structure of the theory. We
consider an anarchic SCFT, meaning that there is no flavor
structure and all the flavor transitions are of the same order.
In this case, the Yukawa couplings of Eq. (10) are tensors in
flavor space that can be parametrized as y�ij ¼ g� × cij,
with all the coefficients of the anarchic matrices being of
the same size, cij ∼Oð1Þ.
The hierarchy of Yukawa couplings needed to explain

the masses and mixings of the SM fermions is generated by
the structure of the mixing between the elementary and
composite fermions λ in Eq. (2). Although λ is a matrix in

flavor space, it can be diagonalized by rotations of the
elementary and composite fields [50]. For our work, it is
enough to assume that λ is diagonal and hierarchical.
The elementary-composite mixing can be diagonalized

by performing a rotation of them, leading to partially
composite massless fermions, that can be identified
with the SM ones [51]. We define their degree of com-
positeness as

ϵ ¼ λ

g�
; ð11Þ

with ϵ ∼ 1 for a large degree of compositeness and ϵ ≪ 1
for mostly elementary fermions. After electroweak sym-
metry breaking (EWSB), these fermions become massive
as in the SM. The Yukawa couplings with the Higgs are
modulated by the mixing yψ ∼ ϵψL

g�ϵψR
.

The hierarchy of masses and mixings of the quark sector
can be reproduced by taking

ϵq1∼λ3Cϵq3; ϵq2∼λ2Cϵq3;

ϵu1∼
mu

vSM

1

λ3Cg�ϵq3
; ϵu2∼

mc

vSM

1

λ2Cg�ϵq3
; ϵu3∼

mt

vSM

1

g�ϵq3
;

ϵd1∼
md

vSM

1

λ3Cg�ϵq3
; ϵd2∼

ms

vSM

1

λ2Cg�ϵq3
; ϵd3∼

mb

vSM

1

g�ϵq3
:

ð12Þ

For the sector of leptons, there are two mixings per
elementary multiplet, labeled by subindices a, b in Table I.
We will assume that ϵψa

≃ ϵψb
, although it is also

possible to consider the situation with ϵψa
≪ ϵψb

, and in
the following we will not write this subindex anymore.
Reproducing the masses of the charged leptons requires

ϵe1 ∼
me

vSM

1

g�ϵl1
; ϵe2 ∼

mμ

vSM

1

g�ϵl2
; ϵe3 ∼

mτ

vSM

1

g�ϵl3
:

ð13Þ

The mixings depend on the realization of neutrino masses;
thus, the relation between ϵli is model dependent. Guided
by the B anomalies, we will consider hierarchical left-
handed mixing, ϵl1 ≪ ϵl2 ≪ ϵl3, as well as ϵei ≪ ϵli. In
Sec. IV, we will show the numerical values favored by
flavor observables.
After integration of the fermionic resonances, at zero

momentum, one obtains an effective Lagrangian

L0
eff ⊃ x3q̄cLϵσ

aSa3lL þ x1q̄cLϵS1lL þ xuūcRS1eR þ H:c:;

ð14Þ

where we only show the terms involving the LQs, similar
interactions with the Higgs are present. If νR is included,
there are new interactions containing this state.
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Anarchic partial compositeness generates a hierarchy of
flavor in the LQ couplings, that is related with the hierarchy
of the fermion masses,

x3;iα ∼ g�ϵqic3;iαϵlα; x1;iα ∼ g�ϵqic1;iαϵlα;

xu;iα ∼ cu;iα
muimlα

ϵqiϵlαv2SMg�
; ð15Þ

where we have written yn� ¼ g�cn, for n ¼ 1; 3; U.

D. Constraints

We consider now some general constraints, as proton
stability and EW precision tests.
Grand unified theories usually lead to proton decay by

exchange of LQs that also interact with diquarks, demand-
ing a huge mass scale for these states. In the present model,
the LQs have masses ≲Oð30Þ TeV, depending on whether
they are pNGB as S1 and S3, or spin-1 resonances.
However, it is straightforward to show that, given the
embeddings chosen for the fermions, at tree level there are
no interactions of type qqLQ. In fact, there is a discrete
symmetry that forbids those interactions and makes the
proton stable, a parity under which the quark resonances
and S1;3 are odd, whereas the leptonic resonances are even,
allowing qlS and forbidding qqS. One possibility to build
such a transformation is by considering a 2π rotation with
SUð2ÞA, under which objects with half-integer spin, as
quarks and S, are even, whereas objects with integer spin,
as leptons, are singlets, as shown in Eq. (5) and Table I.
By demanding the elementary quarks (leptons) to be
odd (even), this symmetry is preserved by the fermionic
mixings.
The previous symmetry does not forbid n − n̄ oscilla-

tions, that can be mediated by dimension-9 operators
containing six fermionic resonances that mix with the
quarks of the first generation [52]. However, Ref. [45]
has shown that in anarchic partial compositeness, with
resonances in the TeV scale and couplings g� ∼ 4π, the
bounds on the Wilson coefficients (WCs) of these operators
can be satisfied.
Below we discuss briefly the corrections to Zbb̄ cou-

pling and flavor observables arising from the presence of
heavy massive resonances. The effect of the lighter pNGB
LQs is considered in detail in the next section.
The ZbLb̄L coupling has been measured in agreement

with the SM at the level of ∼0.25%. Corrections in
composite Higgs models characterized by one scale and
one coupling can be estimated as δgbL=gbL ∼ ϵ2q3v

2
SM=f

2.
As we estimate in Sec. II E 2, v2SM=f

2 ∼ 0.05 for our
benchmark region of parameters; thus, for ϵq3 ∼ 1, the
bound is saturated. Although it is possible to protect this
coupling with symmetries, the fermion embedding that we
have chosen does not protect it; thus, for the largest values
of ϵ2q3v

2
SM=f

2 considered in this work, some extra tuning

should be present, whereas for the smallest values the
estimate is an order of magnitude below the bound.
As is well known, meson phenomenology, as mixing and

decays, put very strong limits on partial compositeness with
flavor anarchy, demanding m� ≳ 10–30 TeV [53,54]. We
take this scale for the resonances, at the price of increasing
the amount of tuning demanded by the EW scale. Besides
the mesons, the corrections to the neutron dipole moment
and μ → eγ require f ≳Oð5Þ TeV and Oð20–40Þ TeV,
respectively [50]. There are different proposals to satisfy or
alleviate these bounds [53–55], most of them require
departures from anarchy. However, some interesting sol-
utions for the lepton sector involving U(1) and CP
symmetries have been discussed, for example, in
Ref. [56], whereas Ref. [57] considers vanishing right-
handed mixing for the first generation, ϵu1;d1;e1 ≃ 0, and
tiny bilinear interactions.

E. Potential

In order to estimate the masses of the LQs and analyze
EWSB, it is useful to study the effective theory that contains
the elementary fields and the NGBs, obtained after integra-
tion of the heavy resonances, and compute the potential
induced at one loop. Since the structure of this effective
theory is determined by the symmetries assumed for the
underlying theory, it is possible to make some generic
estimates without knowing more details of its dynamics [58].
The NGB unitary matrix is one of the main ingredients of

this description. It is given by the exponential of the NGB
fields Πâ, with â running over the broken generators,

U ≡ eiΠ=f; Π ¼ ΠâTâ; ð16Þ

with T generators of the global symmetry group. U
transforms nonlinearly under the action of an element
G ∈ G: U → GUH†, with H ∈ H a function of G and Π.
This transformation rule of U is used extensively to build
the effective theory.
The kinetic term of the NGBs is built by using the

Maurer-Cartan form, defined as iU†DμU ¼ eaμTa þ dâμTâ,
with a running over the unbroken generators and Dμ being
the covariant derivative that contains the elementary gauge
fields. The kinetic term is ðf2=4Þdâμdμâ.
In this section, we will consider only the fermions of the

third generation, that, having the largest degree of com-
positeness, give the dominant contribution to the potential.
Given that in our setup the degree of compositeness of bR
and τR is much smaller than the compositeness of the other
fermions, we will not include them in this section.
In order to build the effective theory, it is useful to

promote the elementary fields to complete multiplets of the
global symmetry of the SCFT∶ G ¼ SOð10Þ × SOð5Þ. We
do that by adding spurious elementary fields, which after
the calculation must be set to zero. According to Table I, we
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embed q and u in ψq;u ∼ ð16; 5Þ, whereas for l we consider
two embeddings ψ la ∼ ð16; 5Þ and ψ lb ∼ ð144; 5Þ. Only one
linear combination of the components of ψ la and ψ lb ,
transforming as ð1; 2Þ−1=2 of GSM, is dynamical. Further
details can be found in Appendix C.
The nonlinear transformation properties of U allow to

build G invariants that superficially look only H invariant.
To build them, one has to dress the fermionic embeddings
with the NGB matrix U†ψ , decompose it under irreducible
representations of H∶ rH, and build H invariants by
multiplication of dressed fields. At quadratic level in the
elementary fermions and in momentum space,

Leff ⊃
X
f

Zfψ̄f=pψf þ
X
f;f0

X
rH

½ΠrH
ff0 ðpÞðψ̄fUÞPrHðU†ψf0 Þ

þ ΠrH
ff0cðpÞðψ̄fUÞPrHðU†ψf0 Þc� þ H:c:

f; f0 ¼ q; u; la; lb; ð17Þ

where PrH is a projector used for the decomposition on
irreducible representations of H and the construction of H
invariants. The first term contains a kinetic contribution from
the elementary sector. ΠrH

ff0 ðpÞ is a singlet; it depends on
momentum and codifies the information of the resonances
that was integrated, and its specific form depends on the
realization of the SCFT or the theory of resonances, as, for
example, discrete composite models or extra dimensions.
Armed with this effective Lagrangian, it is straightfor-

ward to compute the contribution of the elementary
fermions to the Coleman-Weinberg potential at one loop,

VðΠÞ ¼ −
1

2

Z
d4p
ð2πÞ4 log detKðΠÞ; ð18Þ

where KðΠÞ is the NGB-dependent matrix obtained by
writing Leff ¼ F̄KðΠÞF, with F ¼ f; fc and f ¼ q, u, l.

1. Masses of the LQs

Expanding Eq. (18) in powers of Π, one can obtain the
masses of the LQs as momentum integrals of combinations
of the correlators ΠrH

ff0 ðpÞ. More details are shown in
Appendix B. We get

M2
1 ¼ M̃2 þ ΔM2

1; M2
3 ¼ M̃2 þ ΔM2

3; ð19Þ

with M̃2 and ΔM2
1;3 defined in Eq. (B4) of Appendix B.

The splitting between the LQs is driven by Ψlb. For
positive values of M2

1 and M2
3, there is no color breaking

and Eq. (19) gives the LQ masses to Oðv0Þ. By noticing
that ΠrH

ff ∼Oðϵ2fÞ, the order of these masses can be
estimated as

M2
1;3 ∼

g2�
16π2

m2�ϵ2f ¼ ð3 TeVÞ2
�

m�
20 TeV

g�
4

ϵf
1=2

�
2

: ð20Þ

2. Breaking of the EW symmetry

We start this analysis with some simple considerations
about the gauge contributions to the Higgs potential. Since
the Higgs arises as a NGB from the spontaneous breaking
of the SO(5) factor, its interactions with the EW gauge
bosons are as in the MCHM, the SO(10) factor does not
play any role at one loop. The gauge contributions to the
potential can be found, for example, in Refs. [47,59]. The
matching with the SM Higgs vacuum expectation value
(VEV) is given by

v2SM ¼ f2s2v; sv ≡ sinðv=fÞ; ð21Þ

with v ¼ hhi and vSM ≃ 246 GeV. For m� ≃ 20 TeV and
g� ≃ 4, one gets sv ≃ 0.05, requiring a larger tuning than in
the case of f ∼ 0.5–1 TeV.
The fermionic contribution to the potential can induce

EWSB. To study this breaking, it is useful to evaluate
Eq. (17) in the Higgs VEV,

Leff ⊃
X

f¼u;d;ν;l

f̄L=p½Zf þ Π̂fðpÞ�fL

þ ūR=p½Zu þ Π̂uðpÞ�uR þ ūLM̂uðpÞuR þ H:c: ð22Þ

The correlators ΠfðpÞ and MfðpÞ can be obtained by
matching Leff in the general background with the one with
EWSB,

Π̂fL ¼
X
rH

irHf ΠrH
ff; f ¼ u; d;

Π̂uR ¼
X
rH

irHu ΠrH
uu; M̂u ¼

X
rH

jrHu ΠrH
qu;

Π̂fL ¼
X
rH

ðirHfaΠrH
lala

þ irHfbΠ
rH
lblb

Þ; f ¼ ν;l: ð23Þ

The functions irHf ðvÞ and jrHf ðvÞ contain the dependence
with the Higgs VEV, given in Table II, with cv ≡ cosðv=fÞ.
Let us make a brief comment on the relation with the

MCHM. The fermionic invariants are determined by the
embedding of the elementary fermions in the larger

TABLE II. Fermionic invariants evaluated in theHiggsVEV. The
first column indicates the representation under SOð6Þ×SUð2Þ4, as
defined in the second column of Table I.

H iuL idL iuR iνLa ilLa iνLb ilLb ju

rq c2v c2v 1
4
s2v 0 0 0 0 − is2v

4

ru;d s2v s2v 7þc2v
8

0 0 0 0 is2v
4

rla 0 0 0 c2v c2v 0 0 0
rea 0 0 0 s2v s2v 0 0 0
rlb 0 0 0 0 0 c2v c2v 0
reb 0 0 0 0 0 s2v s2v 0
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symmetry of the SCFT. Given the identification of SUð2ÞL,
the SM doublets/singlets are embedded into singlets/
doublets of SUð2ÞC, as shown in Table I. Thus, taking
into account this subtlety and up to possible normalization
factors, the v dependence of the fermionic invariants can be
obtained from the invariants of the MCHM with fermions
in the fundamental representation.
Using the correlators, it is straightforward to compute the

Coleman-Weinberg potential that determines v at one loop.
Expanding in powers of sv,

VðvÞ ≃ −αs2v þ βs4v; ð24Þ

where the quadratic and quartic coefficients can be written
as integrals of the correlators, as shown in Appendix B, and
are estimated as

α ∼
Nc

16π2
m4�ϵ2f; β ∼

Nc

16π2
m4�ϵ4f: ð25Þ

For ϵf, one must take the dominating fermionic mixing,
typically f ¼ q, u of the third generation; in the present
case, f ¼ l can also be large.
The Higgs VEV can be approximated by

s2v ≃
α

2β
; ð26Þ

requiring a tuning of order 1=s2v if we demand vSM ≪ f.
The different scaling of α and β with ϵf has been considered
in Ref. [60] and is typical of fermionic embeddings in the
fundamental and adjoint representations of SO(5). If the
dominating ϵf is smaller than 1, it can lead to a problem of
double tuning.
The Higgs mass can be estimated by using Eqs. (25)

and (26) as

m2
h ≃

8

f2
αðβ − αÞ

β
∼

Nc

2π2
g4�ϵ4fv

2
SM

≃
�
380 GeV

�
g�
4

�
2
�

ϵf
1=2

�
2
�
2

: ð27Þ

Notice that using Eq. (12), yt ∼ ϵq3ϵu3g�, thus taking
similar mixings for both chiralities of the top quark and
g� ¼ 4, one obtains ϵq3;u3 ≃ 0.5. In this case, Eq. (27)
denotes some tension with mh ∼ 125 GeV. Notice, in
Eq. (B5), that there are some Oð1Þ factors inherited from
Clebsch-Gordan coefficients, whose contributions to α are
a factor 2–8 larger than in β, which can alleviate this
tension. Calculations in explicit models of resonances,
as, for example, in extra dimensions [47,61] and discrete
composite Higgs models [59,62], have shown that this
mass can be correlated with the presence of light fermionic
resonances, usually ≲1 TeV, also called custodians.

In the framework where one coupling g� and one scale
m� characterize all the first level of resonances, fixing m�
and g� and using Eq. (1), one can obtain a lower bound for
the tuning associated to (26). For m� ≳ 10–30 TeV, as
demanded by contributions of gluon resonances to ϵK [53],
taking g� ≃ 4 leads to a tuning at least of order ð1–0.1Þ%.
If the potential is dominated by the fermionic contribu-

tions, when the fermionic resonances are lighter than the
spin-1 resonances, some amount of tuning associated to
Eq. (27) can be alleviated, since in this case the Higgs
potential can be regulated by a lighter fermionic state [60].
Trading m� → mψ ¼ gψf amounts to changing g� by gψ in
(27), that for gψ ¼ kψg�, leads to a suppression factor k2ψ.
For kψ ≃ 0.5, one can expect a Higgs mass ofOð100 GeVÞ.
A similar argument can be applied to the masses of the
scalar LQs in Eq. (20); in this case, the masses are also
rescaled by k2ψ, such that for kψ ≃ 0.5 one can expect
masses of Oð1 TeVÞ. On the other hand, the tuning from
Eq. (26) depends on the relative size of α and β. Thus, it is
not expected to decrease with kψ ; instead, in the present
model for ϵf < 1, one obtains a problem of double tuning.
It is known that in this case the double tuning helps in
reducing the Higgs mass [60].

F. Low energy effective theory

We consider now the effective theory at scales lower
than the masses of S1 and S3. Given the large value of
m� ≫ M1;3, we do not consider in our analysis the effect
of the heavy spin-1 resonances on the low energy observ-
ables. At low energies, integrating out the LQs and Fierzing
leads to

LΛ
eff ⊃

X Ci

Λ2
Oi þ H:c:; ð28Þ

with Oi given by

OT
βαij ¼ ðq̄iLγμσaqjLÞðl̄αLγμσalβLÞ;

O1
βαij ¼ ðūiRqjLÞϵðēβRlαLÞ;

OS
βαij ¼ ðq̄iLγμqjLÞðl̄αLγμlβLÞ; ð29Þ

and

CT
βαij

Λ2
¼ −

x1;iβx�1;jα
4M2

1

þ x3;iβx�3;jα
4M2

3

;
C1
βαij

Λ2
¼ xu;iβx�u;jα

4M2
1

;

CS
βαij

Λ2
¼ x1;iβx�1;jα

4M2
1

þ 3
x3;iβx�3;jα
4M2

3

; ð30Þ

where i, j and α, β stand for generation indices of quarks
and leptons, respectively.1

1Notice that CS;T are normalized different from Ref. [35].
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Below the EW scale we rotate the fermions to the mass
basis, replacing ψ i

X → Vψ
X;ijψ

j
X for ψ ¼ u; d;l; ν and X ¼

L, R. For simplicity, we choose the basis where Vd
L ¼

Vl
L ¼ I, the identity in three dimensions. It is straightfor-

ward to write the WCs of Eq. (30) in the new basis.
Other related operators that we are interested in, now

written in the mass basis, are

O9ð10Þ
lhlidjdk

¼ α

4π
½d̄jγμPLdk�½l̄hγμðγ5Þli�; ð31Þ

O7
djdk

¼ e
16π2

mk½d̄jσμνPRdk�Fμν; ð32Þ

OVLðALÞ
lhνiujuk

¼ ½ūjγμðγ5Þdk�½l̄hγμPLνi�; ð33Þ

OLðRÞ
lhli

¼ e
16π2

½l̄hσ
μνPLðRÞli�Fμν; ð34Þ

OSLðRÞ
lhνiujuk

¼ ½ūjPLðRÞdk�½l̄hPLνi�; ð35Þ

Odd
1;ij ¼ ðd̄iLγμdjLÞ2: ð36Þ

In what follows, we will denote by a capital letter C,
with indices denoting the effective operator name, the new
physics (NP) contributions to the Wilson coefficients.
Otherwise, the SM contribution to these WCs will be
explicitly stated.
For our estimations, it is enough knowing that the masses

of the LQs are of the same order, as discussed in the
previous section; thus, for simplicity, we will take
M1 ¼ M3 ¼ M. We find it useful to define

δ≡ g2�v2SM
4M2

: ð37Þ

Looking at the definition of δ above, and taking into
account the estimate for the LQ masses in Eq. (37), we
expect δ to be approximately in the range [0.02, 0.3].

III. OBSERVABLES

In this section, we analyze the impact of the new physics
on low energy observables. We start with the so-called B
anomalies, RDð�Þ and RKð�Þ , and after them we consider
constraints from other observables. We write the contribu-
tions in terms of the LQ couplings and then, making
extensive use of partial compositeness, we show their
dependence on the mixings, δ and M, as well as on the
combinations of c parameters defined in Eq. (15), that are
taken of Oð1Þ. In the next section, we will use these results
for a combined numerical analysis of all the observables.
In this section, we mostly follow the calculations of

Refs. [35,36].

In what follows, expressions for Rð�Þ
D and Rμ=e

b→c actually
refer to the ratio of its value with respect to the SM value,
thus being equal to 1 in the absence of NP contributions.

A. RDð�Þ

Being a b → cτν process, this observable involves the
operator OVL −OAL that is generated at tree level by the
LQ states. Following Ref. [35], we obtain

Rτl
Dð�Þ ≃ 1þ 2CT

3333 þ 2
V�
tb

V�
ts
CT
3323

≃ 1þ v2SM
2

�jx1;33j2
M2

1

−
jx3;33j2
M2

3

�

þ Vcsv2SM
2Vcb

�
x1;23x�1;33

M2
1

−
x3;23x�3;33

M2
3

�

∼ 1þ 2δ

�
ϵ2q3ϵ

2
l3ðjc1;33j2 − jc3;33j2Þ

þ Vcs

Vcb
ϵ2l3ϵq2ϵq3ðc1;23c�1;33 − c3;23c�3;33Þ

�
: ð38Þ

For the last estimate, that is valid up to coefficients ofOð1Þ,
we used partial compositeness. The coefficients ci;jk are of
Oð1Þ, as discussed in Sec. II C. They are assumed to be
anarchic. Notice that all the corrections are of the same
order given our flavor scheme. As reference value, we use
Rτl
Dð�Þ;exp ¼ 1.14� 0.057. This is done by using HFLAV

2019 average [63] to calculate the ratio of experimental to
SM value, averaging between RD and RD� , due to the
contribution being a symmetric one.

B. RKð�Þ

This process requires a transition b → sμμ, involving the
operator O9–O10. These operators can be written in terms
of OT and OS, which are in turn expressed as a function of
the LQ couplings as [35]

C9
2223 ¼ −C10

2223 ¼
−π

αemVtbV�
ts
ðCT

2223 þ CS
2223Þ

¼ 4π

αemVtbV�
ts

v2SM
4M2

3

x3;22x�3;32

∼
4π

αemVtbV�
ts
δϵ2l2ϵq2ϵq3c3;22c

�
3;32: ð39Þ

The estimate of the third line is a consequence of the
assumed flavor structure, and we show the dependence on
the Oð1Þ coefficients ci;jk.
The fitted value consistent with experiment is [64]

C9;exp
2223 ¼ −0.61� 0.12.
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C. Rμ=e
b→c

This observable is related to RDð�Þ and is also generated at tree level by the LQs. The main contribution is [35]

Rμ=e
b→c − 1 ¼ 2CT

2233 − 2
V�
tb

V�
ts
CT
2223

¼ v2SM
2

�jx1;32j2
M2

1

−
jx3;32j2
M2

3

�
þ Vcsv2SM

2Vcb

�
x1;22x�1;32

M2
1

−
x3;22x�3;32

M2
3

�

∼ 2δ

�
ϵ2q3ϵ

2
l2ðjc1;32j2 − jc3;32j2Þ þ

Vcs

Vcb
ϵ2l2ϵq2ϵq3ðc1;22c�1;32 − c3;22c�3;32Þ

�
: ð40Þ

The experimental value is [65] Rμ=e
b→c;exp − 1 ¼ 0.00� 0.02.

D. BKð�Þνν̄

This observable also receives contributions at tree level in our model. The branching ratio of B → Kð�Þνν̄, normalized to
the SM, is [35]

BKð�Þνν̄ ¼ 1þ 2

3

π

αemVtbV�
tsCSM

ν
ðCT

3323 − CS
3323 þ CT

2223 − CS
2223Þ

¼ 1þ 2

3

π

αemVtbV�
tsCSM

ν

v2SM
2

�
x1;23x�1;33

M2
1

þ x3;23x�3;33
M2

3

þ x1;22x�1;32
M2

1

þ x3;22x�3;32
M2

3

�

∼ 1þ 4

3

π

αemVtbV�
tsCSM

ν
δϵ2l3ϵq2ϵq3ðc1;23c�1;33 þ c3;23c�3;33Þ þ ðl3 → l2Þ; ð41Þ

where CSM
ν ¼ −6.4.

The experimental constraint is BKð�Þνν̄;exp < 2.6 [66] at 90% C.L.
By using the estimated values for δ above, we can check how relevant this bound is. For δ ∼ 0.02, we have

BKð�Þ − 1 ∼ 0.11ð2ϵÞ4, which does not greatly restrict the degree of compositeness of the third-generation fermions. For
larger values of δ, this observable becomes more restrictive, but its importance still remains below that of other observables.

E. B → Kτμ and Bs → τμ

The scalar LQs induce b → sτμ transitions that contribute to the decays B → Kτμ and Bs → τμ with the operators
of Eq. (31).
We start with B → Kτμ, in terms of their WCs [36,67],

Br½B → Kτ�μ�� ¼ 10−9f9.6ðjC9
2323j2 þ jC9

3223j2Þ þ 10ðjC10
2323j2 þ jC10

3223j2Þg: ð42Þ

With the contribution of S3 to these WCs. we have C9 ¼ −C10 with

C9
2323 ¼

v2SMπ
VtbVtsαM2

x3;32x�3;23: ð43Þ

Using the estimates of anarchic partial compositeness for the couplings, we get

Br½B → Kτ�μ�� ∼ 0.06δ2ϵ4q3ϵ
2
l2ϵ

2
l3ðjc3;33j2jc3;22j2 þ jc3;32j2jc3;23j2Þ; ð44Þ

the experimental bound being 4.8 × 10−5, at 90% C.L. This observable is not expected to be too relevant under
partial compositeness, as the combination above, for δ ∼ 0.2, ϵq3; ϵl3 ∼ 0.5, ϵl2 ∼ 0.2 gives 1.5 × 10−6, which is well
below the bound.
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For Bs → τμ, using again C9 ¼ −C10, one obtains [36]

BrðBs → τμÞ ¼ α2

128v4π3
jVtbVtsj2f2Bs

τBs
ðmτ þmμÞ2η

×

�
mτ

mBs

;
mμ

mBs

�
jC9

3223j2Fðmτ; mμÞ; ð45Þ

with ηðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ðxþ yÞ þ ðx − yÞ2

p
and

F¼1−
�
mτ−mμ

mBs

�
2

þ
�
mτ−mμ

mτþmμ

�
2
�
1−

�
mτþmμ

mBs

�
2
�
:

ð46Þ

Using fBs
¼ 0.225 GeV, τBs

¼ 1.47 × 10−12s, mBs
¼

5.36 GeV, we get

BrðBs → τμÞ ≃ 5.3 × 10−3V2
ts

�
g�TeV
M

�
4

× ϵ4q3ϵ
2
l2ϵ

2
l3jc3;33j2jc3;22j2

∼ 0.037δ2ϵ4q3ϵ
2
l2ϵ

2
l3jc3;33j2jc3;22j2: ð47Þ

The experimental bound is BrðBs→ τμÞexp≤4.2×10−5

at 95% C.L. Same as above, we estimate the contribution to
this observable to be 9.2 × 10−7, which is also safely below
the bound.

F. Bs → ττ

For this decay, we have the branching ratio [36]

BrðBs → ττÞ
BrðBs → ττÞSM

¼
				1þ C10

3323

C10;SM
3323

				
2

≲ 8 × 103 ð95% C:L:Þ:

ð48Þ

The prediction for the ratio of coefficients is

C10
3323

C10;SM
3323

≃ −
v2SM

VtsVtbαM2
3

x3;33x�3;23 ∼ 1700δϵ2q3ϵ
2
l3c3;33c

�
3;23:

ð49Þ

In this case, for the range of values of δ, ϵq3, and ϵl3 of
Sec. II, we estimate the ratio of the WCs to be of order
∼Oð20Þ, which gives a contribution to the branching ratio
that in general is 1 order of magnitude below the bound,
although in some cases it can reach the bound.

G. τ → ϕμ

A contribution to this process is generated by ddll
operators. The branching ratio can be expressed in terms of
left-handed couplings of S3 as [68]

Brðτ→ϕμÞ¼f2ϕm
3
τ ττ

128π

ðx3;22x�3;23Þ2
M4

3

�
1−

m2
ϕ

m2
τ

��
1þ2

m2
ϕ

m2
τ

�
:

ð50Þ

We use fϕ ¼ 0.225 GeV, mϕ ¼ 1.02 GeV, and we get

Brðτ → ϕμÞ ∼ 4 × 10−6δ2ϵ4q3ϵ
2
l2ϵ

2
l3c

2
22ðc�23Þ2: ð51Þ

The experimental bound is 8.4 × 10−8 at 90% C.L.
Typical values for the parameters give a contribution
of ∼Oð10−10Þ.

H. Bc → τν

The branching ratio of Bc → τν can be expressed in
terms of WCs as [69,70]

BrðBc → τνÞ ¼ 0.02

�
fBc

430 GeV

�
2

j1þ CVL
ττbc þ 4.3ðCSR

ττbc − CSL
ττbcÞj2: ð52Þ

Both LQs contribute to CVL, whereas only S1 contributes to CSL as

CVL
ττcb ¼

−v2SM
4Vcb

X
k

�
−
Vckx�1;k3x1;33

M2
1

þ Vckx�3;k3x3;33
M2

3

�

≃
−v2SM
4Vcb

�
−
Vcsx�1;23x1;33 þ Vcbjx1;33j2

M2
1

þ Vcsx�3;23x3;33 þ Vcbjx3;33j2
M2

3

�
; ð53Þ

CSL
ττcb ¼

−v2SM
4Vcb

x1;33x�u;23
M2

1

; ð54Þ

while for right-handed coefficients, without including νR∶ CSR ¼ 0. Besides, renormalization group equation running
down, from the M ∼ TeV, induces mixing between different WCs, such that the value of CSL gets corrected by an additional
factor of 2.9, whereas the CVL coefficient has no correction [71].

LEANDRO DA ROLD and FEDERICO LAMAGNA PHYS. REV. D 103, 115007 (2021)

115007-10



The estimates in our model are given by

CVL
ττbc ∼ 1.5 × 10−2

�
g�TeV
M

�
2

ϵ2q3ϵ
2
l3ðc3;33c�3;23 þ jc3;33j2 − c1;33τc�1;23 − jc1;33j2Þ; ð55Þ

CSL
ττbc ¼

−v2SM
4Vcb

x1;33x�u;23
M2

∼ −
mcmτ

4VtsVcbM2
c1;33c̃�1;23: ð56Þ

Combining both estimates, we get

BrðBc → τνÞ ≃ 0.02

				1þ 0.99δϵ2q3ϵ
2
l3ðc3;33c�3;23 þ jc3;33j2 − c1;33c�1;23 − jc1;33j2Þ;

þ 4.2 × 10−3
�
TeV
M

�
2

c1;33c̃�1;23

				
2

: ð57Þ

This result has to be compared with an experimental
bound BrðBc → τνÞexp < 0.1 at 90% C.L. We do not expect
this observable to play a significant role, as for the left-
handed contribution we estimate the branching ratio to be
of ∼0.02, while its right-handed contribution also gives
∼0.02 for M ∈ ½1; 3� TeV.

I. ΔmBs

The contribution to this observable comes from the four-
quark operator Odd

1 of Eq. (36), whose WC is generated at
loop level by the scalar LQs, through a box diagram. For
the Bs − B̄s system, we have the following ratio:

ΔmBs

ΔmSM
Bs

¼
				1þ C1

sb

C1;SM
sb

				; ð58Þ

with the coefficients being [72]

C1;SM
sb ¼ 2.35

ðVtbVtsÞ2
8π2

�
mW

v2SM

�
2

ð59Þ

and [36]

C1
sb ¼

1

128π2M2
ððx�1;23Þ2x21;33 þ 5ðx�3;23Þ2x23;33

þ 2x�1;23x
�
3;23x1;33x3;33Þ: ð60Þ

Among these three terms, when using anarchic partial
compositeness, the one with the factor 5 will dominate the
sum. We get

C1
sb

C1;SM
sb

∼ 300

�
TeV
M

�
2

δ2ϵ4q3ϵ
4
l3ðc�3;23c3;33Þ2: ð61Þ

The most stringent bound is on the imaginary part of the
WC [73]. We assume maximally violating phases of the LQ
couplings, such that their effects on ΔmBs

are restricted to

be at most 20% (95% C.L.). We expect this observable to
play a role, as the value of the WC ratio for δ ∼ 0.2,
ϵq3; ϵl3 ∼ 0.5, and M ∼ 2 TeV is ∼0.18, which is close to
the experimental limit.

J. Leptonic interactions of the Z

We consider the flavor diagonal and flavor violating
interactions of the Z with charged leptons and neutrinos
that receive corrections at loop order; in particular, we
will be interested in the processes Z → τLτL, Z → νLνL,
Z → τμ, Z → μμ. We follow the results of Ref. [36]; see
Ref. [74] for the inclusion of subleading effects.
We consider the interaction terms at zero momentum

transfer,

LZ
int ¼

g
cW

½ðl̄fΓL;lflið0ÞγμPLliÞ þ fL → Rg

þ Γνfνið0Þðν̄fγμPLνiÞ�Zμ; ð62Þ
with g the weak coupling and cW being the cosine of the
Weinberg angle. At one-loop level, the dominant correc-
tions from the LQs are dominated by the contribution
containing the top,

ΓL;lfli ¼ΓSM
L;li

δfiþ
Ncm2

t

32π2

�
V3kx�1;kfV

�
3lx1;li

M2
1

�
1þ log

�
m2

t

M2
1

��

þfS1→S3;x1;iα→x3;iαg
�
; ð63Þ

ΓR;lfli
¼ ΓSM

R;li
δfi −

Ncm2
t

32π2
x�u;3fxu;3i

M2
1

�
1þ log

�
m2

t

M2
1

��
;

ð64Þ

Γνfνi ¼ ΓSM
νi δfi þ

Ncm2
t

16π2
V3kx�3;kfV

�
3lx3;li

M2
3

�
1þ log

�
m2

t

M2
3

��
:

ð65Þ
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Writing these flavor diagonal couplings in terms of the
parameters of the model, we have

ΓL;ττ − ΓSM
L;τ ∼ −0.04ðjc1;33j2 þ jc3;33j2Þδϵ2q3ϵ2l3; ð66Þ

ΓR;ττ − ΓSM
R;τ ∼ −2 × 10−8

�
TeV
M

�
2 jc̃33j2
ϵ2q3ϵ

2
l3

; ð67Þ

ΓL;μμ − ΓSM
L;μ ∼ −0.04ðjc1;32j2 þ jc3;32j2Þδϵ2q3ϵ2l2; ð68Þ

ΓR;μμ − ΓSM
R;μ ∼ −6 × 10−11

�
TeV
M

�
2 jc̃32j2
ϵ2q3ϵ

2
l2

: ð69Þ

The right-handed contributions to the couplings are
heavily suppressed, the left-handed contribution to the
muon coupling is suppressed too, due to the small value
for ϵl2 compared with ϵl3. The SM predictions and the
corresponding measurements can be found in Ref. [75].
Regarding the δΓν bound, there is a recent paper which

gives an updated bound Nν ¼ 2.9963� 0.0074 [76]. By
using the relation Nν ¼ 3þ 4δΓν, we get the bound

δΓν ¼ −0.000925� 0.00185: ð70Þ

The expression in terms of the parameters of the model is

δΓν ∼ −0.09jc3;33j2δϵ2q3ϵ2l3: ð71Þ

For the Z → τμ transition, we have

BrðZ → τμÞ ¼ K
ΓZ

ðjΓL;τμj2 þ jΓR;τμj2Þ; ð72Þ

with ΓZ ¼ 2.5 GeV the total Z width and K ¼ 0.67 GeV.
Replacing with the usual anarchic partial compositeness
relations, we have

ΓL;μτ ∼ −6.9 × 10−4
�
g�TeV
M

�
2

× ϵ2q3ϵl2ϵl3ðc1;33c�1;32 þ c3;33c�3;32Þ ð73Þ

and

ΓR;μτ ∼
1.2 × 10−9c̃1;33c̃�1;32ðTeVM Þ2

ϵ2q3ϵl2ϵl3
: ð74Þ

Joining everything, we obtain

BrðZ → τμÞ ∼ 2.8 × 10−19
ðc̃1;33c̃�1;32Þ2

ð M
TeVÞ4ϵ4q3ϵ2l2ϵ2l3

þ 8.46 × 10−6ðc1;33c�1;32 þ c3;33c�3;32Þ2
× δ2ϵ4q3ϵ

2
l2ϵ

2
l3; ð75Þ

to be compared against an experimental value of 1.2 × 10−5,
at 95% C.L. Looking at its expression, we see that for values
of order ϵl3 ∼ 0.5, ϵq3 ∼ 0.5, ϵl2 ∼ 0.1, M ∼ TeV, the right-
handed contribution to this branching ratio is heavily sup-
pressed with respect to the left-handed one.

K. li → lf γ

These flavor violating decays are produced by operators
OL;R

lhli
of Eq. (34). Following Ref. [36], the LQs give a

contribution to the WCs of these operators at one-loop level
that can be written as

CL
lfli

¼ −
mlfx

�
1;3fx1;3i þmli x

�
u;3fxu;3i

8M2
1

þmtx�u;3fV
�
3kx1;ki

4M2
1

�
7þ 4 log

�
m2

t

M2
1

��

þ 3mlfx
�
3;3fx3;3i

8M2
3

; ð76Þ

with CR ¼ CL† due to Hermiticity. The branching ratio for
the transition is written as

Brðli → lfγÞ ¼
αm3

li
τli

256π4
ðjCL

lfli
j2 þ jCR

lfli
j2Þ: ð77Þ

We want to estimate the size of the transition τ → μγ and
μ → eγ. For the first one, supposing only left-handed S3
couplings dominate, we get

Brðτ → μγÞ ∼ 1.4 × 10−3δ2ϵ4q3ϵ
2
l2ϵ

2
l3jc3;33j2jc3;32j2; ð78Þ

whereas if right-handed couplings dominate, we get

Brðτ → μγÞ ∼ 1.7 × 10−6
�
TeV
M

�
4 ϵ2l2
ϵ2l3

�
c̃233c

2
1;32 þ

�
mμ

mτ

�
2

×

�
ϵl3
ϵl2

�
4

c̃232c
2
1;33

�
: ð79Þ

For this contribution to the branching ratio, we note first
that it has an explicit dependence onM that goes like M−4;
thus, the contribution grows for smaller values of the LQ
masses. Also, we recognize two regimes that contribute to
this quantity. For ϵl2 ≳ ϵl3, the second term is suppressed by

the ratio of muon to tau mass. For ϵl3 ≳
ffiffiffiffiffi
mτ
mμ

q
ϵl2, the second

term starts to dominate.
The experimental bound from Ref. [77] is Brðτ →

μγÞexp < 4.4 × 10−8 at 90% C.L.
In the case of μ → eγ, we use the expressions above,

changing the lepton flavors and me ∼ 511 keV, τμ ∼ 2 μs.
For the left-handed contribution, we get an expression
similar to Eq. (78),
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Brðμ → eγÞ ∼ 7 × 10−3δ2ϵ4q3ϵ
2
l1ϵ

2
l2jc3;32j2jc3;31j2: ð80Þ

However, for right-handed couplings, the contribution is

Brðμ → eγÞ ∼ 8 × 10−6
�
TeV
M

�
4 ϵ2l1
ϵ2l2

�
c̃232c

2
1;31

þ
�
me

mμ

�
2
�
ϵl2
ϵl1

�
4

c̃231c
2
1;32

�
: ð81Þ

The experimental bound is Brðμ → eγÞ < 4.2 × 10−13 [78]
at 90% C.L. The left-handed contribution, taking as an
example similar degree of compositeness of both chiralities
of the electron, ϵl1 ∼ ϵe1 ∼ 7 × 10−4, and other typical
values for the parameters, is of order 3.6 × 10−15. The
right-handed contribution, however, is a bit more compro-
mised. Equation (81) has a minimum for ϵl1=ϵl2 ∼ 0.07,
leading to Brðμ → eγÞ ∼ 4 × 10−8ðTeV=MÞ4. In this setup,
for M ¼ 1 TeV, a cancellation of order 10−5 is required,
otherwise M ≳ 20 TeV. Another possibility is to decouple
the electron mass from partial compositeness, assuming
that its degree of compositeness is much smaller than the
previous estimates and that its mass is generated by
anarchic tiny bilinear interactions of the elementary fer-
mions with the Higgs [57] (see also [55,79] for other related
approaches). In the following, we will assume this to be
the case.

L. li → 3lf

We consider here observables τ → 3μ and μ → 3e,
which have loop level contributions, induced by the
flavor violating Zμτ and Zeμ couplings, and four-lepton
operators [35,80],

Brðli → 3lfÞ
¼ 2.5 × 10−4ðCT

if33 − CS
if33Þ2

¼ 6.25 × 10−5
�
v2SMx1;3ix

�
1;3f

M2
1

þ v2SMx3;3ix
�
3;3f

M2
3

�2

∼ 0.001δ2ϵ4q3ϵ
2
lfϵ

2
liðc�1;3fc1;3i þ c�3;3fc3;3iÞ2: ð82Þ

For τ → 3μ decay, we have i → 3, f → 2 in the expression
above. The experimental bound is Brðτ → 3μÞexp < 1.2 ×
10−8 at 90% C.L. This value, along with the τ → μγ, is
expected to increase in sensitivity by an order of magnitude
in Belle II [81].
For the μ → 3e decay, we set i → 2, f → 1. The

experimental limit at 90% CL is Brðμ → 3eÞexp < 1.0 ×
10−12 [82]. The expected size of this observable now
depends on the size of the mixing to first-generation
leptons, ϵl1. For ϵl1 ∼ ϵe1, δ ∼ 0.02–0.2, ϵq3 ∼ 0.5, and
ϵl2 ∼ 0.2, the size of this branching ratio is at least 2 orders
of magnitude below the experimental limit. For

nonsymmetric mixing, ϵl1 can be taken of order 0.003
or 0.03 if δ ∼ 0.2 or 0.02, respectively. In the case of
negligible linear mixing, this process does give interesting
constraints.

M. LFU in W couplings

The LQs generate contributions to W couplings at one
loop that violate lepton universality. In the present model,
the relevant modifications are for the leptons of the third
generation [35,80],

				 g
W
τ

gWl

				 ¼ 1 − 0.084CT
3333

¼ 1 − 0.084

�
v2SM
4M2

1

jx1;33j2 −
v2SM
4M2

3

jx3;33j2
�

∼ 1 − 0.084δϵ2q3ϵ
2
l3ðjc1;33j2 − jc3;33j2Þ: ð83Þ

The ratio jgWτ =gWl j is measured to be 1.0000� 0.0014
[83] at 95% C.L.

IV. NUMERICAL RESULTS FOR
FLAVOR PHYSICS

We wish to test if the B anomalies and the flavor
constraints detailed above can be made compatible with
an anarchic partial compositeness scenario. For this pur-
pose, we will explore if RKð�Þ and RDð�Þ can be fitted
simultaneously to within 1σ of their experimental values,
with the bounds being satisfied at the confidence levels
specified in the previous section.
The observables depend on different combinations of

the parameters c1;iα, c3;iα, and c̃1;iα; we will refer to those

combinations as ΔðiÞ
O , with O the observable and i an index

labeling the number of independent combinations of thatO.
For example, for RDð�Þ, we have the combinations

Δð1Þ
R
Dð�Þ ≡ jc1;33j2 − jc3;33j2; Δð2Þ

R
Dð�Þ ≡ c1;23c�1;33 − c3;23c�3;33:

ð84Þ

For each observable that has a different combination of the
parameters c1;iα, c3;iα, or c̃1;iα, as we are working under the
assumption of flavor anarchy, we will take all these
coefficients as independent and of the same order. For
particular values of these coefficients, the model can pass
all flavor constraints and simultaneously explain the B
anomalies; however, we will explore whether this happens
for generic Oð1Þ coefficients. Whenever some ΔO is
required to deviate from Oð1Þ, the assumption of anarchic
partial compositeness is in tension with that observable.
Typically, the bounds from flavor observables are expected
to favor ΔO < Oð1Þ, showing the need of some alignment
or tuning, since in the limit of vanishing ΔO the new
physics contributions vanish. On the other hand, an
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explanation of the B anomalies requires sizable ΔR
Dð�Þ and

ΔR
Kð�Þ

, and for some regions of the parameter space, they

can be required to be ΔO > Oð1Þ, deviating from the
assumption of flavor anarchy.
Besides ΔO, the observables depend on δ, defined in

Eq. (37), on the LQ mass M, as well as on the left-handed
mixings of the top and the leptons, since we have used
Eqs. (12) and (13) to fix the size of the other mixings.
To estimate the amount of tuning one expects in theOð1Þ

coefficients contributing to the B anomalies, we proceed in
the following way: for a given point of the parameter space,
we compute which are the values of ΔO that cause the
observables to fall within the 1σ experimental value and the
corresponding C.L. intervals. In those cases where there is
more than one ΔO, as in RDð�Þ or τ → μγ, we consider either
the largest contribution, if they are of different order, or
consider them separately, if their ordering depends on the
particular region of the parameter space. Then we select the
points that can reproduce all the flavor bounds with ΔO of
order 1, allowing for a certain threshold. To do this, we
perform a random scan over the free parameters; we take
ϵq3; ϵl3 ∈ ½0.5; 1�, ϵl2 ∈ ½0.08; 0.25�, δ ∈ ½0.02; 0.2�, and
M ∈ ½1; 3� TeV. Scanning over 200k initial points, we
select the ones that have minðΔOÞ ≥ 0.95, obtaining
∼10k points. There are four observables that have the
smallestΔO and can thus be identified as the most sensitive;
these are ΔmBs

on 35% of the points, followed by gWτ on
28% of the points, followed by τ → μγðRÞ on 23% of the
points, and by τ → 3μ with the remaining 14%. These are
the observables that impose the most stringent bounds on

the parameter space. Then, to estimate the amount of tuning
required to explain the B anomalies, we plot the required
values for ΔR

Dð�Þ and ΔR
Kð�Þ

on these points. We show our

results in the distribution of Fig. 1, where we have truncated
the upper limits of the graph to have a better focus on its
densest region, as the tails of the distribution go to higher
values but with a very small density. In this figure, we see
that explaining RDð�Þ at 1σ level requires some tuning, since
the peak of ΔR

Dð�Þ is in the range 3–6, whereas RKð�Þ can be

explained with ΔR
Kð�Þ

∼ 0.25–1. This result shows that the

former observable is in tension with the flavor constraints.
Similarly, by allowing for higher tuning in the flavor
constraints, that is, allowing their ΔO ∼ 0.05–0.3, one
can take ΔR

Dð�Þ ≃ 1. Besides we find that the distribution

of M is peaked around 1.8 TeV.
We can explain the shape of the lower limit of this region

by looking at what flavor constraint those points corre-
spond to. Let us consider τ → 3μ; we have to check this
observable’s expression along with that of RKð�Þ and RDð�Þ .
We see that τ → 3μ depends on four of the five parameters
in the random scans. Furthermore, we can multiply the
expressions for RKð�Þ and RDð�Þ , taking into account the
lower 1σ limits for the observables. In this product, we then
replace the combination of parameters δ2ϵ4q3ϵ

2
l2ϵ

2
l3 that

saturates the bound in τ → 3μ, getting

Δ
Rð�Þ
K
Δ

Rð�Þ
D
≃
0.49 × 0.083VtbαemΔτ3μ

1.2 × 10−58π
≃ Δτ3μ: ð85Þ

FIG. 1. Distribution of required values for ΔR
Dð�Þ and ΔR

Kð�Þ
for points passing all flavor observables with the other ΔO ≃ 1. The

colored curves show the estimates of the bounds coming from Eq. (85) and below for M ¼ 1.5 TeV. The regions excluded following
those approximations have been shaded.
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This partially explains the shape of the lower limit
as seen in Fig. 1 above. Making a similar analysis
with gWτ , we obtain ΔR

Dð�Þ ≳ 2.5ΔgWτ . The other observ-

ables depend also on M; from ΔmBs
, we obtain

ΔR
Dð�Þ ≳ 1.6MΔ1=2

ΔmBs
, and from τ → μγ we obtain a lower

limit ΔR
Dð�Þ ≳ 18ðTeV=MÞ4ΔR

Kð�Þ
ΔðR0Þ

τ→μγ and a lower limit

ΔR
Dð�Þ ≲ 3.5ðM=TeVÞ4ΔR

Kð�Þ=Δ
ðRÞ
τ→μγ , where the superindi-

ces indicate the different combinations of coefficients
present in the right-handed contribution to this process.
For M ≲ 1.3 TeV, the bounds from τ → μγ are not com-
patible with Δ ≃ 1, whereas gWτ and ΔmBs

give a lower
bound ΔR

Dð�Þ ≳ 2.5.
The previous results show that there is a minimum

amount of tuning, since ΔR
Dð�Þ , expected to be Oð1Þ, must

be of Oð2.5–7Þ when the other ΔO are of Oð1Þ, requiring
some alignment or tuning. We will consider a scenario
referred as minimal tuning, in which ΔR

Kð�Þ
;ΔR

Dð�Þ ≤ 5,
whereasΔO ≥ 0.3. In the case of the B anomalies, we plot a
contour line for those points that require ΔR

Dð�Þ ¼ 5 and/or
ΔR

Kð�Þ
¼ 5 in order to explain RDð�Þ;exp or RKð�Þ;exp, and we

show in green the region where any of those ΔO are
required to be larger than 5. For the other observables, this
is done by plotting a contour line with ΔO ¼ 0.3, while
in red we show the region with ΔO < 0.3. In the white
region, the observables can be reproduced with minimal
flavor tuning.
In Fig. 2, we fix δ ¼ 0.1 and M ¼ 2 TeV, which are

expected values according to the estimates of Sec. II. We
also fix in each case one of the compositeness fractions ϵf
and scan along the other two. We include all three of those
sections for a better picturing of this dependence. Looking
at the first section of Fig. 2, in the plane ϵl3 − ϵq3, we see
that the allowed region is limited by τ → 3μ, ΔmBs

, and
RDð�Þ . As can be seen from Eqs. (82), (61), and (38), the
window moves with δ and powers of ϵf. As τ → 3μ
depends quadratically on δ, this limit moves faster with
increasing δ than the others. As the dependence is on
positive powers of these ϵf, an increase in δ will translate
into a decrease of the allowed values of these coefficients,
thus lowering the location of the window. The remaining
fixed parameters in this figure are ϵl2 and M. Although not
all the quantities depend explicitly on the LQ massM, there
are those that do in different ways. For example, Eq. (61)
shows that ΔmBs

depends quadratically on M, whereas
τ → μγðRÞ has anM−4 dependence shown in Eq. (79). This
means that the same figure, with a smaller value forM, will
have a less stringent bound imposed by ΔmBs

, but a much
more restrictive bound imposed by τ → μγðRÞ. The
dependence on ϵl2 can be seen by looking at the other
sections in Fig. 2, or by looking at the expressions above.
For example, as RKð�Þ depends on ϵl2, we see how a lower
value of ϵl2 will make the bound imposed by RK on the

minimum ϵq3 to increase, eventually becoming one of the
bounds on the allowed window. The same reasoning can be
applied to the other sections on the figure. In the plane
ϵl2 − ϵl3, we can see the two limits imposed by the
two contributions to τ → μγðRÞ, where one dominates
for ϵl2 ≳ ϵl3 and the other in the limit ϵl3 ≫ ϵl2. These
bounds are not as relevant for M ¼ 2 TeV; however,
decreasing the value of the LQ mass to 1 TeV makes
them become two of the most important bounds for the
allowed window, surpassing the limits imposed by RKð�Þ

and by τ → 3μ.
The bounds will change in the future, as the precision of

experiments improve, particularly interesting is τ → 3μ.
For instance, in Belle II, the expected sensitivity for the
branching ratios in LFV searches in τ decays improves by
either 1 or 2 orders of magnitude [81]. We expect

Brðτ → μγÞ ¼ 4.4 × 10−8 → 5 × 10−9 ð90%C:L:Þ;
Brðτ → 3μÞ ¼ 1.2 × 10−8 → 3 × 10−10 ð90%C:L:Þ:

ð86Þ

We can then check how the new bounds look on our two-
dimensional scans in ϵf space. For example, for ϵl2 ¼ 0.15,
we show the current and the expected bounds, side by side
in Fig. 3. There we use a different value for one of the
parameters, compared with Fig. 2, δ ¼ 0.2. On the left,
we show how some of the curves get modified by the
enlargement of δ, whereas on the right we show the
expected increase in sensitivity. The limit imposed by
τ → 3μ rules out the selected window, meaning that either
a higher tuning would be needed to pass the constraints, or
that some violation of this quantity would have to be
observed. We can tune some parameters to recover the
window, for instance, by lowering ϵl2 ¼ 0.08 and increas-
ing M ¼ 3 TeV; we get a small window for ϵl3 ≃ 1. In this
case, the window is small and located around ϵq3 ≃ 0.3, a
somewhat low degree of compositeness compared with the
usual scenarios of composite Higgs models.

V. SPECTRUM OF RESONANCES

In this section, we describe the phenomenology of the
composite model, focusing on the spectrum of resonances,
both spin 1 and 1=2. The scale of the masses of these
resonances is m� ≃ g�f ∼ 10–30 TeV. The quantum num-
bers of the resonances are set by the group theory alone in
the case of the spin-1 resonances, or by the embeddings of
the SM fermions in irreducible representations of the global
symmetry group of the SCFT.
Before describing those resonances, we analyze very

briefly the LHC phenomenology of the spin-0 states. Pair
production of S1 and S3 by QCD interactions depend
only on the LQ masses to leading order, whereas single
production is more model dependent, being subleading
for masses below ∼1.1–1.5 TeV [35]. Given the flavor
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structure of the couplings to SM fermions, the LQs decay
predominantly to fermions of the third generation; more-
over, the charge −1=3 states decay to bν and tτ with similar
branching fractions [84]. ATLAS [85,86] and CMS [87]
have searched for these LQs in different final states, CMS
taking into account contributions from double and single
production, in the last case with couplings of order 1.5–2.5,
that are of similar size as the couplings expected in the
present model. Those analysis exclude masses below
∼1.1–1.2 TeV, leading to the most stringent bounds today
from direct searches. Although in our model some bounds
from flavor physics require masses above the limits from

LHC mLQ ≳ 1.5 TeV, there are two LQs with charge −1=3
that could add and give a larger cross section than in the
case of just one state, perhaps strengthening the bounds.
This interesting situation deserves a careful analysis that is
beyond the scope of this paper.

A. Spin-1 resonances

To obtain the quantum numbers of the spin-1
resonances, we use that Adj½SOð10Þ × SOð5Þ� ¼
ðAdj½SOð10Þ�; 1Þ ⊕ ð1;Adj½SOð5Þ�Þ, and we decompose
these adjoint representations under the SM symmetry

FIG. 2. Scans in each pair of compositeness fraction ϵf for fixed δ ¼ values.

LEANDRO DA ROLD and FEDERICO LAMAGNA PHYS. REV. D 103, 115007 (2021)

115007-16



group. Regarding the SO(5) adjoint representation, it is as
in the MHCM, leading to resonances transforming under
GSM as

ð1; 3Þ0 þ ð1; 1Þfþ1;0;−1g þ ð1; 2Þ�1
2
: ð87Þ

Thus, before EWSB, there are multiplets that transform as
the Ws and B of the SM, along with new states trans-
forming as charged weak doublet and singlet. After EWSB,
we get states with charges �1 and 0, similar to heavy
resonances of W and Z bosons.
When looking at the SO(10) adjoint representation, using

Eqs. (4), (6), and (9), we get the following representations
under GSM for the remaining vectorial resonances:

ð1; 3Þ0 þ ð3; 1Þ−1
3
þ ð3; 3Þ−1

3
þ ð1; 1Þ0 þ ð3; 1Þ2

3

þ ð8; 1Þ0 þ ðH:c:Þ: ð88Þ

Here we recognizeW-like, Z-like, and gluonlike resonances,
along with three representations transforming as color
triplets and charged. If we look at their quantum numbers,
we can identify them with LQs as

ð3; 1Þ−1
3
→ Ū1;

ð3; 1Þ2
3
→ U1;

ð3; 3Þ−1
3
→ X: ð89Þ

The state transforming as ð3; 3Þ−1=3, which we call X, does
not couple to the SM fermions through d ¼ 4 operators, and
hence all possible interactions will be suppressed by powers

of a higher scale. At the same order, the LQ Ū1 only has
interactions involving right-handed neutrinos νR, whereas
U1 has coupling with the doublets qL and lL. However, if we
look at the SUð2ÞA × SUð2ÞB structure of the representa-
tions, we see there is no way to couple U1 to both qL and lL
at tree level, without further insertions of fields. This is
because, under SUð2ÞA × SUð2ÞB, U1 ∼ ð1; 1Þ, whereas
qL ∼ ð2; 1Þ and lL ∼ ð1; 2Þ; hence, there is no singlet
combination when multiplying these three fields.
We consider now the decay of these LQs. They are

embedded in two different representations of SOð6Þ: U1 is
in 15, whereas Ū1 and X are in the 6. The lowest
dimensional operator respecting the H symmetry that
allows the decay of U1 requires one insertion of a scalar
LQ. Using that for SO(6): 4 × 4 × 15 × 6 ⊃ 1, the follow-
ing operators can be considered:

O6
U ¼ ðq̄cLσμνlLÞS1∂ ½μUν�

1 ; Õ6
U ¼ ðq̄cLσμνσalLÞSa3∂ ½μUν�

1 :

ð90Þ

The decay into SM particles proceeds then through a scalar
LQ, with a final state containing four SM fermions:
U1 → q̄ l̄ S†1;3 → q̄q̄0l̄l̄0.
Regarding the LQs present in representation ð6; 2; 2Þ, we

can write dimension-5 operators,

O5
Ū ¼ ðq̄cLσμνlLÞ∂ ½μŪν��

1 ; O5
X ¼ ðq̄cLσμνσalLÞ∂ ½μXν��

a :

ð91Þ

FIG. 3. Left panel: current bounds. Right panel: expected increase in sensitivity for LFV in τ decays.
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These two other states decay into a quark and a lepton,
without a scalar LQ insertion.
The WCs of these operators are expected to be generated

at loop level, requiring also insertions of the mixing factors
ϵqϵl, that are dominated by those of the third generation;
thus, the final fermions are preferentially of the third
generation.
We can investigate the effect of these operators on the

phenomenology by integrating out the spin-1 states and
estimating the size of their contributions to other WCs.
Starting from the Lagrangian for a massive Ū1 and the
interactions given by cŪO

5
Ū, at low energies, we get the

effective dimension-8 interaction,

Lqlql ¼ −
3

2

c2Ū
M2

Ū1

∂μðq̄cLσμνlLÞ∂ρðq̄cLσρνlLÞ; ð92Þ

that is expected to be suppressed compared with the
effect of dimension-6 operators. To estimate its effect on
meson physics, one has to make use of Fierz identities to
transform the Lorentz structure into the more familiar
ðq̄LMqÞðl̄LMlLÞ. This is a somewhat involved process,
as the matrix structure is not the usual σμνσμν one, this one
having two free Lorentz indices that are contracted with
derivatives. Although the analysis of dimension-8 operators
is beyond the scope of this work, one can make an estimate
of the size of their WCs assuming that the energies are
of order GeV, obtaining a coefficient ð∂Þ2c2Ū1

=M2� ∼
ðGeVÞ2c2Ū1

=M2�. These WCs can be compared with those

generated by the scalar LQs for dimension-6 operators at
tree level, that are of order ∼x2=M2

1;3. Assuming that cŪ is
generated at loop level cŪ ∼ ðg�=4πÞ2g�ϵqϵl=M�, one can
estimate the ratio to be

�
g�
4π

�
4
�
GeV
M�

�
2
�
M1;3

M�

�
2

∼ 1.06 × 10−12
�
g�
4

�
4
�
M1;3

TeV

�
2
�
10 TeV
M�

�
4

: ð93Þ

If the operator O5
Ū were generated at tree level, then this

ratio would be enhanced by a factor ð4π=g�Þ4, giving a ratio
of ∼10−10. We therefore can expect the effect of the vector
LQs on the meson phenomenology to be suppressed, since
their interactions with the SM fermions arise from operators
of dimension 5 or 6.

B. Fermionic resonances

In the case of fermion fields, one can proceed in a similar
way to study their quantum numbers, decomposing their
representations under GSM.

For ð16; 5Þ, we obtain

ð16; 5Þ ⊃ ð3; 2Þ1
6
þ ð1; 2Þ−1

2
þ ð3; 1Þf2

3
;−1

3
g þ ð3; 3Þf2

3
;−1

3
g

þ ð1; 1Þf0;−1g þ ð1; 3Þf0;−1g þ H:c:; ð94Þ

leading to massive resonances with the same quantum
numbers as the SM fields: qL, lL, uR, dR, lR, as well as a
singlet. Besides these states, we find fields similar to uR,
dR, lR, and νR, with the exception that they transform as
triplets under SUð2ÞL, instead of singlets. This gives rise,
after EWSB, to states with exotic charges, the color triplets
with Q ¼ 5=3;−4=3, and the color singlet with Q ¼ −2.
When decomposing ð144; 5Þ under the SM group, we

find a set of fields having, under GSM, the same properties
appearing in ð16; 5Þ. Besides them, with the appearance of
representations ð4; 3; 2Þ and ð4̄; 2; 3Þ, we get similar states
but forming different multiplets under SUð2ÞL. For exam-
ple, we get a quarklike state with quantum numbers
ð3; 4Þ1=6, along with other states that transform as singlets,
triplets, and quintuplets under the weak group. Finally,
when observing the representations that come from the
decomposition of the 20 of SO(6), we get

ð3; 1Þf2
3
;−1

3
g þ ð3; 2Þ1

6
þ ð3; 3Þf2

3
;−1

3
g þ ð3̄; 1Þf4

3
;1
3
g

þ ð3̄; 2Þ5
6
þ ð3̄; 3Þf4

3
;1
3
g þ ð6̄; 1Þf2

3
;−1

3
g þ ð6̄; 2Þ1

6

þ ð6̄; 3Þf2
3
;−1

3
g þ ð8; 1Þf0;−1g þ ð8; 2Þ−1

2
þ ð8; 3Þf0;−1g:

ð95Þ

The 20 contains the conjugate representations, that,
besides the aforementioned states, leads to a new exotic
color triplet with Q ¼ −7=3. This state decays into another
exotic-charged state of Q ¼ −4=3, which then decays
into SM states. In addition, we find other states that
transform as a sextet of SUð3Þc. Given the algebra of
SUð3Þ∶ 3̄ × 3̄ ¼ 3þ 6̄, a 6̄2=3 decays into two color anti-
triplets: a scalar LQ and a SM quark, leading to a final state
with two quarks and one lepton after the decay of the scalar
LQ. Notice that these interactions are allowed by the
SOð6Þ × SUð2ÞA × SUð2ÞB subgroup of SO(10), since
20 × 6 × 4̄ ⊃ 1; thus, an invariant can be formed with a
resonance in a sextet, one LQ, and one SM antiquark. The
treatment for the octet is similar; it decays through an
intermediate scalar LQ. The octet with Q ¼ −2 decays
through a LQ of charge −4=3 and an antitop.

VI. CONCLUSIONS

We proposed a model to explain the B anomalies, inves-
tigating its capacity to simultaneously pass the bounds from
other flavor observables. We considered a strongly coupled
theory based on a global symmetry group SOð10Þ × SOð5Þ,
spontaneously broken to SOð6Þ × SUð2ÞA × SUð2ÞB ×
SOð4Þ by the strong dynamics. This pattern of symmetries
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has several properties: it contains the SM gauge symmetry
group, it develops only the LQs S1 and S3, and the Higgs, as
NGBs, and it contains a custodial symmetry. We determined
the embeddings of the SM fermions into the larger symmetry
group, selecting by phenomenological reasons (16; 5) and
ð144; 5Þ, as well as their conjugates. We showed that the
embedding of all the fermions in (16; 5) and its conjugate
results in left-handed LQ interactions that are equal for S1
and S3; thus, they could not accommodate simultaneously the
flavor constraints and the B anomalies. We also showed that
mixing the lepton doublet with a 144 × 5 can solve this
problem. Moreover, mixing it with resonances in both
representations allows for couplings with S1 and S3 that
are independent. We considered an anarchic flavor structure
of the SCFT that, along with partial compositeness, gives a
rationale for the SM fermion spectrum and mixings, and
contains a Glashow-Iliopoulos-Maiani-like mechanism sup-
pressing flavor transitions. As is well known, this flavor
framework does not pass some bounds from meson mixing;
thus, we assumed a scale of resonances of order 10–30 TeV,
increasing the amount of tuning required for the EW scale,
that is estimated to be at least of order 0.1%–1%.
We considered an effective description of the dynamics

where only the NGBs and the SM fields are kept, armed
with it we showed how to compute the one-loop potential,
estimating the masses of the leptoquarks in the range of
few TeV. We also computed the Higgs potential, which is
similar to the MCHM based on SO(5)/SO(4). Besides,
we estimated the corrections of the heavy resonances to
the ZbLb̄L coupling, which, due to the large degree of
compositeness of the third-generation quarks, gets correc-
tions that are near the saturation of the bound. This signals
that certain amount of tuning could be required for this
observable. We also discussed briefly the proton decay that
is forbidden by a discrete symmetry.
We estimated the size of the contributions of the scalar

LQs to the B anomalies and flavor observables that pose the
most stringent constraints; some of these contributions arise
at tree level and others at loop level. For that analysis, we
used the hypothesis of anarchic partial compositeness. We
performed scans in the degrees of compositeness of second
and third generation of leptons, the third generation of
quarks, the masses of the LQs, and the strength of the
coupling between composite resonances. We found that a
tension arises between an explanation of RDð�Þ and some
flavor observables, mostly τ → 3μ, but also Zνν̄ and
τ → μγ, that requires a tuning of order 10%–25%. We
defined a window in parameter space with “minimal
tuning”; this window requires sizable degrees of compos-
iteness for third-generation lL and qL, but the amount of
compositeness is also bounded from above by some flavor
constraints, particularly τ → 3μ andΔmBs

. We showed how
some of these flavor constraints are expected to change in
the future, introducing even more tension with RDð�Þ , and
also the change in this window accordingly. We also

considered observables μ → 3e and μ → eγ. We found
that the former can be easily accommodated by our model,
while the latter comes into conflict with the expected
degree of compositeness for the electron. This can be
solved with the introduction of small bilinear couplings,
that for the first generation allow to decouple its mass from
its degree of compositeness.
Several authors considered the possibility to explain also

the anomalous magnetic moment of the muon with the
presence of scalar leptoquarks. In anarchic partial com-
positeness, the estimate for the correction to this quantity is
independent of the fermion degree of compositeness,
depending only on the mass of the LQs. An explanation
of the experimental result would require a rather small LQ
mass, M ≲ 250 GeV, incompatible with direct search
bounds, or a higher amount of tuning in the anarchic
coefficients.
We analyzed the spectrum of resonances, finding heavier

copies of SM particles, as well as exotic states. Regarding
vector resonances, we found resonances of the W and Z
bosons, as well as heavy gluons, plus three colored states
that can be associated with leptoquarks. However, none of
these leptoquarks can couple to SM fermions with d ¼ 4
operators, either because of their quantum numbers, or
because of the SUð2ÞA × SUð2ÞB symmetry. We showed
the smallest dimensional operators that allow these lep-
toquarks to decay into SM particles. Regarding fermionic
resonances, besides the states with the same charges as
the SM ones, there are exotic states with charges
−7=3;−4=3; 5=3, that are color triplets or sextets, as well
as color octets and singlets with integer charges.
Finally, let us comment on a few possible directions that

could be investigated. We estimated many quantities
assuming generic properties of the theory of resonances;
it would be interesting to compute them by considering
specific realizations, as discrete composite models, or extra
dimensions. On a different direction, since some of the
leading constraints are related with modifications of Z
couplings, it would be interesting to explore other repre-
sentations of fermions that could protect them and even-
tually relax the tension between the anomalies and some of
the flavor constraints.
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APPENDIX A: EMBEDDINGS OF lL
AND LQ COUPLINGS

Putting qL in (4; 2; 1) and lL in (4; 1; 2) is problematic
when constructing the interaction term for the LQs, because
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the Lagrangian couples S1 and S3 to qLlL with equal
strength. This is in Eq. (14); we get that x1; ¼ x3;. This
alignment is insufficient when trying to explain the B
anomalies: for example, it gives no correction to RDð�Þ , as
can be seen in Eq. (38).
To solve this problem, we have to consider different

fermion representations. First, we have to understand why
we get the same couplings for S1 and S3 when using
the representations above. It is enough to look at the
SUð2ÞA × SUð2ÞB representations, as the color contraction
is straightforward between q and S, and regarding SO(5)
they are all in trivial representations.
In the scheme previously defined, we have the LQ

belonging in a bidoublet Sαβ ∼ ð2; 2Þ, whereas quark and
lepton are embedded in a single doublet qα0 ∼ ð2; 1Þ,
la;β0 ∼ ð1; 2Þ. To write an invariant, we start with the
combination

Sαβqα0 la;β0Gαβα0β0 :

We use the following Clebsch-Gordan coefficients for
2 × 2 → 1þ 3:

C0
αα0 ¼

δα↑δα0↓ − δα↓δα0↑ffiffiffi
2

p ;

C1;k
αα0 ¼ δk;1δα↑δα0↑ þ δk;0

δα↑δα0↓ þ δα↓δα0↑ffiffiffi
2

p þ δk;−1δα↓δα↓;

(where we represent spin-half with up and down arrows
and integer spin with the integer k). As we are combining
doublets, the invariant combination we have is
Gαβα0β0 ¼ C0

αα0C
0
ββ0 . Replacing in the above formula,

Sαβqα0 la;β0Gαβα0β0

¼ 1

2
ðS↑↑la;↓q↓ þ S↓↓la;↑q↑ − S↑↓la;↑q↓ − S↓↑la;↓q↑Þ:

We can rewrite these LQ states in terms of the triplet and the
singlet,

S↑↑ ¼ S13; S↓↓ ¼ S−13 ;

S↑↓ ¼ S03 þ S1ffiffiffi
2

p ; S↓↑ ¼ S03 − S1ffiffiffi
2

p :

By doing this, we get (omitting an overall factor of 1
2
)

S13la;↓q↓ þ S−13 la;↑q↑ − S03
la;↑q↓ þ la;↓q↑ffiffiffi

2
p

− S1
la;↑q↓ − la;↓q↑ffiffiffi

2
p :

And here we see the same size of coupling for the SU(2)
singlet and triplet.

Let us consider now a different embedding for the lL that
can differentiate between S1 and S3 couplings. We start by
considering the representation (3; 2). We write lb;kβ0 for the
degrees of freedom of a field transforming in that repre-
sentation. If we take the full representation to be
(4; 3; 2; 1; 1), the dynamical degrees of freedom of this
lepton doublet will be those of 2 ∈ 3 × 2.
Once again, we construct an invariant using q, lb and S.

We write

Sαβqα0lb;kβ0G̃αβα0β0k:

The way to combine these fields into an invariant is now by
the use of the CG∶ 2 × 2 → 3. We also have to make use of
a matrix corresponding to a π rotation around the y axis
(which corresponds to the Clebsch-Gordan (CG) for
3 × 3 → 1),

Rkk0 ¼

0
B@

0 0 1

0 −1 0

1 0 0

1
CA;

in order to correctly contract two triplets. Now, we write the
combination as

G̃αβα0β0k ¼ Rkk0C
1;k
αα0C

0
ββ0 :

By replacing these matrices, we get

�
lb;1β0S↓βq↓ þ lb;−1β0S↑βq↑ − lb;0β0

S↑βq↓ þ S↓βq↑ffiffiffi
2

p
�
C0
ββ0 :

Again taking away an overall factor of 1
2
, we have

S↑↑ð
ffiffiffi
2

p
lb;−1↓q↑ − lb;0↓q↓Þ þ S↓↓ðlb;0↑q↑ −

ffiffiffi
2

p
lb;1↑q↓Þ

þ S↑↓ðlb;0↑q↓ −
ffiffiffi
2

p
lb;−1↑q↑Þ

þ S↓↑ð
ffiffiffi
2

p
lb;1↓q↓ − lb;0↓q↑Þ:

We can drop out the fields lb;−1↓ and lb;1↑ as they are the
highest (and lowest) spin components of the fourplet of
SUð2ÞL of spin 3=2. Regarding the other components, we
can use CG table to write

lb;1;↓ ¼
ffiffiffi
2

3

r
l↑; lb;0;↑ ¼ −

1ffiffiffi
3

p l↑;

lb;−1;↑ ¼ −
ffiffiffi
2

3

r
l↓; lb;0;↓ ¼ 1ffiffiffi

3
p l↓:

Here we only turn on the dynamical d.o.f. belonging to the
doublet of SUð2ÞL. Using this and rewriting the LQ states
in terms of S1;3, we arrive to
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1ffiffiffi
3

p
�
−S13l↓q↓ − S−13 l↑q↑ þ S03

l↑q↓ þ l↓q↑ffiffiffi
2

p

− 3S1
l↑q↓ − l↓q↑ffiffiffi

2
p

�
:

Comparing to the previous formula, we find both a relative
sign difference and a different weight for the couplings of
S1 and S3. This extra representation then allows us to have
independent couplings for each of the LQs. If we name the
couplings for la and lb as xla and xlb , we have

x3 ∝ xla −
xlbffiffiffi
3

p ; x1 ∝ xla þ
ffiffiffi
3

p
xlb : ðA1Þ

Thus, we see how two embeddings for the lepton doublet
allow for independent couplings for S1 and S3 LQs.

APPENDIX B: POTENTIAL

In this appendix, we describe some of the details involved
in the calculation of the pNGB potential. Starting from
Eq. (18), we have the definition of the Coleman Weinberg
potential. Wewant to calculate the fermionic contributions to
the effective potential, particularly of the scalar LQs.
However, as the quantity log det KðΠÞ does not have in
general a closed form, we must expand the potential in
powers of the pNGB. Moreover, as this potential contains a
constant divergent term, we regularize it by subtracting the
same expression but evaluated at Π ¼ 0. Here we can make
use of an operator identity

log det KðΠÞ − log det Kð0Þ
¼ Tr log KðΠÞ − Tr log Kð0Þ ¼ Tr log KðΠÞK−1ð0Þ:

ðB1Þ

In order to expand in powers of the pNGB fields, we can
introduce a factor ω accompanying the scalar fields,
Π → ωΠ, and expand the matrix K in powers of ω; at
the end of the calculation, we set ω ¼ 1,

KðΠÞ ¼
X
n≥0

ωnKn: ðB2Þ

In this manner, one can expand the expression above in
powers of ω. As we are interested mainly in the quadratic
terms, for the leptoquark masses, we can write

Tr log ðKðΠÞK−1ð0ÞÞ
¼ ωTrðK̃1Þ þ ω2TrðK̃2 − K̃2

1=2Þ þOðω3Þ; ðB3Þ

where for briefness we have defined K̃n ≡KnK−1
0 . In the

same way, one can write all the higher order interaction
terms. This way, the problem of expanding the potential in
powers of the pNGB fields reduces in expanding the
effective Lagrangian in Eq. (17), writing the corresponding
matrices, and taking traces. The linear term in the potential is
zero, because no invariant can be formed by a single field.
We choose a basis for writing these matrices

fucL; dcL; ucR;lL; νLg, with c being a color index, obtaining
11 × 11 matrices. We choose these degrees of freedom
because they have the largest mixing angles and thus the
highest contribution to the potential.
In the following, we will change ΠrH

ff0 ðpÞ → =pΠrH
ff0 ðpÞ

for correlators involving elementary fermions with the
same chirality.
For the masses of the LQs, defined according to Eq. (19),

we get

M̃2 ¼
Z

d4p
ð2πÞ4

� Πrla
lala

− Πr̄q
lala

Zl þ Πrla
lala

þ Π
rlb
lblb

þ 3
Πrq

qq − Πr̄q
qq

Zq þ Πrq
qq

þ 3
Πru

uu − Πr̄ea
uu

Zu þ Πru
uu

þ ðΠrla
qla

− Πr̄q
qla
Þ2

2ðZl þ Πrla
lala

þ Π
rlb
lblb

ÞðZq þ Πrq
qqÞ

�

ΔM2
1 ¼

Z
d4p
ð2πÞ4

�
33Π

reb
lblb

þ 10Πð20;1;2;2;2Þ
lblb

þ 5Πð4̄;2;3;1;1Þ
lblb

− 48Π
rlb
lblb

9½Zl þ Πrla
lala

þ Π
rlb
lblb

�
þ ð45 − 36

ffiffiffi
5

p ÞðΠr̄q
qlb
Þ2 þ 36

ffiffiffi
5

p
Πr̄q

qlb
Πrla

qla

72ðZl þ Πrla
lala

þ Π
rlb
lblb

ÞðZq þ Πrq
qqÞ

�

ΔM2
3 ¼

Z
d4p
ð2πÞ4

�Πreb
lblb

þ 10Πð20;1;2;2;2Þ
lblb

þ 5Πð4̄;2;3;1;1Þ
lblb

− 16Π
rlb
lblb

Zl þ Πrla
lala

þ Π
rlb
lblb

þ ð5þ 12
ffiffiffi
5

p ÞðΠr̄q
qlb
Þ2 − 12

ffiffiffi
5

p
Πr̄q

qlb
Πrla

qla

72ðZl þ Πrla
lala

þ Π
rlb
lblb

ÞðZq þ Πrq
qqÞ

�
: ðB4Þ

When calculating the potential for the Higgs component that acquires a VEV, the pNGB matrices can be calculated to all
orders in this field. Hence, we can calculate the one-loop potential to all orders in v. We can write the following quadratic
and quartic coefficients in Eq. (24) as integrals of the fermionic correlators:
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α ¼
Z

d4p
ð2πÞ4

�
4ðΠrea

la
þ Π

reb
lb

− Πrla
la

− Π
rlb
lb
Þ

Zl þ Πrla
la

þ Π
rlb
lb

−
12ðΠrq

q − Πru
q Þ

Zq þ Πrq
q

−
3

2

ðΠrq
qu − Πru

quÞ2
ðZq þ Πrq

q ÞðZu þ Πru
u Þ

þ 3

2

ðΠrq
u − Πru

u Þ
ðZu þ Πru

u Þ
�

β ¼
Z

d4p
ð2πÞ4

�
2ðΠrea

la
þ Π

reb
lb

− Πrla
la

− Π
rlb
lb
Þ2

ðZl þ Πrla
la

þ Π
rlb
lb
Þ2

þ 6ðΠrq
q − Πru

q Þ2
ðZq þ Πrq

q Þ2
þ 3

16

ðΠrq
u − Πru

u Þ2
ðZu þ Πru

u Þ2 þ 3

16

ðΠrq
qu − Πru

quÞ4
ðZq þ Πrq

q Þ2ðZu þ Πru
u Þ2

−
3

8

ðΠrq
qu − Πru

quÞ2ðΠrq
u − Πru

u Þ
ðZq þ Πrq

q ÞðZu þ Πru
u Þ2

−
2

3

ðΠrq
qu − Πru

quÞ2ðΠru
q − Πrq

q Þ
ðZq þ Πrq

q Þ2ðZu þ Πru
u Þ

�
: ðB5Þ

APPENDIX C: GROUP REPRESENTATIONS

In this appendix, we briefly comment on the represen-
tations used in the calculations above and on how to
construct some of those representations. In this work, we
use a group consisting of the product of two groups, SO(10)
and SO(5). Regarding SO(5), we concern ourselves with
the fundamental and the adjoint representations, whereas
for the SO(10) factor we also have spinorial representations
16, 144 and their conjugates. The generators of an
SOðNÞ group in the fundamental representation can be
parametrized in a simple fashion by a set of matrices
fðT lmÞjk; l < m;m ¼ 2;…; Ng,

ðT lmÞjk ¼ iðδljδmk − δlkδmjÞ: ðC1Þ

The adjoint representation can be constructed from the
structure constants, or also by using the generators of the
algebra as a basis for the vector space. As SOðNÞ has
NðN − 1Þ=2 generators, one defines a vector transforming
in adjoint representation as a linear combination of said
generators.
More interesting is how to build the spinorial represen-

tations 16 and 16. This can be achieved by constructing
a 32-dimensional Clifford algebra of matrices Γa,
a ∈ f1…10g. These Γ matrices can be built by tensor
products of five Pauli matrices. They follow a simple
structure as

Γ1 ¼ σ2 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3; Γ6 ¼ −σ1 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3;

Γ2 ¼ I ⊗ σ2 ⊗ σ3 ⊗ σ3 ⊗ σ3; Γ7 ¼ −I ⊗ σ1 ⊗ σ3 ⊗ σ3 ⊗ σ3;

… …

Γ5 ¼ I ⊗ I ⊗ I ⊗ I ⊗ σ2; Γ10 ¼ −I ⊗ I ⊗ I ⊗ I ⊗ σ1: ðC2Þ

One also needs to define Γ11 ≡ ð−iÞ5Qa Γa, which anti-
commutes the other ten matrices. With these matrices, one
can build the generators in the spinorial representation by
use of the commutators

Σab ¼
i
4
½Γa;Γb�: ðC3Þ

Now this produces 32-by-32 matrices which we need to
disentangle into representations 16 and 16. We can do this
by noting that Γ11 commutes with all generators, and its
eigenvalues are �1. Thus, by diagonalizing Γ11, we get
block diagonal generators Σab corresponding to both
representations [88].
Finally, in order to have different qLlLS1;3 couplings, we

need to consider representation 144. One way to construct
this representation is by the multiplication of smaller
representations. We find the following product is the
smallest that contains this representation:

16 × 10 → 144þ 16: ðC4Þ

We start from these two representations; we have matrices

fTð10Þ
a g and fTð16Þ

a g. We construct the product representa-
tion of this algebra by taking the Kronecker product
between these matrices and the identity matrix,

Tð160Þ
a ¼ Tð10Þ

a ⊗ 1ð16Þ þ 1ð10Þ ⊗ Tð16Þ
a : ðC5Þ

These matrices generate the algebra in a reducible repre-
sentation of dimension 160. We need to split them into
two blocks corresponding to irreducible representations
(irreps) 144 and 16. This amounts to finding the two
orthogonal subspaces corresponding to these irreps. One
way of finding these subspaces is by using the quadratic
Casimir. It so happens that the eigenvalues of the quadratic
Casimir of these two representations are distinct. Thus, we
write this Casimir element and then diagonalize it,
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C2 ≡
X
a

Tð160Þ
a Tð160Þ

a → UcC2U
†
c ¼ Cdiag

2 : ðC6Þ

This unitary transformation is the one that defines the two
orthogonal subspaces and thus makes each of the gener-
ators to split into the two blocks corresponding to each one
of the irreps,

UcT
ð160Þ
a U†

c ¼ Tð144Þ
a ⊕ Tð16Þ

a : ðC7Þ

In this manner, one can easily build the 144-dimensional
representation of SO(10).
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