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We report on a mechanism to optimize the generation of steady-state entanglement in a system of coupled
qubits driven by microwave fields. Due to the interplay between Landau-Zener-Stückelberg-Majorana pumping
involving three levels and a subsequent fast relaxation channel, which is activated by tuning the qubits-reservoir
couplings, a maximally entangled state can be populated. This mechanism does not require the fine tuning of
multiphoton resonances but depends on the sign of the qubit-qubit coupling. In particular, we find that by a
proper design of the system parameters and the driving protocol, the two-qubit steady-state concurrence can
attain values close to 1 in a wide range of driving amplitudes. Our results may be useful to gain further insight
into entanglement control and manipulation in dissipative quantum systems exposed to strong driving.
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I. INTRODUCTION

The creation of on-demand entangled states for cou-
pled qubit systems exposed to dissipative environments is a
challenging requirement to be fulfilled for most quantum op-
erations. It is thus crucial to study the generation and control
of entanglement in open quantum systems. Several proposals
have shown that noise and coupling to the environment can
be used in certain situations to obtain steady-state entangle-
ment from dissipative processes. Besides the specific design
of the qubit-qubit interaction, strategies based on engineer-
ing the quantum reservoir or the system-reservoir coupling
in order to stabilize entanglement and to achieve quantum
controlled state preparation have been tested [1–11]. These
approaches require an external coherent driving field, and
following this route two different regimes have been explored
so far.

For weak resonant driving, experimental demonstrations of
entanglement stabilization are based on tailoring the relax-
ation rates in order to generate a nontrivial nonequilibrium
dynamics which leads to a highly entangled steady state.
Examples of these strategies have been followed in atomic en-
sembles [4], trapped ions [3,5,9], and superconducting qubits
[7,8,10,12,13] and in a general basis involve three levels and
the tuning of specific resonances among them. More recently,
Ref. [14] proposed a frequency modulation of a periodically
pumped laser to achieve an accelerated formation of dissipa-
tive entangled steady state in Rydberg atoms.

For nonresonant and large-amplitude periodic drivings, a
mechanism relying on the amplitude modulation of the pe-
riodic (ac) signal was recently proposed for generating dissi-
pative steady-state entanglement in a solid-state qubits system
interacting with a thermal bath [15]. In analogy to well-known
protocols used to study Landau-Zener-Stückelberg-Majorana
(LZSM) interferometry, multiphoton resonances [16–25], and

bath-mediated population inversion [26–29] in two-level sys-
tems, entanglement in the steady state has been induced and
tuned by changing the amplitude of the ac field in a system
composed of two driven and coupled superconducting qubits.

Interestingly, and depending on the relevant time scales,
three different scenarios for entanglement evolution have been
found in Ref. [15]: (i) a dynamic generation of entangle-
ment at multiphoton resonances for time scales below the
decoherence time, in accordance with previous results for
nondissipative evolutions [30–32], (ii) entanglement blackout,
or entanglement destruction due to decoherence with the envi-
ronment, for times scales longer than decoherence but shorter
than the relaxation time, and (iii) the generation of steady-
state entanglement out of but close to specific multiphoton
resonances for long times (above the relaxation time), with
the possibility to enhance entanglement by tuning the driving
amplitude. As has been discussed in detail in Ref. [15], the
generation of steady-state entanglement requires two levels
and some fine tuning of parameters in order to be close to
but out of specific resonances, a fact that could be considered
as a possible limitation for the proposed scheme.

The high tunability of superconducting qubits, besides
demonstrating the full control of the inductive, capacitive, and
Ising-like type of coupling between qubits [33–36], enables to
efficiently modify the coupling strengths between each qubit
and the electromagnetic environment [37–42]. As we show in
this work this last tool opens a new avenue for steady-state-
entanglement stabilization. By considering that each qubit is
coupled with a different strength to the thermal bath, it may
be possible to create steady-state maximal entanglement in an
efficient way without fine tuning of a particular multiphoton
resonance. In this case, the entanglement creation involves
three levels and the relaxation is dominated by a decay chan-
nel whose contribution is negligible in the case of identical
qubit-bath couplings strengths.
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FIG. 1. Eigenenergies of H0 as a function of ε0/ω for J/ω =
−2.5 (a) and J/ω = 2.5 (b). Both spectra are computed for �2/�1 =
1.5, and �1/ω = 0.1. For further analysis we normalized parameters
in terms of ω. See text for details.

The paper is organized as follows: in Sec. II we intro-
duce the physical model and the Hamiltonian for two coupled
qubits driven by strong ac fields. In addition we define the
system-bath configuration employed to compute the dissi-
pative open-system dynamics. In Sec. III we analyze the
off-resonance three-level (O3L) mechanism for entanglement
creation. Other scenarios which involve the tuning of spe-
cific resonance conditions for entanglement generation are
discussed in Sec. IV, where we also explain why in these
cases the steady-state entanglement is lower than for the O3L.
Conclusions and perspectives are given in Sec. V.

II. PHYSICAL MODEL

We consider two coupled qubits with Hamiltonian Hs(t ) =
H0 + V (t ), where

H0 =
2∑

i=1
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and σ
(i)
z,x,+,− are the Pauli matrices in the Hilbert space of

qubit i. The parameters �1, �2, and J are fixed by device
design and ε0 can be controlled experimentally. This type of
Hamiltonian can be realized, for instance, in superconducting
qubits [33,43–48] where the qubit-qubit interaction term gives
rise to nontrivial entangled (eigen)states of H0. The additional
term

V (t ) = −A cos(ωt )
(
σ (1)

z + σ (2)
z

)
/2,

which contains the external ac field of amplitude A and fre-
quency ω [30–32,49–52], is usually implemented to study
LZSM interferometry in driven qubits [16,53].

Figure 1 shows the energy spectra of H0 as a function of
the detuning ε0 for J < 0 [Fig. 1(a)] and J > 0 [Fig. 1(b)].
In both cases, the Hamiltonian H0 for �1,�2 � ε0 has two
entangled eigenstates |e±〉 ≈ 1√

2
(|01〉 ± |10〉) (in the basis

spanned by the eigenstates of σ (1)
z ⊗ σ (2)

z ) with eigenenergies
Ee± ≈ ∓|J|/2, and two separable eigenstates |s0〉 ≈ |00〉 and
|s1〉 ≈ |11〉, with eigenenergies Es0 ≈ −ε0 and Es1 ≈ ε0, re-
spectively.

In the following we label the states by |k〉, with k =
0, . . . , 3, according to their energy ordering. For instance, the

ground state is |0〉, the first excited state is |1〉, and so on. The
energy ordering of the separable and entangled states depends
on the sign of J and on the value of ε0 relative to εc = |J|/2,
as can be seen in Fig. 1. Notice that the ground state is
entangled (|0〉 ≈ |e∓〉) for |ε0| < εc and separable (|0〉 ≈ |s0〉)
for |ε0| > εc.

To analyze the open system dynamics it is customary to
model the thermal environment by a harmonic-oscillator bath
described by a Hamiltonian Hb and the coupling between
the system and the bath, Hsb, where the global Hamiltonian
H(t ) = Hs(t ) + Hb + Hsb. We choose Hsb = A ⊗ B, where B
is an observable of the bath and

A = γ1σ
(1)
z + γ2σ

(2)
z , (1)

the system operator which, under the assumption of weak
system-bath interaction, is taken linear in the coupling
strengths γ1,2. Notice that other functional forms for the A
operator can be also considered, but we use this one in order to
model a realistic situation for superconducting qubits coupled
to the electromagnetic environment, that we consider as a
thermal bath at temperature Tb and with an Ohmic spectral
density J (�) = κ�e−|�|/ωc .

The dynamics of the reduced density matrix of the two
coupled qubits ρ(t ) = Trb(ρtot ) is obtained by tracing out
the degrees of freedom of the bath from the global density
matrix ρtot. We numerically solve the corresponding quan-
tum master equation for the reduced density matrix, under
the Floquet-Born-Markov approach [15,29,54–56], which al-
lows the treatment of open systems under periodic drivings
of arbitrary strength and frequency (more details are given
in Appendix A). The entanglement between the two qubits
is quantified by the concurrence, which is defined as C =
max{0, λ4 − λ3 − λ2 − λ1}, where λi’s are the real eigenval-
ues in decreasing order of the matrix R = √√

ρρ̃
√

ρ, with
ρ̃ = σ (1)

y ⊗ σ (2)
y ρ∗σ (1)

y ⊗ σ (2)
y [57]. From ρ(t ) and ρ∞ (where

the overline means averaged over one driving period 2π/ω)
we compute the time-dependent and the steady-state concur-
rences, C(t ) and C∞, respectively, when the system is initially
prepared in a separable (ground) state of H0.

III. STEADY-STATE-ENTANGLEMENT GENERATION:
OFF-RESONANCE THREE-LEVEL MECHANISM

In a previous work [15] we have shown that for a strong
ac driving, i.e., for large enough amplitudes A, steady-state
entanglement can be generated near some multiphoton res-
onances, when the initial ground state is disentangled (a
condition that in our model corresponds to |ε0| > εc).

The entanglement generation studied in Ref. [15] assumed
that both driven qubits were coupled to the thermal bath with
the same strength [γ1 = γ2 in Eq.(1)].

In the following, we extend the analysis by considering
γ2 = ξγ1, where ξ � 1 is the parameter that quantifies the
relative degree of coupling between each qubit and the thermal
bath. As we will show, for ξ 
= 1 and �1 
= �2 an extra relax-
ation channel opens, providing a new avenue to maximize the
steady-state concurrence and enlarge significantly the region
in parameter space where entanglement can be generated.

Hereafter we fix �2/�1 = 1.5, �1 = 0.1ω, the bath
temperature Tb/ω = 0.00467 (∼20 mK for typical
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FIG. 2. Color map of C∞ versus A/ω and ε0/ω for (a) ξ = 1 and
(b) ξ = 0.1, with γ1 = γ and γ2 = ξγ1. Both cases are computed for
J/ω = −2.5. See text for details.

superconducting qubits), and κ = 0.001. We also set γ1 = 1
and γ2 = ξ for numerical calculations.

We will analyze in what follows the results for J < 0.
Figure 2 shows the intensity plot of the steady-state concur-
rence C∞ as a function of A/ω and ε0/ω for J/ω = −2.5.
For this case, we have chosen two different couplings in the
system operator A [Eq. (1)]: ξ = 1 [Fig. 2(a)], already studied
in Ref. [15], and ξ = 0.1 [Fig. 2(b)], corresponding to very
dissimilar qubit-bath couplings. As it is evident, the steady-
state concurrence exhibits striking differences.

For ξ = 1, the structure of C∞ shown in Fig. 2(a) has been
explained in Ref. [15]. There is entanglement generation for
|ε0| > εc as a result of a near-resonance mechanism involving
two levels (N2L) [28,29], mediated by the interplay of the
external driving and the relaxation process that induce the re-
quired population inversion. In particular, the N2L mechanism
takes place for ε0 > εc near (but out of) a specific multiphoton
resonance condition, that sets the energy difference between
the separable ground state |0〉 ≈ |s0〉 and the entangled state
|e−〉 to �Ese ∼ ε0 − |J|/2 = nω with n ∈ Z [15]. For these
cases, and by adequately tuning a range of driving amplitudes
A, the system can be excited from the initial ground state to
a virtual multiphoton state, which in the steady state relaxes
to the maximally entangled Bell’s state |e−〉 (notice that this
implies having attained population inversion). Thus a steady
concurrence C∞ � 1 is obtained near these resonances by
tuning the amplitude A, as it is displayed in Fig. 2(a).

For ξ = 0.1 the steady-state concurrence exhibits a very
different behavior: C∞ 
 1 in Fig. 2(b) over almost all the
available parameter space {A, ε0}, without requiring a specific

FIG. 3. Plots of the populations Pk , computed in the eigenstates
basis of H0, as a function of normalized time t/τ (τ = 2π/ω) for
ξ = 0.1. Plots (a) and (b) are in linear time scale, while plot (c) is
in logarithmic scale. The detuning is ε0/ω = 3.7 (off resonance) and
the driving amplitude A/ω = 3.8. Other parameters are the same as
in Fig. 2.

“close to a resonance” condition. Notice that the region |ε0| <

εc is entangled for amplitudes A → 0, as the initial ground
state is entangled for detunings satisfying the above condition.

As we will discuss below, this new behavior results from
an O3L mechanism based on (i) Landau-Zener pumping from
the ground state |0〉 to an ancillary excited state |2〉 and (ii) fast
relaxation from the ancillary |2〉 to the entangled state |1〉 ≈
|e−〉. The sequence of transitions |0〉 → |2〉 → |1〉 leads to a
continuous transfer of population from the ground state |0〉 ≈
|s0〉 to the entangled state |1〉 ≈ |e−〉, thus giving a steady state
with concurrence C∞ 
 1.

To illustrate the O3L mechanism |0〉 → |2〉 → |1〉, we start
by computing for ξ = 0.1 the diagonal elements (populations)
of the two-qubit reduced density matrix ρkk (t ) (k = 0, . . . , 3)
as a function of time t , in a typical off-resonance case ε0/ω =
3.7, and for a driving amplitude A/ω = 3.8.

As it is shown in Fig. 3(a), the short-time dynamics induced
by the driving mainly involves the coherent evolution of two
states: the initial ground state |0〉 and the second excited state
|2〉, to which population is transferred via the driving-induced
Landau-Zener transitions at the energy level avoided crossing
(Landau-Zener pumping). A necessary condition to accom-
plish this is that the driving amplitude A must be enough to
reach the avoided crossing at ε0 = εc, i.e., A > Ac ≡ |ε0| − εc.
Therefore, A ∼ Ac is the characteristic crossover amplitude
necessary to activate the Landau-Zener pumping here de-
scribed (|0〉 → |2〉 transfer).

For the present case of Fig. 3(a) is A = 3.8ω > Ac =
2.45ω and thus Landau-Zener pumping is active. Notice that
since ε0/ω = 3.7 does not correspond to a resonance among
these two states, there is only a partial transfer of population
from |0〉 → |2〉.

As time increases [Fig. 3(b)], a direct transition from the
ancillary state |2〉 to the state |1〉 takes place. The population
ρ11(t ) of the first excited state starts to grow while the de-
cay of the ρ22(t ) and ρ00(t ) populations is evident. Finally,
for long times after full relaxation, the entangled first ex-
cited state |1〉 ≈ |e−〉 is fully populated [see Fig. 3(c)]. This
fast relaxation transition is possible whenever the relaxation
mechanism is dominated by the decay rate �12 connecting the
states |2〉 → |1〉, as we will analyze below.
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FIG. 4. Eigenenergy spectrum as a function of ε0/ω. The most
relevant relaxation processes for (a) ξ ∼ 0 and (b) ξ = 1 are sketched
by arrows. The results correspond to J/ω = −2.5, ε0 = 3.7ω, and no
driving, i.e., A/ω = 0. Other parameters are the same as in Fig. 2.

A first and straightforward estimate of the transition rates
between the eigenstates |l〉 and |k〉 can be obtained from a
Fermi golden rule (FGR) calculation

�kl = 2π

h̄
g(Elk )|〈l|A|k〉|2, (2)

where A is the observable of the system defined in Eq. (1),
Elk = El − Ek , and g(E ) accounts for the bath spectral density
and thermal factors (see Appendix C). Since we are consider-
ing low temperatures, thermal excitations are negligible and
thus the relevant decay rates are �kl for l > k. A perturbative
calculation for �1,�2 � |ε0| gives for ε0 > εc (see Appendix
C for the complete derivation)

�12 ∝ (1 − ξ )2,

�02 ∝
(

�̄

εc

)2

(1 + ξ )2,

�23 ∝
(

�̄

εc

)2

(1 + ξ )2,

�01 ∝
(

�̄

εc

)2

(1 − ξ )2,

(3)

with �̄ = (�1 + �2)/2, neglecting terms depending on
|�1 − �2| < �̄, and prefactors (of the order of unity) depend-
ing on ε0/εc.

From Eq. (3) it is clear that for ξ = 1, �12 vanishes and the
largest transition rates are �23 and �02. In this case the system
will tend to relax to the ground state |s0〉, as Fig. 4(b) shows
schematically. On the other hand, for ξ → 0 the rate �12

attains its maximum value and is by far the largest one, provid-
ing the fast relaxation mechanism that results in the entangled
state |e−〉 being fully populated, also shown schematically in
Fig. 4(a). We plot in Fig. 5(a) the most relevant relaxation
rates as a function of ξ , estimated with the FGR and using the

FIG. 5. Plots of the transition rates as a function of ξ for the off-
resonance case ε0 = 3.7ω. (a) Analytical results �kl computed in the
eigenstate basis, employing Eq. (C2) of Appendix C. The value of ξc

is indicated. (b) �αβ computed in the Floquet basis for A/ω = 3.8ω.
Other parameters are the same as in Fig. 2.

full expressions given in Appendix C. As can be seen, there is
a characteristic ξ = ξc such that �02, �23 � �12 for ξ > ξc

and �12 � �02, �23, for ξ < ξc. From Eq. (3), one obtains
1 − ξc ∝ �̄/εc.

To simplify the analytical calculations, we have neglected
the dependence of �kl on the driving amplitude, since we have
computed the transition rates among eigenstates of the un-
driven Hamiltonian H0. However, the natural basis to compute
the transition rates in the case of a strongly driven system is
the Floquet basis F , in which the density matrix in the steady
state becomes diagonal [29]. Following this route, in Fig. 5(b)
we plot the transition (relaxation) rates �αβ computed numer-
ically in the Floquet basis F [15,28,29] as a function of ξ , for
the considered off-resonant situation, ε0/ω = 3.7.

To each Floquet state we can associate the H0 eigenstate to
which it tends for A → 0. We have then labeled the Floquet
states α, β, γ , δ following the same ordering as the eigenstates
of H0 (this is a reasonable choice since quasienergies do not
cross for out-of-resonance conditions [21,28,58]). Notice that
the rates in the Floquet basis, [�12]F , [�02]F , and [�23]F ,
have a functional dependence on ξ similar to the estimates
given in Eq. (3), and shown in Fig. 5(a). In particular for
ξ = 1 the largest transition rates are [�23]F and [�02]F , while
for ξ → 0 the relaxation process is dominated by [�12]F , in
correspondence with the previous description. As it is dis-
cussed in Appendix C, for out-of-resonance situations the
rates computed in the Floquet basis, �αβ , give essentially the
same qualitative information regarding the main relaxation
processes as the rates computed in the eigenbasis of H0, �kl .
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FIG. 6. Intensity plot of C∞ versus ξ and A/ω for the off-
resonance case ε0/ω = 3.7. Other parameters are the same as in
Fig. 2.

Taking into account that the most accurate description is in
terms of the Floquet transition rates, the crossover ξc should be
defined from the condition [�12]F = [�02]F . Thus in general
ξc will depend on the driving amplitude A.

From the above discussion we stress that to attain the O3L
mechanism the conditions A � Ac (Landau-Zener pumping)
and ξ � ξc (fast relaxation) have to be fulfilled simultane-
ously. This is confirmed in Fig. 6, where C∞ is plotted as
a function of ξ and A/ω for the mentioned off-resonance
condition. For ξ = 1 there is no noticeable entanglement cre-
ation for all the explored values of the amplitude A [see also
Fig. 2(a) for ε0/ω = 3.7], while for ξ < ξc, a finite concur-
rence C∞ > 0 is obtained. It is also clear from Fig. 6 that
ξc has a modulation with A, as expected from the previous
discussion on the Floquet relaxation rates.

We emphasize that driving and dissipation are the two key
ingredients to generate entanglement, as in the case of iden-
tical qubit-bath couplings studied in Ref. [15]. However, the
entanglement generation here described does not require to
tune a given resonance condition but to tailor the system-bath
interaction to allow for the needed relaxation channel.

So far we have shown that the generation of steady-state
entanglement for ξ 
= 1 and for off-resonant situations relies
on the O3L mechanism described along this section. Despite
that we have focused on a specific value of J = −2.5ω, the
O3L mechanism rules the generation of entanglement in off-
resonant situations for ξ 
= 1 and general values of J < 0, as
we discuss in Appendix D.

However, the O3L mechanism is completely suppressed
for J > 0. In this case the first and second excited states are
switched between each other, |e−〉 ↔ |e+〉 (1 ↔ 2). In par-
ticular for ξ → 0, in addition to [�12]F , the second relevant
relaxation rate becomes [�02]F , activating the decay process
|2〉 → |0〉 that tends to populate the ground state at long times
(see Appendix D for a detailed discussion).

IV. DYNAMICS OF ENTANGLEMENT GENERATION
AT RESONANCES

The reduction in the amount of entanglement at resonances
ε0 ± |J|/2 ∼ mω is evident, for example, in Fig. 2, along the

FIG. 7. (a) Plot of C∞ as a function of ε0/ω for the driving ampli-
tude A/ω = 3.8. The resonances ε0/ω = 3.25 (SE) and ε0/ω = 3.75
(ES) are indicated by arrows. (b) Zoom-in plot near the SE and ES
resonances for amplitudes A/ω = 3.8 (red) and A/ω = 1.5 (blue).
The labels N2L, R3L, and O3L indicate the main mechanisms for
entanglement generation described in the text. Other parameters are
the same as in Fig. 2.

straight lines where C∞ ∼ 0.5, and in Fig. 7(a), where we plot
C∞ as a function of ε0 for A = 3.8ω.

We distinguish two types of resonances: (i) resonances
between the separable state |0〉 and the entangled state |1〉,
for ε0 ∼ mω + |J|/2, which we name SE resonance, and (ii)
resonances between the entangled state |1〉 and the separable
state |3〉, for ε0 ∼ mω − |J|/2, which we name ES resonance.
In what follows we will study the detailed dynamics of en-
tanglement generation for two examples of these resonances,
ε0/ω = 3.25 (SE) and ε0/ω = 3.75 (ES), which are indicated
by arrows in Fig. 7(a).

The time evolution of the populations, Pk (t ) = 〈k|ρ(t )|k〉,
computed in the eigenstate basis of H0 is shown in Fig. 8 for
ε0/ω = 3.25, which, as we mentioned, corresponds to a mul-

FIG. 8. Plots of the populations Pk , computed in the eigenstates
basis of H0, as a function of normalized time t/τ (τ = 2π/ω) for
ξ = 0.1. The detuning is ε0/ω = 3.25 (SE resonance) and the driving
amplitude is A/ω = 3.8. Other parameters are the same as in Fig. 2.
Plot (a) is in linear time scale and plot (b) in logarithmic time scale.
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FIG. 9. Plots of the populations Pk computed in the eigenstates
basis of H0, as a function of normalized time t/τ (τ = 2π/ω) for
ξ = 0.1. The detuning is ε0/ω = 3.75 (ES resonance) and the driv-
ing amplitude is A/ω = 3.8. Other parameters are the same as in
Fig. 2. Plots (a) and (b) are in linear time scale, while plot (c) is in
logarithmic scale.

tiphoton resonance condition between the states {|0〉 = |s0〉}
and {|1〉 = |e−〉} (SE resonance). Since the initial state is the
ground state [P0(0) = 1], at short times there is a coherent
oscillatory exchange of population with the first excited state,
as shown in Fig. 8(a). Notice that there are not intermediate
populated levels (P2 = P3 = 0), and the coherence between
{|s0〉, |e−〉} dies off at longer times due to decoherence ef-
fects. The final steady-state populations are P0 = P1 = 0.5
[see Fig. 8(b)]. Since |0〉 is separable while |1〉 is an entan-
gled state, a partial entanglement generation is attained with
C∞ 
 0.5.

The example corresponding to the second type of reso-
nance (ES) is shown for ε0/ω = 3.75 in Fig. 9, which displays
the time evolution of the populations Pk computed in the
eigenstate basis. In this case, the dynamics at intermediate
times is richer because for this ε0 a simultaneous resonance
condition between the states {|0〉, |2〉} and {|1〉, |3〉} takes
place. For short times (as the system starts in the ground
state) the populations P0 and P2 exhibit well-defined Rabi-like
oscillations due to the resonance condition. As soon as the
|2〉 state starts to be populated, there is a fast decay from this
state to the |1〉 state, as can be observed for times t � 100τ

in Fig. 9(a). This |0〉 ↔ |2〉 → |1〉 process corresponds to
the standard three-level mechanism at a resonance (R3L),
which induces a net transfer of population to the first excited
state, mediated by resonant pumping from the ground state
to a second excited state. Once the |1〉 state is populated,
the resonance with the |3〉 dominates the dynamics, giving
place to an oscillatory exchange between these two states for
times (t � 200τ ), as shown in Fig. 9(b). These oscillations die
off for t ∼ 4.103τ due to dissipative effects, and the steady-
state system is ultimately reached, as Fig. 9(c) shows. The
steady-state populations are P1 ∼ 0.5 and P3 ∼ 0.5, leading
to a concurrence C∞ ∼ 0.5.

The difference in the entanglement generation for the two
types of resonances becomes more evident for low driving
amplitudes. For A � Ac the O3L mechanism is turned off
since the Landau-Zener transfer to higher states is suppressed,
and thus the other mechanisms for entanglement generation at
resonances are unveiled. This is well illustrated in Fig. 7(b) for
the amplitude A = 1.5ω < Ac. Notice that at one side of the

SE resonance (ε0/ω = 3.25) there is entanglement generation
due to the N2L mechanism involving |0〉 ↔ |1〉 and thus the
dependence of C∞ with ε0 is asymmetric around this reso-
nance, as has been already discussed in Ref. [15]. On the other
hand, for the ES resonance (ε0/ω = 3.75), the entanglement
generation for low A is through the standard R3L mechanism
with resonant pumping |0〉 ↔ |2〉 followed by the fast decay
|2〉 → |1〉. In this case, the dependence of C∞ with ε0 shows
a narrow symmetric peak around this resonance.

V. CONCLUSIONS

We have presented an off-resonance three-level (O3L)
mechanism for steady-state entanglement generation in
strongly driven qubits. The mechanism does not require the
fine tuning of specific photon resonances as in the standard
R3L mechanism, and it is not limited to a certain range of
driving amplitudes, as in the N2L mechanism [15]. Unlike
these cases, the O3L mechanism is efficient to generate steady
entanglement in a wide range of parameters, above a threshold
of bath coupling asymmetry and driving amplitude.

The proposed strategy for entanglement generation is
based on the same principle used for microwave cooling of
superconducting qubits in Ref. [59], which essentially con-
sists of the excitation to a higher level through a nonresonant
process based on Landau-Zener transitions, plus the tuning
of a fast relaxation channel to the desired final state. In the
microwave cooling case this protocol has been very efficient
to pump population from the first excited state to the ground
state, significantly lowering the effective temperature of the
qubit. In our case, the O3L mechanism achieves the active
pumping of population from the separable ground state to an
entangled excited state.

Small gap superconducting qubits are a good architecture
to study quantum dynamics and quantum control processes
based on Landau-Zener transitions [16,53,59–61]. For in-
stance, Campbell et al. [60] have shown recently that through
the use of nonresonant Landau-Zener transitions it is possible
to achieve high-fidelity single-qubit operations in these de-
vices. Circuits of coupled small-gap superconducting qubits,
with added control of the system-bath coupling, are possible
candidates for the implementation of the entanglement gener-
ation mechanism proposed here.
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APPENDIX A: FLOQUET-MARKOV MASTER EQUATION

As mentioned in Sec. II the open system dynam-
ics can be described by the global Hamiltonian H(t ) =
Hs(t ) + Hb + Hsb, where Hs(t ) = H0 + V (t ) is the Hamil-
tonian of two coupled qubits H0 driven by a periodic
external field V (t ). Since Hs(t ) = Hs(t + τ ) is periodic in
time, with τ = 2π/ω0 the driving period, it is customary
to employ the Floquet formalism to solve the dynam-
ics [58,62–64]. In the Floquet formalism the solutions of
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the time-dependent Schrödinger equation are of the form
|�α (t )〉 = eiγαt/h̄|uα (t )〉, where the Floquet states |uα (t )〉
satisfy |uα (t )〉 = |uα (t + τ )〉 = ∑

K |uα (K )〉e−iKωt and are
eigenstates of [H(t ) − ih̄∂/∂t]|uα (t )〉 = γα|uα (t )〉, with γα

the associated quasienergy.
We consider a bosonic thermal bath at temperature Tb

described by the usual harmonic oscillator Hamiltonian Hb,
which is linearly coupled to the two-qubit system in the
form Hsb = gA ⊗ B, with g the coupling strength, B an
observable of the bath, and A an observable of the system as
defined in Eq. (1). In what follows we consider a bath with
an Ohmic spectral density J (�) = γ�e−|�|/ωc , with ωc the
cutoff frequency.

The dynamics of the composed system is ruled by the von
Neumann equation

ρ̇tot (t ) = − i

h̄
[H(t ), ρtot (t )], (A1)

which after tracing over the degrees of freedom of the bath be-
comes an equation for the evolution of the two-qubit reduced
density matrix ρ(t ) = Trb(ρtot (t )),

ρ̇(t ) = − i

h̄
Trb([H(t ), ρtot (t )]). (A2)

After expanding ρ(t ) in terms of the time-periodic Floquet
basis {|uα (t )〉} (α, β = 0, 1, 2, 3),

ραβ (t ) = 〈uα (t )|ρ(t )|uβ (t )〉, (A3)

the Born (weak-coupling) and Markov (local-in-time) approx-
imations for the time evolution are performed. In this way,
the Floquet-Markov master equation [29,54,58,63,65–69] is
obtained:

ρ̇αβ (t ) = −i(γα − γβ )ραβ −
∑
α′β ′

Lαβ,α′β ′ (t )ρ(t )α′β ′ ,

Lαβ,α′β ′ (t ) =
∑

Q

LQ
αβ,α′β ′e−iQωt , (A4)

with Lαβ,α′β ′ (t ) the transition rates and Q ∈ Z. The Fourier
coefficients are defined as

LQ
αβ,α′β ′ =

∑
K

(
δββ ′

∑
η

gK
ηα′AK+Q

αη AK
ηα′

+ δαα′
∑

η

g−K
ηβ ′ A

K+Q
ηβ AK

β ′η

− (
gK

αα′ + g−K−Q
ββ ′

)
AK

αα′AK+Q
β ′β

)
, (A5)

with gK
αβ = J (γαβ + Kω)nth(γαβ + Kω), and γαβ = γα − γβ

and K ∈ Z. The thermal occupation is given by the Bose-
Einstein function nth(x) = 1/(ex/kBT − 1). Each AK

αβ is a
transition matrix element in the Floquet basis, defined as
AK

αβ = ∑
L〈uα (L)|A|uβ (L + K )〉, with |uα (L)〉 the Fourier

component of the Floquet state, L ∈ Z.
By considering that the time scale tr for full relaxation

is tr � τ , the transition rates Lαβ,α′β ′ (t ) can be thus ap-
proximated by their average over one period τ , Lαβ,α′β ′ (t ) ∼

LQ=0
αβ,α′β ′ [54,65], obtaining

LQ=0
αβ,α′β ′ = δββ ′

∑
η

Rηη,α′α + δαα′
∑

η

(Rηη,β ′β )∗

− Rαβ,α′β ′ − (Rβα,β ′α′ )∗, (A6)

where the rates

Rαβ,α′β ′ =
∑

K

gK
αα′AK

αα′
(
AK

ββ ′
)∗

(A7)

can be interpreted as sums of K-photon exchange terms.
The numerical procedure is as follows. First, the Flo-

quet components |uα (K )〉 are obtained by solving the unitary
evolution and, with them, the rates Rαβα′β ′ and LQ=0

αβ,α′β ′ are
computed. The time-dependent solution of ραβ (t ) and the
steady state ραβ (t → ∞) are finally calculated as described
in Ref. [29].

APPENDIX B: EIGENSTATES OF H0

In this section, we give analytical expressions for the eigen-
states of the undriven system H0 using perturbation theory in
the parameters �i.

We start by writing the Hamiltonian in Eq. (1) as H0 =
H (0)

0 + H1, where

H (0)
0 =

2∑
i=1

−ε0

2
σ (i)

z − J

2
(σ (1)

+ σ
(2)
− + σ

(1)
− σ

(2)
+ ) (B1)

and

H1 =
2∑

i=1

−�i

2
σ (i)

x . (B2)

The eigenstates of H (0)
0 , spanned in the basis of σ (1)

z ⊗ σ (2)
z ,

can be found by direct diagonalization, with the two Bell
states |e(0)

± 〉 = 1√
2
(|01〉 ± |10〉) with eigenenergies E (0)

e± =
∓|J|/2 and the two separable eigenstates |s(0)

0 〉 = |00〉 and
|s(0)

1 〉 = |11〉, with eigenenergies E (0)
s0

= −ε0 and E (0)
s1

= ε0,
respectively. As we have mentioned in the main text, for both
signs of J , the ground state of H (0)

0 is entangled (|e0
∓〉) for

|ε0| < |J|/2 and separable (|s0
0〉) for |ε0| > |J|/2.

For �1,�2 � |ε0|, as we assumed in the present analysis,
H1 can be considered as a perturbative term. Straightforward
calculations give to first order in perturbation theory

|s0〉 = ∣∣s(0)
0

〉 + �−
ε0 + J/2

|e(0)
− 〉 + �+

ε0 − J/2
|e(0)

+ 〉,

|s1〉 = ∣∣s(0)
1

〉 + �−
ε0 − J/2

|e(0)
− 〉 − �+

ε0 + J/2
|e(0)

+ 〉,

|e−〉 = |e(0)
− 〉 − �−

ε0 + J/2

∣∣s(0)
0

〉 − �−
ε0 − J/2

∣∣s(0)
1

〉
,

|e+〉 = |e(0)
+ 〉 − �+

ε0 − J/2

∣∣s(0)
0

〉 + �+
ε0 + J/2

∣∣s(0)
1

〉
,

(B3)

where we define �± = �1±�2

2
√

2
.
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APPENDIX C: TRANSITION RATES

With Eq. (B3) at hand, one can compute the transition rates
� f ←i ≡ � f i using the FGR,

� f i = 2π

h̄
g(Ei f )|〈i|A| f 〉|2, (C1)

where the indices i and f indicate the initial and final states,
respectively, Ei f = Ei − E f , A is an observable of the system
defined in Eq. (1), and g(E ) = nth(E )J (E/h̄) is written as
the product of the Bose-Einstein function nth and J (�), the
spectral density of the bath given in Appendix A.

Using Eq. (C1), we obtain

�12 ∼ 2π

h̄
g(E21)γ 2

1

[
(1 − ξ ) + 2(1 + ξ )

�−�+(
ε0

2 − J2

4

)
]2

,

�01 ∼ 2π

h̄
g(E10)γ 2

1

[
(1 − ξ )

�+(
ε0 − J

2

) + (1 + ξ )
�−(

ε0 + J
2

)]2

,

�13 ∼ 2π

h̄
g(E31)γ 2

1

[
(1 − ξ )

�+(
ε0 + J

2

) + (1 + ξ )
�−(

ε0 − J
2

)]2

,

�02 ∼ 2π

h̄
g(E20)γ 2

1

[
(1 + ξ )

�+(
ε0 − J

2

) + (1 − ξ )
�−(

ε0 + J
2

)]2

,

�23 ∼ 2π

h̄
g(E32)γ 2

1

[
(1 + ξ )

�+(
ε0 + J

2

) + (1 − ξ )
�−(

ε0 − J
2

)]2

,

(C2)
where the labeling corresponds to the eigenstates ordering
given for J < 0, while 1 ↔ 2 for J > 0, as in this case the
first and second excited states are |1〉 = |e+〉 and |2〉 = |e−〉,
respectively. These expressions correspond to transition rates
between the eigenstates of H0. Thus, they are adequate for
describing the relaxation dynamics in the undriven system or
for weak driving amplitudes.

In general, the relaxation dynamics of the strongly driven
system should be discussed in terms of the transition rates
�αβ between Floquet states, which can be obtained as follows.
After performing the secular approximation [15], Eq. (A4)
transforms into a Lindblad-type equation, given by

ρ̇ = −i[Hs(t ), ρ] +
∑
αβ

�αβ

(
LαβρL†

αβ − 1
2 {L†

αβLαβ, ρ}),
(C3)

where Lαβ = |uα (t )〉〈uβ (t )| are the corresponding jump op-
erators, and the transition rates �αβ = Rαα,ββ can be written
as

�αβ =
∑

n

�
(n)
αβ ,

�
(n)
αβ = g(γαβ + nω)

∣∣An
αβ

∣∣2
,

(C4)

where γαβ = γα − γβ is the quasienergies difference.
When the driving is weak, for A → 0, the Floquet states

tend to the eigenstates of H0, |uα (t )〉 → |i〉. Thus, for A = 0
the Floquet rates �

(A=0)
αβ coincide with the eigenstate rates

�i j . In Fig. 10(a) we compare the approximate expressions
obtained from Eq. (C2) for the rates �i j with the Floquet rates
�αβ computed numerically for A = 0 and ε0/ω = 3.7. Since

FIG. 10. Plot of the transition rates �kl , �kl , and �αβ as a function
of ξ for the off-resonance condition ε0/ω = 3.7. (a) The rates �kl are
plotted in the eigenstates basis using the analytical estimates given
by Eq. (C2) (bold lines), while �αβ are numerically computed in the
Floquet basis (dashed lines). Both results correspond to A/ω = 0.
(b) Rates �kl plotted in (a) and rates �kl computed using Eq. (C9)
(dotted lines) for A/ω = 3.8. (c) Rates �kl plotted in (b) and rates
�αβ computed numerically, both for A/ω = 3.8. Other parameters
are the same as in Fig. 2.

�1,�2 � |ε0|, there is a good agreement between the rates
approximated by Eq. (C2) and the exact numerical rates.

In the following we derive effective expressions for the
rates �kl between the eigenstates for finite driving amplitudes
A 
= 0 in terms of the Floquet transition rates �αβ . We start
by rewriting Eq. (C3) in the interaction picture, i.e., ρ̃ =
U †(t )ρU (t ) with U (t ) = ∑

α e−iγαt |uα (t )〉〈uα (0)|,

˙̃ρ =
∑
αβ

�αβ

(
L̃αβρ̃L̃†

αβ − 1
2 {L̃†

αβ L̃αβ, ρ̃}), (C5)

with L̃αβ = |uα (0)〉〈uβ (0)|.
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After performing the basis change (with H0|i〉 = Ei|i〉),
L̃αβ =

∑
i j

|i〉〈i|uα (0)〉〈uβ (0)| j〉〈 j|

=
∑

i j

〈i|uα (0)〉〈uβ (0)| j〉Li j,
(C6)

with Li j = |i〉〈 j|, and replacing into Eq. (C5), we get

˙̃ρ =
∑
i jkl

�i j,kl
(
Li j ρ̃L†

kl − 1
2 {L†

kl Li j, ρ̃}), (C7)

with

�i j,kl =
∑
αβ

〈i|uα (0)〉〈uβ (0)| j〉〈l|uβ (0)〉〈uα (0)|k〉�αβ. (C8)

Further assuming that only diagonal terms dominate when
the system is fully relaxed (as each Floquet state has prin-
cipal weight on the associated eigenstate) the relevant rates in
Eq. (C8) are �i j,i j ≡ �i j , which read

�i j =
∑
αβ

|〈i|uα (0)〉|2|〈uβ (0)| j〉|2�αβ. (C9)

The obtained �i j allow to define effective transition rates
between eigenstates for finite driving amplitudes A. In prin-
ciple, the rates �kl given by Eq. (C9) can be different than
the rates for A = 0 given by Eq. (C1). This is illustrated
in Fig. 10(b), where we plot the FGR estimates, Eq. (C2),
and the rates �kl computed numerically for A/ω = 3.8. In
the comparison of A = 0 rates with the A 
= 0 effective rates
we find that in spite of evident differences, the most rele-
vant transition rates, �12, that dominates the dynamics for
ξ < ξc, and �02, �23, that dominate the dynamics for ξ > ξc,
have a similar dependence with ξ . One thus can conclude
that the strength of these dominant decay channels is mainly
determined by the degree of asymmetry in the qubits-bath
couplings, 1 − ξ , in agreement with the estimates given in
Eq. (C2).

Finally, in Fig. 10(c) we compare the effective rates �kl

given by Eq. (C9) with the Floquet rates �αβ , both for A/ω =
3.8, ε0/ω = 3.7, and J/ω = −2.5. We find that most of the
rates labeled by the same indices follow a similar trend with ξ

and are in good qualitative agreement. In particular, the rates
�12, �02, and �23 which dominate the main relaxation pro-
cesses associated to the O3L mechanisms studied in Sec. III
are in good quantitative agreement with their counterparts
computed in the Floquet basis, [�12]F , [�02]F , and [�23]F ,
respectively. The similarity among �i j and �αβ reflects the
fact that, out of resonance, each Floquet state has a principal
overlap with the associated eigenstate of the time-independent
Hamiltonian for �1,�2 < ω [58].

APPENDIX D: DEPENDENCE ON THE
QUBIT-QUBIT COUPLING

A natural question that arises is how the entanglement
generation described in Sec. II is modified as the qubit-qubit
interaction strength J changes. Figure 11 shows the intensity
plot of C∞ as a function of J/ω and ε0/ω for ξ = 1 [Fig. 11(a)]
and ξ = 0.1 [Fig. 11(b)]. While C∞ for ξ = 1 seems to

FIG. 11. Intensity plot of C∞ versus J/ω and ε0/ω for (a) ξ = 1
and (b) ξ = 0.1. In both cases A/ω = 3.8 while other parameters
have the same values as in Fig. 2.

be independent of the sign of J/ω, i.e., C∞(J ) ∼ C∞(−J ),
for ξ = 0.1 [Fig. 11(b)], C∞ exhibits striking differences.
Nevertheless, in the two cases we notice the relevance of the
resonances among a separable and an entangled state, which
correspond to the straight lines defined by ε0 ± |J|/2 = nω in
Fig. 11. The behavior shown in Fig. 11(a) has been exten-
sively discussed in Ref. [15] and we refer the reader to this
paper for specific details. To summarize, the triangularlike
structure of C∞ that shows enhanced entanglement at one
side of the resonances defined by ε0 − |J|/2 ∼ mω (together
with its symmetry with the sign of J/ω and antisymmetry
with ε0/ω, respectively) is related to the aforementioned N2L
mechanism, mediated by the bath and the external driving.
Notice that in this case there is not entanglement generated by
the O3L mechanism. This is due to the fact that for ξ = 1, the
relaxation rates that could contribute to populate in the steady
state the entangled state |1〉 ≡ |e−〉 for J < 0 [|1〉 ≡ |e+〉 for
J > 0; see Fig. 1(b)] satisfy �12 ∼ 0 for both signs of J [the
analytical estimates for the rates computed in the eigenbasis of
H0 and for J > 0 are given by Eq. (3) but with the subindices
1 ↔ 2 interchanged, as for J > 0 the first and second excited
states are |1〉 ≡ |e+〉 and |2〉 ≡ |e−〉, respectively].

Indeed, for J > 0 and ξ = 1, the relevant relaxation rates
tend to populate the |0〉 ≡ |s0〉 separable state, in analogy with
the case for J < 0 and ξ = 1, previously discussed.

Notice that as we have already argued and following the
analysis given in Appendix C, the rate computed in the Flo-
quet basis satisfies [�12]F ∼ 0 for ξ = 1 and for both signs
of J , obeying the same trend as the rate computed in the
eigenbasis of H0, as Figs. 5 and 12 display.

In the following we discuss the behavior observed in
Fig. 11(b) for ξ = 0.1. The results for the negative branch
J < 0 can be understood following the same reasoning as
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FIG. 12. Transition rates �αβ , computed in the Floquet basis, as
a function of ξ for the off-resonance case ε0 = 3.7ω. The results
correspond to J/ω = 2.5 and A/ω = 3.8. Other parameters are the
same as in Fig. 2.

in Sec. II, where we focused on J/ω = −2.5. The value
C∞ � 1 is attained for almost all the explored range of
parameter space with largest value C∞ 
 1 corresponding
to the conditions for the O3L mechanism previously de-
scribed and with the relaxation rates essentially given by

Eq. (3). As in the present case is A = 3.8ω, the entanglement
creation by the O3L mechanism fades out outside the wedge-
shaped region delimited by the lines J/ω = ±(ε0/ω − 3.8),
as outside this region is A < Ac, and thus the critical am-
plitude Ac necessary to activate the O3L mechanism is not
attained.

A visible feature in Fig. 11(a) is that, superimposed on
the quasihomogeneous pattern of C∞ ∼ 1, straight lines along
which is C∞ ∼ 0.5 are clearly observed near the resonance
conditions ε0 ± |J|/2 ∼ mω, which have been discussed in
Sec. IV.

For the positive branch J > 0 the O3L mechanism is
completely suppressed, and instead there is a triangularlike
structure rather similar to Fig. 11(a), i.e., corresponding to
entanglement generated by the N2L mechanism. This result
can be easily explained as follows. As mentioned before, for
J > 0, the first and second excited states are switched between
each other: |e−〉 ↔ |e+〉 (|1〉 ↔ |2〉). As a consequence, for
J > 0 and ξ → 0, in addition to [�12]F , the second relevant
relaxation rate is [�02]F . Thereby, there are now two relax-
ation mechanisms from the |2〉 state affecting the dynamics,
the |2〉 → |1〉 transition and the |2〉 → |0〉 transition. This
later mechanism tends to populate the ground state at long
times.
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