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We evaluate the vacuum polarization tensor (VPT) for a massless Dirac field in 1 +1 and 3 +1 dimensions, 
in the presence of a particular kind of defect, which in a special limit imposes bag boundary conditions.
We also show that the chiral anomaly in the presence of such a defect is the same as when no defects 
are present, both in 1 + 1 and 3 + 1 dimensions. This implies that the induced vacuum current in 1 + 1
dimensions due to the lowest order VPT is exact.
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Chiral and other anomalies have been objects of intense re-
search, since the pioneering derivation of the anomalous diver-
gence of the axial current [1]. Their relevance to diverse theoretical 
and phenomenological aspects of Quantum Field Theory (QFT) can 
hardly be emphasized. This is one of the reasons why the chiral 
anomaly has been derived in the context of many diverse models, 
and by following different approaches [2–4] (for a comprehensive 
review of chiral and other types of anomalies see, for example [5]).

In physical terms, anomalies have their origin in the existence 
of UV divergences: short-distance fluctuations that require the use 
of a regulator. This, either implicitly or explicitly, implies the in-
troduction of a mass scale �, which results in the breaking of a 
symmetry that depends on the absence of any such scale. This 
breaking manifests itself in the violation of a classical conserva-
tion law, a violation which survives the removal of the regulator, 
i.e., � → ∞.

On the other hand, introducing nontrivial boundary conditions 
in QFT models is a rather explicit breaking of (at least) translation 
symmetry. This leads to many interesting effects, a noteworthy ex-
ample of which being the Casimir effect [6,7], as well as many 
other related phenomena [8]. In the case of fermionic fields, non-
trivial boundary conditions, and the resulting Casimir effect, has 
been studied extensively within the bag model of QCD [9]. Be-
sides, interesting applications of the fermionic Casimir effect to 
carbon nanotube models have been presented [10,11]. It is the aim 
of this letter to study the interplay between the two phenomena, 
anomalies and non trivial boundary conditions, in a concrete sys-
tem: fermions in the presence of a potential, which may be used 
to impose bag boundary conditions. As shown in [12], in order to 
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impose that kind of condition, the potential has to be a singular, 
space-dependent mass term.

We analyze the results of that interplay on two objects: the chi-
ral anomaly and the vacuum polarization tensor (VPT), a correlator 
between current fluctuations, which one should expect to exhibit 
a strong dependence with the distance to the boundary.

The structure of this work is as follows: in Sect. 1 we introduce 
the model; then, in Sect. 2 we evaluate the chiral anomaly for that 
model, and in Sect. 3 the induced vacuum current and the VPT. 
Finally, in Sect. 4 we present our conclusions.

1. The model

We consider a quantum fermionic field (ψ, ψ̄ ) in D = d + 1 di-
mensions (d = 1, 3), endowed with an Euclidean action S(ψ̄, ψ; A), 
with A an external Abelian gauge field. We impose non-trivial 
boundary conditions on the fermionic field at xd = 0, by coupling 
it to a singular scalar potential:

S(ψ̄,ψ; A) =
∫

dd+1x ψ̄(x)
[
/D + gδ(xd)

]
ψ(x) , (1)

with /D = /∂ + ie /A(x), and g a dimensionless constant. It is worth 
noting that in [13] a 1 + 1 dimensional model has been studied, 
where a singular potential is part of the gauge potential; namely, 
Aμ(x) = Bμ(x) + sμ(x0)δ(x1), with Bμ a bulk contribution of the 
gauge potential, and sμ a singular term.

Recalling the approach of [14,15], one sees that g = 2 imposes 
bag boundary conditions [14], namely, the normal component of 
the vector current Jμ due to the Dirac field, vanishes on the in-
terface xd = 0. We assume that the fermions are confined to the 
region which, in our choice of coordinates, corresponds to xd > 0. 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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For g = 2, it becomes disconnected (independent) from its com-
plement. For g �= 2, however, that is no longer true, as part of the 
current may cross the interface between them.

In our conventions, both h̄ and the speed of light are equal to 
1, spacetime coordinates are denoted by xμ , μ = 0, 1, . . . , d, and 
the metric tensor is gμν ≡ diag(1,1, . . . ,1). Regarding Dirac’s γ -
matrices, for d = 1 they are chosen in the representation:

γ 0 ≡ σ1 =
(

0 1
1 0

)
, γ 1 ≡ σ2 =

(
0 −i
i 0

)
, (2)

and

γ 5 ≡ γ5 ≡ −iγ 0γ 1 = σ3 =
(

1 0
0 −1

)
, (3)

with σi (i = 1, 2, 3) representing the standard Pauli’s matrices. On 
the other hand, for d = 3:

γμ =
(

0 σ
†
μ

σμ 0

)
, γ5 ≡ γ0γ1γ2γ3 =

(
I2×2 0

0 −I2×2

)
,

(4)

where σ0 ≡ iI2×2.
The boundary conditions that this system imposes on the fields 

are as follows: the singular potential in the Dirac equation implies 
a discontinuity in ψ which, following [16], may be replaced by the 
average of the two lateral limits:

γd
(
ψ(x�, ε) − ψ(x�,−ε)

) + g

2

(
ψ(x�, ε) + ψ(x�,−ε)

) = 0 , (5)

with x� ≡ (x0, x1, . . . , xd−1).
Setting g = 2, and introducing the (orthogonal) projectors: 

P± ≡ 1±γd
2 ,

P+ψ(x�, ε) = −P−ψ(x�,−ε) . (6)

Thus, the orthogonality of these projectors leads to:

P+ψ(x�, ε) = 0 , P−ψ(x�,−ε) = 0 . (7)

Each one of these conditions implies the vanishing of ψ̄(x)γdψ(x), 
the normal component of the vacuum current (see next Section 
below) for g = 2, approaching the border, or ‘wall’ either from xd >

0 or from xd < 0.

2. Chiral anomaly in the presence of a defect

Let j5
μ(x) ≡ 〈 J 5

μ(x)〉 the vacuum expectation value of the axial 
current J 5

μ(x) ≡ ieψ̄(x)γμγ5ψ(x), where the average symbol 〈. . .〉
is defined as follows:

〈 . . . 〉 ≡
∫
Dψ̄Dψ . . . e−S(ψ̄,ψ;A)∫
Dψ̄Dψ e−S(ψ̄,ψ;A)

, (8)

with S as in (1). A naive evaluation of the divergence of j5
μ(x), us-

ing the equations of motion satisfied by the Dirac field, yields the 
wrong (classical) result: ∂μ j5

μ(x) = 2iegδ(xd)〈ψ̄(x)γ5ψ(x)〉. This is 
wrong because of the ill-defined nature of the fermion bilinear. A 
possible way to tackle this in a gauge invariant manner is to use 
a (single), bosonic, Pauli-Villars regulator field φ, with a mass �, 
having a Dirac action with the same couplings as the Dirac field. 
This produces for the divergence1:

1 The average symbol for the regulator field is defined in an entirely analogous 
fashion as for the original field, except for its mass and opposite statistics.
2

∂μ j5
μ(x) = lim

�→∞
{

2iegδ(xd)
[〈ψ̄(x)γ5ψ(x)〉 + 〈φ̄(x)γ5φ(x)〉]

+ �〈φ̄(x)γ5φ(x)〉} . (9)

Therefore

∂μ j5
μ(x) = A(x) + 2iegδ(xd) 〈ψ̄(x)γ5ψ(x)〉 (10)

where

A(x) = 2ie lim
�→∞ (� + gδ(xd))tr

[
γ5〈x|(/D + gδ(xd) + �

)−1|x〉
]

(11)

where Dirac’s bra-ket notation has been used to denote matrix el-
ements of the inverse of the Dirac operator (which includes the 
singular potential and the gauge field). At this point we note that, 
for g = 0 (i.e., no defect), one can show that:

A|g=0(x) ≡ A0(x) = 2ie lim
�→∞ tr

[
〈x| f (− /D2

�2
)|x〉

]
(12)

where f (x) ≡ 1
1+x . Since f is a function which satisfies f (0) = 1, 

and limx→∞ f (k)(x) = 0 for all k, this reproduces the proper result 
for the anomaly, namely,

A0(x) = 2ie1+ D
2

(4π)
D
2 ( D

2 )!
εμ1ν1...μ D

2
ν D

2
Fμ1ν1(x)...Fμ D

2
ν D

2
(x), (13)

where εμ1ν1...μ D
2

ν D
2

is the Levi-Civita Symbol in D = d + 1 dimen-

sions.
The anomaly A can also be obtained in terms of the anomalous 

Jacobian Jφ due to the (infinitesimal version of the) transformation 
ψ(x) → eieφ(x)γ5ψ(x), ψ̄(x) → ψ̄(x)eieφ(x)γ5 , as follows:

A(x) = 2ie
δ log[ Jφ]
δφ(x)

, (14)

where

log[ Jφ] ≡ lim
t→0+

∞∑
k=0

t
k−D

2 ak(φγ 5,/D2), (15)

where ak are functions of matrix-valued arguments. Let us con-
sider now the form of the anomaly for two cases: bag boundary 
conditions and the general (g not necessarily equal to 2).

2.1. Bag boundary conditions

For the case of bag boundary conditions (in our set-up: g =
2), and more general geometries, the calculation of the coefficients 
in (15) has been presented in [17]. For a planar wall, the first 5
coefficients reduce to:

a0(φγ 5,/D2) = (4π)
−D

2 (

∫
xd>0

dD x tr(φ(x)γ5)), (16)

a1(φγ5,/D2) = 1

4
(4π)

−d
2 (

∫
ddx� tr(χφ(x�,0)γ5)), (17)

a2(φγ5,/D2) = 1

6
(4π)

−D
2 (

∫
xd>0

dD x tr(6φ(x)γ5[γν,γμ] Fμν(x)

4
)

+
∫

ddx�tr(3χ∂dφ(x�,0)γ5)), (18)

a3(φγ5,/D2) = 1

384
(4π)

−(D−1)
2

× (

∫
dx�tr(φ(x�,0)γ 5(96χ [γν,γμ] Fμν(x�,0)

4
)

+ 24χ∂d∂dφ(x�,0)γ 5)), (19)
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a4(φγ 5,/D2)

= 1

360
(4π)

−D
2 (

∫
xd>0

dD x tr(φ(x)γ 5(60∂i∂i[γν,γμ] Fμν(x)

4

+ 180E2(X) − 30F 2
μν))

+
∫

dx� tr(φ(x)γ5((240 	+ −120	−)∂d[γν,γμ] Fμν(x)

4
)

+ ∂dφ(x)γ5(180χ [γν,γμ] Fμν(x)

4
) + 30∂i∂i∂dφ(x)γ5χ)),

(20)

where 	+ ≡ 1
2 (1 + iγ 5γd), 	− ≡ 1

2 (1 − iγ 5γd), χ ≡ 	+ − 	− and 
∂i denotes derivation with respect to all coordinates except xd . 
Higher-order coefficients are multiplied by a positive power of t
in the expansion (15), so they do not contribute.

In D = 2, just the coefficients (16), (17) and (18) are relevant. 
Given that the trace of an odd number of γ matrices vanishes [18], 
and taking into account the Dirac algebra, one sees that the con-
tribution from a1 vanishes.

The coefficient a2(φγ 5, /D2) contains both boundary (x1 = 0) 
and bulk (x1 > 0) terms. Only the latter is non-vanishing, and it 
produces the anomaly in 2 dimensions

A(x) = ie2

2π
εμν Fμν(x) (21)

where εμν is the 2-dimensional Levi-Civita tensor. Thus, there is 
no quantum correction to the anomaly in 2 dimensions when con-
fining fields to the half-line.

In 4 dimensions, a0 and a1 are zero, as well as the boundary 
term in a2. The bulk term is proportional to tr(γ 5γμγν), which is 
a trace of 6 γ matrices. This trace is evaluated in more detail in 
[19], and is equal to zero. Similarly to the precedents coefficients, 
a3 has two terms and they are proportional to tr(γ 5χγμγν) and 
tr(γ 5χγ 5) respectively. Both of them are zero because they are 
traces of 11 and 13 gamma matrices.

We are left with the contributions of the coefficient a4. The 
boundary contribution has 4 terms. These are all proportional to 
the trace of an odd number of γ matrices or proportional to 
tr(γ 5γμγν), so there is no quantum boundary contribution. The 
bulk term yields the usual result

A(x) = ie3

16π2
εμναβ Fμν(x)Fαβ(x) (22)

where εμναβ is the Levi-Civita tensor in 4 dimensions.
Thus, so far we have proved that axial anomaly has no bound-

ary contributions when bag boundary conditions are imposed at 
xd = 0.

2.2. General case

In this case, we come back to the general expression (11) for 
A, and note that the inverse operator appearing there may be ren-
dered as follows:

〈x|(/D + gδ(xd) + �
)−1|y〉 = 〈x|(/D + �

)−1|y〉
−g

∫
ddz�ddz′

�
〈x|(/D + �

)−1|z�,0〉M(z�, z′
�
)〈z′

�
,0|(/D + �

)−1|y〉
(23)

with

M(z�, z′
�
) = 〈z�,0|[1 + g(/D + �)−1]−1|z′

�
,0〉 . (24)

Now, we see that the first term in (23) reproduces the previous, 
bag model anomaly. The second term, whenever one considers 

po
wh
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an
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3. 
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ints in the bulk xd = ε > 0 will produce a vanishing contribution 
en � → ∞. The reason is that that contribution is UV finite for 

0, since one needs to consider that term for y = x = (x�, ε), 
d there are no coincident points in any operator. Therefore, the 
ole contribution is finite, and, since it has an extra negative 

wer of �, it vanishes in the limit.

Induced vacuum current and vacuum polarization tensor

. Induced vacuum current

Let jμ(x) ≡ 〈 Jμ(x)〉 the vacuum expectation value of the (vec-
) current, which is given by

(x) = − e tr
[
γμ〈x|(/∂ + ie /A(x) + gδ(xd)

)−1|y〉
]

. (25)

In order to express jμ in terms of the VPT, we expand that 
erse in powers of A:(
/∂ + ie /A + gδ

)−1|y〉
= SF (x, y) −

∫
dd+1zSF (x, z) ie /A(z)SF (z, y) + . . . (26)

ere SF (x, y) is the exact propagator in the presence of the 
fect, and no A. Therefore, to the lowest non-trivial order, we 
tain:

(x) = i e2
∫

dd+1 y tr
[
γμ SF (x, y)γν SF (y, x)

]
Aν(y) . (27)

mely, to this order, the response to the external gauge field is 
ear, the proportionality being given by the VPT, �μν , defined 
:

ν(x, y) = − e2 tr
[
γμ SF (x, y)γν SF (y, x)

]
, (28)

ch that,

(x) = −i

∫
dd+1 y �μν(x, y) Aν(y) . (29)

. Vacuum polarization tensor in the presence of the defect, in 1 + 1
ensions

Since the defect is static, SF , and therefore also �μν , will de-
nd on the time arguments only through their difference. Using a 
xed Fourier representation whereby we just transform the time 
ordinate,

(x0, x1; y0, y1) = SF (x0 − y0; x1, y1)

=
∫

dp0

2π
eip0(x0−y0) S̃F (p0; x1, y1) , (30)

 see that:

ν(k0; x1, y1)

= −e2

+∞∫
−∞

dp0

2π
tr

[
γμ S̃F (p0 + k0; x1, y1)γν S̃F (p0; y1, x1)

]
.

(31)

By an analogous procedure to the one applied in the previous 
ction, the form of S̃F may be obtained exactly, for example, by 
panding in powers of g , taking into account the form of the 
gular term, and afterwards summing the resulting series. The 
tcome of this procedure may be put in terms of the free-space 
mion propagator, S(0)

(x1, y1) (we omit, for the sake of clarity, 
F
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writing the p0 argument: it is the same in all the instances where 
it appears here) as follows:

S̃F (x1, y1) = S̃(0)
F (x1, y1)

− S̃(0)
F (x1,0)

g

1 + g S̃(0)
F (0,0)

S̃(0)
F (0, y1) . (32)

On the other hand, since S(0)
F (x1, y1) may be shown to be given 

by:

S̃(0)
F (p0; x1, y1) = 1

2
[−iγ0σ(p0) + γ1σ(x1 − y1)]e−|p0||x1−y1| ,

(33)

where σ denotes the sign function, we can render (32) into a form 
which will be more convenient in our study of �μν :

S̃F (p0; x1, y1)

= 1

2

{
− iγ0σ(p0)

[
e−|p0||x1−y1|

− g2(1 − σ(x1)σ (y1))

4 + g2
e−|p0|(|x1|+|y1|)]

+ γ1
[
σ(x1 − y1) e−|p0||x1−y1|

− g2

4 + g2
(σ (x1) − σ(y1))e−|p0|(|x1|+|y1|)]}

+ g

4 + g2

[
1 + σ(x1)σ (y1) + γ5σ(p0)(σ (x1) + σ(y1))

]
× e−|p0|(|x1|+|y1|) . (34)

Introducing this expression for the propagator into (31), one 
can obtain �̃μν . Note that because of the lack of explicit Lorentz 
invariance (time and space coordinates are treated differently), one 
should expect the calculation to miss a ‘seagull term’ [20]. Indeed, 
�μν being the correlator between current operators:

�μν(x, y) = −〈 Jμ(x) Jν(y)〉 , (35)

a seagull term τμν(x, y) should be concentrated on x = y. Or, for 
the partially Fourier transformed version, concentrated on x1 = y1
and a local polynomial in k0.

Coming back to the result for �μν , due to its dependence on 
the sign of x1 and y1, we have found it convenient to present the 
result according to the value of those signs:

• x1 > 0 and y1 > 0
In this case, we obtain for �̃μν(k0; x1, y1) a result that may 
be written explicitly:

�̃μν(k0; x1, y1)

= − e2

2π
|k0|

{[
e−|k0||x1−y1|

+ g2

(1 + g2

4 )2
e−|k0||x1+y1|]δμ0δν0

− [
e−|k0||x1−y1| − g2

(1 + g2

4 )2
e−|k0||x1+y1|]δμ1δν1

+ iσ(k0)
[
σ(x1 − y1) e−|k0||x1−y1|

− g2

(1 + g2

4 )2
e−|k0||x1+y1|]δμ0δν1

+ iσ(k0)
[
σ(x1 − y1) e−|k0||x1−y1|
4

+ g2

(1 + g2

4 )2
e−|k0||x1+y1|]δμ1δν0

}
. (36)

• x1 > 0 and y1 < 0

�̃μν(k0; x1, y1)

= − e2

2π

1 − (
g
2 )2

1 + (
g
2 )2

e−|k0||x1−y1|[|k0|
(
δμ0δν0 − δμ1δν1

)
+ ik0

(
δμ0δν1 + δμ1δν0

)]
. (37)

Note that, for the particular choice g = 2, �̃μν vanishes, exhibit-
ing the decoupling from the current in the x1 > 0 region from the 
gauge field at x1 < 0. In other words, in this situation the induced 
current is insensitive to the existence of a gauge field in the x1 < 0
region.

The form of the vacuum polarization function in this case is 
identical, albeit suppressed by a g-dependent factor, to the one 
for a fermionic field in free spacetime. Besides, there is a covari-
antizing seagull term missing, due to the lack of explicit Lorentz 
covariance in our calculation. Also, note that that term should in-
deed be missing from the result obtained for x1 > 0 and y1 < 0, 
which excludes x1 = y1.

Denoting by �̃(0)
μν the VPT in the absence of the wall, we re-

call the result for the vacuum polarization tensor corresponding to 
the well-known result for the Schwinger model in the absence of 
borders, with both arguments Fourier transformed,

�̃
(0)
μν = e2

π

(
δμν − kμkν

k2

)
, (38)

we find that:

�̃
(0)
μν(k0; x1, y1) = − e2

2π
e−|k0||x1−y1|[|k0|

(
δμ0δν0 − δμ1δν1

)
+ ik0 σ(x1 − y1)

(
δμ0δν1 + δμ1δν0

)]
+ e2

π
δ(x1 − y1)δμ0δν0 , (39)

where the last term is the seagull. �̃(0)
μν(k0; x1, y1) does of course 

satisfy the Ward identity:

ik0�̃
(0)
0ν (k0; x1, y1) + ∂x1�̃

(0)
1ν (k0; x1, y1) = 0 . (40)

Indeed, it is just another version of kμ�̃
(0)
μν = 0, which (38) clearly 

satisfies. When g �= 0, it is straightforward to verify that also the 
part of the VPT which depends on the presence of the wall, satis-
fies the Ward identity by itself. Therefore,

ik0�̃0ν(k0; x1, y1) + ∂x1�̃1ν(k0; x1, y1) = 0 . (41)

3.3. Behaviour of the normal-current correlator

We study here the behaviour of �̃μν(k0; x1, y1) when μ = 1
and one approaches the boundary with x1: x1 → 0 (the situation 
would be identical if one considered ν = 1 and y1 → 0, instead). 
This is the correlator between the normal component of the cur-
rent on the boundary, and both components of the current Jν . We 
find, for y1 > 0:

�̃1ν(k0;0, y1) = e2

2π

[
1− g2

(1 + g2

4 )2

]
e−|k0|y1 (ik0δν0 +|k0|δν1) ,

(42)
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and

�̃1ν(k0;0, y1) = e2

2π

[
1− g2

(1 + g2

4 )2

]
e|k0|y1 (−ik0δν0 +|k0|δν1) ,

(43)

for y1 < 0. In both cases, the result vanishes only if g = 2.
Finally, we note that �̃μν may be conveniently written in an 

equivalent way:

�̃μν(k0; x1, y1) = �̃
(0)
μν(k0; x1, y1)

+ g2

(1 + g2

4 )2
(−1)ν �̃

(0)
μν(k0; x1,−y1) , (44)

(no sum over ν) in terms of �̃(0)
μν . The second term proceeds from 

the correlator between Jμ(x0, x1) and J ′
ν(y0, y1) = (−1)ν Jν(y0,

−y1) (no sum over ν), the current reflected on the wall.

3.4. Vacuum polarization tensor in the presence of the defect, in 3 + 1
dimensions

Most of the previous results generalize in a rather straight-
forward way. Here, we use a Fourier representation where x� ≡
(x0, x1, x2) are transformed, since there is translation invariance in 
that hyperplane:

SF (x; y) =
∫

d3 p�

(2π)3
eip�·(x�−y�) S̃F (p�; x3, y3) , (45)

and we see that:

�̃μν(k�; x3, y3)

= −e2
∫

d3 p�

(2π)3
tr

[
γμ S̃F (p� + k�; x3, y3)γν S̃F (p�; y3, x3)

]
.

(46)

In this case, we will just present the most relevant result for 
�̃μν(k�; x3, y3), namely, for the case x3, y3 > 0. Taking into ac-

count that S(0)
F (x3, y3) is given by:

S̃(0)
F (p�; x3, y3) = 1

2
[−iγ� · p̂� + γ3σ(x3 − y3)]e−|p�||x3−y3| ,

(47)

where p̂� ≡ (
pα|p�| ), α = 0, 1, 2, we find that (for x3, y3 > 0)

S̃F (p�; x3, y3) = S̃(0)
F (p�; x3, y3)

+ g/2

1 + (
g
2 )2

S̃(0)
F (p�; x3,−y3)γ3 . (48)

Again, as it happened in 1 + 1 dimensions, �̃μν may be conve-
niently written in terms of the known, free-space result for the 
VPT:

�̃μν(k�; x3, y3) = �̃
(0)
μν(k�; x3, y3)

+ g2

(1 + g2

4 )2
eiπδν3 �̃

(0)
μν(k�; x3,−y3) , (49)

(no sum over ν) which may also be thought of as the combination 
of a direct term and a suppressed image contribution.
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Conclusions and discussion

We have obtained the anomaly in the presence of a planar de-
t of a kind that can impose bag boundary conditions in a special 
it, showing that the anomaly is independent of the value of the 

upling constant g .
Since the chiral anomaly is the same, away from the defect, 

 the one for the free, no defect case (g = 0). This has impor-
nt consequences in the 1 + 1 dimensional case. To that end, 
 recall here some well-known relations, which depend on that 

operty, and apply them to the case at hand: The axial current, 
≡ ieψ̄γμγ5ψ is, in 1 + 1 dimensions, completely determined 

 the vector current. Indeed, in terms of expectation values,

= εμν jν . (50)

w, since the vector current is conserved and, because of the pre-
us relation, its curl is the anomaly, we have:

jμ = 0 , εμν∂μ jν = ie2

π
εμν∂μ Aν . (51)

ing the decomposition:

= ∂μϕ + iεμν∂νχ , (52)

e finds:

χ = −e2

π
εμν∂μ Aν . (53)

e general solution to the previous equation for χ may be written 
 follows:

= χ0 − e2

π

1

∂2
∂μ Aν (54)

ere, as usual, 1
∂2 denotes the inverse of the Laplacian in R2, 

th null conditions at infinity, and χ0 is a harmonic function that 
forces the boundary conditions. When one considers the g = 0
se, χ0 = 0, and inserting (54) into (52) one recovers the result 
r �( f )

μν . In the g = 2 case, on the other hand, one considers the 
> 0 region, and a non-trivial χ0 function is required in order to 

ake j1 = 0 on the boundary. The result for �μν in this case may 
 interpreted as the one for g = 0 plus a contribution which can 
 understood as due to an image source, outside of the region.
Note that the combination of two effects: invariance of the 

omaly and boundary conditions, completely determine the form 
 the VPT.

claration of competing interest

The authors declare that they have no known competing finan-
l interests or personal relationships that could have appeared to 

fluence the work reported in this paper.

knowledgements

The authors thank CONICET, ANPCyT, and UNCUYO for financial 
pport.

ferences

] S.L. Adler, W.A. Bardeen, Absence of higher-order corrections in the anomalous 
axial-vector divergence equation, Phys. Rev. 182 (5) (1969) 1517.

] K. Fujikawa, Comment on chiral and conformal anomalies, Phys. Rev. Lett. 
44 (26) (1980) 1733.

] Z. Qiu, H.C. Ren, Chiral anomalies and point-splitting regularization, Phys. Rev. 
D 38 (8) (1988) 2530.

] R. Jackiw, The chiral anomaly, Europhys. News 22 (4) (1991) 76–77.

http://refhub.elsevier.com/S0370-2693(21)00599-2/bib55F51E1738A11AD32E03DD9C547D62D3s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib55F51E1738A11AD32E03DD9C547D62D3s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib7A41CC2F9D8ED06DDE665B1C43E92AB8s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib7A41CC2F9D8ED06DDE665B1C43E92AB8s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bibA4F63F1BCA41B18CA45B105E87EEFC73s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bibA4F63F1BCA41B18CA45B105E87EEFC73s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bibECBF036F2C824452E66B23205107A2F8s1


C.D. Fosco and A. Silva Physics Letters B 822 (2021) 136659
[5] A. Bilal, Lectures on anomalies, arXiv preprint, arXiv:0802 .0634, 2008.
[6] H.B.G. Casimir, Indag. Math. 10 (1948) 261, K. Ned. Akad. Wet. Proc. 51 (1948) 

793 (1948 FRPHA,65,342-344.1987 KNAWA,100N3-4,61-63.1997).
[7] For a review, see, for example M. Bordag, U. Mohideen, V.M. Mostepanenko, 

Phys. Rep. 353 (2001) 1.
[8] K.A. Milton, World Scientific, River Edge, USA, 2001, 301 pp.
[9] A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, Phys. Rev. D 10 (1974) 2599.

[10] S. Bellucci, A.A. Saharian, Phys. Rev. D 80 (2009) 105003, https://doi .org /10 .
1103 /PhysRevD .80 .105003, arXiv:0907.4942 [hep -th].

[11] E. Elizalde, S.D. Odintsov, A.A. Saharian, Phys. Rev. D 83 (2011) 105023, https://
doi .org /10 .1103 /PhysRevD .83 .105023, arXiv:1102 .2202 [hep -th].

[12] R. Saghian, M.A. Valuyan, A. Seyedzahedi, S.S. Gousheh, Int. J. Mod. Phys. A 27 
(2012) 1250038, https://doi .org /10 .1142 /S0217751X12500388, arXiv:1204 .3181
[hep -th].

[13] M. Fuentes, A. Lopez, E.H. Fradkin, E. Moreno, Nucl. Phys. B 450 
(1995) 603–640, https://doi .org /10 .1016 /0550 -3213(95 )00224 -G, arXiv:cond -
mat /9502076 [cond -mat].

[14] C.D. Fosco, E. Losada, Phys. Rev. D 78 (2008) 025017, arXiv:0805 .2922 [hep -th].
[15] C.C. Ttira, C.D. Fosco, E. Losada, Phys. Rev. D 82 (2010) 085008, https://doi .org /

10 .1103 /PhysRevD .82 .085008, arXiv:1003 .1264 [hep -th].
[16] C.D. Fosco, G. Torroba, H. Neuberger, Phys. Lett. B 650 (2007) 428–431, https://

doi .org /10 .1016 /j .physletb .2007.05 .045.
[17] V.N. Marachevsky, D.V. Vassilevich, Nucl. Phys. B 677 (3) (2004) 535–552.
[18] W. Greiner, S. Schramm, E. Stein, Springer Science and Business Media, 2007.
[19] Y. Nagashima, Y. Nagashima, Elementary Particle Physics (Vol. 1), Wiley-Vch., 

2010.
[20] S.B. Treiman, E. Witten, R. Jackiw, B. Zumino, Current Algebra and Anomalies, 

1986.
6

http://refhub.elsevier.com/S0370-2693(21)00599-2/bibDFDD5F68291CC11BDC24B931EFEDAEA5s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib160C50083C1B70585A2C334DEFF3A8D2s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib160C50083C1B70585A2C334DEFF3A8D2s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib070D56A2A9F05822D5AB66412FC14360s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib070D56A2A9F05822D5AB66412FC14360s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib5A11A7C0EB11D1C2D6B73B6FDFDFEB05s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib18741533A050CC0D5BDE8A0488E2D896s1
https://doi.org/10.1103/PhysRevD.80.105003
https://doi.org/10.1103/PhysRevD.80.105003
https://doi.org/10.1103/PhysRevD.83.105023
https://doi.org/10.1103/PhysRevD.83.105023
https://doi.org/10.1142/S0217751X12500388
https://doi.org/10.1016/0550-3213(95)00224-G
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib1E6824532FFE1178AE3E6CD6302D3267s1
https://doi.org/10.1103/PhysRevD.82.085008
https://doi.org/10.1103/PhysRevD.82.085008
https://doi.org/10.1016/j.physletb.2007.05.045
https://doi.org/10.1016/j.physletb.2007.05.045
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib5E32BC33FED4F82560BAEEFDE0BB0F08s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib40283A067B0B99E26E5386D749F28667s1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib0D36C0CFC3D6750FE74C68177E1F033Es1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bib0D36C0CFC3D6750FE74C68177E1F033Es1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bibCDEBA89370CF157C98E0EF2CA7E98D3Ds1
http://refhub.elsevier.com/S0370-2693(21)00599-2/bibCDEBA89370CF157C98E0EF2CA7E98D3Ds1

	Chiral anomaly, induced current, and vacuum polarization tensorfor a Dirac field in the presence of a defect
	1 The model
	2 Chiral anomaly in the presence of a defect
	2.1 Bag boundary conditions
	2.2 General case

	3 Induced vacuum current and vacuum polarization tensor
	3.1 Induced vacuum current
	3.2 Vacuum polarization tensor in the presence of the defect, in 1+1 dimensions
	3.3 Behaviour of the normal-current correlator
	3.4 Vacuum polarization tensor in the presence of the defect, in 3+1 dimensions

	4 Conclusions and discussion
	Declaration of competing interest
	Acknowledgements
	References


