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Summary

Animals born by embryo transfer (ET) are usually not included in the

genetic evaluation of beef cattle for preweaning growth if the recipient

dam is unknown. This is primarily to avoid potential bias in the estimation

of the unknown age of dam. We present a method that allows including

records of calves with unknown age of dam. Assumptions are as follows:

(i) foster cows belong to the same breed being evaluated, (ii) there is no

correlation between the breeding value (BV) of the calf and the maternal

BV of the recipient cow, and (iii) cows of all ages are used as recipients.

We examine the issue of bias for the fixed level of unknown age of dam

(AOD) and propose an estimator of the effect based on classical measure-

ment error theory (MEM) and a Bayesian approach. Using stochastic sim-

ulation under random mating or selection, the MEM estimating equations

were compared with BLUP in two situations as follows: (i) full informa-

tion (FI); (ii) missing AOD information on some dams. Predictions of

breeding value (PBV) from the FI situation had the smallest empirical

average bias followed by PBV obtained without taking measurement error

into account. In turn, MEM displayed the highest bias, although the dif-

ferences were small. On the other hand, MEM showed the smallest MSEP,

for either random mating or selection, followed by FI, whereas ignoring

measurement error produced the largest MSEP. As a consequence from

the smallest MSEP with a relatively small bias, empirical accuracies of PBV

were larger for MEM than those for full information, which in turn

showed larger accuracies than the situation ignoring measurement error.

It is concluded that MEM equations are a useful alternative for analysing

weaning weight data when recipient cows are unknown, as it mitigates

the effects of bias in AOD by decreasing MSEP.

Introduction

Calves that are born by embryo transfer (ET) proce-

dures are usually the progeny from selected bulls and

cows. Genetic evaluation for preweaning growth of

these animals requires specific models to disentangle

additive genetic and environmental sources of direct

and maternal effects. As a standard, Van Vleck (1990)

proposed a maternal animal model that requires han-

dling equations for the ‘three parents’: the sire, the

donor dam and the foster dam. In addition, proper

model specification of the data from ET calves requires

the knowledge of the breed and the age of the fos-

ter dam (Schaeffer & Kennedy 1989). The former

requirement was related to the use of dairy or

crossbred cows as surrogate dams during the stage of

dissemination of ET in beef cattle. Nowadays, how-

ever, the use of grade or commercial cows of the same
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breed is the rule. The latter requirement instead may

become an issue, especially in purebred operations

with a sizable fraction of calves born using ET tech-

niques where identification of foster cows is usually

not recorded. For example, 7.25 and 3.87% of all

calves evaluated in Brangus and Braford, respectively,

in Argentina are calves born from ET, and none of

them has their foster dam recorded. Leaving those

animals out of the evaluation is out of the question, as

they are usually the most profitable.

If maternal effects of foster dams are assumed to be

uncorrelated with the breeding values of their ET

calves, the analysis of weaning records from ET calves

with unknown foster cows is afflicted by the missing

value of age of dam (AOD), usually a fixed effect. The

goal of this research was to present a way of attenuat-

ing this problem. In the mixed linear model, the

expected value of the data vector y is calculated as

E y X; Zjð Þ;
assuming that the incidence matrices of fixed (X) and

random effects (Z) are known. However, when some

individuals have unknown AOD, a column of X will

relate records from those animals to the parameter

representing the level ‘unknown AOD’. This situation

is quite rare in the statistical literature, as the univer-

sal situation is when the entire values of the covariate

are unknown, or the classification variable is com-

pletely misclassified. Therefore, we approach the

problem as a classical measurement error model

(MEM, Fuller 1987; Buzas et al. 2005; Carroll 2005),

and for easiness of presentation, the consequence of

measurement error on a covariate is presented first

from a simple linear regression model. Later on, we

deal with the case of the mixed model with measure-

ment error in a set of fixed effects, and we obtain esti-

mators of fixed effects and predictors of breeding

values by maximizing the posterior density of a MEM

discussed by Buonaccorsi et al. (2000). Finally, we

evaluate the effects of the predictors obtained using

simulated data from a stochastic simulation experi-

ment, and we illustrate the procedure using prewea-

ning data from Brangus calves.

Material and methods

Theory

The MEM and the covariate AOD

To simplify the mathematics of MEM, consider the

following linear regression model for weaning weight

records on age of dam (AOD) with some of the records

having missing AOD. The latter variable is considered

continuous and is measured in years. Then, the model

equation is equal to

yi ¼ zi bz þ xibX þ ei; ð1Þ
where yi (i = 1,. . ., n) represents the weaning weight

record of animal i, zi and xi are observed and unob-

served values of AOD, respectively, and bZ and bX are

the corresponding regression coefficients. Errors are

such that ei �N 0; r2e
� �

, and assumed independent of

both, zi and xi.

As xi is unobserved, a surrogate variable wi will be

used instead. In our particular setting, wi will be an

indicator variable pointing out to those records of

calves with unknown age of dam. In the classical

MEM (Fuller 1987; Buzas et al. 2005), this surrogate

variable wi is modelled as the true (unobserved)

covariate xi plus a measurement error ui, such that

wi ¼ xi þ ui; ð2Þ
where ui �Nð0; r2UÞ and assumed independent of

xi �NðlX; r2XÞ. Under this formulation, wi is an unbi-

ased estimator of a realized value of xi. This is seen as

follows:

EðwijxiÞ ¼ E wið Þ þ Cov wi; xið Þ
Var xið Þ xi � EðxiÞ½ �

¼ E xi þ uið Þ þ Cov xi þ ui; xið Þ
r2X

xi � lXð Þ

¼ lX þ r2X
r2X

xi � lXð Þ ¼ lX þ xi � lX ¼ xi:

ð3Þ

Replacing now the unobserved covariate xi in equa-

tion (1) by the surrogate variable wi as defined in

equation (2), the following model is obtained:

yi ¼ zi b
�
Z þ wib

�
X þ ei; ð4Þ

with E eið Þ ¼ 0. The asterisks emphasize the fact that

the regression coefficients have been redefined and

that the original ones are to be estimated from an

approximate model [i.e. model (4)]. As we will show

next, in this situation the least-squares estimator of bX
will be biased.

An important remark is in place before going on.

For the procedure to be valid, the measurement error

for wi must be ‘non-differential’ (Buzas et al. 2005).

Formally, this occurs when

f yijzi; xi;wið Þ ¼ f yijzi; xið Þ: ð5Þ
Stated in words, the error is non-differential when-

ever the proxy wi does not introduce any additional

knowledge in case the (unobserved) covariate xi is

known and included in the model. In our setting, the

proxy wi has non-differential measurement error

when: 1. it can occur at any age of dam; 2. individuals
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that belong to the missing AOD group do not deviate

genetically from the rest. For the first condition, this

is generally the rule with ET records, as cows of any

age are used at the time the embryo has to be

implanted. However, the second condition could

become a problem whenever ET calves belong to a

particularly selected group. In our experience with

field data from breeds with an open policy of regis-

tration, this problem is somehow alleviated as usu-

ally there is an important proportion of females

served by AI or natural mating whose age is

unknown. This latter fact entails a randomization of

the level ‘missing AOD’ that renders measurement

error non-differential, thus attenuating any associa-

tion of the missing AOD group with the potentially

higher genetic mean of ET calves.

As defined so far and given the conditions just

described, the observed zi and the unobserved xi are

uncorrelated as long as the assumption of non-differ-

ential error holds; thus, Cov zi; xið Þ ¼ 0. Moreover,

Cov ei;wið Þ ¼ Cov ei; xi þ uið Þ
¼ Cov ei; xið Þ þ Cov ei; uið Þ ¼ 0:

ð6Þ

Using these results, the covariance between a

record and the surrogate variable wi is equal to

Cov yi;wið Þ ¼ cov zibZ þ xibX þ ei;wi½ �
¼ cov zibZ þ xibX þ ei; xi þ ui½ �
¼ cov zi bZ; xi½ � þ cov zi bZ; ui½ �

þ cov xi bX; xi½ � þ cov xi bX; ui½ � þ cov ei;wi½ �
¼ cov zi ; xi½ � bZ þ cov zi ; ui½ �bZ þ cov xi; xi½ � bX

þ cov xi; ui½ �bX þ cov ei;wi½ �
¼ 0þ 0þ bXr

2
X þ 0þ 0 ¼ bXr

2
X

ð7Þ
Also, the variance of yi under the usual assumption

that known levels of AOD are fixed equals to

Var yið Þ ¼ Var yijzið Þ ¼ Var zi bZ þ xi bX þ eijzi½ �
¼ Var xi bX þ ei½ � ¼ b2

X
r2X þ r2e : ð8Þ

With all previous results, we are now in position to

obtain the expected values of the least-squares esti-

mators of the regression coefficients b�X and b�Z in

model (4). For the former,

E b̂�X
� �

¼ E b̂�X wij
� �

¼ cov yi;wi½ �
Var wið Þ :

And, on using expression (7), we obtain

cov yi;wi½ �
Var wið Þ ¼ bXr

2
X

Var xi þ uið Þ ¼
bXr

2
X

r2X þ r2U
¼ bXk; ð9Þ

where

k ¼ Var xið Þ
Var wið Þ ¼

r2X
r2X þ r2U

ð10Þ

is termed the ‘attenuation factor’ or ‘reliability ratio’

(Fuller 1987; Buzas et al. 2005; Carroll 2005). The

inverse of k, denoted as h, is the linear correction for

attenuation and is formally defined as

1

k
¼ r2X þ r2U

r2X
¼ h: ð11Þ

Equation (9) shows that measurement error tends

‘to shrink’ bX towards zero as 0 < k ≤ 1, with k being

the attenuation (or ‘attenuation to the null’). More-

over, b�X is a biased estimator of bX. However, if k (or

equivalently h) is known or there exists a reasonable

estimate of it, a simple correction for attenuation of

the bias can be applied as follows:

b̂X ¼ b̂�X ĥ: ð12Þ
(Fuller 1987; expression (1.1.7) in page 5). In

turn, given that zi and xi are uncorrelated, b̂�Z is an

unbiased estimator of bZ as shown by Carroll (2005,

page 15):

E b̂�Z
� �

¼ bZ þ bZbX 1� kð Þ cov xi; zið Þ
Var zið Þ

¼ bZ þ bZbX 1� kð Þ 0

Var zið Þ ¼ bZ: ð13Þ

Finally, we will obtain the variance for a record

subject to measurement error. By conditioning on the

observed variable wi, this variance is equal to

Var yi jwið Þ ¼ Var yið Þ 1� q2YW
� �

¼ r2Y 1� cov yi ;wið Þ2
Var yið ÞVar wið Þ

 !

¼ r2Y 1� b2X r2X
� �2

r2YVar wið Þ

 !

¼ r2Y � r2Y
b2X r2X
� �2

r2YVar wið Þ ¼ r2Y �
b2X r2X
� �2

Var wið Þ

¼ r2Y �
b2X r2X
� �2

r2X þ r2U

¼ r2Y � b2Xr
2
X

r2X
r2X þ r2U

� �
¼ r2Y � b2Xr

2
Xk

ð14Þ
where r2Y represents the variance of yi obtained in

equation (8). On replacing with the latter in (14)

yields
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Var yijwið Þ ¼ b2Xr
2
X þ r2e

� � � b2Xr
2
Xk ¼ b2Xr

2
X 1� kð Þ þ r2e

¼ b2Xr
2
X 1� r2X

r2X þ r2U

� �
þ r2e

¼ b2Xr
2
X

r2X þ r2U � r2X
r2X þ r2U

� �
þ r2e

¼ b2Xr
2
X

r2U
r2X þ r2U

� �
þ r2e

¼ b2Xr
2
U

r2X
r2X þ r2U

� �
þ r2e ¼ b2Xr

2
Ukþ r2e

:

ð15Þ
Expression (15) shows that the variance of any obser-

vation with measurement error is increased by an

amount b2Xr
2
Uk , compared with the variance of any

observation for which xi is directly observed. Thus,

observing wi is always less informative than observing xi.

Estimating equations for mixed models with measurement error

in the fixed effects

The case of the mixed model with measurement error

in some of the fixed effects is now considered. Estima-

tors of fixed effects and predictors of breeding values

are obtained by maximizing the log of the posterior

density of fixed and random effects. Using a frequen-

tist approach, Buonaccorsi (2010), section 11.3.3,

page 382) called the procedure ‘pseudo maximum

likelihood’. Estimates of the (co)variance components

and k are assumed to be available, and estimators and

predictors are calculated using the estimated disper-

sion parameters in place of the true ones.

Without loss of generality, the vector of observations

is ordered such that records with known AOD (yo) pre-

cede those with unknown AOD (yu). Accordingly, let

Xo 0

0 Xu

� 	

be the matrix relating records with the fixed parame-

ters of the factor AOD. As matrix Xu is unobserved,

we replace it with the estimated conditional mean of

Xu given Wu. In our setting, Wu is a vector with all

elements equal to one in the rows of animals with

records and unknown AOD. The conditional mean of

Xu givenWu is equal to

E XujWuð Þ¼E Xuð Þ
þCov Xu;Wuð Þ Var Wuð Þð Þ�1

Wu�E Wuð Þð Þ
¼E Xuð Þþ Ir2X� Ir2W

� ��1
� �

Wu�E Wuð Þð Þ

¼E Xuð ÞþI
r2X

r2Xþr2u

� �
Wu�E Wuð Þð Þ

¼E Xuð Þþk Wu�E Wuð Þð Þ¼ 1�kð ÞE Xuð ÞþkWu

ð16Þ

In turn, the conditional variance is equal to

Var XujWuð Þ ¼ Var Xuð Þ
� Cov Xu;Wuð Þ Var Wuð Þð Þ�1

Cov Wu;Xuð Þ
¼ Ir2X � Ir2X Ir2W

� ��1
Ir2X

¼ Ir2X 1� r2X
r2X þ r2u

� �
¼ Ir2X 1� kð Þ

ð17Þ

Let f ¼ Ê XujWuð Þ ¼ 1� k̂
� �

E
_

Xuð Þ þ k̂Wu with the

hat denoting an estimator of the parameter. Then, an

animal model with missing AOD in a fraction of

records is written as

yo
yu

� 	
¼ X1b1 þ Xo 0

0 f

� 	
bo
bu

� 	
þ Zaþ eo

eu

� 	
ð18Þ

In (18), matrices X1, Xo and Z relate records to

fixed effects measured with certainty, to known

classes of AOD and to breeding values, respectively,

with corresponding vectors b1, bo and a, whereas

vector f relates records with unknown AOD to the

parameter bu for the average value of the class

missing AOD. Random effects in model (18) are

assumed to follow a multivariate normal distribu-

tion with

Var

a

eo
eu

2
4

3
5�N

G 0 0

0 Ir2e 0

0 0 I r2e þ r2X 1� kð Þ� �
2
4

3
5 ð19Þ

The increased variability present in Var(eu) of (19)

is due to using Ê XujWuð Þ instead of Xu, and is taken

from expression (17). Estimating equations for model

(18) and equations (19) can be obtained using a

Bayesian approach such as in Dempfle (1977). On

writing

R ¼ Ir2e 0

0 I r2e þ r2X 1� kð Þ� �� 	

and on assuming normality, the likelihood is equal to

f y b; bo; bu;u;Rjð Þ
¼ N X1b1 þ Xobo þ fbu þ Zu;ZGZ0 þ Rð Þ;

whereas the prior distribution of all b’s is

proportional to a constant (K, say), that is

f b; bo; buð Þ / K. Finally, the prior of u is equal to

f uð Þ ¼ N 0;Gð Þ. Thus, the joint distribution is propor-

tional to

f b; bo; bu ; u j y; Rð Þ / f y b; bo; bu;u;Rjð Þf u Gjð ÞK:
Estimating equations for all linear parameters are

now obtained by maximizing the log of this posterior

density (and denoted by F):
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log f b; bo; bu ;ujy;Rð Þ½ � /
� 1

2


�
y� X1b1 � Xobo � fbu � Zu

�0
R�1

ðy� X1 b1 � Xobo � fbu � Zu
�þ u0 G�1u

� ¼ F

Now, let

X ¼
X1 0 0

0 Xo 0

0 0 f

2
4

3
5 and b ¼

b1
bo
bu

2
4

3
5

Taking derivatives of F with respect to b and u

produces

@F

@b
¼ X 0R�1 y� Xb� Zuð Þ

@F

@u
¼ Z0R�1 y� Xb� Zuð Þ � G�1u

And, after equating them to zero, the following

system of equations is obtained

X 0
1R

�1X1 X 0
1R

�1Xo X 0
1R

�1 f X 0
1R

�1Z

X 0
oR

�1X1 X 0
oR

�1Xo X 0
oR

�1f X 0
oR

�1Z

f 0R�1X1 f 0R�1Xo f 0R�1 f f 0R�1Z

Z0R�1X1 Z0R�1Xo Z0R�1 f Z0R�1Z þ G�1

2
664

3
775

b̂1
b̂o
b̂u
û

2
664

3
775

¼
X 0

1R
�1 y

X 0
oR

�1 y

f 0R�1 y

Z0R�1 y

2
664

3
775

ð20Þ
System (20) looks like a set of mixed model equa-

tions in which f replaces the unobserved matrix Xu,

whereas R takes into account the extra variability

in records from animals with missing AOD, but

estimators and predictors are no longer unbiased.

Henderson (1984, chapter 9) observed that ‘biased

predictors and estimators exist that have smaller

mean-squared errors than BLUE and BLUP’. Later on,

the mean-squared error of prediction (MSEP) of BV

from equations (20) is examined by means of stochas-

tic simulation.

Estimation of r2X and r2U
The variance components related with the MEM part

of the model, that is r2X and r2U, can be estimated from

the data at hand. To avoid any interference of genetic

effects, records are assumed to be precorrected by pre-

dictions of breeding values from the last genetic eval-

uation (û say), in a vector y* such that y� ¼ y� Zû.

The model for analysis then is equal to

y�o
y�u

� 	
¼ X1b1 þ Xo

0

� 	
bo þ eo

eu

� 	

Subindices are equal as in model (18), but now

effects of AOD are assumed to be random such that

bo �N 0; Ir2X
� �

. Also the error variance is equal to

Ir2e 0

0 Ir2eu

� 	
and r2eu ¼ r2e þ r2X þ r2U. In this formula-

tion, r2X is estimated from the variability of known

AOD classes, whereas r2U is estimated by contrasting

error variances from records of unknown and known

AOD. Then, a REML or a Bayesian algorithm such as

Gibbs sampling can be employed to estimate r2X, r
2
e

and r2eu. Finally, measurement error variance is esti-

mated from r̂2U ¼ r̂2eu � r̂2e � r̂2X.

Simulation of data

The base programme to simulate the data was origi-

nally written by Cantet et al. (2000) for an animal

population with overlapping generations under selec-

tion, a trait measured in both sexes, a yearly mating

season and females having single progeny in any

given year. For the current application, the pro-

gramme was modified to introduce maternal effects

and the presence of ET. The base population consisted

of 10 sires and 200 dams. The number of breeding ani-

mals was kept constant during 5 years (or selection

events), to obtain a data set of at most 2000 records

per replicate. The trait simulated was weaning weight.

Fixed effects in the model were classification variables

of sex and AOD, whereas age at weaning was a covari-

ate. The simulated value of the regression coefficient

of the trait on age (b) was equal to 0.750 kg/day. Sex

was assigned at random with equal probability, and

males weighted 20 kg more than females. Five classes

of AOD were simulated for ages 2, 3, 4, 5 to 8, and 9 to

12 years old. Corresponding values simulated for the

five classes were 4, 12, 14, 18 and 12 kg. A 20% loss

in AOD identification was randomly simulated for

every replicate. Breeding values of animals in the base

generation were simulated by premultiplying a 2 9 1

vector of N(0,1) random variables by the Cholesky

decomposition G
�1=2
0

� �
of the 2 9 2 covariance matrix

G0 ¼ 150:0 �37:5
�37:5 150:0

� 	
.
The error variance was set equal to 487.5 kg2 in order

for direct and maternal heritabilities to be equal to

0.30. The genetic correlation between direct and

maternal effects was equal to �0.25. All of these val-

ues can be characterized as typical of the estimates

found for weaning weight of beef cattle (Koots et al.

1994). For the animals born in years 2–5, direct and
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maternal breeding values were obtained by adding

the Mendelian residuals to half the sum of paternal

and maternal breeding values. Mendelian residuals

for direct and maternal effects were simulated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
1� FSþFD

2


 �q
G
�1=2
0

z1
z2

� 	
(Cantet et al. 1992; pages

213–214), where zi is a N(0,1) random variable and FS
and FD are the inbreeding coefficients of the sire and

the dam of the individual, respectively. All animals

had records, and, except for the base individuals,

they have both biological parents known. Inbreeding

coefficients were calculated by the algorithm of Quaas

(1976).

Matings of breeding animals were at random while

avoiding sire-daughter and dam-son matings. Embryo

transfers were randomly chosen to 10% of the mat-

ings, and 8 progenies were produced in each of them.

The three oldest males and the 20 oldest females were

culled each generation. The replacements were from

progeny born during the same year and selected on

predicted direct breeding values calculated with either

regular mixed model equations, or equations (20). To

obtain a solution, the estimate of the AOD class for

the 2-year-old females was set equal to zero. All

records were used to build the estimating equations.

Either random mating or truncation selection using

the greatest predicted direct BV was practiced. A total

of 1000 replicates were run for each combination of

the following factors: (i) random mating versus selec-

tion; (ii) a) ‘Full’: complete information on AOD ver-

sus b)’Missing’: 20% of the records with the value of

AOD missing at random plus in all data from ET

calves, and the data analysis ignores the presence of

measurement errors versus c) ‘MEM’: the pattern of

missing records is the same as in b) but the analysis

accounts for the presence of measurement errors. To

evaluate the effects of MEM on AOD, the following

parameters were computed: (i) empirical average bias

for the effects (a) age of calf, (b) difference between

sexes and (c) AOD: estimable functions between the

difference among pairs of effects; (ii) empirical aver-

age bias for direct BV; (iii) mean-square error of pre-

diction (MSEP) of direct BV; (iv) empirical accuracy of

prediction, calculated as the correlation between true

and predicted BV from (a) mixed model equations for

the complete data, (b) mixed model equations for data

with missing AOD and ignoring measurement errors

and (c) predictions from expression (20) for data with

missing AOD and accounting for measurement errors.

For each of the four situations simulated, r2X and r2U
were estimated from a data set created by running 50

replicates. All data were precorrected with the pre-

dicted direct or maternal BVs, except for the records

from ET calves that were only corrected for direct BVs

of the individuals. The model of estimation had fixed

effects of age of calf and sex, and random effects of

AOD from dams with known age. As discussed before,

heterogeneity of residual variance was assumed for

data with either known or unknown AOD. The

method of estimation was REML (Patterson &

Thompson 1971) using the EM algorithm as pre-

sented by Henderson (1984). Thus, the variance r2X
was estimated from the variability among AOD sub-

classes from data of animals with known AOD. Once

the algorithm converged, the variance r2U was esti-

mated by subtracting from the error variance of the

data with missing AOD both, the error variance from

data with known AOD as well as the estimate of r2X.
To write equations (20), the vector f was of order

equal to the number of records with missing AOD,

such that f 0 ¼ 1 :: 1 :: 1½ � f . The value of the

scalar f ¼ Ê xjwð Þ was estimated from (16) as

f ¼ 1� k̂
� �

ÊðxÞ þk̂w ð21Þ

Analysis of the Brangus data set

Preweaning growth records (birth and weaning

weights) of 137 304 beef cattle born from 1974 to

2010 were used to illustrate the procedure. The

records were from herds enrolled in the genetic evalu-

ation programme (ERBra) of the Argentinean Bran-

gus Association. There were 96 470 animals with

known AOD, and 40 834 individuals with unknown

AOD, either from ET, or simply from missing AOD.

Two analyses were run under a multiple trait animal

model, and the vector of breeding values was enlarged

to accommodate maternal effects for weaning weight:

(i) conventional analysis; (ii) MEM by solving equa-

tions (20) (for both birth and weaning weight). Dis-

persion parameters of the MEM process were

estimated in the same manner as indicated for the sto-

chastic simulation.

Results

Estimates of dispersion parameters for the MEM pro-

cess obtained from the reduced data set (50 replicates)

were r̂2X = 5.7, r̂2e (from known AOD) = 518.3, and

r̂2eU (from unknown AOD) = 618.3. Therefore, r̂2U =
618.3 – 518.3 – 5.7 = 94.3, so that k̂ ¼ r̂2X=ðr̂2X þ r̂2UÞ =
0.053926. From (16), f was estimated to be equal to

f ¼ 1 � 0:053926ð Þ 0:44ð Þ þ 0:053926 1ð Þ ¼ 0:4702
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The value of
^
E xð Þ = 0.44 is the estimated expected

value of AOD, which was obtained from the data with

known AOD. The value 0.44 is the standardized aver-

age age of dam (4.4 years) in the scale of w = 1, that

is 4.4/10. The value of the denominator (10) is the

maximum possible value of AOD in the simulation.

The results of the simulation are seen in Table 1.

Whereas the patterns of bias for fixed effects with

regard to size and direction were not clearly defined,

biases and MSEP for BVs were smaller for random

mating than for selection. As expected, however,

empirical bias was smaller for the estimates of fixed

effects (calf age, difference between sexes, AOD) from

the control in which AOD was known completely,

than from the situation ignoring measurement error.

In turn, ignoring measurement error produced smal-

ler biases in the estimates of fixed effects than the

MEM. The same order was found for predictions of

BV: predictions from the full information situation

had the smallest empirical average bias followed by

predictions of BV obtained without taking measure-

ment error into account, and finally MEM. However,

the order was the opposite for MSEP: MEM displayed

the smallest MSEP, for either random mating or selec-

tion, followed by full information, whereas ignoring

measurement error produced the largest MSEP. Inter-

estingly enough, as a consequence from the smallest

MSEP with a relatively small bias, empirical accura-

cies observed from the MEM were larger than those

for the full information, which in turn displayed

much larger accuracies than ignoring measurement

error. A word of caution is in order: BLUP minimizes

variance in the class of unbiased predictors, whereas

predictors calculated from equations (20) belong to a

different class, that is the class of biased predictors

seemingly minimizing MSEP = square bias + vari-

ance.

Dispersion parameter estimates for measurement

error in the Brangus data estimated with REML-EM

were equal to r̂2X ¼ 0:75 r̂2e and r̂2U ¼ 0:16 r̂2e , so that

the inverse of the ratio r̂2X=ðr̂2X þ r̂2UÞ was equal to

1.214. Estimable functions for AOD effects under the

conventional animal model and the animal model

with measurement error in AOD (MEM) are pre-

sented in Table 2.

Estimable functions in both models were quite simi-

lar except for the difference between missing AOD

and the highest level of AOD (cows > 8 year old). In

the latter case, the estimate from the MEM was larger

in magnitude than for the conventional animal

model, for both birth weight (0.279 versus 0.264) and

weaning weight (|�3.548| versus |�1.227|). A look at

the estimates in Table 2 suggests that the average age

of cows with missing AOD was close to 4.5 years old,

a value similar to the one found in the simulation

(4.4).

Table 1 Bias, mean-square error and accu-

racy of prediction from simulated data
Random mating Selection

Full Missing MEM Full Missing MEM

Bias in estimable functions

Effect of calf age 0.040 0.033 0.001 0.037 0.034 0.001

Difference of sexes 0.546 0.447 0.123 0.218 0.082 �0.070

AOD missing – AOD 6 – 0.714 0.683 – 0.336 0.811

AOD 2 – AOD 6 0.586 1.375 1.929 0.641 1.221 1.855

AOD 3 – AOD 6 �0.248 0.648 1.341 �0.430 0.479 1.289

AOD 4 – AOD 6 �0.138 0.527 1.175 �0.181 0.357 1.121

AOD 5 – AOD 6 �0.451 0.410 0.787 �0.484 �0.138 0.721

Bias of DBV �0.07 0.217 0.471 0.081 0.332 0.641

MSEP of DBV 147.55 231.64 122.56 148.91 248.67 125.15

Average accuracy 0.42 0.29 0.49 0.47 0.30 0.53

AOD = age of dam; DBV = direct breeding value; Full, Missing, MEM = see text for definition.

MSEP = mean-squared error of prediction. The value of the parameter for calf age was 0.75 kg/

day, and for the difference of sexes 20 kg.

Table 2 Estimable functions for AOD (in kg) under the conventional ani-

mal model, and for the animal model with measurement error in AOD

(MEM) in Brangus

Birth weight Weaning weight

Regular

animal

model MEM

Regular

animal

model MEM

AOD missing – AOD 6 0.264 0.279 �1.227 �3.548

AOD 2 – AOD 6 �0.723 �0.724 �9.519 �9.520

AOD 3 – AOD 6 �0.393 �0.394 �7.521 �7.522

AOD 4 – AOD 6 0.156 0.156 �3.694 �3.695

AOD 5 – AOD 6 0.478 0.478 1.324 1.325
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Discussion

Guidelines for evaluating ET calves have been origi-

nated by research of Schaeffer & Kennedy (1989) and

Van Vleck (1990), and have never been upgraded.

Breeders have put many emphases in avoiding bias, a

reassuring point of view for the ‘frequentist’ statistical

school. Bias can only come from effects whose expec-

tation is different from zero, such as fixed effects or

breeding values with different expectation due to

selection and loss of additive relationships. However,

the distribution needed to calculate those expected

values is conditional on the incidence matrix of the

effects involved being correct, that is in the classical

notation X and ZQ, respectively. From time to time,

field data are such that some rows of X and ZQ

become uncertain (random) as the elements are

imprecisely measured (with error) in: (i) a classifica-

tion variable, or (ii) a covariate or (iii) the incorrect

assignment of a genetic group. The first one is the case

that we have considered in this research: missing

AOD. Editing of data permits sorting some errors, but

the edit cannot be as restrictive as to leave out an

entire category of animals from the genetic evalua-

tion. This is the case of records from ET calves with

missing identification of the recipient dam. National

shows preclude calves without EPDs to enter into the

contest, and a great amount of calves at the shows are

born from ET techniques. On the other hand, those

animals born from ET have the potential to excel in

selection differential. It is not the purpose of this

research to suggest that foster dams of ET calves

should not be identified. On the contrary, this is a

sound practice for genetic evaluation purposes and,

whenever possible, the model of Schaeffer & Kennedy

(1989) to deal with foster dams and known age of

dam should be used. However, if for any compelling

reason identification and age of foster dams cannot be

recorded, the procedure presented here allows evalu-

ating the weaning weights from ET calves. The solu-

tion we have proposed uses classical measurement

error theory (Fuller 1987; Buzas et al. 2005; Carroll

2005) and consists of replacing the unobserved value

in the column of Xu by the estimated conditional

mean given that the animal has missing AOD, that is

Wu. This approach to dealing with measurement error

is referred to in the literature as ‘regression calibra-

tion’ (RC, Buzas et al. 2005; Buonaccorsi 2010; section

6.10). Freedman et al. (2008) used stochastic simula-

tion to compare RC with similar techniques that

replace Xu by linear functions of Wu. These authors

employed a multivariate normal model, like the one

used in the simulation conducted in the current

research, and observed that under non-differential

measurement error, RC displayed minimum MSEP.

This advantage of RC was observed even in situations

of more drastic losses of information about X than the

conditions simulated here, such as larger values of r2U
in relation to r2e , or all values of AOD missing (i.e.

X = Xu), scenarios very unlikely to occur in animal

breeding data. It should be stressed that RC methods

as used here to deal with bias in AOD rely on the

assumption of non-differential measurement errors,

an assumption that can be essentially formulated as

cov(yi, wi) = 0 under multivariate normality. In sec-

tion Theory, we have identified two conditions that

must be satisfied to ensure non-differential measure-

ment error. These conditions can now be restated in

more practical terms as follows: 1. all recipient females

should be from the same breed and from any age cate-

gory, and the pattern of missing AOD should not be

exclusively associated to them; 2. The BV for maternal

effects of recipient cows must be uncorrelated to the

direct BV of the calves producing the records. Viola-

tion of these conditions would introduce a non-zero

value for the cov(yi, wi). Condition 1 may require dis-

carding older data on ET calves when breed of foster

cow is unknown, and there should also exist records

from cows mated naturally or by artificial insemina-

tion with missing AOD. In practice, contemporary

groups in which all records have missing AOD should

be edited, as there will be no contrast among AOD

classes. Condition 2 is most likely to hold in beef cattle

as it is most difficult to synchronize donor cow preg-

nancies and flushing schedules to recipient cow heat

with embryos of potentially higher BV. To solve equa-

tion (20), a programme that solves the mixed model

equations needs to be modified to account for a miss-

ing category by (i) replacing the 1 in X that contrib-

utes to terms such as X0R�1X or Z0R�1X by

f ¼ Ê xjwð Þ ¼ 1� k̂
� �

Ê xð Þ þ k̂w

as done in the simulation; (ii) keeping a diagonal

covariance matrix of error terms, but using

r̂2e þ b̂2Xr̂
2
Uk̂ rather than r̂2e for the error variance of

records with missing age of dam. In addition, the

parameter bX can be estimated by the value of the

missing AOD in equations (20).

The stochastic simulation included two situations in

comparison with the MEM estimator and predictors

from equation (20). The full information situation dif-

fers from MEM in data, model and estimator of fixed

effects and predictors of BV, and it is not an option to

analyse ET data when information on foster dams is

missing. If we had had completed information, we
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would have used the full information model of Scha-

effer & Kennedy (1989). Conversely, ignoring AOD

effects from unknown foster dams differs in model

and estimators, and results in a sizeable amount of

bias and a concomitant reduction in empirical accu-

racy. Results of the simulation suggest that MEM had

higher bias but lower MSEP of direct breeding values

than full information or missing AOD. This is not sur-

prising, as Efron (1975) indicated ‘that certain deliber-

ately induced biases can dramatically improve

estimation properties when there are several parame-

ters to be estimated’. Moreover, Henderson (1984)

observed that ‘biased predictors and estimators exist

that have smaller mean-squared errors than BLUE

and BLUP’. Although at first the higher empirical

accuracy obtained for MEM when compared to full

information seems to be striking, the smaller MSEP of

MEM than the full information explains the result.

Accuracy was calculated as the correlation between

true and predicted BV. Therefore, if in the denomina-

tor the square root of the variance of the predictor

(i.e. MSEP minus squared bias) decreases, accuracy

increases. However, this higher accuracy in the MEM

situation is for a model with less information and less

random variables to predict (the BVs of foster dams),

and not strictly comparable to the full information

case. We conclude by insisting on the use of regular

BLUP under the model of Schaeffer & Kennedy

(1989) if information on foster dams is complete.

However, MEM through equations (20) is a useful

alternative when recipient cows are unknown, as it

mitigates the effects of bias in AOD in those data by

decreasing MSEP as compared with treating the class

for missing AOD as a regular level of a fixed effect.
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