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Abstract. Plasma processes such as magnetic reconnection, turbulent regimes or
dynamo-generated magnetic fields, are well studied within the framework of one-
fluid magnetohydrodynamics (MHD). However, there are processes such as the Hall
current, which are not covered by the MHD description. The Hall effect is known to
be relevant for the dynamics of several astrophysical plasmas, such as the interstellar
medium, the early universe, or the solar wind at 1 AU. While the relevance of
Hall currents in magnetic reconnection is intensively being studied (specially in
connection with reconnection events at the Earth’s magnetopause and magnetotail),
their role on turbulent regimes or on dynamo mechanisms is mostly unknown. We
report results from parallel simulations of the incompressible Hall MHD equations
in 2 1

2
and three dimensions to quantitatively investigate the role of Hall currents

in different problems, such as magnetic reconnection in 2 1

2
dimensions, the dynamo

generation of magnetic fields in three dimensional simulations, or the relaxation to
stationary turbulent regimes.
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1. Introduction

Numerical simulations have become an important tool for fluid me-
chanics in recent years. The large-scale dynamics of plasma flows can
often be described within a fluidistic approximation known as one-
fluid magnetohydrodynamics. Complex flows such as those correspond-
ing to turbulent regimes are ubiquitous in laboratory plasmas and in
astrophysics, because of their typically very large Reynolds numbers.

Hall currents can in turn play a significant role in the dynamics of
low density and/or low temperature astrophysical plasmas, for which a
one fluid description has been traditionally used. For instance, they are
likely to be relevant in dense molecular clouds (Wardle and Ng, 1999),
accretion disks (Balbus and Terquem, 2001; Sano and Stone, 2002),
white dwarfs and neutron stars (Yakovlev and Urpin, 1980), and the
early universe (Tajima et al., 1992).

Magnetic reconnection is likely to be the main mechanism by which
the energy stored in stressed magnetic fields can be converted into
kinetic and thermal energy. It is believed to play a crucial role in
different astrophysical environments such as the Earth’s magnetopause
(Sonnerup et al., 1981), the Earth’s magnetotail (Birn and Hesse, 1996)
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or the solar atmosphere (Priest, 1984). In recent years many analytical
and computational efforts have been made to clarify the importance of
the Hall effect in the reconnection process (Birn et al., 2001; Craig and
Watson, 2003; Dorelli and Birn, 2003; Dorelli, 2003; Smith et al., 2004).
Also, observed signatures of these Hall currents have been reported
(Mozer, Bale and Phan, 2002).

One of the interesting features of the Hall-MHD description, is that
in the ideal limit (i.e. without resistivity) the magnetic field is stretched
by the electron velocity field rather than the bulk velocity field. Since
these two velocity fields can be quite different, the Hall term is expected
to impact on dynamo mechanisms. The Hall term was found (Mininni,
Gómez and Mahajan, 2002) to enhance or suppress dynamo action
depending on the relative importance of the Hall term when compared
to the inductive term. We perform 3D numerical simulations of the Hall-
MHD equations to explore the role of the Hall current in the efficiency
of the dynamo.

In Section 2 we describe the so-called Hall-MHD equations, which
stem from a two-fluid description of the plasma. In Section 3 we study
the importance of the Hall term in magnetic reconnection, by perform-
ing numerical simulations of an incompressible 21

2
D Hall-MHD code. In

Section 4 we present the results from 3D simulations of the Hall-MHD
equations, which started from a weak magnetic seed to study the role
of the Hall current in the efficiency of a turbulent dynamo. Finally, in
Section 5 we list our conclusions.

2. The Hall-MHD equations

Highly conductive plasmas tend to develop thin and intense current
sheets in their reconnection layers. Whenever the current width reaches
values as low as c/wpi (wpi is the ion plasma frequency and c is the speed
of light), it is no longer possible to neglect the Hall term in Ohm’s law
(Ma and Bhattacharjee, 2001). For a fully ionized plasma of protons
and electrons, the generalized Ohm’s law can be written as:

E +
1

c
v × B =

1

σ
j +

1

ne
(
1

c
j × B − ∇pe) , (1)

where n is the electron and proton density, e is the electron charge, σ
is the electric conductivity, v is the plasma flow velocity, and j is the
electric current density. Assuming incompressibility (i.e. ∇·v = 0), the
Hall-MHD equations can be cast in their dimensionless form as:

∂tv + (v · ∇)v = (∇× B)× B −∇p + ν∇2v , (2)
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∂tB = ∇× [(v − ε∇× B)× B] + η∇2B , (3)

∇ · B = 0 = ∇ · U . (4)

In equations (2)-(4) we have normalized B and v to the Alfvén speed
va = B0/

√
4πρ (B0: magnetic field intensity, ρ: mass density), the total

gas pressure p to ρv2
a, and longitudes and times respectively to L0 and

L0/va. The dimensionless dissipation coefficients are the viscosity ν and
the electric resistivity η defined as η = c2/(4πσL0va). The dimension-
less coefficient ε = c/(wpi L0) is a measure of the relative strength of
the Hall effect. The dimensionless electron velocity is:

ve = v − ε∇× B . (5)

From equation (3) it is apparent that in the non-dissipative limit (i.e.
η → 0) the magnetic field remains frozen to the electron flow ve rather
than to the bulk velocity v.

3. Simulations of Hall-reconnection

The incompressible Hall MHD simulations reported in this paper are
carried out under the geometric approximation known as 21

2
D, based

on the assumption that there is translational symmetry along the ẑ

coordinate (i.e. ∂z = 0). Therefore, the solenoidal magnetic and velocity
fields can be represented as:

B = ∇× [ẑa(x, y, t)] + ẑb(x, y, t) , (6)

U = ∇× [ẑφ(x, y, t)] + ẑu(x, y, t) , (7)

where a(x, y, t) is the magnetic flux function and φ(x, y, t) is the stream
function. In this approximation, the Hall MHD equations take the form:

∂ta = [φ − εb, a] + η∇2a , (8)

∂tb = [φ, b] + [u − εj, a] + η∇2b , (9)

∂tw = [φ,w] + [j, a] + ν∇2w , (10)

∂tu = [b, a] + [φ, u] + ν∇2u . (11)

The nonlinear terms are the standard Poisson brackets, w = −∇2φ
is the ẑ-component of the flow vorticity and j = −∇2a is the ẑ-
component of the electric current density

j = ∇× b ẑ+ j ẑ (12)
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The set of Equations (8)-(11) completely describe the reconnection
problem for this particular geometry.

One of the most important consequences of including the Hall effect
is the coupling between the ẑ-component of the fields to the scalar
potentials a and φ. Note that if ε = 0, then the system decouples and
the solutions for a and φ are determined by the solution of equations (8)
and (10), thus becoming completely independent from the ẑ fields.

We study Hall reconnection by means of the numerical integration of
Equations (8)-(11). The computation is carried out in a rectangular do-
main assuming periodic boundary conditions. The fields are expanded
in their corresponding spatial Fourier amplitudes. The equations for
these Fourier amplitudes are evolved in time using a second order
Runge-Kutta scheme and the nonlinear terms are evaluated following
a 2/3 dealiased pseudospectral technique. To provide a reconnection
scenario, the simulations start with the fluid at rest, and the following
initial condition for the ŷ component of the magnetic field:

By(x, y, t = 0) =











B0 tanh[
x−π/2

∆
] if −π ≤ x < 0

−B0 tanh[
x+π/2

∆
] if 0 ≤ x < π

(13)

corresponding to a periodic array of oppositely oriented current sheets.
In the present paper we chose B0 = 1 and ∆ = 0.04π, to simulate two
initially thin current sheets, where the reconnection process will take
place. In order to drive reconnection, a monocromatic perturbation
with kx = 1 and an amplitude of 2% of the initial magnetic profile (see
Equation (13)) is added to the initial condition in the full rectangular
domain. We performed numerical simulations with a spatial resolution
of 512 × 512 grid points, and different values of the Hall parameter ε
to study the role of the Hall term in the overall dynamics of the re-
connection process. In all these simulations, the dissipation coefficients
are set to η = ν = 0.01 to ensure that all the lengthscales are properly
resolved. Note that pseudospectral methods conserve the energy of the
system, i.e. no numerical dissipation is artificially introduced by the
simulation (Canuto et al., 1988).

Figure 1 shows the regions where the electric current density sur-
passes 30% of its maximum value for the whole run. For this particular
run (ε = 0.07), the maximum current (jmax = 10.5) was attained at
t ≈ 1, which corresponds to the left frame. The central and right frames
correspond to t = 2, 3 respectively. White (black) regions correspond
to positive (negative) currents. It can be readily seen that the current
sheet becomes shorter and thinner and resembles a structure of the type
suggested by Petschek (although the physics is quite different). This
shortening and shrinkage of the current sheet comes along with the
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Figure 1. Current density spatial distribution. White (black) regions correspond to
current densities surpassing 30% of the maximum positive (negative) value.

Figure 2. The first two panels display stream function contour plots for protons (φ)
and electrons (φe) during maximal reconnection rate (t = 1). The last two panels
show the corresponding out-of-plane velocities.

development of a quadrupolar structure of the out-of-plane magnetic
field component around the X-points (Sonnerup et al., 1981).

The first two panels of Figure 2 show contour plots of the proton
(φ) and electron (φe) stream functions at t = 1. The difference between
these patterns contributes to the in-plane current density, which in
turn generates the out-of-plane magnetic field (first term on the RHS
of equation (12) ). The two right hand panels in Figure 2 show contours
of the out-of-plane velocities of protons (u) and electrons (ue). The two
species show entirely different velocity patterns. Note that in the ideal
limit the magnetic field remains frozen to the electron flow, which is
faster than the proton flow.

One of the most important features to evaluate the efficiency of
the reconnection process is the reconnected flux. The magnetic flux
reconnected as a function of time at the X point can be calculated
in terms of the difference of the magnetic potential in the X-point
and the O-point, i.e. aX(t)− aO(t). The effect of the Hall term on the
reconnected flux is shown in Figure 3. As ε is increased the reconnection
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Figure 3. Total reconnected magnetic flux vs. time, for simulations with different
values (indicated) of ε.

process is observed to become more efficient, as evidenced by the total
reconnected flux.

4. Simulations of Hall-dynamos

We developed a pseudospectral code (see details in (Mininni, Gómez
and Mahajan, 2003)), which was modified to run in a Beowulf cluster
using MPI (Message Passing Interface). We integrated the Hall-MHD
equations (2)-(4) in a cubic box with periodic boundary conditions. The
equations were evolved using a second order Runge-Kutta method. The
total pressure PT = P +B2/2 was computed in a self-consistent fashion
at each time step to ensure the incompressibility condition ∇ · U = 0
(Canuto et al., 1988). To satisfy the divergence-free condition for the
magnetic field, equation (3) was replaced by an equation for the vector
potential A, and the electron pressure pe was computed at each time
step to satisfy the Coulomb gauge ∇ · A = 0.

The relevance of the Hall term on dynamo activity was explored in a
previous paper (Mininni, Gómez and Mahajan, 2003). Our simulations
are performed in two stages: (1) a purely kinetic stage (the magnetic
field is zero) during which we externally drive the fluid with a helical
force until a Kolmogorov turbulent regime is reached, (2) we implant
a mild magnetic fluctuation (or seed) at microscopic scales and restart
the externally driven run. The (inititally very small) magnetic energy
grows exponentially fast during a kinematic dynamo regime and then
it saturates at a level of approximate equipartition between kinetic
and magnetic energy. Figure 4 (left) shows the spatial distribution of
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Figure 4. Left: Three dimensional Hall-MHD simulation with 2563 gridpoints show-
ing the spatial distribution of magnetic energy in the saturated regime. Right: Total
compensated energy spectrum (thick trace), kinetic energy spectrum (thin trace)
and magnetic energy spectrum (dashed) for runs with (a) ε = 0 and (b) ε = 0.1.

magnetic energy for a 2563 simulation with ε = 0.1 during the saturated
regime.

The saturation amplitude of the Hall-MHD dynamo has a nonlinear
dependence with the amplitude of the Hall effect. When the Hall length-
scale is close to or smaller than the Kolmogorov’s magnetic dissipation
scale, the MHD behavior is recovered (ε 	 1) and no differences in
the evolution and saturation of the dynamo can be identified. On the
other hand, when the Hall effect dominates in all the relevant scales
including the energy containing scales of the turbulent flow (ε ≈ 1), the
helical dynamo is less efficient than its MHD counterpart. The dynamo
saturates at a lower level of total magnetic energy, and the kinetic
energy dominates the dynamics at almost all scales. However, there is
an intermediate regime in which the dynamo effect is enhanced by the
Hall term. In this regime, the Hall effect dominates the dynamics at
intermediate scales up to the diffusion scale.

One interesting result is the fact that the energy power spectrum for
a turbulent Hall dynamo, shows a Kolmogorov slope. In Figure 4 (right)
we show compensated power spectra, i.e. k5/3ε−2/3Ek vs. k, both for a
purely MHD run (ε = 0, above) and for Hall-MHD (ε = 0.1, below).
Even though some differences can be observed (for instance, an excess
of magnetic energy at small scales for the MHD case), the Kolmogorov
slope remains esentially unaffected when the Hall effect is considered.
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5. Conclusions

We have investigated the role of the Hall effect in two astronomically
relevant plasma processes: magnetic reconnection and turbulent dy-
namos. With this goal in mind, we performed numerical simulations
of the incompressible Hall-MHD equations in 21

2
D and 3D using a

pseudospectral scheme.
For the 21

2
D magnetic reconnection runs, we confirm the global sce-

nario described by previous authors, such as the development of smaller
and thinner current sheets, the formation of a quadrupolar structure in
the out-of-plane magnetic field component, and the generation of out-
of-plane flows in the surroundings of the X-points. More importantly,
we confirm that the Hall effect leads to a faster reconnection process,
as evidenced by the larger total reconnected flux.

In our 3D simulations of a turbulent Hall dynamo, we find that
the Hall current modifies the dynamo efficiency. Whenever the Hall
lengthscale remains smaller than the energy containing scale but much
larger than the dissipation scale, the magnetic energy saturates at a
level higher than its MHD counterpart. Also, in the saturated regime,
the energy power spectrum of this Hall-MHD turbulence displays a
Kolmogorov slope, such as for pure MHD.
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