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Abstract
We prove that the structure group of any Albert algebra over an arbitrary field is R-trivial. This implies the Tits–
Weiss conjecture for Albert algebras and the Kneser–Tits conjecture for isotropic groups of type E78

7,1,E
78
8,2. As

a further corollary, we show that some standard conjectures on the groups of R-equivalence classes in algebraic
groups and the norm principle are true for strongly inner forms of type 1E6.
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1. Introduction

The primary aim of this article is to prove the long standing Tits–Weiss conjecture on U-operators in
Albert algebras and the Kneser–Tits conjecture for algebraic groups of type E78

7,1 and E78
8,2.

The Tits–Weiss conjecture asserts that the structure group Str(𝐴) of an arbitrary Albert algebra
A is generated by the inner structure group, formed by the so-called U-operators, and the central
homotheties. This problem was raised by Tits and Weiss in their 2002 book [26], where they studied
spherical buildings and the corresponding generalised polygons attached to isotropic groups of relative
rank 2. Despite many efforts, this problem has remained unsolved.

If G is an isotropic simple simply connected group over a field K of relative rank ≥ 2, then by [18]
the group G(𝐾) is generated by the K-points of isotropic subgroups of G of relative rank 1. This result
allows one to reduce many problems for G(𝐾) to groups of relative rank 1. For instance, this is the case
for the Kneser–Tits problem (see the paragraph below). Note also that isotropic groups of relative rank 1
give rise to important examples of more general groups of rank 1. The latter were introduced by Tits in
the early 1990s, who called them Moufang sets. They have proved to be important in the classification of
simple groups, incidence geometry, the theory of buildings and other areas. Further still, rank 1 groups
are useful in studying isotropic groups of exceptional types, where algebraic groups and their associated
root subgroups are typically parametrised by a nonassociative structure and, as emphasised in [6], a rich
interplay emerges between rank 1 groups, nonassociative algebras and linear algebraic groups.

The Kneser–Tits conjecture for a simple simply connected isotropic group G over a field K asserts
that the abstract group G(𝐾) of K-points of G coincides with its normal subgroup G(𝐾)+ generated
by the unipotent radicals of the minimal parabolic K-subgroups of G. We refer to [9] for a survey of
the history and recent results on this conjecture. Its importance comes from the fact that the group
G(𝐾)+ has a natural 𝐵𝑁-pair structure and hence is projectively simple (i.e., simple modulo its centre)
by a celebrated theorem of Tits. So if G(𝐾) = G(𝐾)+, we would have many more new examples of
projectively simple abstract groups. In this way, we would obtain analogues of finite simple groups of
Lie type in the case of infinite fields. It is also worth mentioning that the information about the normal
subgroup structure of G(𝐾) is crucial in the arithmetic of algebraic groups for studying, among other
things, congruence subgroups, discrete subgroups, lattices and locally symmetric spaces. In general,
the Kneser–Tits conjecture does not hold and the first counterexample was constructed by V. Platonov
in 1975 [17]. However, specialists believe that the conjecture does hold for many isotropic groups of
exceptional type, including those of type E78

7,1 and E78
8,2.

The bridge connecting the Tits–Weiss conjecture and the Kneser–Tits conjecture for the abovemen-
tioned forms of type E7 and E8 is provided by a theorem of Tits and Weiss (see the Appendix), which
states that the two conjectures are equivalent.1 It is interesting to mention that the proof in the Appendix
is characteristic free. Furthermore, using P. Gille’s results on Whitehead groups [9], one can easily see
that
1. the Kneser–Tits conjecture for the abovementioned groups reduces to the R-triviality of structure

groups of Albert algebras and
2. the conjecture holds in arbitrary characteristic once it is established in characteristic zero.

Our main result is the following.
Theorem. Let A be an Albert algebra over a field K. Then the structure group Str(𝐴) of A is R-trivial;
that is, for any field extension 𝐹/𝐾 the group of R-equivalence classes Str(𝐴) (𝐹)/𝑅 is trivial.

1The proof of the equivalence of the two conjectures is not straightforward and no direct reference is available. We are grateful
to Richard Weiss for writing a detailed proof of this result. It is included as an appendix to this article.
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As explained above, this implies that the Tits–Weiss conjecture on U-operators holds for Albert
algebras over any field and that the same is true for the Kneser–Tits conjecture for groups of type E78

7,1
and E78

8,2. Our proof is geometric in nature. We carefully analyse the properties of the natural action of the
structure group Str(𝐴) on the corresponding Albert algebra A. The information that we need is encoded
in the Galois cohomology of the stabilisers of subalgebras of A. We compute the Galois cohomology
of all these stabilisers and, using this information, we explicitly construct a system of generators of
Str(𝐴) (𝐾), which we prove are R-trivial.

An important step of the proof of our main result is the weak Skolem–Noether theorem for isomorphic
embeddings due to S. Garibaldi and H. Petersson (for the terminology, definitions and the precise
statement we refer to [7]). In Section 5 we prove Theorem 5.3, which can be viewed as a weaker version
of S. Garibaldi and H. Petersson’s result.

We would also like to mention that it follows directly from our main theorem that two standard
conjectures hold for simple simply connected strongly inner forms of type E6: the abelian nature of the
group of R-equivalence classes and the existence of transfers for the functor of R-equivalence classes.
For these groups, the norm principle holds as well. For details we refer to the last section of the article.

Lastly, we mention that our results were proved independently by M. Thakur [24]. His proof differs
from ours and is based on some explicit formulas for automorphisms of subalgebras of Albert algebras
and extensions of these automorphisms.

Conventions and Notation

Throughout, K will denote a fixed field. A K-ring is a morphism 𝐾 → 𝑅 in the category of unital
commutative associative rings. As is customary, by an abuse of language, the target R of such a morphism
is also referred to as a K-ring.

By an algebraic K-group, or simply a K-group for convenience, we will understand a group scheme
G of finite type over Spec(𝐾).2 The connected component of the identity of an algebraic K-group G
will be denoted by G◦.

Let A be a finite-dimensional algebra over K (not assumed associative or commutative). For any
K-ring R the R-module 𝐴 ⊗𝐾 𝑅 has a natural R-algebra structure. We denote by Aut(𝐴) the algebraic
K-group whose functor of points is given by

Aut(𝐴) : 𝑅 → AutR-alg(𝐴 ⊗𝐾 𝑅).

Let V be a K-subspace of 𝐴. We let Aut(𝐴,𝑉) and Aut(𝐴/𝑉) be the closed algebraic subgroups of
Aut(𝐴) whose functor of points are given by

Aut(𝐴,𝑉) : 𝑅 → {𝑔 ∈ AutR-alg(𝐴 ⊗𝐾 𝑅) : 𝑔(𝑉 ⊗𝐾 𝑅) = 𝑉 ⊗𝐾 𝑅}

and

Aut(𝐴/𝑉) : 𝑅 → {𝑔 ∈ AutR-alg(𝐴 ⊗𝐾 𝑅) : 𝑔 | (𝑉 ⊗𝐾𝑅) = id},

respectively.
If G is an algebraic K-group, we will denote 𝐻1

fppf (𝐾,G) simply by 𝐻1(𝐾,G). Whenever G is
smooth, one knows that 𝐻1

fppf (𝐾,G) = 𝐻1
ét (𝐾,G) and that this last is nothing but the usual (nonabelian)

Galois cohomology.
In view of point (2) above, in order to prove our main results we may assume that K is of characteristic

zero. That said, many of the preliminary results are of independent interest and hold with less restrictions
on the nature of the base field. For this reason, we will henceforth assume, unless specifically stated
otherwise, that K of characteristic different from 2 and 3.

2All of the K- groups considered in our article are algebraic and affine group schemes over Spec(𝐾 ) .
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2. Preliminaries

For later use we record some facts about Albert algebras and algebraic groups.

2.1. Albert Algebras

A Jordan algebra over K is a unital, commutative, not necessarily associative K-algebra A in which the
Jordan identity

(𝑥𝑦) (𝑥𝑥) = 𝑥(𝑦(𝑥𝑥))

is satisfied. In particular, A is power associative. Given an associative algebra B with multiplication ·,
the anticommutator 1

2 (𝑥 · 𝑦 + 𝑦 · 𝑥) defines on B the structure of a Jordan algebra, denoted by 𝐵+. A
Jordan algebra A is said to be special if it is isomorphic to a Jordan subalgebra of 𝐵+ for an associative
algebra B and exceptional otherwise. An Albert algebra is by definition a simple, exceptional Jordan
algebra. It is known that any Albert algebra has dimension 27 and that, if the field K is separably closed,
then all Albert algebras over K are isomorphic, as follows from [13, Proposition 37.11]. Thus, all Albert
algebras over K are twisted forms of each other.

If A is an Albert algebra over 𝐾, then H = Aut(𝐴) is a simple K-group of type F4. It is known that
any such group arises in this fashion and that two Albert algebras are isomorphic if and only if their
automorphism groups are. Moreover, A is equipped with a cubic form 𝑁 : 𝐴 → 𝐾 , called the norm of
A. Our main object of study is the structure group Str(𝐴) of A. This is the algebraic K-group whose
functor of points is as follows: if R is a K-ring,

Str(𝐴) (𝑅) = {𝑥 ∈ GL(𝐴) (𝑅) | 𝑁𝑅 (𝑥(𝑎)) = 𝜈(𝑥)𝑁𝑅 (𝑎) ∀ 𝑎 ∈ 𝐴 ⊗𝐾 𝑅 },

where 𝑁𝑅 is the base change of N to 𝐴 ⊗𝐾 𝑅 and the multiplier 𝜈(𝑥) ∈ 𝑅×.
The derived subgroup

G = [Str(𝐴), Str(𝐴)]

of Str(𝐴) is known to be a strongly inner form of a split simple simply connected K-group of type E6.
Moreover, Str(𝐴) is an almost direct product of G𝑚 and G (the intersection being the centre of G).
Hence,

G = Str(𝐴)/G𝑚

is an adjoint K-group of type E6. Since in the split and even isotropic case, G and Str(𝐴) are R-trivial
(see [5]), we may, in the proof of the main theorem, assume that G is K-anisotropic. This amounts to
the Albert algebra A being a division algebra, which is equivalent to the norm map N being anisotropic;
that is, the equation 𝑁 (𝑎) = 0 having no nonzero solutions over K.

We denote the group of K-points of Str(𝐴) (respectively G, G, H) by Str(𝐴) (respectively𝐺, 𝐺, 𝐻).
The group H coincides with the stabiliser in Str(𝐴) of 1 ∈ 𝐴; see e.g. [20, 5.9.4].

2.2. R-equivalence in Algebraic Groups

Let G be an affine algebraic K-group. Two K-points 𝑥, 𝑦 ∈ G(𝐾) are called R-equivalent if there is a
path from x to y; that is, if there exists a rational map 𝑓 : A1

𝐾 � G defined at 0, 1 and mapping 0 to x
and 1 to y. One can easily verify that this is indeed an equivalence relation on G(𝐾) and that, moreover,
G induces a group structure on the set G(𝐾)/𝑅 of all R-equivalence classes. We will denote the set of
elements in G(𝐾) equivalent to 1 by 𝑅G(𝐾).



Forum of Mathematics, Sigma 5

2.3. R-triviality of Cohomology Classes and the Norm Principle

Let G be a semisimple K-group, Z ⊂ G a central subgroup and let

[𝜉] ∈ Ker [𝐻1(𝐾,Z) −→ 𝐻1 (𝐾,G)] . (1)

Definition. We say that [𝜉] is R-trivial if there exists

𝑐(𝑡) = [𝜉 (𝑡)] ∈ Ker [𝐻1(𝐾 (𝑡),Z𝐾 (𝑡) ) −→ 𝐻1 (𝐾 (𝑡),G𝐾 (𝑡) )],

with 𝐾 (𝑡) a purely transcendental extension of K, such that 𝑐(𝑡) is defined at 𝑡 = 0, 1 and 𝑐(0) = 1 and
𝑐(1) = [𝜉].

Remark 2.1. The above definition requires some clarification. Here and below, if G is an algebraic K-
group, then an element in G(𝐾 (𝑡)) (respectively a class in 𝐻1 (𝐾 (𝑡),G𝐾 (𝑡) )), where t is a variable over
K, is said to be defined at 0 and 1 if it is in the image of G(O) (respectively 𝐻1 (O,GO)), where O is
the intersection in 𝐾 (𝑡) of the localisations 𝐾 [𝑡](𝑡) and 𝐾 [𝑡](𝑡−1) . In particular, via the evaluation maps
𝜀0, 𝜀1 : O → 𝐾 , we can evaluate such an element or a class at 0 and at 1.

Example 2.2. Let D be a central simple algebra of degree n over K and set G = SL(1, 𝐷). The centre Z
of G is isomorphic to 𝝁𝑛 and thus 𝐻1(𝐾,Z) 	 𝐾×/𝐾×𝑛. Moreover, 𝐻1(𝐾,G) 	 𝐾×/Nrd (𝐷×). Hence,

Ker[𝐻1(𝐾,Z) −→ 𝐻1(𝐾,G)] 	 Nrd(𝐷×)/𝐾×𝑛,

and as D is the affine space A𝑛2

𝐾 , any element of the above kernel is R-trivial.

Example 2.3. Let f be a Pfister form over K, set G = Spin( 𝑓 ) and let again Z ⊂ G be its centre. Then
all cohomology classes in (1) are R-trivial; indeed, by [14, Proposition 7] the group G/Z = PGO+( 𝑓 )
is stably rational, and hence R-trivial, and since the canonical map

(G/Z) (𝐾) → Ker [𝐻1 (𝐾,Z) → 𝐻1 (𝐾,G)]

is surjective, any element in the kernel is R-trivial.

Example 2.4. Let f be an n-fold Pfister form over K, and let g be a nondegenerate subform of 𝑓 ⊕ H
of codimension 2, where H is the hyperbolic plane. If d is the determinant of g, then we have a
decomposition

𝑔 ⊕ 𝑎〈1,−𝑑〉 	 𝑓 ⊕ H (2)

for some scalar 𝑎 ∈ 𝐾×. We claim that the group PGO+(𝑔) is R-trivial or, equivalently (see [14]), that
the multiplier of any similitude with respect to g is R-trivial. In particular, if G = Spin(𝑔) and Z is its
centre, then arguing as in the previous example, one finds that every element in the kernel (1) is R-trivial.

To compute the group of multipliers of g we first recall that every multiplier of g is contained in the
set 𝑁𝐾 (

√
𝑑)/𝐾 (𝐾 (

√
𝑑)×) (see [13, Theorem 13.38]). Therefore, it follows from (2) that a multiplier m

with respect to g is a multiplier with respect to f as well and hence is contained in the value group 𝐷 ( 𝑓 )
of f. Conversely, (2) implies that every element

𝑚 ∈ 𝑁𝐾 (
√

𝑑)/𝐾 (𝐾 (
√
𝑑)×) ∩ 𝐷 ( 𝑓 )

is a multiplier of g. Let now 𝑈 ⊂ 𝐾 (
√
𝑑) be the open subvariety consisting of all elements with

nonzero norm and let 𝑋 ⊂ 𝑈 × A2𝑛
𝐾 be the K-variety consisting of the elements (𝑥, 𝑦) satisfying

𝑁𝐾 (
√

𝑑)/𝐾 (𝑥) = 𝑓 (𝑦). Consider the map 𝑋 → G𝑚 given by (𝑥, 𝑦) → 𝑁𝐾 (
√

𝑑)/𝐾 (𝑥). Then the group of
multipliers of g is the image of the K-points of X. Since X is K-rational, the group of multipliers of g is
R-trivial.
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Let G be a semisimple K-group and let Z ⊂ G be a central subgroup. For any finite extension 𝐿/𝐾
we have the restriction map

𝑟𝑒𝑠𝐿
𝐾 : 𝐻1 (𝐾,Z) → 𝐻1 (𝐿,Z)

and the corestriction map

𝑐𝑜𝑟𝐿
𝐾 : 𝐻1(𝐿,Z) → 𝐻1 (𝐾,Z).

Definition. Let 𝐿/𝐾 be a finite field extension. We say that the norm principle holds for a cohomology
class

[𝜂] ∈ Ker [𝐻1 (𝐿,Z) −→ 𝐻1 (𝐿,G)]

if

𝑐𝑜𝑟𝐿
𝐾 ([𝜂]) ∈ Ker [𝐻1 (𝐾,Z) −→ 𝐻1 (𝐾,G)] .

We also say that the norm principle holds for the pair (Z,G) if it holds for every [𝜂] ∈ Ker [𝐻1 (𝐿,Z) −→
𝐻1 (𝐿,G)] whenever 𝐿/𝐾 is a finite extension.

Theorem 2.5 (P. Gille [8].). Let K be a field of arbitrary characteristic and let 𝐿/𝐾 be a finite field
extension. The norm principle holds for all R-trivial elements [𝜂] ∈ Ker [𝐻1 (𝐿,Z) −→ 𝐻1(𝐿,G)].
Moreover, 𝑐𝑜𝑟𝐿

𝐾 ([𝜂]) is R-trivial.

2.4. Groups of Type D4

First we recall a statement about groups of type D4 inside split groups of type F4, proved in [1].

Proposition 2.6. Let F be a split K-group of type F4. Then any K-subgroup M ⊂ F of type D4 is
quasi-split.

For later use we need one more fact about groups of type 3,6D4 inside F4. Let thus M ⊂ F be a split
subgroup of type D4 and consider its normaliser N = 𝑁F (M). The quotient group N/M is isomorphic
to the group of outer automorphisms Out(M) of M. This is the symmetric group 𝑆3, which we view as
a constant finite group scheme over K.

Let [𝜉] ∈ 𝐻1 (𝐾,N) be an arbitrary cohomology class and consider its image [𝜉] ∈ 𝐻1 (𝐾,Out(M)).
Since Out(M) is a constant group scheme, any cocycle 𝜉 representing it corresponds to a homomorphism
𝜙𝜉 : Gal(𝐾𝑠𝑒𝑝/𝐾) → 𝑆3. The image Im 𝜙𝜉 is then isomorphic to the Galois group of the minimal
Galois extension 𝐹/𝐾 over which the twisted group 𝜉 M becomes a group of inner type. It follows that
Im 𝜙𝜉 is generated by the cycle (123) if 𝜉 M has type 3D4 and is equal to 𝑆3 if 𝜉 M has type 6D4.

Lemma 2.7. Assume that 𝜉 M has type 3,6D4. Then the natural map 𝜙 : 𝜉 N(𝐾) → 𝜉 (𝑆3) (𝐾) is
surjective.

Proof. If Im 𝜙𝜉 = 𝑆3, we have 𝜉 (𝑆3) (𝐾) = 1 and there is nothing to prove. Assume next that Im 𝜙𝜉 =

〈(123)〉. In this case 𝜉 (𝑆3) (𝐾) consists of three elements. Note that 𝜙 is the composition of the two
natural maps 𝜉 N(𝐾) → Aut( 𝜉 M) (𝐾) and Aut( 𝜉 M) (𝐾) → 𝜉 (𝑆3) (𝐾). By [7], the group Aut( 𝜉 M) (𝐾)
contains an outer automorphism, say a, and it suffices to lift it modulo inner automorphisms to 𝜉 N(𝐾).

The exact sequence

1 −→ Z −→ 𝜉 N −→ Aut( 𝜉 M) −→ 1,
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where Z is the centre of 𝜉 N, induces the connecting map

𝜓 : Aut( 𝜉 M) (𝐾) −→ 𝐻1 (𝐾,Z).

Let 𝜂 := 𝜓(𝑎). Let 𝐿/𝐾 be the cubic field extension over which 𝜉 M becomes an inner form. By
construction, we can say even more: it is a strongly inner form of type D4; hence, 𝜉 M𝐿 	 Spin( 𝑓𝐿)
where 𝑓𝐿 is a 3-fold Pfister form. Therefore, a viewed over L can be lifted modulo inner automorphisms
to an element of 𝜉 N(𝐿). In other words, there is an element 𝑎′ ∈ (Aut( 𝜉 M))◦(𝐿) such that its image
under the connecting map 𝜓𝐿 is 𝜂𝐿 .

According to Example 2.3, 𝜂𝐿 is R-trivial. This means that if t is a variable over K, then there exists
a class

[𝜂(𝑡)] ∈ Ker[𝐻1 (𝐿(𝑡),Z) → 𝐻1(𝐿(𝑡), 𝜉 M)]

such that 𝜂(𝑡) is defined at 𝑡 = 0, 1 and 𝜂(0) = 1, 𝜂(1) = 𝜂𝐿 . We now pass to [𝜂(𝑡)] := cor𝐿
𝐾 ([𝜂(𝑡)]. By

a result of P. Gille (see Theorem 2.5), the class [𝜂(𝑡)] belongs to

Ker[𝐻1 (𝐾 (𝑡),Z) → 𝐻1(𝐾 (𝑡), (Aut( 𝜉 M))◦]

and can be specialised at 𝑡 = 0, 1. Since 𝐿/𝐾 has degree 3 and since 𝐻1 (𝐾,Z) is a 2-group, we have
𝜂(𝑡)(1) = 𝜂.

Choose an element 𝑏(𝑡) ∈ (Aut( 𝜉 M))◦(𝐾 (𝑡)) which maps to 𝜂(𝑡) under 𝜓𝐾 (𝑡) and which can be
specialised at 𝑡 = 0, 1. By construction, 𝜓(𝑏(1)) = [𝜂]. This implies that 𝜓(𝑎𝑏(1)−1) = 1. In other
words, 𝑎𝑏(1)−1 has a lifting to 𝜉 N(𝐾), as required. �

2.5. Conjugacy of Maximal Tori

Let G be an absolutely simple semisimple K-group. Let T and T′ be maximal tori in G. Since all maximal
tori become conjugate upon extension to 𝐾𝑠𝑒𝑝, there exists 𝑔 ∈ G(𝐾𝑠𝑒𝑝) such that T′ = 𝑔T𝑔−1. Since
T and T′ are K-subgroups, we have (𝑔−1)𝜏𝑔 ∈ 𝑁G (T) (𝐾𝑠𝑒𝑝) for all 𝜏 ∈ Gal(𝐾𝑠𝑒𝑝/𝐾). Thus, the
class of the cocycle (𝜉𝜏) = ((𝑔−1)𝜏𝑔) with coefficients in 𝑁G (T) is a cohomological obstruction to
the conjugacy of T and T′. Note that since T′ = 𝑔T𝑔−1, the twisted tori ( 𝜉𝜏 )T and T′ are isomorphic
K-groups.

Next we will show that under some additional assumptions, one can choose g such that the cocycle
(𝜉𝜏) takes values in T(𝐾𝑠𝑒𝑝) ⊂ 𝑁G(T) (𝐾𝑠𝑒𝑝). Note that for such a choice of g we have ( 𝜉𝜏 )T 	 T.
Therefore, a necessary condition for this is that T and T′ be isomorphic over K, since ( 𝜉𝜏 )T 	 T′.
Furthermore, our claim will hold true in G if it does in G/Z for some central subgroup Z (because Z is
contained in T). This reduces the problem to the adjoint case.

Assume thus that T 	 T′ and that G is adjoint. Let 𝐹/𝐾 be the minimal splitting field of T (and
hence of T′) and let Γ = Gal(𝐹/𝐾). The group Γ acts naturally on the character lattices 𝑋 (T)∗ and
𝑋 (T′)∗ and these actions preserve the root systems Σ = Σ(𝐺,T) and Σ′ = Σ(𝐺,T′). Thus, we have two
canonical embeddings 𝜌1 : Γ ↩→ Aut(Σ) and 𝜌2 : Γ ↩→ Aut(Σ′). Since G is adjoint, Σ and Σ′ generate
𝑋 (T)∗ and 𝑋 (T′)∗, respectively. Since Σ and Σ′ are root systems of the same type we may identify them,
which in turn gives rise to an identification 𝑋 (T)∗ = 𝑋 (T′)∗. After all of these identifications we obtain
two actions of Γ on each of Σ and 𝑋 (T)∗ through 𝜌1 and 𝜌2.

Lemma 2.8. Assume that there is an inner automorphism 𝜌 : Aut(Σ) → Aut(Σ) such that 𝜌 |Im 𝜌1 =
𝜌2 ◦ 𝜌−1

1 . Then there is a Γ-equivariant automorphism 𝑋 (T)∗ → 𝑋 (T)∗ preserving the root system Σ,
where Γ acts on the domain through 𝜌1 and on the codomain through 𝜌2.

Proof. Let 𝜌 = Int(𝑎) where 𝑎 ∈ Aut(Σ). The map 𝑎 : Σ → Σ can be extended uniquely to an
automorphism 𝑎𝑋 (T)∗ : 𝑋 (T)∗ → 𝑋 (T)∗ preserving roots. It is straightforward to check that it is Γ-
equivariant. �
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We are now ready to conclude this section with the following theorem. Since we will mainly be
concerned with outer forms of type A2, it is stated for groups of outer type.

Theorem 2.9. Let G be an absolutely simple semisimple K-group of outer type with |Out(G) | = 2 and let
T and T′ be two isomorphic maximal tori in G, with corresponding root systems Σ and Σ′, respectively.
Assume that there is an inner automorphism 𝜌 : Aut(Σ) → Aut(Σ) such that 𝜌 |Im 𝜌1 = 𝜌2 ◦ 𝜌−1

1 , where
𝜌1 and 𝜌2 are the above embeddings of Γ into Aut(Σ). If there is 𝑓 ∈ Aut(G) (𝐾) \ Int(G) (𝐾) such
that 𝑓 (T) = T, then there is 𝑔 ∈ G(𝐾𝑠𝑒𝑝) such that 𝑔T𝑔−1 = T′ and (𝑔−1)𝜏𝑔 ∈ T(𝐾𝑠𝑒𝑝) for all
𝜏 ∈ Gal(𝐾𝑠𝑒𝑝/𝐾).

Proof. Without loss of generality, we may assume that G is adjoint. The assumptions of Lemma 2.8 are
satisfied. Let thus

𝑎𝑋 (T)∗ : 𝑋 (T)∗ → 𝑋 (T)∗

be the Γ-equivariant map constructed in that lemma. Using the identification of 𝑋 (T)∗ and 𝑋 (T′)∗,
we obtain a Γ-equivariant map 𝑋 (T)∗ → 𝑋 (T′)∗, which can be extended to a K-group isomorphism
𝑎 : T → T′ that induces an isomorphism between Σ and Σ′. By [11, Theorem 32.1] the map 𝑎T can be
further extended to an automorphism 𝑎G : G → G. Replacing 𝑎G with 𝑎G ◦ 𝑓 , if necessary, we may
assume that 𝑎G is inner, say 𝑎G = Int(𝑔), where 𝑔 ∈ G(𝐾𝑠𝑒𝑝). Since Int(𝑔) |T : T → T′ is a K-group
isomorphism and Int((𝑔−1)𝜏𝑔) fixes Σ, it follows that (𝑔−1)𝜏𝑔 ∈ T(𝐾𝑠𝑒𝑝) for all 𝜏 ∈ Gal(𝐾𝑠𝑒𝑝/𝐾). �

Example 2.10. We keep the above notation. Let 𝐸/𝐾 be a quadratic étale extension and let B be a
central simple algebra of degree 3 over E equipped with an involution 𝜎 of the second kind. Consider
two isomorphic cubic subfields 𝐿, 𝐿 ′ ⊂ 𝐵𝜎 where 𝐵𝜎 ⊂ 𝐵 is the subset consisting of all 𝜎-invariant
elements. Since the maximal subfields 𝐿 · 𝐸 and 𝐿 ′ · 𝐸 of B are 𝜎-stable, they give rise to two maximal
K-tori T and T′ in G = SU(𝐵, 𝜎), given by

T = {𝑥 ∈ 𝐿 · 𝐸 | 𝜎(𝑥)𝑥 = 1, Nrd(𝑥) = 1};

T′ = {𝑥 ∈ 𝐿 ′ · 𝐸 | 𝜎(𝑥)𝑥 = 1, Nrd(𝑥) = 1}.

Clearly, T 	 T′ and the Galois group Γ of the minimal splitting field of T (and hence of T′) are of order
divisible by 6. Now SU(𝐵, 𝜎) is of type A2, with 𝑊 (A2) 	 𝑆3 and the automorphism group of its root
system Σ,

Aut(Σ) 	 𝑊 (A2) × Z/2 	 𝑆3 × Z/2,

is of order 12. Thus, Γ has order 6 or 12.

Case 1: |Γ| = 12. Then Im 𝜌1 and Im 𝜌2 coincide with Aut(Σ). Note that

𝜌2 ◦ 𝜌−1
1 : Aut(Σ) → Aut(Σ)

preserves the Weyl group 𝑊 (A2) since 𝜌−1
1 (𝑊 (A2)) (respectively 𝜌−1

2 (𝑊 (A2))) coincides with
Gal(𝐹/𝐸) < Gal(𝐹/𝐾), where 𝐹/𝐾 is the Galois closure of 𝐿 · 𝐸/𝐾 . Hence, 𝜌2 ◦ 𝜌−1

1 obviously
satisfies all of the assumptions in Theorem 2.9 and the map 𝑓 (𝑥) = 𝜎(𝑥)−1 is an outer automorphism
of G preserving T.

Case 2: |Γ| = 6. The automorphism group Aut(Σ) has 3 subgroups of order 6, namely, Γ1 = 𝑊 (A2) =
𝑆3 ×0, the subgroup Γ2 ⊂ 𝑆3 ×Z/2 generated by the two elements ((123), 0) and ((12), 1), where (123)
and (12) are standard cycles in 𝑆3 and the cyclic subgroup Γ3 ⊂ 𝑆3 × Z/2 of order 6 generated by the
two elements ((123), 0) and (Id, 1).
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Since G has outer type, we know from [19, Lemma 4.1] that Γ does not embed into Γ1 = 𝑊 (A2) 	 𝑆3.
If 𝜌1(Γ) = Γ2 	 𝑆3, then Im 𝜌1 = Im 𝜌2 and since every automorphism of Γ2 is obviously inner,
the automorphism 𝜌2 ◦ 𝜌−1

1 of Γ2 can be extended to an inner automorphism of Aut(Σ). If instead
𝜌1 (Γ) = Γ3 	 Z/3×Z/2, then again Im 𝜌1 = Im 𝜌2. The group Γ3 has a unique nontrivial automorphism
given by 𝑥 ↦→ 𝑥−1 and one easily checks that it is the restriction of an inner automorphism of Aut(Σ).

Thus, in all cases, the hypothesis of Theorem 2.9 is satisfied.

3. Subgroups of the Automorphism Group of an Albert Algebra

In this section, we will study automorphisms of Albert algebras related to 9-dimensional subalgebras.
Recall that for our purposes it suffices to consider Albert algebras that are division algebras. Therefore,
throughout this section, A is an arbitrary division Albert algebra over K. The main result of this section
is the rationality, hence R-triviality, of the group of all automorphisms stabilising a 9-dimensional
subalgebra.

3.1. 9-dimensional Subalgebras and Their Automorphisms

By [13, Theorem 37.12 (2)], any proper nontrivial subalgebra of A is either a cubic field extension
𝐾 ⊂ 𝐿 ⊂ 𝐴 or a 9-dimensional subalgebra 𝐾 ⊂ 𝑆 ⊂ 𝐴. Furthermore, S is of the form 𝑆 = 𝐷+ where D is
a central simple algebra of degree 3 over K or 𝑆 = 𝐵+

𝜎 where B is a central division algebra of degree 3
over a quadratic field extension 𝐸/𝐾 equipped with an involution 𝜎 of the second kind. For later use we
record some facts related to automorphism groups of 𝐷+, 𝐵+

𝜎 and their extensions to automorphisms of A.
First, let 𝑆 = 𝐷+. By [13, Theorem 39.14 (2)], the algebra A has a presentation 𝐴 = 𝐷 ⊕ 𝐷 ⊕ 𝐷 (as

a vector space) where the subalgebra S coincides with the first component. By [13, formula (37.7)] , we
have an exact sequence

1 −→ Aut(𝐷) −→ Aut(𝐷+) −→ Z/2 −→ 1.

This sequence is split if and only if D is split. Since D is a division algebra, any K-automorphism of 𝐷+

thus comes from Aut(𝐷) (𝐾) = Aut(𝐷); that is, is given by conjugation 𝑥 ↦→ 𝑑𝑥𝑑−1 for some 𝑑 ∈ 𝐷×.
Moreover, such an automorphism can be extended to A by the formula

(𝑥, 𝑦, 𝑧) ↦→ (𝑔𝑥𝑔−1, 𝑔𝑦𝑔−1, 𝑔𝑧𝑔−1).

Thus, the sequence implies that

Aut(𝐷+)◦ 	 PGL(1, 𝐷).

Note that PGL(1, 𝐷) is rational and hence, in particular, R-trivial.
Next, let 𝑆 = 𝐵+

𝜎 . Here the situation is completely analogous to that of 𝑆 = 𝐷+. Namely, by [13,
Theorem 39.18 (2)], the algebra A admits the presentation 𝐴 = 𝐵+

𝜎 ⊕ 𝐵 as a vector space, with the first
component a subalgebra. By [13, Section 37.B], the algebraic K-group Aut(𝐵+

𝜎) is smooth and

Aut(𝐵+
𝜎)◦ 	 PGU(𝐵, 𝜎).

Passing to the quadratic field extension 𝐸/𝐾 , we conclude that

Aut(𝐵+
𝜎) (𝐾) = Aut(𝐵+

𝜎)◦(𝐾).

Thus, any K-automorphism of 𝐵+
𝜎 is given by conjugation 𝑥 ↦→ 𝑏𝑥𝑏−1 for some 𝑏 ∈ 𝐵× satisfying

𝑏𝜎(𝑏) ∈ 𝐾 . Since PGU(𝐵, 𝜎) has rank 2 it is rational and hence R-trivial. In Corollary 3.2 we shall
see that any K-automorphism of 𝐵+

𝜎 can be extended to a K-automorphism of A.
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3.2. The Group Aut(𝐴/𝐵+
𝜎)

Note that if 𝐸 = 𝐾 × 𝐾 and 𝐵 = 𝐷 ⊗𝐾 𝐸 with the flip involution 𝜎, then 𝐵+
𝜎 is equal to 𝐷+ embedded

diagonally into B. This provides a unified treatment of both kinds of 9-dimensional subalgebras. There-
fore, here and in what follows in this section, we will let 𝐸/𝐾 be a quadratic étale extension, including
the possibility of E being split; doing so, any 9-dimensional subalgebra of A is of the form 𝐵+

𝜎 .
As above, let 𝐴 = 𝐵+

𝜎 ⊕ 𝐵. Recall the algebraic K-group

Aut(𝐴/𝐵+
𝜎) ⊂ Aut(𝐴) = H

(see Introduction). One knows (see [13, Section 39.B]) that Aut(𝐴/𝐵+
𝜎) is simple simply connected of

type A2 (hence connected). Thus,

Aut(𝐴/𝐵+
𝜎) 	 SU(𝐵, 𝜏)

where 𝜏 is some involution of the second kind on B, which in general is different from 𝜎. Being an
algebraic group of rank 2, this group is rational and hence R-trivial.

3.3. The Group Aut(𝐴, 𝐵+
𝜎)

Recall from the Introduction the K-group

Aut(𝐴, 𝐵+
𝜎) ⊂ Aut(𝐴) = H.

By [13, Proposition 39.16], we have an exact sequence

1 −→ Aut(𝐴/𝐵+
𝜎) −→ Aut(𝐴, 𝐵+

𝜎) −→ Aut(𝐵+
𝜎) −→ 1.

Moreover, by [13, Corollary 39.12] ,

Aut(𝐴, 𝐵+
𝜎)◦(𝐾) = Aut(𝐴, 𝐵+

𝜎) (𝐾).

Furthermore, the above sequence induces the exact sequence

1 −→ Aut(𝐴/𝐵+
𝜎) −→ Aut(𝐴, 𝐵+

𝜎)◦ −→ Aut(𝐵+
𝜎)◦ −→ 1. (3)

Thus,

Aut(𝐴, 𝐵+
𝜎)◦/Aut(𝐴/𝐵+

𝜎) 	 Aut(𝐵+
𝜎)◦ 	 PGU(𝐵, 𝜎) 	 SU(𝐵, 𝜎)/Z,

where Z ⊂ SU(𝐵, 𝜎) is the centre.
From the point of view of algebraic groups, (3) implies that the algebraic K-group G := Aut(𝐴, 𝐵+

𝜎)◦
is semisimple and is an almost direct product of two simple simply connected groups of type A2: the
first is

G1 := Aut(𝐴/𝐵+
𝜎) = SU(𝐵, 𝜏)

and the second is isomorphic to G2 := SU(𝐵, 𝜎). The centres Z1 and Z2 of G1 and G2, respectively,
are both isomorphic to Z = 𝑅 (1)

𝐸/𝐾 (𝝁3) and G1 ∩ G2 = Z (see [13, Corollary 39.12]). Thus, we have the
exact sequence

1 −→ Z −→ G1 × G2
𝜙

−→ G −→ 1, (4)
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where Z is embedded codiagonally; that is, via 𝑧 ↦→ (𝑧, 𝑧−1). Identifying the image 𝜙(G1 ×1) ⊂ G with
G1, we recover the sequence (3) in the form

1 −→ G1 −→ G
𝜓

−→ G/G1 −→ 1. (5)

Note that G/G1 	 G2/Z.

3.4. Rationality of Aut(𝐴, 𝐵+
𝜎)◦

We keep the notation introduced in Subsection 3.3.

Proposition 3.1. The K-group G = Aut(𝐴, 𝐵+
𝜎)◦ is rational and hence R-trivial.

Proof. Consider the exact sequences (4) and (5). The two groups G1 and G2/Z in (5), being groups of
rank 2, are rational over K. Therefore, it suffices to show that 𝜓 has a rational section. This is equivalent
to proving that

Ker [𝐻1 (𝐹,G1) −→ 𝐻1 (𝐹,G)] = 1

for all field extensions 𝐹/𝐾 .
Fix a field extension 𝐹/𝐾 and let [𝜉] × 1 ∈ 𝐻1 (𝐹,G1 × 1) be a class whose image in 𝐻1(𝐹,G) is

trivial. From (4) it follows that there is [𝜆] ∈ 𝐻1(𝐹,Z) whose image in 𝐻1(𝐹,G1 × G2) is [𝜉] × 1.
Since Z is embedded codiagonally into G1 × G2, the image of [𝜆] under the natural map

𝐻1 (𝐹,Z) → 𝐻1(𝐹,G2)

is trivial. We distinguish two cases.

Case 1: The quadratic étale extension 𝐸/𝐾 is split; that is, 𝐸 = 𝐾 × 𝐾 . Then up to K-isomorphism we
may assume that G1 = SL(1, 𝐷1) and G2 = SL(1, 𝐷2), where 𝐷1 and 𝐷2 are central simple algebras
over K of degree 3 and either 𝐷2 = 𝐷1 or 𝐷2 = 𝐷

op
1 . In both cases their centres are 𝝁3, whence

𝐻1 (𝐹,Z) 	 𝐹×/𝐹×3, so that the class [𝜆] ∈ 𝐻1 (𝐹,Z) is represented by some 𝑓 ∈ 𝐹×. The fact that

𝐻1(𝐹,G2) 	 𝐹×/Nrd(𝐷×
2 )

together with the image of [𝜆] in 𝐻1(𝐹,G2) being trivial then imply that f is a reduced norm in 𝐷2,
and hence also in 𝐷1. This implies that the image [𝜉] of [𝜆] in 𝐻1(𝐹,G1) is trivial, which completes
the proof in this case.

Case 2: 𝐸/𝐾 is a separable field extension. Let 𝐹 ′ = 𝐹 · 𝐸 and consider the class [𝜆]2 ∈ 𝐻1 (𝐹,Z).
From Case 1 we know that 𝑟𝑒𝑠𝐹 ′

𝐹 ([𝜆]2) is contained in Ker [𝐻1 (𝐹 ′,Z) → 𝐻1(𝐹 ′,G1)]. It follows from
Example 2.2 and the norm principle (Theorem 2.5) that

[𝜆] = [𝜆]4 = 𝑐𝑜𝑟𝐹 ′

𝐹 (𝑟𝑒𝑠𝐹 ′

𝐹 ([𝜆]2)

is contained in Ker [𝐻1(𝐹,Z) → 𝐻1 (𝐹,G1)] and the proof is complete. �

As a direct consequence of our proof, we have the following.

Corollary 3.2. For any field extension 𝐹/𝐾 , the canonical map G(𝐹) → (G2/Z) (𝐹) is surjective.
Hence, if 𝐴𝐹 is a division Albert algebra, then

Aut(𝐴, 𝐵+
𝜎) (𝐹) −→ Aut(𝐵+

𝜎) (𝐹)

is surjective.
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4. Subgroups of the Structure Group of an Albert Algebra

We now turn to the structure group and consider, along the same lines as in the previous section,
subgroups of it related to 9-dimensional subalgebras. Throughout this section, as in the previous, A
denotes an arbitrary division Albert algebra over K. We moreover continue using the convention that
the quadratic étale algebra E involved in the definition of 𝐵+

𝜎 may be split.

4.1. The Group Str(𝐵+
𝜎)

The structure group Str(𝐵+
𝜎) of the Jordan algebra 𝐵+

𝜎 is a closed subgroup of the algebraic K-group
GL(𝐵+

𝜎) consisting of all similitudes. More precisely, for any K-ring R,

Str(𝐵+
𝜎) (𝑅) = {𝑥 ∈ GL(𝐵+

𝜎) (𝑅) | Nrd𝑅 (𝑥(𝑏)) = 𝜈(𝑥)Nrd𝑅 (𝑏) ∀𝑏 ∈ 𝐵+
𝜎 ⊗𝐾 𝑅}

where Nrd𝑅 is the base change of Nrd to 𝐵 ⊗𝐾 𝑅 and the multiplier 𝜈(𝑥) ∈ 𝑅×. By [12, Chap. V, Thm.
5.12.10], the group Str(𝐵+

𝜎) = Str(𝐵+
𝜎) (𝐾) consists of the linear maps of the form

𝐵+
𝜎 −→ 𝐵+

𝜎 , 𝑥 ↦→ 𝜆𝑏𝑥𝜎(𝑏),

where 𝑏 ∈ 𝐵× and 𝜆 ∈ 𝐾×. It follows that we have a surjective map of algebraic K-groups

G𝑚 × 𝑅𝐸/𝐾 (GL(1, 𝐵)) −→ Str(𝐵+
𝜎)◦

and that Str(𝐵+
𝜎)◦(𝐾) = Str(𝐵+

𝜎) (𝐾). The kernel of this map is the torus 𝑅𝐸/𝐾 (G𝑚,𝐸 ), where the
embedding

𝑅𝐸/𝐾 (G𝑚,𝐸 ) ↩→ G𝑚 × 𝑅𝐸/𝐾 (GL(1, 𝐵))

is given by 𝑥 ↦→ (𝑁𝐸/𝐾 (𝑥−1), 𝑥). Thus, we have the exact sequence

1 −→ 𝑅𝐸/𝐾 (G𝑚,𝐸 ) −→ G𝑚 × 𝑅𝐸/𝐾 (GL(1, 𝐵))
𝜙

−→ Str(𝐵+
𝜎)◦ −→ 1. (6)

Lemma 4.1. The algebraic K-group Str(𝐵+
𝜎)◦ is rational and hence, in particular, R-trivial.

Proof. We identify 𝜙(G𝑚 × 1) ⊂ Str(𝐵+
𝜎)◦ with G𝑚. Since for any field extension 𝐹/𝐾 one has

𝐻1 (𝐹,G𝑚) = 1, the canonical map

Str(𝐵+
𝜎)◦ → Str(𝐵+

𝜎)◦/G𝑚

has a rational section. Therefore, it suffices to establish the rationality of Str(𝐵+
𝜎)◦/G𝑚. By (6) we have

Str(𝐵+
𝜎)◦/G𝑚 	 𝑅𝐸/𝐾 (GL(1, 𝐵×))/𝑅𝐸/𝐾 (G𝑚,𝐸 ),

which is clearly rational. �

4.2. The Group Str(𝐴, 𝐵+
𝜎)

Let Str(𝐴, 𝐵+
𝜎) (respectively Str(𝐴/𝐵+

𝜎)) be the closed subgroup of Str(𝐴) consisting of those elements
stabilising 𝐵+

𝜎 (respectively fixing 𝐵+
𝜎 pointwise). Note that since the elements of Str(𝐴/𝐵+

𝜎) fix the
identity element of A, it follows from [20, Proposition 5.9.4] that Str(𝐴/𝐵+

𝜎) = Aut(𝐴/𝐵+
𝜎). This group

is the kernel of the canonical restriction map

Str(𝐴, 𝐵+
𝜎)◦ → Str(𝐵+

𝜎)◦.
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Note that the restriction map is well defined because the restriction to 𝐵+
𝜎 of the norm on A is the norm

on 𝐵+
𝜎 . Since, by [7, Proposition 7.2.4], this map is surjective on the level of 𝐾𝑠𝑒𝑝-points, we have the

exact sequence

1 −→ Aut(𝐴/𝐵+
𝜎) −→ Str(𝐴, 𝐵+

𝜎)◦
𝜙

−→ Str(𝐵+
𝜎)◦ −→ 1 (7)

of algebraic K-groups.

Proposition 4.2. The group Str(𝐴, 𝐵+
𝜎)◦ is rational and hence R-trivial.

Proof. By [7], for any field extension 𝐹/𝐾 the map

Str(𝐴, 𝐵+
𝜎)◦(𝐹)

𝜙𝐹−→ Str(𝐵+
𝜎)◦(𝐹)

is surjective, implying that 𝜙 has a rational section. Thus, Str(𝐴, 𝐵+
𝜎)◦ is birationally isomorphic to

Aut(𝐴/𝐵+
𝜎) × Str(𝐵+

𝜎)◦. It remains to be noted that, being a group of rank 2, the group Aut(𝐴/𝐵+
𝜎) is

rational and by Lemma 4.1 the group Str(𝐵+
𝜎)◦ is rational. �

Corollary 4.3. The natural map Str(𝐴, 𝐵+
𝜎) → Str(𝐵+

𝜎) is surjective.

Proof. From the proof of Proposition 4.2 it follows that the map

Str(𝐴, 𝐵+
𝜎)◦(𝐾) → Str(𝐵+

𝜎)◦(𝐾)

is surjective, and from 4.1 we know that Str(𝐵+
𝜎) (𝐾) = Str(𝐵+

𝜎)◦(𝐾). The assertion follows. �

5. The Weak Skolem–Noether Property for Isomorphic Embeddings

Let A be an Albert algebra over a field K. Let 𝐾 ⊂ 𝐿 ⊂ 𝐴 and 𝐾 ⊂ 𝐿 ′ ⊂ 𝐴 be two isomorphic separable
cubic field extensions; one says that they are weakly equivalent if there exists an element 𝑔 ∈ Str(𝐴)
such that 𝑔(𝐿) = 𝐿 ′. That this property holds follows from Theorem B (Skolem–Noether theorem for
Albert algebras) due to S. Garibaldi and H. Petersson [7].

The goal of this section is to give a self-contained proof of the validity of weak equivalence based
on the technique of conjugacy of maximal tori detailed in Section 2.

We start with the intermediate step of a 9-dimensional Jordan algebra 𝐵+
𝜎 .

Proposition 5.1. Let L and 𝐿 ′ be two isomorphic separable cubic field extensions of the base field K
contained in the subalgebra 𝐵+

𝜎 . Then there exists an element 𝑠 ∈ Str(𝐵+
𝜎) such that 𝑠(𝐿) = 𝐿 ′.

Proof. Let 𝐸/𝐾 be the étale quadratic extension over which B is defined. The two cubic fields L and 𝐿 ′

give rise to the two 4-dimensional (maximal) tori

T = {𝑥 ∈ 𝑅𝐿 ·𝐸/𝐾 (G𝑚,𝐿 ·𝐸 ) | 𝜎(𝑥)𝑥 ∈ G𝑚,𝐾 }

and

T′ = {𝑥 ∈ 𝑅𝐿′ ·𝐸/𝐾 (G𝑚,𝐿′ ·𝐸 ) | 𝜎(𝑥)𝑥 ∈ G𝑚,𝐾 }

of the algebraic K-group Sim(𝐵, 𝜎).3 From the point of view of algebraic groups, Sim(𝐵, 𝜎) is a
reductive group which is the almost direct product of the central 2-dimensional torus P = 𝑅𝐸/𝐾 (G𝑚,𝐸 )
and the simple simply connected group SU(𝐵, 𝜎) of outer type A2. Note that P is contained in both T
and T′. Let T𝑠𝑠 = T ∩ SU(𝐵, 𝜎) and T′

𝑠𝑠 = T′ ∩ SU(𝐵, 𝜎). Then T = P · T𝑠𝑠 and T′ = P · T′
𝑠𝑠 .

3For the definition of Sim(𝐵, 𝜎) see [13].
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By Theorem 2.9 and Example 2.10, there exists 𝑏 ∈ SU(𝐵, 𝜎) (𝐾𝑠𝑒𝑝) such that 𝑏T𝑠𝑠𝑏
−1 = T′

𝑠𝑠 and
𝑏−𝜏+1 ∈ T𝑠𝑠 (𝐾𝑠𝑒𝑝) for all 𝜏 ∈ Gal(𝐾𝑠𝑒𝑝/𝐾). Since P ⊂ Sim(𝐵, 𝜎) is a central torus, we also have
𝑏T𝑏−1 = T′.

Consider the following commutative diagram with exact rows:

1 −−−−−−→ 𝑅𝐸/𝐾 (G𝑚,𝐸 ) −−−−−−→ Sim(𝐵, 𝜎)
𝜙1−−−−−−→ Aut(𝐵+

𝜎)◦ −−−−−−→ 1⏐⏐�Id
⏐⏐�𝜆2

⏐⏐�
1 −−−−−−→ 𝑅𝐸/𝐾 (G𝑚,𝐸 ) −−−−−−→ J

𝜙2−−−−−−→ Str(𝐵+
𝜎)◦ −−−−−−→ 1.

Here J = G𝑚,𝐾 × 𝑅𝐸/𝐾 (GL(1, 𝐵)), so that the lower sequence is the exact sequence (6), 𝜙1 is given by
conjugation,

𝜙2(𝑥, 𝑦) : 𝐵+
𝜎 −→ 𝐵+

𝜎 , 𝑎 ↦→ 𝑥𝑦𝑎𝜎(𝑦)

and

𝜆2(𝑥) = (𝜈(𝑥−1), 𝑥) = (𝑥−1𝑥−𝜎 , 𝑥)

where 𝜈(𝑥) is the multiplier of x. The map 𝜆2 takes T and T′ into the quasi-trivial tori

T̃ = G𝑚,𝐾 × 𝑅𝐿 ·𝐸/𝐾 (G𝑚,𝐿 ·𝐸 )

and

T̃′ = G𝑚,𝐾 × 𝑅𝐿′ ·𝐸/𝐾 (G𝑚,𝐿′ ·𝐸 ),

respectively. Next we need the following.

Lemma 5.2. The torus T̃ (respectively T̃′) is the centraliser of T (respectively T′) in G𝑚,𝐾 ×
𝑅𝐸/𝐾 (GL(1, 𝐵)).

Proof. We consider the case of the torus T only. The torus T′ is handled analogously. It suffices to show
that

𝐶𝑅𝐸/𝐾 (GL(1,𝐵)) (T) = 𝑅𝐿 ·𝐸/𝐾 (G𝑚,𝐿 ·𝐸 ).

Without loss of generality, we may assume that the base field K is algebraically closed. Then B may
be identified with the algebra 𝑀3 × 𝑀3, the involution 𝜎 switches the components and L with diagonal
matrices fixed by 𝜎. With this identification we have

𝑅𝐸/𝐾 (GL(1, 𝐵)) = GL3 × GL3

and

𝑅𝐿 ·𝐸/𝐾 (G𝑚,𝐿 ·𝐸 ) = {(𝑡1, 𝑡2) | 𝑡1, 𝑡2 are diagonal matrices}

and, moreover,

T = {(𝑡1, 𝑢𝑡1) | 𝑡1 is a diagonal matrix and 𝑢 ∈ 𝐾×}.

It follows that

𝐶GL3×GL3 (T) = {(𝑡1, 𝑡2) | 𝑡1, 𝑡2 are diagonal matrices}

and we are done. �
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We now return to proving the proposition. By the above lemma the equality 𝑏T𝑏−1 = T′ implies
𝑏T̃𝑏−1 = T̃′ and

𝜆2(𝑏−𝜏+1) = (𝜆2(𝑏))−𝜏+1 = (𝜈(𝑏−1)−𝜏+1, 𝑏−𝜏+1) ∈ T̃(𝐾𝑠𝑒𝑝).

Since 𝐻1(𝐾, 𝑅𝐿 ·𝐸/𝐾 (G𝑚,𝐿 ·𝐸 )) = 1, we can pick an element

𝑎 ∈ 𝑅𝐿 ·𝐸/𝐾 (G𝑚,𝐿 ·𝐸 ) (𝐾𝑠𝑒𝑝) = ((𝐿 · 𝐸) ⊗𝐾 𝐾𝑠𝑒𝑝)×

such that 𝑏−𝜏+1 = 𝑎−𝜏+1. Clearly, 𝑐 := 𝑏𝑎−1 is Gal(𝐾𝑠𝑒𝑝/𝐾)-invariant, hence, 𝑐 ∈ 𝐵×, and, defining s
as the map 𝑥 ↦→ 𝑐𝑥𝜎(𝑐), the following claim completes the proof of the proposition.

Claim. 𝑐𝐿𝜎(𝑐) = 𝐿 ′.

The claim is equivalent to 𝑐(𝐿 · 𝐸)𝜎(𝑐) = 𝐿 ′ · 𝐸 . Moreover, it suffices to show that

𝑐((𝐿 · 𝐸) ⊗𝐾 𝐾𝑠𝑒𝑝)𝜎(𝑐) = (𝐿 ′ · 𝐸) ⊗𝐾 𝐾𝑠𝑒𝑝 .

But 𝜎(𝑐) = 𝜎(𝑎−1)𝜎(𝑏) and both 𝑎−1 and 𝜎(𝑎−1) are in (𝐿 ·𝐸) ⊗𝐾 𝐾𝑠𝑒𝑝. Therefore, it suffices to show
that

𝑏((𝐿 · 𝐸) ⊗𝐾 𝐾𝑠𝑒𝑝)𝜎(𝑏) = (𝐿 ′ · 𝐸) ⊗𝐾 𝐾𝑠𝑒𝑝 .

Recall that, by construction, b is a similitude; hence, 𝜎(𝑏) = 𝜈(𝑏)𝑏−1, where 𝜈(𝑏) is the multiplier
of b. Since 𝑏T𝑏−1 = T′, the claim follows upon noting that the centraliser of T (respectively T′) in
𝐵 ⊗𝐾 𝐾𝑠𝑒𝑝 is (𝐿 · 𝐸) ⊗𝐾 𝐾𝑠𝑒𝑝 (respectively (𝐿 ′ · 𝐸) ⊗𝐾 𝐾𝑠𝑒𝑝). �

The proposition in conjunction with Corollary 4.3 yields the following.

Theorem 5.3. Let A be a division Albert algebra over K and let 𝐿 ⊂ 𝐴 and 𝐿 ′ ⊂ 𝐴 be isomorphic
separable cubic field extensions of K. Then there exists a 9-dimensional subalgebra 𝐵+

𝜎 of A and an
element 𝑠 ∈ Str(𝐴, 𝐵+

𝜎) such that 𝑠(𝐿) = 𝐿 ′ = 𝑓 (𝐿).

Proof. If 𝐿 ′ = 𝐿, we can take any any 9-dimensional subalgebra 𝐵+
𝜎 containing L and choose 𝑠 = Id.

Otherwise, the cubic subfields 𝐿, 𝐿 ′ generate a subalgebra in A of the form 𝐵+
𝜎 and we can take any lift

of the element s constructed in the above proposition. �

Remark 5.4. To be able to approach the Skolem–Noether isomorphic embedding problem using torsor
techniques is of independent interest. It seems plausible that this approach can shed some light on the
still open and much more difficult Skolem–Noether problem for isotopic embeddings.

6. Reduction to F4

Throughout this section, we let A be a division Albert algebra over K. We will show that an arbitrary
element in Str(𝐴) can be written as a product of R-trivial elements and elements in H(𝐾), thereby
reducing the problem to subgroups of type F4. To begin with, we recall from [1] how to associate, to
any 𝑎 ∈ 𝐴×, a subgroup of type D4 in G = [Str(𝐴), Str(𝐴)] and a 2-dimensional torus. Let 𝐿 ⊂ 𝐴 be
the K-subalgebra generated by a if a is not a scalar multiple of the identity of A and by any element that
is not such a scalar multiple if a is. Since A is a division algebra, it is known that L is a cubic subfield.
Let G𝐿 be the algebraic K-group whose functor of points is given by

G𝐿 (𝑅) = {𝑥 ∈ G(𝑅) | 𝑥(𝑙 ⊗ 1) = 𝑙 ⊗ 1 ∀𝑙 ∈ 𝐿}

for any K-ring R. Since G𝐿 stabilises 1 ∈ 𝐿 ⊂ 𝐴, we have G𝐿 ⊂ H ⊂ G. It is known that over a
separable closure of K the group G𝐿 is conjugate to the standard subgroup in G of type D4 generated
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by roots 𝛼2, 𝛼3, 𝛼4, 𝛼5. The lemma below shows that the centraliser S′𝐿 = 𝐶G (G𝐿) of G𝐿 in G is a
2-dimensional torus over K and that

Z𝐿 := S′𝐿 ∩ H = S′𝐿 ∩ G𝐿

is the centre of G𝐿 .

Lemma 6.1. Let K be an arbitrary field. G be a split simple simply connected K-group of type E6. Let
T ⊂ G be a maximal split torus. Denote by Π = {𝛼1, . . . , 𝛼6} a basis of the root system Σ(G,T) and by
Σ1 the root subsystem in Σ generated by 𝛼2, 𝛼3, 𝛼4, 𝛼5. Then S = 𝐶G (GΣ1 ) is a 2-dimensional subtorus
in T and S ∩ GΣ1 is the centre of GΣ1 .

Proof. Let TΣ1 = GΣ1 ∩ T. This is a maximal split torus of GΣ1 . Clearly, one has 𝐶G (GΣ1 ) ⊂
𝐶G (TΣ1 ). By properties of reductive groups, 𝐶G (TΣ1 ) is a reductive group whose derived subgroup
[𝐶G (TΣ1 ), 𝐶G(TΣ1 )] is generated by roots in Σ orthogonal to 𝛼2, 𝛼3, 𝛼4, 𝛼5. Since Σ is of type E6 there
are no such roots, and this implies that 𝐶G (TΣ1 ) = T. Thus, 𝑆 = 𝐶G (GΣ1 ) is a subtorus in T. To describe
it explicitly we will use the canonical cocharacters �̌�𝑖 : G𝑚 → T.

Since G is simply connected, every element in 𝑡 ∈ T(𝐾) can be written uniquely in the form
𝑡 =

∏
𝑖 �̌�𝑖 (𝑡𝑖) where 𝑡𝑖 ∈ 𝐾 . For a root 𝛼 ∈ Σ let U𝛼 be the associated root subgroup in G. Using

Steinberg’s notation (introduced in [21]), every element in U𝛼 can be written as 𝑥𝛼 (𝑢) where 𝑢 ∈ 𝐾 .
According to the Steinberg relations [21], we have

�̌�𝑖 (𝑡𝑖)𝑥𝛼 (𝑢)�̌�𝑖 (𝑡𝑖)−1 = 𝑥𝛼 (𝑡<𝛼,𝛼𝑖>
𝑖 𝑢).

Using this relation, it is straightforward to verify that S consists of the elements in T of the form

�̌�1

(
𝑏2

𝑎2

)
�̌�3(𝑏)�̌�4(𝑎2)�̌�2(𝑎)�̌�5

(
𝑎3

𝑏

)
�̌�6

(
𝑎4

𝑏2

)

where 𝑎, 𝑏 ∈ 𝐾×. Lastly, we note that the centre of GΣ1 is generated by the two elements �̌�3 (−1)�̌�2(−1)
and �̌�5(−1)�̌�2(−1) which are contained in S. �

Let S𝐿 ⊂ Str(𝐴) be the 3-dimensional torus in Str(𝐴) generated by S′𝐿 and G𝑚, where the latter is
embedded in Str(𝐴) as the subgroup of homotheties. The following was proved in [1].

Lemma 6.2. With the notation above, S𝐿 	 𝑅𝐿/𝐾 (G𝑚,𝐿) and S′𝐿 	 𝑅 (1)
𝐿/𝐾 (G𝑚,𝐿). Moreover,

{𝑎 ∈ 𝐴 | 𝑥(𝑎) = 𝑎 ∀𝑥 ∈ G𝐿 (𝐾)} = 𝐿,

and the natural action of Str(𝐴) on A induces an action of S𝐿 on L, which is transitive on the level of
the 𝐾𝑠𝑒𝑝-points of the open subset

𝐿× = {𝑥 ∈ 𝐿 | 𝑁 (𝑥) ≠ 0}

of L and gives rise to an exact sequence

1 −→ Z𝐿 −→ S𝐿 −→ L× −→ 1.

From the exact sequence in cohomology associated to the sequence in the lemma we have a map
𝐿× → 𝐻1(𝐾,Z𝐿), which is surjective since 𝐻1(𝐾, S𝐿) is trivial. Using this map we can attach, to any
𝑎 ∈ 𝐿×, a class [𝜉𝑎] = (𝑎𝜏) ∈ 𝐻1 (𝐾,Z𝐿). From [1] we moreover know that the image of this class in
𝐻1 (𝐾,H) is trivial if a is in the Str(𝐴)-orbit of 1.

Let now 𝑔 ∈ Str(𝐴) be an arbitrary element and set 𝑎 := 𝑔(1). As detailed above, we attach to
a a subfield L in A and with it the closed subgroups G𝐿 , Z𝐿 and S𝐿 of Str(𝐴), as well as the class
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[𝜉𝑎] = (𝑎𝜏) ∈ 𝐻1 (𝐾,Z𝐿). Since the image of this class in 𝐻1(𝐾,H) is trivial, there exists 𝑓 ∈ H(𝐾𝑠𝑒𝑝)
such that 𝑎𝜏 = ( 𝑓 −1)𝜏 𝑓 for all 𝜏 ∈ Gal(𝐾𝑠𝑒𝑝/𝐾).

Lemma 6.3. The subset 𝑓 (𝐿) ⊂ 𝐴𝐾 𝑠𝑒𝑝 = 𝐴 ⊗𝐾 𝐾𝑠𝑒𝑝 is contained in 𝐴 = 𝐴 ⊗𝐾 𝐾 .

Proof. Let 𝑙 ∈ 𝐿. We need to show that 𝑓 (𝑙) is Gal(𝐾𝑠𝑒𝑝/𝐾)-invariant. Take any 𝜏 ∈ Gal(𝐾𝑠𝑒𝑝/𝐾).
Then

𝜏( 𝑓 (𝑙)) = ( 𝑓 𝜏) (𝜏(𝑙)) = 𝑓 𝜏 (𝑙) = 𝑓 ( 𝑓 −1 𝑓 𝜏 (𝑙)) = 𝑓 𝑎−1
𝜏 (𝑙) = 𝑓 (𝑙),

since Z𝐿 ⊂ G𝐿 fixes L pointwise and the statement follows. �

Since H = Aut(𝐴), the above lemma implies that the map 𝐿 → 𝐿 ′ = 𝑓 (𝐿) given by 𝑙 ↦→ 𝑓 (𝑙) is a
field isomorphism over K. Assume that 𝐿 ≠ 𝐿 ′. Let 𝐵+

𝜎 ⊂ 𝐴 be the 9-dimensional subalgebra generated
by L and 𝐿 ′. Recall from [1] that 𝜉𝑎 is constructed explicitly as follows. Choose 𝑡 ∈ S𝐿 (𝐾𝑠𝑒𝑝) such that
𝑡 (1) = 𝑎 = 𝑔(1); this is possible by Lemma 6.2. Then 𝑎𝜏 = 𝑡−𝜏+1, from which we conclude that 𝑓 𝑡−1 is
defined over K and that

𝑓 𝑡−1(𝑔(1)) = 𝑓 𝑡−1(𝑎) = 𝑓 (1) = 1,

which implies that 𝑓 𝑡−1𝑔 ∈ H(𝐾). Thus, modulo H(𝐾), we may assume that 𝑔 = 𝑓 𝑡−1.
Let now 𝑠 ∈ Str(𝐴, 𝐵+

𝜎) be the element constructed in Theorem 5.3. It is R-trivial, since so is
Str(𝐴, 𝐵+

𝜎)◦ and it satisfies 𝑠(𝐿) = 𝑓 (𝐿). Furthermore,

𝐿 = 𝑠−1( 𝑓 (𝐿)) = 𝑠−1 𝑓 𝑡−1(𝐿) = 𝑠−1𝑔(𝐿),

since 𝑡 (𝐿) = 𝐿. It follows that modulo R-trivial elements we may assume that 𝑔(𝐿) = 𝐿; that is,
𝑔 ∈ Str(𝐴, 𝐿) (𝐾), where Str(𝐴, 𝐿) ⊂ Str(𝐴) is the subgroup of all elements stabilising L.

Passing to a separable closure of K one can easily check that the connected component of Str(𝐴, 𝐿)
is S𝐿 · G𝐿 . Hence,

Str(𝐴, 𝐿) = 𝑁Str(𝐴) (S𝐿 · G𝐿)

and

Str(𝐴, 𝐿)/S𝐿 · G𝐿 	 𝑁H(G𝐿)/G𝐿 	 Out(G𝐿).

By Lemma 2.7 we can, if necessary, multiply g by an element from 𝑁H(G𝐿) (𝐾) to obtain an element
𝑔′ ∈ (S𝐿 · G𝐿) (𝐾). To complete our reduction to subgroups of type F4, it remains to show that 𝑔′ is
R-trivial modulo elements from H(𝐾). This is the content of the following result.

Proposition 6.4. Let 𝑔 ∈ (S𝐿 · G𝐿) (𝐾). Then there exists an R-trivial element j in (S𝐿 · G𝐿) (𝐾) such
that 𝑔 𝑗 ∈ G𝐿 (𝐾) ⊂ H(𝐾).

Proof. Our argument is based on the consideration of the exact sequence

1 −→ Z𝐿 −→ S𝐿 × G𝐿 −→ S𝐿 · G𝐿 −→ 1. (8)

In the corresponding exact sequence in cohomology, the element g is mapped to a class [𝜂] in 𝐻1(𝐾,Z𝐿).
Since 𝐻1(𝐾, S𝐿) is trivial, this class belongs to

Ker [𝐻1 (𝐾,Z𝐿) −→ 𝐻1 (𝐾,G𝐿)] .

We first prove that it is R-trivial. Since Z𝐿 is a group of exponent 2, by the norm principle it suffices to
prove that [𝜂] becomes R-trivial after extending scalars to 𝐿/𝐾 . Two cases are possible.
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If 𝐿/𝐾 is a Galois extension, then G𝐿
𝐿 , being a strongly inner form of type 1D4, is of the form

G𝐿
𝐿 	 Spin(ℎ), where h is a 3-fold Pfister form. Hence, by Example 2.3, the class 𝑟𝑒𝑠𝐿

𝐾 ([𝜂]) is R-trivial.
If 𝐿/𝐾 is not a Galois extension, then G𝐿

𝐿 	 Spin(ℎ) for some h satisfying all conditions in Example
2.4. Therefore, 𝑟𝑒𝑠𝐿

𝐾 ([𝜂]) is also R-trivial.
Now the sequence (8) induces the exact sequence

(S𝐿 × G𝐿) (𝐾 (𝑥)) −→ (S𝐿 · G𝐿) (𝐾 (𝑥)) −→ 𝐻1(𝐾 (𝑥),Z𝐿) −→ 𝐻1 (𝐾 (𝑥),G𝐿),

where x is a variable over K. Let

𝜂(𝑥) ∈ Ker [𝐻1(𝐾 (𝑥),Z𝐿) −→ 𝐻1 (𝐾 (𝑥),G𝐿)]

be defined at 0 and 1 and such that 𝜂(0) = 1 and 𝜂(1) = 𝜂; such an element exists since 𝜂 is R-trivial.
Take any element 𝑔(𝑥) ∈ (S𝐿 · G𝐿) (𝐾 (𝑥)) that is defined at 0 and 1 and whose image in 𝐻1 (𝐾 (𝑥),Z𝐿)
is 𝜂(𝑥). Note that 𝑔(0)−1𝑔(1) is R-trivial in S𝐿 · G𝐿 . By construction, 𝑔(0) = 𝑢0 and 𝑔(1) = 𝑢1𝑔 for
some 𝑢0, 𝑢1 ∈ (S𝐿 × G𝐿) (𝐾). Hence,

𝑔 = 𝑢−1
1 𝑔(1) = 𝑢−1

1 𝑔(0)
(
𝑔(0)−1𝑔(1)

)
= 𝑢−1

1 𝑢0

(
𝑔(0)−1𝑔(1)

)
.

Writing 𝑢−1
1 𝑢0 = 𝑢𝑠 for some 𝑢 ∈ G𝐿 (𝐾) and 𝑠 ∈ S𝐿 (𝐾) and noting that S𝐿 is a rational torus, the proof

is complete upon setting 𝑗 =
(
𝑠𝑔(0)−1𝑔(1)

)−1. �

We have thus altogether proved the following.

Theorem 6.5. Let 𝐿 ⊂ 𝐴 be a cubic subfield and let 𝑔 ∈ Str(𝐴) be such that 𝑔(𝐿) = 𝐿. Then modulo
R-trivial elements, g can be written as a product 𝑔 = 𝑔1𝑔2 where 𝑔1(𝐿) = 𝑔2(𝐿) = 𝐿, 𝑔1 ∈ 𝑁H(G𝐿) (𝐾)
and 𝑔2 ∈ G𝐿 (𝐾).

7. End of the Proof

We now finish the proof that Str(𝐴) is R-trivial. To begin we recall the following known fact.

Theorem 7.1. Let K be a perfect field. Let G be a semisimple K-group and 𝑔 ∈ G(𝐾). Then the
semisimple and unipotent components 𝑔𝑠 , 𝑔𝑢 of the Jordan decomposition 𝑔 = 𝑔𝑠𝑔𝑢 are defined over K.
Moreover, if G is K-anisotropic, then 𝑔𝑢 = 1.

Proof. For the first statement see [2, Page 81, Corollary 1] and for the second statement see [3]. �

Next we have the following.

Lemma 7.2. Let A be a division Albert algebra over K and let 𝑔 ∈ H(𝐾). Then g fixes a cubic subfield
in A pointwise.

Proof. Since H is K-anisotropic, g is semisimple. Indeed, let 𝑔 = 𝑔𝑠𝑔𝑢 be its Jordan decomposition
over an algebraic closure 𝐾 of K. Let 𝐾 = 𝐾 𝑝−∞ . Here p is the characteristic of K. Since 𝑝 ≠ 2, 3,
the extension 𝐾/𝐾 cannot kill the cohomological invariant 𝑔3 attached to H. By [13, Theorem 40.8,
part (2)], A is still a division algebra over 𝐾 , whence H𝐾 is still anisotropic. It follows from the above
theorem that 𝑔𝑢 = 1.4

Hence, g is contained in a maximal K-torus T ⊂ H. Using an explicit reduced model of the split
Albert algebra 𝐴 ⊗𝐾 𝐾𝑠𝑒𝑝, one can easily check that over 𝐾𝑠𝑒𝑝, every element in T fixes a commutative
subalgebra

𝑊 	 𝐾𝑠𝑒𝑝 × 𝐾𝑠𝑒𝑝 × 𝐾𝑠𝑒𝑝

4 If the characteristic of K is 2 or 3, then g may be unipotent (see [10]).
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of 𝐴 ⊗𝐾 𝐾𝑠𝑒𝑝 pointwise. It follows that g fixes a vector 𝑣 ∈ 𝐴 which is not a scalar multiple of the
identity, whence it fixes the cubic subfield 𝐾 (𝑣) ⊂ 𝐴 generated by v. �

In order to finish our proof we need one final ingredient. Let A be an Albert algebra over K and let
𝑝 ∈ 𝐴×. Recall that this is equivalent to 𝑁 (𝑝) ≠ 0, where N is the cubic norm of A. The isotope 𝐴(𝑝)

of A is the algebra with underlying linear space A and multiplication

𝑥 •𝑝 𝑦 = 𝑥(𝑦𝑝) + 𝑦(𝑥𝑝) − (𝑥𝑦)𝑝,

where juxtaposition denotes the multiplication of A. It is known that 𝐴(𝑝) is an Albert algebra and that
the cubic norm of 𝐴(𝑝) is 𝜈𝑁 , where 𝜈 = 𝑁 (𝑝). From this it follows that 𝐴(𝑝) is a division algebra if
and only if A is and that Str(𝐴) 	 Str(𝐴(𝑝) ).
Proposition 7.3 [25]. Let A be a division Albert algebra over K. Then there exists 𝑝 ∈ 𝐴× such that
𝐴(𝑝) contains a cubic cyclic subfield.
Remark 7.4. If the ground field F contains a cubic root of unity, then due to a result of H. Petersson
and M. Racine [16], one can take 𝑝 = 1.

We are now ready to prove our main result.
Theorem 7.5. Let A be a division Albert algebra over K. Then the algebraic K-group Str(𝐴) is R-trivial.
Proof. By the above discussion, we may replace A by any isotope 𝐴(𝑝) . Thus, by the preceding
proposition we may assume that A contains a cubic cyclic subfield L. Let 𝑔 ∈ Str(𝐴). By the results of
Section 6, summarised in Theorem 6.5, we may assume that 𝑔 ∈ H(𝐾). Three cases are possible.

Case 1: g fixes L but not pointwise. Let 𝐹 ⊂ 𝐴 be a cubic field extension of K pointwise fixed by g;
such a field exists by Lemma 7.2. Since 𝐹 ≠ 𝐿, L and F generate a 9-dimensional subalgebra 𝐵+

𝜎 ⊂ 𝐴
that is stabilised by g. In the course of the proof of Corollary 4.3 we saw that

Str(𝐴, 𝐵+
𝜎) (𝐾) = Str(𝐴, 𝐵+

𝜎)◦(𝐾).

By Proposition 4.2, the algebraic K-group Str(𝐴, 𝐵+
𝜎)◦ is R-trivial and therefore g is R-trivial.

Case 2: g fixes L pointwise. Hence, g is in the group of K-points of the algebraic K-group Str(𝐴/𝐿)
whose functor of points is as follows: if R is a K-ring,

Str(𝐴/𝐿) (𝑅) = {𝑥 ∈ Str(𝐴) (𝑅) | 𝑥(𝑙) = 𝑙 for all 𝑙 ∈ 𝐿} = G𝐿 (𝑅).

Since L is cyclic, by Lemma 2.7 there is an element ℎ1 ∈ 𝑁H (G𝐿) (𝐾) that stabilises L but does not fix
it pointwise. The same is true for ℎ2 := ℎ−1

1 𝑔, since g fixes L pointwise. From Case (1) we know that ℎ1
and ℎ2 are R-trivial and hence so is g.

Case 3: 𝑔(𝐿) ≠ 𝐿. Since 𝑔 ∈ Aut(𝐴), the field 𝑔(𝐿) is a cubic cyclic subfield of A isomorphic to L.
The subfields L and 𝑔(𝐿) generate a 9-dimensional subalgebra 𝐵+

𝜎 of A. By Theorem 5.3 there exists
ℎ1 ∈ Str(𝐴, 𝐵+

𝜎) such that ℎ1 (𝑔(𝐿)) = 𝐿 and by Proposition 4.2, ℎ1 is R-trivial. Let ℎ2 := ℎ1𝑔. By
construction, it belongs to

Str(𝐴, 𝐿) (𝐾) = {𝑥 ∈ Str(𝐴) | 𝑥(𝐿) = 𝐿}.

By Theorem 6.5, ℎ2 can be written, modulo R-trivial elements, as a product ℎ2 = ℎ3ℎ4 with ℎ3 ∈ G𝐿 (𝐾)
and ℎ4 ∈ 𝑁H (G𝐿) (𝐾). In particular, ℎ3 and ℎ4 are in H(𝐾) and stabilise L. By Cases (1) and (2), the
elements ℎ3 and ℎ4 are R-trivial and hence so is ℎ2 and g. This completes the proof. �

Theorem 7.6. Let G be an adjoint strongly inner form of type E6. Then G is R-trivial.
Proof. Indeed, the canonical map Str(𝐴) → G has a rational section, since its kernel G𝑚 has trivial
Galois cohomology in dimension 1. We conclude by the above theorem. �
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8. Applications

8.1. The Kneser–Tits Problem for E78
7,1 and E78

8,2

Theorem 8.1. Let K be an arbitrary field. Let G be a simple simply connected K-group of type E78
7,1 or

E78
8,2. Then the Kneser–Tits conjecture for G holds.

Proof. According to [9, Remarque 7.4] we may, without loss of generality, assume that char(𝐾) = 0.
The Tits index of G is of the form

� � � � � �

�

�
𝛼7 𝛼6 𝛼5 𝛼4 𝛼3 𝛼1

𝛼2

or

� � � � � � �

�

� �
𝛼8 𝛼7 𝛼6 𝛼5 𝛼4 𝛼3 𝛼1

𝛼2

.

In both cases the semisimple anisotropic kernel H of G is a strongly inner form of type E6. If S ⊂ G
is a maximal split torus whose centraliser is H, then arguing as in [5] one easily verifies that over an
algebraic closure of K the intersection S ∩ H is the centre of H.

Furthermore, by [9, Théorème 7.2], the Kneser–Tits problem has an affirmative answer if and only
if G(𝐾)/𝑅 = 1. It follows from the Bruhat–Tits decomposition that

G(𝐾)/𝑅 	 𝐶S (G)/𝑅 	 (H/(𝐶S (G) ∩ H))/𝑅 	 H/𝑅

where H is the corresponding adjoint group. It remains to note that by Theorem 7.6, the group H is
R-trivial. �

8.2. The Tits–Weiss Conjecture

Theorem 8.2. Let A be an Albert algebra defined over an arbitrary field 𝐾. Then the group Str(𝐴) (𝐾)
is generated by the U-operators 𝑈𝑎 with 𝑎 ∈ 𝐴× and the scalar homotheties.
Proof. By the main result of the Appendix, the Tits–Weiss conjecture holds if and only if the Kneser–
Tits conjecture holds for groups of type E78

7,1 and E78
8,2. The result follows. �

Remark 8.3. From this theorem, which we have now established in arbitrary characteristic, the R-
triviality of Str(𝐴) is immediate. Thus, Theorem 7.5 holds in arbitrary characteristic as well.

8.3. Properties of the Functor of R-Equivalence Classes for Strongly Inner Forms of Type 1E6

To a reductive K-group G one can attach the functor of R-equivalence classes

G/𝑅 : 𝐹𝑖𝑒𝑙𝑑𝑠/𝐾 −→ 𝐺𝑟𝑜𝑢𝑝𝑠, 𝐹/𝐾 → G(𝐹)/𝑅

where 𝐹𝑖𝑒𝑙𝑑𝑠/𝐾 is the category of field extensions of K and 𝐺𝑟𝑜𝑢𝑝𝑠 is the category of abstract groups.
The experts expect that the following conjectures hold:

Conjecture 1. The functor G/𝑅 factors through the subcategory of abelian groups of the category
𝐺𝑟𝑜𝑢𝑝𝑠; that is, for all field extensions 𝐹/𝐾 the group G(𝐹)/𝑅 is abelian.
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Conjecture 2. If F is a finitely generated field over its prime subfield, then G(𝐹)/𝑅 is finite.

Conjecture 3. The functor G/𝑅 has transfers; that is, there is a functorial collection of maps tr𝐹
𝐾 :

G(𝐹)/𝑅 → G(𝐾)/𝑅 for all finite field extensions 𝐹/𝐾 .

Furthermore, one expect that the norm principle holds for all semisimple K-groups. Of course, all
of these conjectures are obviously true for R-trivial K-groups. In particular, they hold for rational K-
groups. For instance, this is the case for groups of type G2. In [1] we investigated the case of groups
of type F4 arising from the first Tits construction. Here we consider the next case of simple simply
connected strongly inner forms of type E6.

Theorem 8.4. Let K be an arbitrary field and let G be a simple simply connected K-group which is a
strongly inner form of type E6. Then

(i) G(𝐾)/𝑅 is an abelian group.
(ii) the functor G/𝑅 has transfers.

(iii) if Z is the centre of G, the norm principle holds for (Z,G).

Proof. (i) The group G is the derived subgroup of the R-trivial K-group Str(𝐴) for an Albert algebra
A. It follows that [Str(𝐴), Str(𝐴)] ⊂ 𝑅G(𝐾) and hence G(𝐾)/𝑅 is abelian.

(ii) Apply Theorem 3.4 in [4] to G′ = 𝑅𝐹/𝐾 (G).
(iii) Since the corresponding adjoint group G is R-trivial, the result follows from Theorem 2.5. �

A. Appendix by Richard M. Weiss

Department of Mathematics
Tufts University
Medford, MA 02155, USA
rweiss@tufts.edu

In this appendix we examine the connection between groups 𝐺 (𝑘) with index

� � � � � � �

�

� �

(that is to say, 𝐸78
8,2) and anisotropic exceptional cubic norm structures. Our main goal is show the

equivalence of Assertions A.3 and A.4.

Notation A.1. Let k be a field, let G be a semi-simple simply connected algebraic group of absolute
type 𝐸8 defined over k such that the index of 𝐺 (𝑘) is ℐ := 𝐸78

8,2, let S be a maximal k-split torus of G,
let T be a maximal torus containing S and defined over k and let Φ be the root system of G with respect
to T. The nodes of ℐ form a root basis of Φ. Let �̃� denote the highest root with respect to this basis.

Notation A.2. Let Φ𝑘 denote the relative root system of G with respect to S; it is a root system of type
𝐺2. For each 𝛼 ∈ Φ𝑘 , let 𝑈(𝛼) denote the unipotent k-subgroup defined in [1, Section 5.2]. We call the
groups 𝑈(𝛼) for 𝛼 ∈ Φ𝑘 the relative root groups of G.

Here now are the two assertions whose equivalence we want to demonstrate.

Assertion A.3. 𝐺 (𝑘) = 〈𝑈(𝛼) (𝑘) | 𝛼 ∈ Φ𝑘〉 for all 𝐺 (𝑘) as in A.1.

Assertion A.4. Let Ξ = (𝐽, 𝑘, 𝑁, #, 𝑇,×, 1) be an exceptional cubic norm structure and suppose that Ξ
is anisotropic. Then the structure group Str(Ξ) of Ξ is generated by the set

{𝑈𝑎 | 𝑎 ∈ 𝐽∗} ∪ {𝑏 ↦→ 𝑡𝑏 | 𝑡 ∈ 𝑘∗}, (9)

where 𝑈𝑎 is as in [4, Section (15.42)].
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Remark A.5. All anisotropic cubic norm structures arise from one of two constructions of Tits. A proof
of this result, due to Racine and Petersson, can be found in [4, Chapters 15 and 30 and Section (17.6)].

Let k, G, ℐ, S, Φ and �̃� be as in A.1. We begin our demonstration.

Proposition A.6. The following hold:

1. The root group 𝑈�̃� of G is defined over k.
2. The quotient 𝑁𝐺 (𝑘) (𝑈�̃� (𝑘))/𝐶𝐺 (𝑘) (𝑈�̃� (𝑘)) acts freely on the set of nontrivial elements of 𝑈�̃� (𝑘).

Proof. The two claims follow from the observation that the root �̃� is orthogonal to the subspace spanned
by the nodes in the anisotropic part of ℐ. �

Remark A.7. Let Φ𝑘 and 𝑈(𝛼) for 𝛼 ∈ Φ𝑘 be as in A.2. By A.6(i), 𝑈�̃� is a relative root group of G for
some long root of Φ𝑘 . Thus, in particular, dim𝑘 𝑈(𝛼) = 1 for all long roots 𝛼 of Φ𝑘 .

Remark A.8. We have ∑
𝛼∈Φ𝑘

dim𝑘 𝑈(𝛼) = 𝑛8 − 𝑛6,

where 𝑛ℓ denotes the cardinality of a root system of type 𝐸ℓ for ℓ = 6 and 8. It follows that dim𝑘 𝑈(𝛼) = 27
for all of the short roots 𝛼 of Φ𝑘 .

Now let BldSc(𝐺 (𝑘)) be the spherical building attached to 𝐺 (𝑘) as described in [4, Section 42.3.6]
and let X denote the Moufang hexagon associated with BldSc(𝐺 (𝑘)). Thus, X is the bipartite graph
whose vertices are the nonminimal parabolic subgroups of G defined over k, where two of these parabolic
subgroups are adjacent whenever their intersection is also a parabolic subgroup defined over k. Since
the cocentre of 𝐸8 is trivial, the centre of G is trivial. Thus, 𝐺 (𝑘) acts faithfully on BldSc(𝐺 (𝑘)) and
hence on X. From now on, we identify 𝐺 (𝑘) with its image in Aut(𝑋). For each 𝛼 ∈ Φ𝑘 , let 𝑈𝛼 denote
the subgroup 𝑈(𝛼) (𝑘) of 𝐺 (𝑘).

Let 𝛼0, 𝛼1, . . . , 𝛼11 be a labelling of the 12 roots in Φ𝑘 with subscripts in Z12 such that the angle
between 𝛼𝑖−1 and 𝛼𝑖 is 𝜋/6 for each i and 𝛼𝑖 is long if and only if i is even. An apartment of X is a
circuit of length 12.

Proposition A.9. There is a unique apartment Σ of X for which there is a labelling 𝑥0, 𝑥1, . . . , 𝑥11 of the
vertices of Σ with subscripts in Z12 such that for each i, 𝑥𝑖−1 is adjacent to 𝑥𝑖 and 𝑈𝛼𝑖 is the root group
of X corresponding to the root (𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑖+6) of Σ as defined in [4, Section (4.1)].

Proof. This holds by [4, Prop. 42.3.6]. �

Proposition A.10. Let 𝑈𝑖 = 𝑈𝛼𝑖 for each i. Then there exists an anisotropic cubic norm structure

Ξ = (𝐽, 𝐹, 𝑁, #, 𝑇,×, 1)

and isomorphisms 𝑥𝑖 from the additive group of F to 𝑈𝑖 for 𝑖 = 2, 4 and 6 and isomorphisms 𝑥𝑖 from
the additive group of J to 𝑈𝑖 for 𝑖 = 1, 3 and 5 such that the commutator relations in [4, Section (16.8)]
hold and [𝑈𝑖 ,𝑈 𝑗 ] = 1 for all index pairs (𝑖, 𝑗) of indices with 1 ≤ 𝑖 < 𝑗 ≤ 6 that do not appear in this
list of relations.

Proof. This holds by [4, Sections (29.1)–(29.35)]. (Note that since [𝑈(𝛼) ,𝑈(𝛽) ] = 1 for all long roots
𝛼, 𝛽 of Φ𝑘 at an angle of 𝜋/3, the assumption that 𝑉𝑖 ≠ 1 for all even i at the top of [4, page 303] is
valid.) �

Remark A.11. By [4, Section (7.5)], X is uniquely determined by Ξ. We can thus set 𝑋 = ℋ(Ξ) as in
[4, Section 16.8]. By [4, Section (35.13)], ℋ(Ξ) �ℋ(Ξ′) for two anisotropic cubic norm structures Ξ
and Ξ′ if and only if Ξ and Ξ′ are isotopes of each other.
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Notation A.12. Let 𝐺0 = Aut(𝑋), let 𝐻0 denote the pointwise stabiliser of Σ in 𝐺0, let 𝐺†
0 = 〈𝑈𝑖 | 𝑖 ∈

Z12〉, let 𝐻†
0 = 𝐺†

0 ∩ 𝐻0 and let 𝐽 = 𝐺 (𝑘) ∩ 𝐻0.

Since 𝐺†
0 ⊂ 𝐺 (𝑘), we have 𝐻†

0 ⊂ 𝐽. In fact, we have the following.

Proposition A.13. 𝐻†
0 = 𝐽 if and only if 𝐺 (𝑘) = 𝐺†

0.

Proof. Suppose that 𝐻†
0 = 𝐽 and let 𝑔 ∈ 𝐺 (𝑘). By [4, Section (4.12)], there exists 𝑎 ∈ 𝐺†

0 such that 𝑔𝑎
fixes both Σ and the edge {𝑥0, 𝑥1}. Hence, 𝑔𝑎 ∈ 𝐻0. Since 𝐺†

0 ⊂ 𝐺 (𝑘), it follows that 𝑔𝑎 ∈ 𝐽. Hence,
𝑔𝑎 ∈ 𝐻†

0 and thus 𝑔 ∈ 𝐺†
0. Therefore, 𝐺 (𝑘) = 𝐺†

0. �

Proposition A.14. Let 𝑋𝑖 = 〈𝜇𝑖 (𝑎)𝜇𝑖 (𝑏) | 𝑎, 𝑏 ∈ 𝑈∗
𝑖 〉 for 𝑖 = 1 and 6, where 𝜇𝑖 is as defined in [4,

Section (6.1)]. Then 𝐻†
0 = 𝑋1𝑋6.

Proof. This holds by [4, Section (33.9)]. �

Proposition A.15. The image of 𝐻†
0 in Aut(𝑈6) is {𝑥6(𝑡) ↦→ 𝑥6 (𝑠𝑡) | 𝑠 ∈ 𝐹∗}, where 𝑥6 is as in A.10.

In particular, the derived group of 𝐻†
0 centralises 𝑈6.

Proof. This holds by [4, Section (33.16)]. �

Proposition A.16. The groups J and 𝐻†
0 have the same image in Aut(𝑈6).

Proof. By A.15, 𝐻†
0 acts transitively on 𝑈∗

6. By A.6(ii) and A.7, the image of J in Aut(𝑈6) acts freely
on 𝑈∗

6. Since 𝐻†
0 ⊂ 𝐽, the claim follows. �

Proposition A.17. 𝐻†
0 = 𝐽 if and only if 𝐶𝐽 (𝑈6) = 𝐶𝐻 †

0
(𝑈6).

Proof. Suppose that 𝐶𝐽 (𝑈6) = 𝐶𝐻 †
0
(𝑈6) and let 𝑔 ∈ 𝐽. By A.16, there exists ℎ ∈ 𝐻†

0 such that

𝑔ℎ ∈ 𝐶𝐽 (𝑈6). Hence, 𝑔ℎ ∈ 𝐻†
0 and thus 𝑔 ∈ 𝐻†

0 . Therefore, 𝐻†
0 = 𝐽. �

Proposition A.18. 𝐶𝐻0 (𝑈6) acts faithfully on 𝑈1.

Proof. This holds by [4, Section (33.5)]. �

Notation A.19. Let H be the anisotropic kernel of G. Thus, H is the derived group of the centraliser
𝐶 (𝑆).

Proposition A.20. 𝐻 (𝑘) ⊂ 𝐶𝐽 (𝑈6).

Proof. The fixed point set of 𝑆(𝑘) in X is the apartment Σ. Hence, 𝐶 (𝑆) (𝑘) ⊂ 𝐽. By A.15 and A.16, it
follows that 𝐻 (𝑘) ⊂ 𝐶𝐽 (𝑈6). �

Proposition A.21. 𝐹 � 𝑘 and dim𝐹 𝐽 = 27, where F is as in A.10.

Proof. We give 𝑈1 the structure of a vector space over F by setting 𝑡 · 𝑥1 (𝑎) = 𝑥1 (𝑡𝑎) for all 𝑡 ∈ 𝐹
and all 𝑎 ∈ 𝐽. Let 𝑋6 be as in A.14. By [4, Section (29.20)], the image of 𝑋6 in Aut(𝑈1) is {𝑥1(𝑎) ↦→
𝑡 · 𝑥1 (𝑎) | 𝑡 ∈ 𝐹∗}. The root groups 𝑈𝛼0 and 𝑈𝛼6 of G are opposite and 𝑋6 = 〈𝑈0,𝑈6〉 ∩ 𝑆(𝑘). It follows
that there exists an isomorphism 𝜓 from k to F such that 𝑡𝑢 = 𝜓(𝑡) · 𝑢 for all 𝑡 ∈ 𝑘 and all 𝑢 ∈ 𝑈1.
Hence, dim𝐹 𝐽 = dim𝐹 𝑈1 = 27 by A.8. �

Proposition A.22. There is an isomorphism 𝜑 from 𝐶𝐽 (𝑈6) to Str(Ξ) and Ξ is exceptional.

Proof. By A.18 and the equation in the third display in [4, Section (37.41)], there exists an isomorphism
𝜑 from 𝐶𝐻0 (𝑈6) to Str(Ξ) such that 𝑥1 (𝑎)ℎ = 𝑥1 (𝑎𝜑 (ℎ) ) for all 𝑎 ∈ 𝐽 and by A.20, we have 𝐻 (𝑘) ⊂
𝐶𝐽 (𝑈6) ⊂ 𝐶𝐻0 (𝑈6). By A.21, it follows that Ξ is the Jordan k-algebra in [4, Sections 42.5.6(d) and
42.6, Type (8)]. Hence, Ξ is exceptional and 𝜑 maps 𝐻 (𝑘) to Str(Ξ) surjectively. (See also the remarks
that follow [3, Section 3.3.1].) It follows that 𝐻 (𝑘) = 𝐶𝐽 (𝑈6) = 𝐶𝐻0 (𝑈6). �
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Proposition A.23. 𝜑(𝐶𝐻 †
0
(𝑈6)) is the subgroup of Str(Ξ) generated by the set defined in (9), where 𝜑

is as in A.22.

Proof. This holds by [4, Section (33.16)]. �

Proposition A.24. Every anisotropic exceptional cubic norm structure arises from an application of
A.10 to the Moufang hexagon attached to a group 𝐺 (𝑘) for some G and some k satisfying the conditions
in A.1.

Proof. This holds by [4, Section 42.6, Type (8)]. �

Theorem A.25. The Assertions A.3 and A.4 are equivalent.

Proof. By A.13 and A.17, 𝐺 (𝑘) = 𝐺†
0 if and only if𝐶𝐻 †

0
(𝑈6) = 𝐶𝐽 (𝑈6). By A.22 and A.23,𝐶𝐻 †

0
(𝑈6) =

𝐶𝐽 (𝑈6) if and only if Str(Ξ) is generated by the set defined in (9). The claim holds, therefore, by A.24. �

Remark A.26. In [2, Thm. 6.1], Thakur showed that A.3 holds in the case that the cubic norm structure
in A.10 is a first Tits construction and in [2, Thm. 7.2], he showed that the claim in A.4 holds for Ξ a
reduced (rather than anisotropic) exceptional cubic norm structures.
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