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ABSTRACT
Consider a process that jumps back and forth between two states, with random
times spent in between. Suppose the durations of subsequent on and off states are
i.i.d. and that the process has started far in the past, so it has achieved station-
ary. We estimate the sojourn distributions through maximum likelihood when
data consist of several realizations observed over windows of fixed length. For
discrete and continuous time Markov chains, we also examine if there is any loss
of efficiency incurred when ignoring the stationarity structure in the estimation.

Keywords: Alternating renewal process; Asymptotic efficiency; Markov chain;
Window censoring
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1 INTRODUCTION

Consider a machine which periodically fails, undergoes technical service, and is

put to work again, so that the working and out-of-service times form an alternating

renewal process (ARP). Suppose further that the machine was placed in service

in the indefinite past, so that the process may be regarded as stationary. Our

interest here is to estimate the distribution of the on and off times when several

such processes are observed over a time interval, or when the same process is

observed over several “well separated” windows.

Such alternating renewal processes have been taken as models for diverse phe-

nomena such as system availability and reliability in engineering [1], or the behav-

ior of healthy-sick cycles in actuarial and insurance mathematics [2]. They have

also been of interest as building blocks for other processes where the cumulative

count from many alternating renewal processes whose inter-arrival times have high
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or infinite variance can produce aggregate network traffic that exhibits long range

dependence [3].

The literature also contains inference for ARP processes. Ref. [4] studies the

estimation of the “point availability”, i.e., the probability that a system modeled

by an ARP is “on” at a given time t. It considers data arising from one (not nec-

essarily stationary) ARP and the estimator that results from plugging empirical

distributions into the so-called “availability functional”.

Under a parametric context, [5] considers estimation in Markov processes with

state space {0, 1} under different censoring mechanisms. A single realization of

the process is available, which is not assumed to be stationary. The choice of

estimators is based on simplicity of computation and the possibility of recursive

calculation, instead of maximum likelihood, but nevertheless his estimators turn

out to be strongly consistent and asymptotically normal.

The present study is concerned with how to estimate the distribution of the

time spent in each of the states with maximum likelihood, when the data con-

sist of “windows” from several stationary ARPs. Estimation in window censored

ARPs has received some attention in the literature. When stationarity is not as-

sumed, [6] proposes estimators of Kaplan-Meier type and derives their asymptotic

properties. Under stationarity, estimation of the inter-arrival time distribution

F for “ordinary” renewal processes (as opposed to “alternating”) under window

censoring was addressed for the first time by Vardi [7], who proposes an algorithm

to find the Non-Parametric Maximum Likelihood Estimator of F when data is

collected over windows from processes with an integer-valued inter-arrival distri-

bution. Later, [8] and [9] extended Vardi’s work to non-arithmetic inter-arrival

distributions and proved the strong consistency of the maximum likelihood esti-

mators.

The research in references [7-9] could be extended to alternating renewal pro-

cesses, but the resulting F̂ would be a step function and if the distribution is

known to be continuous with respect to the Lebesgue measure, the maximum

likelihood method would fails to provide an answer for estimation of the density

unless extra assumptions are incorporated. In this paper we follow a parametric

treatment, assuming either geometric or exponential distributions for the duration

of the on and off times.
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The outline of this paper is as follows. Section 2 provides the necessary defini-

tions for ARPs. In Section 3, an example on discrete time Markov chains addresses

the estimation problem when a pair of consecutive points are observed from several

chains. We compare “classic” estimators that ignore stationarity with the m.l.e.

Interestingly, for some function of the transition probabilities ignoring stationarity

in the estimation process results in no loss of efficiency asymptotically.

Section 4 aims at a general formula for the likelihood ratio when data are

gathered continuously over an interval and the distributions of the on and off

times belong to some non-parametric family. It is shown that the likelihood is

a Radon-Nykodym derivative restricted to the σ-field that corresponds to the

window censoring mechanism.

Section 5 considers a detailed example of an ARP with exponential on and off

times, which results in a continuous time Markov chain. It is shown that under

some data configurations the m.l.e. may fail to exist. However, the chance of

such a data configuration decreases as the number of observed windows increases.

Further, the estimators are asymptotically normal. As with the discrete chain of

Section 3, a comparison is done with the maximum likelihood estimator condi-

tioned on the initial state and its duration. Also in similarity with the discrete

chain, we obtain that the full data m.l.e. is better in terms of asymptotic relative

efficiency, except for some functions of the parameters in which both methods

are equivalent. One such function is the product of the hazard rates. For other

parameters, a numerical example shows that gains in asymptotic efficiency by

considering the stationarity can be substantial.

To facilitate the reading, most to the proofs in the paper are deferred to the

appendix.

2 CONSTRUCTION AND STATIONARITY OF

ARPs

A sequence of i.i.d. pairs of positive random variables {(Z1, Y1), (Z2, Y2), . . .} with

joint distribution (Zi; Yi) ∼ Q constitutes an alternating renewal sequence with

inter-arrival times Xi := Zi + Yi, and renewal times S0 := 0 and Sn :=
∑n

1 Xi for

n > 0.
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Consider the counting process N(t) :=
∑∞

1 I{Sn ∈ [0; t]} for the number of

completed on-off cycles until time t. In order to further record the state of the

process at each time, introduce W (t) := I{SN(t) + ZN(t)+1 > t}, which is the pure

alternating renewal process associated with the renewal sequence.

In this study we allow the first pair of sojourn times to be distributed differently

though independently from the rest. That is, (Z0; Y0) ∼ Q0 independent of the

sequence {(Zi, Yi), i ≥ 1}. The importance of this delayed case is that with an

appropriate choice of Q0 the process W (·) is stationary, in a sense to be defined

shortly.

Figure 1 shows a typical sample path observed over the “window” of time

[0, T ].
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Figure 1: A Sample Path from a Delayed ARP over [0, T ]

2.1 Stationarity

Choose any t ∈ IR+ (deterministically or randomly but independent of the process)

and construct a new alternating renewal sequence {(Zt
i , Y

t
i ), i ≥ 0} by censoring

everything to the left of t. This is, the new sequence has an initial pair

Zt
0 = (SN(t)−1 + ZN(t) − t)+,

Y t
0 = YN(t) − (t− SN(t)−1 − ZN(t)−1)

+;

and subsequently Zt
i = ZN(t)+i and Y t

i = YN(t)+i, for i ≥ 1.

Definition 2.1. Call the ARP stationary iff the two sequences {(Zi, Yi), i ≥ 0}
and {(Zt

i , Y
t
i ), i ≥ 0} are equal in distribution for every t.
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Theorem 2.2. The process {W (t), t ≥ 0} is stationary iff (Z0, Y0) ∼ Q0(z, y)

given by Q0(z, y) = µ−1
X EQ {(z ∧ Z) 1 [Y ≤ y] + (y ∧ Y ) }.

In the special case when the on-time Z ∼ H is independent of the off-time

Y ∼ G this gives

Q0 (z, y) =
µY

µX

∫ y

0

1−G(u)

µY

du +
µZ

µX

G (y)

∫ z

0

1−H(u)

µZ

du, (1)

which is the sum of: (i) the probability that the system starts off multiplied by

the excess life distribution of the off times, and (ii) the product of the probability

that the system starts on multiplied by the excess life distribution of the on times

and the regular distribution of the off times.

2.2 Example: System Availability.

In engineering reliability, it is of interest the availability of a system, defined as

the probability that the system is on at a given time. Since N(t) < ∞ w.p.1,

P{W (t) = 1} = P{Z0 > t) +
∞∑

n=1

P{Zn > t− Sn−1; 0 ≤ t− Sn−1 < Zn + Yn}.

Conditioning on Sn−1 and using the renewal measure ν =
∑∞

n=0 FSn this entails

P{W (t) = 1} = 1−H0(t) +

∫ t

0

1−H(t− s)ν(ds),

where H0(·) = Q0(·,∞) and H(·) = Q(·,∞). Further, since under stationarity

ν(ds) = ds
µX

and H0(z) = µY

µX
+ µZ

µX

∫ z

0
1−H(u)

µZ
du,

the availability becomes P{W (t) = 1} = µZ/µX , which coincides with the asymp-

totic availability as t →∞.

3 A TWO-STATES MARKOV CHAIN

The simplest example of a window censored alternating renewal process is a pair

of consecutive observations from a Markov chain on {0,1}. When the transition
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probabilities are π0 := P (Wt+1 = 1|Wt = 0) and π1 := P (Wt+1 = 1|Wt = 1), the

stationary distribution is given by

q := P{Wt = 0} =
1− π1

1− π1 + π0

, p := P{Wt = 1} =
π0

1− π1 + π0
.

The joint density of a pair of consecutive observations is

P (Wt = xi; Wt+1 = yi) =
π0(1− π1)

1− π1 + π0

(
π1

1− π1

)xiyi
(

1− π0

π0

)(1−xi)(1−yi)

. (2)

This is of exponential family form with complete sufficient statistic T, and canon-

ical parameter η given respectively by

T =

(
XiYi

(1−Xi)(1− Yi)

)
and η =

(
ln π1 − ln(1− π1)
ln(1− π0)− ln π0)

)
.

By standard results in exponential families theory [10], the maximum likeli-

hood estimators are

π̂0 =

∑n
i=1 (Xi − Yi)

2

2n−∑n
i=1 Xi −

∑n
i=1 Yi

and π̂1 =
2
∑n

i=1 XiYi∑n
i=1 Xi +

∑n
i=1 Yi

;

and
√

n(π̂ − π) ⇒ N(0; Σ̂), where

Σ̂ =
1

2
(1− π1 + π0)




π0 (1− π0)
1 + π0

1− π1

−π1 (1− π0)

−π1 (1− π0) π1
2− π1

π0

(1− π1)


 .

Alternatively, we could ignore stationarity in order to estimate π0 and π1 by

the sample proportion of transitions into each state, i.e.

π̃0 =

∑n
i=1 (1−Xi) Yi∑n

i=1 (1−Xi)
and π̃1 =

∑n
i=1 XiYi∑n
i=1 Xi

.

By the multivariate central limit theorem and the delta method,
√

n(π̃ − π) ⇒
N(0; Σ̃), with

Σ̃ = (1− π1 + π0)




π0 (1− π0)

1− π1

0

0
π1(1− π1)

π0


 .

At this point, it is natural to ask what is lost in terms of efficiency by ignoring

stationarity in the estimation. To address this question, consider the difference
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matrix Σ̂ − Σ̃ =: (1− π1 + π0) ∆. It is easy to check that the diagonal entries

of ∆ are strictly negative that the cross-products are equal. Therefore, the matrix

difference (Σ̂− Σ̃) has one eigenvalue which is negative and the other is zero. This

result is surprising, because it implies that there exist functions of the transition

probabilities for which ignoring stationarity is of no consequence asymptotically.

Essentially, any function of (π0, π1) with gradient proportional to the eigenvector

corresponding to the null eigenvalue of ∆ will have that property. This will be

explored further for continuous time Markov chains in section 5.

4 LIKELIHOOD RATIOS

This section investigates how to obtain a likelihood for a sample path of an ARP

observed on a window [0, T ]. As noted in Van der Vaart [11], work in nonpara-

metric statistics often uses “likelihoods that work”, without clearly making explicit

with respect to which measures and in which σ-fields, if these even exist. Here we

rigorously produce a Radon-Nykodym derivative with respect to an appropriately

chosen dominating measure and restricted to a filtration that corresponds to the

censoring mechanism.

It is natural to view alternating renewal sequences as elements in

Ω := {(z0, y0, z1, y1, ...) : z0 ∈ [0,∞) and y0, zi, yi ∈ (0,∞); i > 0},

(where the first z0 is allowed to take the value 0 so as to make it possible to

start observing a process when it is in the off state). To introduce two com-

peting measures, ν and ϕ, in Ω we consider the coordinate random variables

{(Zi, Yi), i ≥ 0}.
Assume that under one formulation (Z0, Y0) ∼ Qν0 and (Zi, Yi)

i.i.d∼ Qν , while

under a competitive formulation, (Z0, Y0) ∼ Qϕ0 and (Zi, Yi)
i.i.d∼ Qϕ. With these,

define

ν = Qν0 ×
∏∞

i=1 Qν and ϕ = Qϕ0 ×
∏∞

i=1 Qϕ.

Further let Fn := σ{(Z0; Y0; Z1; Y1; . . . ; Zn; Yn)} be the natural filtration and

introduce dominating measures χ0 and χ chosen so that Qν0 , Qϕ0 ¿ χ0 and
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Qν , Qϕ ¿ χ. In practice, for χ0 and χ we take Lebesgue or counting measure

whenever possible or otherwise we let χ0 = Qν0 + Qϕ0 and χ = Qν + Qϕ .

Denote by ln(w) the Fn-restricted likelihood ratio

ln(w) :=
dν|Fn(w)

dϕ|Fn(w)
=

qν0(z0, y0)

qϕ0(z0, y0)

n∏
i=1

qν(zi, yi)

qϕ(zi, yi)
, (3)

where the q’s (i.e. qν , qϕ, qν0 and qϕ0) are Radon-Nykodym derivatives of the

general and initial distributions under ν or ϕ with respect to χ0 or χ.

The likelihood ratio in (3) would suffice for inference if the data consisted of a

left censored on or off time, followed by a predetermined number n of pairs of non-

truncated on and off times. However, when sample paths are window censored,

two other complications arise:

1. the duration of the last observed state is censored on the right, and

2. more importantly, a random number of pairs τ are observed.

To adapt to this observation process, we need to redefine the filtration and

obtain the corresponding Radon-Nykodym derivatve. This treatment is fairly

technical but relies on well known results in probability. The proof is deferred to

the Appendix, but the main result is that the window-censored likelihood ratio

l∗τ (w) is a product of three types of factors:

1. In a typical sample path where at least one transition in observed, we mul-

tiply

(a) the value of initial density
qν0

qϕ0

(z0, y0),

(b) the values of the densities at all non-censored on and off times

τ−1∏
i=1

qν

qϕ

(zi, yi)

(c) the survival function for the duration of the last state in the window

1−Qν(T − sτ−1,∞)

1−Qϕ(T − sτ−1,∞)
or

1−Qν(zτ , T − zτ + sτ−1)

1−Qϕ(zτ , T − zτ + sτ−1)
,

according as to whether the last state is on or off.

2. Secondly, if the window [0, T ] contains no jumps, the likelihood equals either

1−Qν0(T,∞)

1−Qϕ0(T,∞)
or

1−Qν0(∞, T )

1−Qϕ0(∞, T )
. .
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5 A CONTINUOUS TIME MARKOV CHAIN

(CTMC)

When the on and off times follow independent exponential distributions

Zi ∼ Qz = exp (λ1) and Yi ∼ Qy = exp(λ2), the process {W (t), t ≥ 0}
is a continuous time Markov chain. At any given time, the excess life is indepen-

dent of the history of the process.

The stationary distribution is, according to equation (1):

Q0(z, y) =
λ2

λ1 + λ2

(1− e−zλ1)
(
1− e−λ2y

)
+

λ1

λ1 + λ2

(1− e−yλ2), (4)

with marginal distributions

Q0(∞, y) = (1− e−yλ2) and Q0(z,∞) = λ2

λ1+λ2
(1− e−zλ1) + λ1

λ1+λ2
.

Notice that Z0 is independent of Y0, since Q0(z, y) = Q0(∞, y)Q0(z,∞).

After some algebra we obtain the likelihood over a window [0, T ] as

l(T ) =
λ1

τ+1{W (T )=0}λ2
τ+1{W (0)=1}

λ1 + λ2

exp [−λ1on(T )− λ2off(T )] , (5)

where on(t) :=
∫ t

0
W (t)dt =: 1− off(t). This additive property is characteristic to

the Markov chain and it is fairly intuitive. Because of the memoryless property of

the exponential distribution, the break up of the total on or off times into subpe-

riods does not provide any additional information on their distribution. When we

observe m windows independently up to a same time T , the log-likelihood over

the sample is

ln lm(T ) = −m ln (λ1 + λ2) + (ln λ1) [N(T, m) + d0]

+ (ln λ2) [N(T, m) + r1]− λ1on(T, m)− λ2off(T, m), (6)

where on(T, m) =
∑

onk(T ) and off(T, m) =
∑

offk(T ) are the total on and

off times overall m windows, N(T, m) is the total number of jumps into state

on, d0 =
∑

1{Wk(T ) = 0} is the number of windows that end in state off, and

r1 =
∑

1{Wk(0) = 1} is the number of windows that start in state on.
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5.1 Data Configurations

Maximization of (6) depends on data configurations, for some of which the m.l.e.

fails to exist.

Configuration I When only on-times are observed d0 = 0, r1 = m, N(T, m) = 0,

on(T, m) = Tm, and off(T, m) = 0. So

ln lm(T ) = −m ln

(
1 +

λ1

λ2

)
− λ1Tm

increases monotonically for any sequence in which λ1 → 0, and λ1/λ2 → 0.

Configuration II The case when only off-times are observed is similar taking

any sequence in which λ2 → 0, and λ2/λ1 → 0.

Configuration III Suppose we observed some on and some off-times, but no

jump in any window. To analyze this case, reparameterize as

p :=
λ2

λ1 + λ2

=: 1− q, µ := λ1 + λ2, and p̂ :=
r1

m
=: 1− q̂.

The log-likelihood

ln lm(T ) = m ln
[
(1− p)q̂(p)p̂

]−mTµ [(1− p)p̂ + pq̂]

is maximized for p = p̂ and it increases monotonically as µ → 0.

Configuration IV When in at least one window there are both on and off times,

call the data configuration “regular”. In this case, [N(T, m) + d0] ≥ 1,

[N(T, m) + r1] ≥ 1, on(T, m) > 0, and off(T, m) > 0. The log-likelihood is

bounded,

ln lm(T ) ≤ −µ{on(T, m) ∧ off(T, m)}
+ ln

{
q[N(T,m)+d0]p[N(T,m)+r1]

}
+ ln µ[−m + 2N(T, m) + d0 + r1].

Since 2N(T, m) + d0 + r1 < m,

lim sup
µ→∞

lm(T ) = lim sup
µ→0

lm(T ) = −∞.

Thus the existence of a maximum likelihood estimator in the interior of the

parameter space follows thus by the continuity of lm(T ), and it is found in

closed form by calculus in the usual manner.
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5.2 Asymptotic Normality

Following standard theorems in asymptotic statistics, it is established in the Ap-

pendix that the likelihood equation has a unique root with probability tending to

1 as m →∞ and that
√

n
(
λ̂n − λ0

)
⇒ N(0, Σ̂) with

Σ̂ =
(λ1 + λ2)

(λ1T + λ2T + 2)




λ1
λ1T + λ2T + 1

λ2T
1/T

1/T λ2
λ1T + λ2T + 1

λ1T


 .

Notice that while the main diagonal entries are O(1/T ), the off-diagonal entries

are O(1/T 2) as T →∞. This is intuitive, since the only reason why the estimators

of λ1 and λ2 are dependent is the presence in the data of the initial (left censored)

observations. As the observation window enlarges, the information provided by

the first two observations becomes negligible and the estimators closer to being

independent.

5.3 Comparison With Classic Estimators

As in the discrete Markov chain example of Section 3, it is natural to ask if there

is any loss in efficiency by ignoring stationarity in the estimation.

Suppose that we “condition away” the initial states. That is, we seek a log-

likelihood function conditioned on σ {Z01(Z0 > 0), Y01(Z0 = 0)}. This is given

over a single window by

ln lc(T ) = [τ + r1 + d0 − 1] (ln λ1) + τ (ln λ2)− λ1on(T )− λ2off(T ),

and its gradient is

∇ ln lc(T ) =

(
(τ + r1 + d0 − 1)/λ1 − on(T )

τ/λ2 − off(T )

)
.

The conditional maximum likelihood estimators can be easily found over m win-

dows to be

λ̃1 =
τ + r1 + d0 −m

on(T )
and λ̃2 =

τ

off(T )
.

It is easy to check that

E
[−∇2 ln lc(T )

]−1
=

λ1 + λ2

T

( λ1

λ2
0

0 λ2

λ1

)
.
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Therefore,
√

m(λ̃− λ) ⇒ N(0; Σ̃) with

Σ̃ =
λ1 + λ2

T

( λ1

λ2
0

0 λ2

λ1

)
,

which coincides with the approximation for the unconditional m.l.e’s for large T ’s.

To compare the two methods asymptotically let

Σ̂− Σ̃ =:
λ1 + λ2

T

1

λ1T + λ2T + 2
∆ with ∆ =

( −λ1

λ2
1

1 −λ2

λ1

)
.

As in the discrete chain, ∆ is negative semidefinite since tr(∆) < 0 and |∆| = 0.

The m.l.e. is then better than its conditional version, with a gain in efficiency that

depends inversely on the truncation time and which is also affected by the relative

means of the on and off times.

On the other hand, ∆ has eigenpairs

[
0, (λ2, λ1)

′] and
[(
−λ1

λ2
− λ2

λ1

)
, (−λ1, λ2)

′
]
,

which can be used to decompose ∆ = PDP ′, with

P =
1√

λ2
1 + λ2

2

(
λ2 −λ1

λ1 λ2

)
and D =




0 0

0 −λ1

λ2

− λ2

λ1


 .

This suggests the definition of a new parameter η = η (λ) by

(
η1 (λ1, λ2)
η2 (λ1, λ2)

)
:=

(
λ1λ2

1
2
λ2

2 − 1
2
λ2

1

)
.

This map is continuous and has the Jacobian matrix

Dη =

( ∂
∂λ1

η1 (λ1, λ2)
∂

∂λ2
η1 (λ1, λ2)

∂
∂λ1

η2 (λ1, λ2)
∂

∂λ2
η2 (λ1, λ2)

)
=

(
λ2 λ1

−λ1 λ2

)
.

By the delta method, the estimators η̂ = η
(
λ̂
)

and η̃ = η
(
λ̃
)

are asymptotically

normal and the difference in covariance matrices is

Dη

(
Σ̂− Σ̃

)
D′

η =
1

T

λ1 + λ2

λ2λ1

1

λ1T + λ2T + 2

(
0 0

0 − (λ2
1 + λ2

2)
2

)
.

The product of the hazard rates is estimated equally efficiently by the two meth-

ods, asymptotically, but for estimation of the difference in the square of the hazard
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Case: i ii iii iv v
λ1 0.5 0.5 0.5 0.5 0.5
λ2 1 1 0.5 0.5 0.5
T 4 20 2 1 0.5

A.R.E.(η̃2, η̂2) 0.82 0.95 0.50 0.33 0.20

.

Table 1: A.R.E. of η̃2 w.r.t. η̂2

rates the unconditional m.l.e. is better. As before, the gain in efficiency depends

inversely on the truncation time.

For the parameter η2(λ1, λ2) = 1
2
λ2

2 − 1
2
λ2

1 the asymptotic relative efficiency

(ARE) of η̃2 w.r.t. η̂2 is given by

A.R.E.(η̃2, η̂2) = 1− (λ2
1 + λ2

2)
2

2(λ4
1 + λ4

2)

/[
1 +

1

2
(λ1 + λ2)T

]
.

The fraction in the numerator varies between 0 when λ1 → 0 and 1 when λ1 = λ2.

When T is small the gains in efficiency could be substantial. As an example, Table

1 quantifies these gains for a few combination of parameters values.
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APPENDIX

A Stationary Distribution

In order to prove Theorem 2.2 it is convenient to proceed by showing uniqueness

first and then existence.

Consider the triplet (Zi, Yi, Xi) where Zi and Yi denote the actual duration of

the ith on and off times, and Xi is the observed length of the ith cycle. This is, for

the middle observations in the window, Xi = Zi+Yi, but for the first and last ones,
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Xi < Zi +Yi indicating the left or right censoring. In particular, what is observed

at the initiation of the observation window is not the actual on-off times (Z0, Y0),

but the censored (Z∗
0 , Y

∗
0 ) given by Z∗

0 := (X0 − Y0)
+ and Y ∗

0 := (Y0 ∧X0) .We

seek an answer to the question: which distribution for the first triplet

(Z0, Y0, X0), if any, makes the ARP stationary? We show next that any such

distribution should fulfill equation (7) and that gives uniqueness because that

equation defines a determining class [12].

Theorem A.1. When the process is stationary, then µX = EXi < ∞ and the

initial distribution (Z0, Y0, X0) is such that for all bounded continuous g : IR+2 7→
IR,

E[g(Z0, Y0)1(X0 > c)] =
1

µX

E
{
g(Z, Y )(X − c)+

}
. (7)

Proof. Choose a (large) positive M , and introduce a random time at which we

start to observe the process by TM ∼ U(0,M), independent of the field F =

σ{Z0, Y0, Z1, Y1, . . .}. Let ηM := N(M) and τM := N(TM). A quantity of interest

is the “residual life” defined by the random variable RM := SτM
− TM .

Consider the conditional expectation

E{g(ZτM
, YτM

)1(RM > c)|F} =

η∑
i=0

E{g(ZτM
, YτM

)1(RM > c)1(TM ∈ Ii)|F} (8)

where Ii := (Si−1, Si] for 0 ≤ i ≤ η − 1, S−1 := 0, and Iη := (Sη−1,M ]. Note that

τM = i iff TM ∈ Ii. Since Zi and Yi are F measurable and TM is independent of

the process, (8) is in turn equal to

=

η−1∑
i=0

g(Zi, Yi)
Xi

M

(Xi − c)

Xi

1(Xi > c) + g(Zη, Yη)
M − Sη−1

M
1(M − Sη−1 > c)

=

η∑
i=0

g(Zi, Yi)
(Xi − c)+

M
+

1

M
g(Zη, Yη) [(M − Sη−1) 1(M − Sη−1 > c)]

=
η

M

1

η

η∑
i=0

g(Zi, Yi)(Xi − c)+ +
1

M
g(Zη, Yη) [(M − Sη−1) 1(M − Sη−1 > c)] .

The second term converges to zero as M →∞. To analyze the first term, notice

that as M →∞, N(M) →∞ a.s. Then by the strong law of large numbers,

1

η

η∑
i=0

g(Zi, Yi)(Xi − c)+ → Eg(Z, Y )(X − c)+ a.s..
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Also, since by the elementary renewal theorem N(M)/M → µ−1
X a.s.,

E{g(ZτM
, YτM

)1(RM > c)|F} → 1

µX

Eg(Z, Y )(X − c)+ a.s.

Now by smoothing,

E[g(ZτM
, YτM

)1(RM > c)] = E{E[g(ZτM
, YτM

)1(RM > c)|F ]},

and by the Dominated (Bounded) Convergence Theorem,

E[g(ZτM
, YτM

)1(RM > c)] → 1

µX

Eg(Z, Y )(X − c)+.

For the process to be stationary it should hold that

E[g(ZτM
, YτM

)1(RM > c)] = E[g(Z0, Y0)1(X0 > c)],

and so, the process is stationary only if

E[g(Z0, Y0)1(X0 > c)] =
1

µX

Eg(Z, Y )(X − c)+ (9)

for all bounded g ∈ C(IR2+). ♦

Having characterized the stationary distribution above, we now exhibit one

particular choice for which (9) holds.

Lemma A.2. Let U ∼ U(0, 1) be independent of σ{Z1, Y1, Z2, Y2, . . .}, and sup-

pose that Υ0 satisfies

E f(Z0, Y0, X0) =
1

µX

E Xf(Z, Y, XU) (10)

for all measurable f : IR+3 → IR. Then, Υ0 satisfies (9).

Proof. Take f(Z0, Y0, X0) = g(Z0, Y0)1(X0 > c), for g ∈ C(R+2). Then

Ef(Z0, Y0, X0) = Eg(Z0, Y0)1(X0 > c)

=
1

µX

EXg(Z, Y )1(XU > c)

=
1

µX

E
{

E
[
Xg(Z, Y ) 1

(
U >

c

X

)∣∣∣X
]}

=
1

µX

E{g(Z, Y )(X − c)+},

which coincides with (9). ♦

15



It remains to show that the distribution defined in (10) does in fact give rise

to a stationary process, in the sense of Definition 2.1.

Theorem A.3. For (Z0, Y0, X0) ∼ Υ0 as defined in (10), (Zi, Yi) ∼ Q and

Xi = Zi +Yi for i > 0, the alternating renewal process {W (t), t ≥ 0} is stationary.

Proof. With any t ∈ IR, let τ := N(t) and Rt := Sτ − t. Take an arbitrary

measurable function f : IR+3 → IR and decompose the expectation

E f(Zτ , Yτ , Rt) = E {f(Zτ , Yτ , Rt); N(t) = 0}

+
∞∑
i=1

E{f(Zτ , Yτ , Rt); N(t) = i}, (11)

since N(t) < ∞ w.p.1; and observe that the second term in the display above is

=
∞∑
i=1

E {f(Zi, Yi, Si−1 + Xi − t); N(t) = i}

=
∞∑
i=1

E {f(Zi, Yi, Si−1 + Xi − t); Si−1 ≤ t; Si > t}

=
∞∑
i=1

∫

s<t

E {f(Zi, Yi, Si−1 + Xi − t); Xi > a− Si−1|Si−1 = s} dFSi−1
(s).

Next, introduce the renewal measure

ν([0, s]) = E{N(s)} = E

∞∑
n=1

1 {Sn−1 ∈ [0, s]}

=
∞∑

n=1

P {Sn−1 ∈ [0, s]} =
∞∑

n=1

FX0 ∗ F
∗(n−1)
X1

([0, s]),

so ν =
∑∞

n=1 FX0 ∗ F ∗n−1
X1

, where ∗ denotes convolution. It is known that for a

stationary process ν(ds) = ds/µX [13]. Using this,

E {f(Zτ , Yτ , Rt); N(t) ≥ 1} =
1

µX

∫∫

A

f(z, y, s + x − t)Υ(dz, dy, dx)ds, (12)

where A = {0 < s ≤ t, x > t − s}. Also, making the change of variables

r = x + s− t, A = {r > 0, r ≤ x, r > x− t} the expectation becomes

E {f(Zτ , Yτ , Rt); N(t) ≥ 1} =
1

µX

∫∫

A

f(z, y, r)Υ(dz, dy, dx)dr.
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In a similar manner we transform the first term in the r.h.s. of (11),

E{f(Zτ , Yτ , Rt); N(t) = 0} =
1

µX

∫∫

B

f(z, y, s− t)Υ(dz, dy, dx)ds.

where B = {0 < s ≤ x; s > t}. Replacing s − t = r this set becomes

B = {r > 0, r ≤ x, r ≤ x− t} and the expectation is

E {f(Zτ , Yτ , Rt); N(t) = 0} =
1

µX

∫∫

B

f(z, y, r)Υ(dz, dy, dx)dr.

Finally, adding the two pieces we get

Ef(Zτ , Yτ , Rt) =
1

µX

∫∫

0<r≤x

f(z, y, r)Υ(dz, dy, dx)dr = Ef(Z0, Y0, X0).

Now define ρ(z, y, r) := Eh(z, y, r, Z1, Y1, X1, Z2, Y2, X2, . . .), for some integrable

h, and let κ be a stopping time. Then with Fκ = σ{Z0, Y0, X0, , . . . , Zκ, Yκ, Xκ},
the expectation E[h(Zκ, Yκ, Rκ, Zκ+1, Yκ+1, Xκ+1, . . .)|Fκ] = ρ(Zκ, Yκ, Rκ), and by

smoothing,

E[h(Zκ, Yκ, Rκ, Zκ+1, Yκ+1, Xκ+1, . . .)] = Eρ(Zκ, Yκ, Rκ)

= Eρ(Z0, Y0, X0) = E[h(Z0, Y0, X0, Z1, Y1, X1, . . .)].

Hence the process is stationary. ♦

Since (Z0, Y0, X0) gets observed only partially, we use now equation (10) to

obtain the distribution of the censored initial on and off times (Z∗
0 , Y

∗
0 ) given by

Z∗
0 := (X0 − Y0)

+ and Y ∗
0 := (Y0 ∧X0) . This is,

Q0 (z, y) = EQ [1 (Z∗
0 ≤ z) 1 (Y ∗

0 ≤ y)]

= EQ

{
1
[
(X0 − Y0)

+ ≤ z
]
1 [(Y0 ∧X0) ≤ y]

}

=
1

µX

EQX
{
1
[
(XU − Y )+ ≤ z

]
1 [Y ∧XU ≤ y]

}

=
1

µX

EQX

{
1

[
U ≤ z + Y

X

]
1 [Y ∧XU ≤ y]

}
.

Conditioning now on Z and Y we observe that

Q0 (z, y) =
1

µX

EQX EQ

{
1

[
U ≤ z + Y

X

]
1 [Y ∧XU ≤ y]

∣∣∣Z, Y

}
.
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Since further 1 [Y ∧XU ≤ y] = 1 − 1 [U > y/X] 1 [Y > y] , the argument inside

the conditional expectation is

1

[
U ≤ z + Y

X

]
1 [Y ∧XU ≤ y] = 1

[
U ≤ z + Y

X

]
−1

[
y

X
< U ≤ z + Y

X

]
1 [Y > y] .

Then Q0 (z, y) equals

=
1

µX

EQX EQ

{
1

[
U ≤ z + Y

X

]
1 [Y ∧XU ≤ y]

∣∣∣Z, Y

}

=
1

µX

EQX

{(
z + Y

X
∧ 1

)
−

[(
z + Y

X
∧ 1

)
− y

X

]
1 [Y > y]

}

=
1

µX

EQ {(z ∧ Z) 1 [Y ≤ y] + y ∧ Y } .

B Likelihood Ratios

In what follows, we arrive at the relevant likelihood ratio by building up from a

few steps.

Censored paths but with a deterministic number of transitions n

• In order to incorporate the right censoring introduce a new filtration

{F∗
n, n ≥ 0} defined separately for n = 0 and n ≥ 1 by

F∗
0 : = σ{Z0 ∧ T, (Z0 + Y0) ∧ T},

F∗
n : = σ{Z0, Y0, Z1, Y1, . . . , , Zn−1, Yn−1,

Zn1[Zn ≤ T − Sn−1], 1[Yn + Zn + Sn−1 ≤ T ]}.

• In the next few steps, we derive an F∗
n restricted likelihood ratio. First we

consider the case when n ≥ 1. The case n = 0 represents windows that

contain only censored observations and will be treated later.

Assume n ≥ 1 and let

Un := (Z0; Y0; Z1; Y1; . . . ; Zn−1; Yn−1)
′

Wn =

(
W1,n

W2,n

)
:=

(
Zn1[Zn ≤ T − Sn−1]

1[Yn + Zn + Sn−1 ≤ T ]

)
,

Notice that W1,n = 0 implies that W2,n = 0. For simplicity of notation we

write U and W , omitting the subindex n in the sequel.
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• For an arbitrary bounded measurable function h, consider

Eνh(U,W ) = EνEν [h(U,W )|U ]

= EνEν [h(U,W )1(W1 = W2 = 0)|U ]

+EνEν [h(U,W )1(W1 > 0; W2 = 0)|U ]

+EνEν [h(U,W )1(W1 > 0; W2 = 1)|U ]

= Eν{(I) + (II) + (III)}. (13)

In typical ARPs, except possibly for the first pair, the on and off times are

independent. In our treatment, this is means Qν = Qνz ×Qνy . This further

enables a choice of χ = χz × χy with Qνz ¿ χz and Qνy ¿ χz. Similar

decompositions hold under ϕ.

We now look at each of the conditional expectations on the rhs of equation

(13) separately in order to express them as integrals. Let δx denote a point

mass at x, and whenever its clear from the context we use the same notation

for probability measures and cumulative distribution functions.

i) First,

(I) = Eν [h(U,W )1(W1 = W2 = 0)|U = u]

= h

[
u,

(
0
0

)]
Qνz[Zn > T − sn−1]

=

∫
h [u,w] [1−Qνz(T − sn−1)] δ(0,0)(dw).

ii) Since, Sn−1 is a function of U, and U⊥Zn⊥Yn,

(II) = Eν [h(U,W )1(W1 > 0; W2 = 0)|U = u]

= Eν

{
h

[
u,

(
Zn

0

)]
1[Zn ≤ T − sn−1]1[Yn + Zn + sn−1 > T ]

}

=

∫
h

[
u,

(
w1

0

)]
1[w1 ≤ T − sn−1] [1−Qνy(T − w1 − sn−1)]

qνz(w1)χz(dw1)δ0(dw2).
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iii) Finally,

(III) = Eν [h(U,W )1(W1 > 0; W2 = 1)|U = u]

= Eν

{
h

[
u,

(
Zn

1

)]
1[Zn ≤ T − sn−1]1[Yn + Zn + sn−1 ≤ T ]

}

=

∫
h

[
u,

(
w1

1

)]
1[w1 ≤ T − sn−1]Qνy(T − w1 + sn−1)

qνz(w1)χz(dw1)δ1(dw2).

Now, the expectation (13) can be expressed as a double integral with respect

to the sum of the measures just obtained. So Eνh(U,W ) is equal to

∫

U

∫

W

h [u,w]
dνn−1

dχn−1
(u) {[1−Qνz(T − sn−1)] 1[zn > T − sn−1]

+ 1[zn ≤ T − sn−1]1[yn + yn + sn−1 > T ] [1−Qνy(T − zn + sn−1)] qνz(zn)

+1[zn ≤ T − sn−1]1[yn + zn + sn−1 ≤ T ]Qνy(T − zn + sn−1)qνz(zn)}
[χn−1 × (δ(0,0) + χz × δ0 + χz × δ1)](du, dw).

A similarly decomposition holds under ϕ. Thus, when n ≥ 1, the

F∗
n-restricted likelihood ratio l∗n is the product:

l∗n = ln−1

[
1−Qνz(T − sn−1)

1−Qϕz(T − sn−1)

]1[zn>T−sn−1]

[
[1−Qνy(T − zn + sn−1)] qνz(zn)

[1−Qϕy(T − zn + sn−1)] qϕz(zn)

]1[zn≤T−sn−1]1[yn+zn+sn−1>T ]

[
Qνy(T − zn + sn−1)qνz(zn)

Qϕy(T − zn + sn−1)qϕz(zn)

]1[zn≤T−sn−1]1[yn+zn+sn−1≤T ]

.

• For n = 0, similar calculations show that

l∗0 =

[
1−Qνy0

(T )

1−Qϕy0
(T )

]1[z0=0] [ 1−Qνy0
(T )

1−Qϕy0
(T )

]1[z0=0]1[y0>T ]

[ [
1−Qνy0

(T − z0)
]
qνz0

(z0)[
1−Qϕy0

(T − z0)
]
qϕz0

(zo)

]1[0<z0<T ]1[y0+z0>T ]

. (14)
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Censored paths with a random number of transitions τ The field F∗
n

is however still inadequate, for when we observe an alternating renewal process

continually over a “window” [0, T ] the number of renewals in the interval is not

predetermined but random. In the next steps we take this into account.

• First, define a random time τ = inf{n : Sn > T}. Notice that since by the

SLLN Sn → +∞ a.s. under either ν or ϕ, it follows that τ < ∞ a.s. (ν, ϕ).

In fact τ is a stopping time with respect to F∗
n. To see this observe that

{τ = 0} = {Z0 + Y0 > T} ⊂ F∗
0 ; and when alternatively n ≥ 1, the set

{1 ≤ τ ≤ n} equals the union

n⋃

k=1

(
{Zk1[Zk ≤ T − Sk−1] = 0} ∪ {1[Yk + Zk + Sn−1 ≤ T ] = 0}

)
,

and this is a subset of F∗
n, for all n ≥ 1.

Now we are ready to define a filtration that corresponds to window censored

paths. Under such, the events that we observe are all in

F∗
τ := σ{A ∈ F : ∀n A ∩ {τ = n} ∈ F∗

n}. (15)

• The final task is to obtain an F∗
τ -restricted likelihood ratio. We proceed as

in Wald’s fundamental likelihood ratio identity. For A ∈ F∗
τ ,

ν(A) = ν(A; τ < ∞) =
∞∑

n=0

ν(A; τ = n).

But by the definition of F∗
τ , we see that for all n the intersection

A ∩ {τ = n} lies in F∗
n. Hence,

ν(A; τ = n) =

∫

Ω

1A1{τ = n} l∗n dϕ.

So that,

ν(A) =
∞∑

n=0

Eϕ[l∗n1A1(τ = n)] =
∞∑

n=0

Eϕ[l∗τ1A1(τ = n)].
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By Fubini,

ν(A) = Eϕ

[
l∗τ1A

∞∑
n=0

1(τ = n)

]
= Eϕ [l∗τ1A1(τ < ∞)] = Eϕ[l∗τ1A],

and hence finally:

l∗τ (w) :=
dυ

dϕ

∣∣∣∣
F∗τ

(w)

= l0(w) 1(τ = 0) + 1(τ ≥ 1) lτ−1(w)
[

1−Qνz(T − sτ−1)

1−Qϕz(T − sτ−1)

]1[zτ >T−sτ−1]

[
[1−Qνy(T − zτ + sτ−1)] qνz(zτ )

[1−Qϕy(T − zτ + sτ−1)] qϕz(zτ )

]1[zτ≤T−sτ−1]

. (16)

C Asymptotic Normality

We appeal to the following results in Van der Vaart [11, chapter 5].

Theorem C.1. For each θ in an open subset of Euclidean space, let θ 7→ ψθ(w)

be twice continuously differentiable for every w. Suppose that Eθ0ψθ0(w) = 0, that

Eθ0 ‖ψθ0(w)‖2 < ∞ and that the matrix Eθ0∇ψθ0(w) exists and is nonsingular.

Assume that the second order partial derivatives are dominated by a fixed integrable

function ψ̈(w) for every θ in a neighborhood of θ0.

Then, every consistent estimator sequence θ̂n such that

Ψn(θ̂n) := 1
n

∑n
i=1 ψθ̂n

(wi) = 0 for every n satisfies:

√
n

(
θ̂n − θ0

)
= − [Eθ0∇ψθ0(w)]−1 1√

n

n∑
i=1

ψθ0(wi) + op(1),

and in particular, the sequence
√

n
(
θ̂n − θ0

)
is asymptotically normal with mean

0 and variance

[Eθ0∇ψθ0(w)]−1 Eθ0

[
ψθ0(w)ψ′θ0

(w)
]
[Eθ0∇ψθ0(w)]−1 .

Theorem C.2. Under the conditions of the preceding theorem, the probability

that the equation 1
n

∑n
i=1 ψθ(wi) = 0 has at least one root tends to 1, as n → ∞

and there exists a sequence θ̂n such that θ̂n → θ0 in probability. If ψθ = ∇mθ

is the gradient of some function mθ then and θ0 is a point of local maximum of

θ 7→ Eθ0mθ, then the sequence θ̂n can be chosen to be local maxima of the maps

θ 7→ 1
n

∑n
i=1 mθ(wi).
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We now check that the assumptions of these theorems are satisfied in our

context. We have m i.i.d. “windows” wi on [0, T ]. These random elements wi =

{Wi(s) : 0 ≤ s ≤ T} represent the observed behavior of an exponential alternating

renewal process. The parameter θ = (λ1, λ2) lies in the space θ ∈ Θ = (0,∞)2

and each observation has density

fθ(w) =
1

λ1 + λ2

λ1
τ+1{W (T )=0}λ2

τ+1{W (0)=1} exp [−λ1on(T )− λ2off(T )] ,

as in (5). Let mθ = ln fθ(w), with the corresponding ψθ(w) = ∇ ln fθ(w) given by

ψθ(w) =




−on(T )− 1

λ1 + λ2

+
N(T ) + d0

λ1

−off(T )− 1

λ1 + λ2

+
N(T ) + r1

λ2


 .

ψθ(w) is continuous and differentiable in Θ. Note that

Eθon(T ) =
λ2

λ1 + λ2

T, Eθoff(T ) =
λ1

λ1 + λ2

T,

EθN(T ) =
λ1λ2

λ1 + λ2

T,

Eθd0 =
λ1

λ1 + λ2

, Eθr1 =
λ2

λ1 + λ2

.

which imply Eθ0ψθ0(w) = 0. The densities fθ(w) form a curved exponential family

and the canonical statistics have a finite moment generating function. This justi-

fies the reversal of the order of the operations of derivation and expectation, which

gives that Eθ ln fθ(w) = 0, and Eθ [∇ ln fθ(w)∇′ ln fθ(w)] = −Eθ [∇2 ln fθ(w)];see

Brown (1986) for details. Explicitly,

∇2 ln fθ(w) =

(
1

(λ1+λ2)2
− N(T )+d0

λ2
1

1
(λ1+λ2)2

1
(λ1+λ2)2

1
(λ1+λ2)2

− N(T )+r1

λ2
2

)
.

Negating and taking an expectation yields the Fisher Information matrix

I(θ) =

(
1

λ1+λ2

1
λ1

(λ2T + 1)− 1
(λ1+λ2)2

− 1
(λ1+λ2)

2

− 1
(λ1+λ2)2

1
λ1+λ2

1
λ2

(λ1T + 1)− 1
(λ1+λ2)2

)
.

Also, Eθ0 ‖ψθ0(w)‖2 = Eθ0

[
ψ′θ0

(w)ψθ0(w)
]

= tr{−Eθ [∇2 ln fθ(w)]} < ∞, and

Eθ0 [∇ψθ0(w)] =

(
1

λ1+λ2

1
λ1

(λ2T + 1)− 1
(λ1+λ2)2

− 1
(λ1+λ2)2

− 1
(λ1+λ2)2

1
λ1+λ2

1
λ2

(λ1T + 1)− 1
(λ1+λ2)2

)
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exists and is positive definite. To see this, check that tr {Eθ0 [∇ψθ0(w)]} > 0 and

det{Eθ0 [∇ψθ0(w)]} > 0.

The second derivatives of ψθ are, using the notation ψ̈ijk :=
∂2ψθ(w)i

∂θj∂θk

,

ψ̈111 = 2
N(T ) + d0

λ3
1

− 2
1

(λ1 + λ2)3

ψ̈112 = ψ̈121 = ψ̈122 = ψ̈211 = ψ̈212 = ψ̈221 = −2
1

(λ1 + λ2)3

ψ̈222 = 2
N(T ) + r1

λ3
2

− 2
1

(λ1 + λ2)3
,

and we can see that

∣∣∣ψ̈ijk

∣∣∣ ≤ 2
N(T ) + d0

(λ01 − ε)3 + 2
N(T ) + r1

(λ02 − ε)3 + 2
1

(λ01 + λ02 − 2ε)3

in every (sufficiently small) ε-nbhd of θ0 ∈ Θ. The bound is integrable since so

are N(T ), d0, and r1. The conditions of the theorems are thus satisfied.
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