
Publ. Mat. 65 (2021), 653–680
DOI: 10.5565/PUBLMAT6522108

GLOBAL EXISTENCE FOR VECTOR VALUED

FRACTIONAL REACTION-DIFFUSION EQUATIONS

Agust́ın Besteiro and Diego Rial

Abstract: In this paper we study the initial value problem for infinite dimensional
fractional non-autonomous reaction-diffusion equations. Applying general time-split-

ting methods, we prove the existence of solutions globally defined in time using convex

sets as invariant regions. We expose examples where biological and pattern formation
systems, under suitable assumptions, achieve global existence. We also analyze the

asymptotic behavior of solutions.
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1. Introduction

In this paper we prove global existence of solutions for vector valued
fractional non-autonomous reaction-diffusion equations. We study the
non-autonomous system

(1.1) ∂tu+ σ(−∆)βu = F (t, u),

where u(t, x) ∈ Z for x ∈ Rn, t > 0, σ ≥ 0, and 0 < β ≤ 1, F : R×Z → Z
is a continuous map, and Z is a Banach space. We consider the initial
value problem u(x, 0) = u0(x).

The aim of this paper is to develop a new method to obtain behav-
ioral results on the fractional reaction-diffusion equation, using recent
numerical splitting techniques [6, 14] introduced for other purposes.
The main goal is to obtain general conditions for global well-posedness
of the fractional reaction-diffusion equation in Banach spaces.

Fractional reaction-diffusion equations are commonly used in many
applications such as biological models, population dynamics models, nu-
clear reactor models, just to name a few (for references to examples
see [4]). The difference between classical and fractional diffusion is that
the classical Laplacian term associated with classical diffusion implies
a Gaussian dispersal kernel in the corresponding equation, which does
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not represent all possible models in practice. The fractional model cap-
tures the faster spreading rates and power law invasion profiles observed
in many applications. This behavior is given by the fractional Lapla-
cian, that is described by standard theories of fractional calculus (for
a complete survey see [24]). There are many different equivalent defini-
tions of the fractional Laplacian and its properties are well understood
(see [7, 15, 21, 23, 31, 28, 22]).

The non-autonomous nonlinear reaction-diffusion equation dynamics
were studied, among others, by the authors of [29], analyzing the stabil-
ity and evolution of the problem. Global existence in reaction-diffusion
equations in bounded sets was studied in the book by Smoller [33]
and in [12] where the authors consider the n-dimensional case with
classical diffusion and the intersection of half-spaces as invariant re-
gions in Rn, where the equation evolves. The case of adopting a con-
vex set as an invariant set is considered only when the diffusion coef-
ficients σij ∈ Rn×n form the identity matrix (see Corollary 14.8 (b)
in [33]). Morgan ([26]) considered a similar case where the σij do not
form the identity matrix, but other conditions are needed for the sys-
tem to achieve the result. These techniques have been used frequently
to obtain local and global well-posedness for different classical diffusion
problems (see [1, 5, 25, 32]). In our case, we study global existence of
fractional reaction-diffusion equations using a completely different ap-
proach. We use time splitting methods in Banach spaces using closed
convex sets as invariant regions. We remark that, any difficulties that
the nonlocal operator could add are avoided by the splitting method,
requiring only to prove results about the linear equation.

As an example, we explore the scalar system where the nonlinearity is
given by F (u) = (1+ ia)u−(1+ ib)|u|2u with a, b ∈ R (see [12, 35, 10]).
For particular nonlinearities exact solutions are known, for instance,
in [20] the existence of scalar traveling waves for the quadratic, cubic,
and quartic cases was studied using the tanh method. We also explore
a FitzHugh–Nagumo pattern formation system in R2 and a population
dynamic system in a Banach space. In each case, we found an appropri-
ate invariant region that allows us to prove global existence. Finally, we
also analyze the asymptotic behavior of solutions in R.

This paper is organized as follows:
In Section 2 we introduce the notation and prove preliminary results

concerning local well-posedness of the linear and nonlinear components
of the fractional reaction-diffusion equation. In Section 3 we introduce
the propagators, allowing us to construct a splitting reaction-diffusion
equation. This is important to build up the linear part. In Section 4
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we obtain several results to finally prove the convergence of the “split-
ting” equation to the “original” equation. This allows us to study, sepa-
rately, the linear and nonlinear parts in order to obtain interesting results
about the original equation. In Section 5 we prove global well-posedness
for invariant closed convex sets of a Banach space. We show that the
linear and nonlinear parts of the splitting equation maintain indepen-
dently the solution inside the convex set. We expose examples, such us
the Ginzburg–Landau equation and the Fisher–Kolmogorov equation.
In Subsection 5.1 we describe an interesting example, a population dy-
namics model, with a trait variable in a Banach space. This shows the
importance of extending the results to Banach spaces. In Subsection 5.2
we extend the results from Section 5 (Proposition 5.7 and Theorem 5.8)
to products of Banach spaces. In Section 6 we analyze a completely
different problem, namely the asymptotic behavior of a solution. The
strategy is, again, to split the linear and nonlinear parts, analyze them
separately, and use the results from Sections 4 and 5.

2. Notations and preliminaries

We are interested in continuous functions with vectorial values, that
is to say, Banach space valued functions. The main reason for this is to
analyze well-posedness of population dynamics problems with discrete
or continuous traits that distinguish the population components (see
Subsection 5.1).

Let Z be a Banach space. We define Cu(Rd, Z) as the set of uniformly
continuous and bounded functions on Rd with values in Z. Defining the
norm

‖u‖∞,Z = sup
x∈Rd

|u(x)|Z ,

Cu(Rd, Z) is a Banach space. It is easy to see that, if g ∈ L1(Rd) and
u ∈ Cu(Rd, Z), the Bochner integral is defined in the following way:

(g ∗ u)(x) =

∫
Rd
g(y)u(x− y) dy.

This defines an element of Cu(Rd, Z) and the linear operator u 7→ g ∗ u
is continuous (see [11]).

The following results show that the operator −(−∆)β defines a contin-
uous contraction semigroup in the Banach space Cu(Rd, Z). The follow-
ing lemma is a consequence of the Lévy–Khintchine formula for infinitely
divisible distributions and properties of the Fourier transform.
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Lemma 2.1. Let 0 < β ≤ 1 and gβ ∈ C0(Rd) such that ĝβ(ξ) = e−|ξ|
2β

.
Then, the function gβ is positive, invariant under rotations of Rd, inte-
grable, and ∫

Rd
gβ(x) dx = 1.

Proof: The first statement follows from Theorem 14.14 of [30], and the
remaining claims are an easy consequence of the definition of ĝβ .

Based on the previous lemma, we study Green’s function related to
the linear operator ∂t + σ(−∆)β .

Proposition 2.2. Let σ > 0 and 0 < β ≤ 1. The function Gσ,β, given
by

Gσ,β(t, x) = (σt)−
d
2β gβ((σt)−

1
2β x),

verifies

(i) Gσ,β(·, t) > 0.

(ii) Gσ,β(·, t) ∈ L1(Rd) and∫
Rd
Gσ,β(t, x) dx = 1.

(iii) Gσ,β(·, t) ∗Gσ,β(·, t′) = Gσ,β(·, t+ t′) for t, t′ > 0.

(iv) ∂tGσ,β + σ(−∆)βGσ,β = 0 for t > 0.

Proof: The first and second statements are a consequence of the defi-
nition of ĝβ . The third and fourth statements are immediate applying
Fourier transform.

If X is Banach space, then we denote the space of bounded linear
operators from X to X as B(X). In our case we consider X = Cu(Rd, Z).
In the following proposition we show that the linear operator −σ(−∆)β

defines a continuous contraction semigroup in Cu(Rd, Z).

Proposition 2.3. If u ∈ Cu(Rd, Z), then for any σ > 0 and 0 < β ≤ 1,
the map S : R+ → B(Cu(Rd, Z)) defined by S(t)u = Gσ,β(·, t) ∗ u is a
continuous contraction semigroup.

Proof: We first prove the semigroup property, which is deduced from (iii)
of Proposition 2.2:

S(t)S(t′)u = Gσ,β(·, t) ∗ (Gσ,β(·, t′) ∗ u)

= (Gσ,β(·, t) ∗Gσ,β(·, t′)) ∗ u=(Gσ,β(·, t+ t′)) ∗ u=S(t+ t′)u.



Global Existence for Fractional Reaction-Diffusion Equations 657

We show that S(t)u converges to u for all u ∈ Cu(Rd, Z) when t→ 0.
Indeed, we have, for δ > 0,

|(S(t)u)(x)− u(x)|Z ≤
∫
Rn
Gσ,β(y, t)|u(x− y)− u(x)|Z dy

=

∫
|y|<δ

Gσ,β(y, t)|u(x− y)− u(x)|Z dy

+

∫
|y|≥δ

Gσ,β(y, t)|u(x− y)− u(x)|Z dy.

The first integral on the right hand side of the equality can be estimated
as follows: ∫

|y|<δ
Gσ,β(y, t)|u(x− y)− u(x)|Z dy

≤
∫
Rn
Gσ,β(y, t) max

|y|<δ
|u(x− y)− u(x)|Z dy

= max
|y|<δ

|u(x− y)− u(x)|Z .

This can be small enough because |y| < δ and u is uniformly continuous.
For the second term we proceed in the following way,∫

|y|≥δ
Gσ,β(y, t)|u(x− y)− u(x)|Z dy

≤ 2‖u‖∞,Z(σt)−
d
2β

∫
|y|≥δ

gβ((σt)−
1
2β y) dy

= 2‖u‖∞,Z
∫
|y|≥δ(σt)−1/(2β)

gβ(y) dy.

Since δ(σt)−1/(2β) → ∞ when t → 0+ and gβ ∈ L1(Rd), the right hand
side of the previous equality tends to 0. The next property proves that
S is well defined, that is, Su ∈ Cu(Rd, Z).

|(S(t)u)(x1)− (S(t)u)(x2)|Z ≤
∫
Rn
Gσ,β(y, t)|u(x1 − y)− u(x2 − y)|Z dy

≤ ε
∫
Rn
Gσ,β(y, t) dy = ε.

In the last inequality we used that u is uniformly continuous. Finally, we
prove the contraction semigroup property:

|(S(t)u)(x)|Z ≤
∫
Rn
Gσ,β(y, t)|u(x− y)|Z dy ≤ ‖u‖∞,Z .

Remark 2.4. If u ∈ Cu(Rd, Z) is a constant, then S(t)u = u.
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We consider local in time integral solutions of problem (1.1). We say
that u ∈ C([0, T ], Cu(Rd, Z)) is a mild solution of (1.1) iff u verifies

(2.1) u(t) = S(t)u0 +

∫ t

0

S(t− t′)F (t′, u(t′)) dt′.

Since our method to build solutions of (2.1) is based on the Lie–Trotter
method, it is necessary to study the nonlinear problem related to F . We
remark that some regularity condition is necessary for convergence, as
it is shown in the counterexample given in [9].

Let F : R+ × Z → Z be a continuous map. We say that F is locally
Lipschitz in the second variable if, given R, T > 0, there exists L =
L(R, T ) > 0 such that, if t∈ [0, T ] and z, z̃ ∈ Z with |z|Z , |z̃|Z ≤ R, then

|F (t, z)− F (t, z̃)|Z ≤ L|z − z̃|Z .
In this case, for any z0 ∈ Z there exists a unique local in time (maximal)
solution of the Cauchy problem

(2.2) z(t) = z0 +

∫ t

t0

F (t′, z(t′)) dt′

defined on [t0, t0 + T ∗(t0, z0)), with T ∗(t0, z0) the maximal time of exis-
tence. It is easy to see that there exists a nonincreasing function T : R2

+ →
R+ such that

T (T,R) ≤ inf{T ∗(t0, z0) : 0 ≤ t0 ≤ T, |z0|Z ≤ R}.
Also, one of the following alternatives holds:

• T ∗(t0, z0) =∞;
• T ∗(t0, z0) <∞ and |z(t)|Z →∞ when t ↑ t0 + T ∗(t0, z0).

We can see that F : R+×Cu(Rd, Z)→ Cu(Rd, Z), given by F (t, u)(x) =
F (t, u(x)), is continuous and locally Lipschitz in the second variable.
Therefore, we can consider problem (2.2) in Cu(Rd, Z). We denote by
N : R × R × Cu(Rd, Z) → Cu(Rd, Z) the flow generated by the integral
equation (2.2) as u(t) = N(t, t0, u0), defined for t0 ≤ t < t0 + T ∗(t0, u0).

The following result relates the solutions of (2.2) with problem (2.1)
in the case where the initial data is constant.

Proposition 2.5. If u0 is a constant function, then u(t) = N(t, t0, u0)
is a solution of (2.1).

Proof: Since u0 is a constant function, from the uniqueness of prob-
lem (2.2) we have that u(t) is a constant function for any t > 0 where
the solution is defined. Therefore,

u(t) = u0 +

∫ t

0

F (t′, u(t′)) dt′ = S(t)u0 +

∫ t

0

S(t− t′)F (t′, u(t′)) dt′,

which proves our assertion.



Global Existence for Fractional Reaction-Diffusion Equations 659

Theorem 2.6. There exists a function T ∗ : Cu(Rd, Z)→ R+ such that,
for u0 ∈ Cu(Rd, Z), there is a unique u ∈ C([0, T ∗(u0)), Cu(Rd, Z)),
which is a mild solution of (1.1) with u(0) = u0. Moreover, one of the
following alternatives holds:

(i) T ∗(u0) =∞;
(ii) T ∗(u0) <∞ and limt↑T∗(u0) ‖u(t)‖∞,Z =∞.

Proof: See Theorem 4.3.4 in [11].

Proposition 2.7. Under the conditions of the above theorem, we have

(i) T ∗ : Cu(Rd, Z)→ R+ is lower semi-continuous.
(ii) If u0,n → u0 in Cu(Rd, Z) and 0 < T < T ∗(u0), then un → u in

the Banach space C([0, T ], Cu(Rd, Z)).

Proof: See Proposition 4.3.7 in [11].

3. Propagators

To build the approximate solutions, we decompose the time variable
in regular intervals and consider the evolution, in an alternate form, of
the linear and nonlinear problem. To achieve this, we turn on and off
each term of the equation. The first step is to consider the abstract linear
problem

∂tu− α(t)Au = 0,

u(s) = u0,

where α(t) ≥ 0 and A is the infinitesimal generator of S, a strongly
continuous semigroup of operators defined on the Banach space X. The
mild solution of the non-autonomous problem can be written as u(t) =
Sα(t, s)u0 = S(τ(t, s))u0, where τ is defined by

τ(t, s) =

∫ t

s

α(t′) dt′.

Formally, we have ∂tu = ∂tS(τ(t, s))u0 = ∂tτ(t, s)AS(τ(t, s))u0. To ana-
lyze the Lie–Trotter method, we define a periodic function α : R→ R of
period 1 as:

(3.1) α(t) =

{
2 if k ≤ t < k + 1/2,

0 if k − 1/2 ≤ t < k,

for k ∈ Z. Given h > 0, we define the function αh : R → R as αh(t) =
α(t/h). Clearly 0 ≤ αh ≤ 2, αh is h-periodic, and its mean value is 1.
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We consider τh : R2 → R given by

τh(t, t′) =

∫ t

t′
αh(t′′) dt′′.

−h 0 h 2h 3h t

Figure 1. Graph of αh(t).

The following results show that Sαh defines a propagator inX. We also
obtain some estimates that we will use in the following section concerning
the convergence.

Lemma 3.1. The map τh is continuous in R2 and satisfies

(i) 0 ≤ τh(t, t′) ≤ 2(t− t′) if t′ ≤ t.
(ii) τh(t, t′) + τh(t′, t′′) = τh(t, t′′) if t′′ < t′ < t.

(iii) τh(t+ kh, t′ + kh) = τh(t, t′) for k ∈ Z.

(iv) τh(t′ + kh, t′) = kh for k ∈ Z.

(v) |(t− t′)− τh(t, t′)| ≤ h.

Proof: The first statement is a consequence of the inequality 0 ≤ αh ≤
2. The additivity property is immediate from the definition. The third
statement is a consequence of the periodicity of αh. As the mean value
of αh is 1, we have τh(t′+h, t′) = h, and using the additivity property (ii),
we obtain

τh(t′ + kh, t′) =

k∑
j=1

τh(t′ + jh, t′ + (j − 1)h) = kh.

For the last claim, we consider t = t′+kh+sh, with k ∈ Z and 0 ≤ s < 1.
As |1− αh(t)| ≤ 1, we get

|(t− t′)−τh(t, t′)| = |kh+ sh− τh(t′ + kh+ sh, t′)|
= |(kh+sh)−τh(t′ + kh+ sh, t′ + kh)−τh(t′ + kh, t′)|
= |sh− τh(t′ + kh+ sh, t′ + kh)|

=

∣∣∣∣∣
∫ t′+kh+sh

t′+kh

(1− αh(t′′)) dt′′

∣∣∣∣∣
≤
∫ t′+kh+sh

t′+kh

|1− αh(t′′)| dt′′ ≤ h,

and this proves the last assertion.
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We define Ω = {(t, t′) ∈ R2 : 0 ≤ t′ ≤ t} and the application Sh : Ω→
B(X) by Sh(t, t′) = S(τh(t, t′)). From the previous lemma we have:

Corollary 3.2. Let S : R+ → B(X) a strongly continuous one-parameter
semigroup of operators. We have that Sh satisfies:

(i) Sh(t, t) = 1.
(ii) Sh(t, t′′) = Sh(t, t′)Sh(t′, t′′) if 0 ≤ t′′ ≤ t′ ≤ t.

(iii) There exist constants M ≥ 1 and ω ∈ R such that ‖Sh(t, t′)‖B(X) ≤
Me2ω(t−t′) for (t, t′) ∈ Ω.

(iv) If u ∈ X, the map (t, t′) 7→ Sh(t, t′)u is continuous.
(v) If u ∈ D = Dom(A) and t′ ≤ t 6= kh/2 with k ∈ Z, then the

map t 7→ Sh(t, t′)u is differentiable and we have

∂tSh(t, t′)u =

{
2ASh(t, t′)u if kh < t < (k + 1/2)h,

0 if (k − 1/2)h < t < kh.

τh(t, t
′)

2h

h

−h

t′

kh

t′ + h t′ + 2h
t

Figure 2. Graph of τh(t, t′). The steps are in the half integer

multiples of h.

4. Approximate solutions

In this section we develop the basic tools (Proposition 4.3 and The-
orem 4.4) that allow us to obtain some properties of the solutions of
problem (2.1) from the approximations obtained with the Lie–Trotter
method. Theorem 4.4 is an extension of Theorem 3.9 in [14] to the non-
autonomous case. We define the system

(4.1)

{
∂tuh − αh(t)Auh = (2− αh(t))F (t, uh),

uh = uh,0,
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where αh(t) is as in (3), uh ∈ X, t > 0, F : R+×X → X is a continuous
function, and X is a Banach space. Similarly with define the integral
equation:

(4.2) uh(t) = Sh(t, 0)uh,0 +

∫ t

0

(2− αh(t′))Sh(t, t′)F (t′, uh(t′)) dt′.

Proposition 4.1. Let uh,0 ∈ C([0, T ],Dom(A)) ∩ Lip([0, T ], X). If uh
is solution of system (4.1), then uh is solution of (4.2) for t ∈ [0, T ].

Proof: The procedure is similar to [11, Lemma 4.1.1].

Theorem 4.2. There exists a function T ∗ : X → R+ such that, for
uh,0 ∈ X, there is a unique uh ∈ C([0, T ∗(uh,0)), X), which is a solution
of (4.2) with uh(0) = uh,0. Moreover, one of the following alternatives
holds:

(i) T ∗(uh,0) =∞;
(ii) T ∗(uh,0) <∞ and limt↑T∗(uh,0) ‖uh(t)‖X =∞.

Proof: The proof is similar to Theorem 4.3.4 in [11].

In the following proposition we show that the solution of the integral
problem (4.2) corresponds to the approximations obtained with the Lie–
Trotter method.

Proposition 4.3. Let uh be the solution of (4.2). If Uh,k = uh(kh) and
Vh,k = uh(kh− h/2), then

Vh,k+1 = S(h)Uh,k,(4.3a)

Uh,k+1 = N(kh+ h, kh+ h/2, Vh,k+1),(4.3b)

where N is the flux associated to 2F , that is, w(t) = N(t, t0, w0) where
w is the solution of

(4.4)

{
ẇ = 2F (t, w(t)),

w(t0) = w0.

Proof: For t1 ∈ (0, t)

uh(t) = Sh(t, t1)uh(t1) +

∫ t

t1

(2− αh(t′))Sh(t, t′)F (t′, uh(t′)) dt′

is verified. If we consider the time interval [kh, kh + h/2], then with
t1 = kh and t = kh+ h/2, we have

Vh,k+1 = Sh(kh+ h/2, kh)Uh,k

+

∫ kh+h/2

kh

(2− αh(t′))Sh(kh+ h/2, t′)F (t′, uh(t′)) dt′.
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Given that αh(t) = 2 for t ∈ [kh, kh+h/2), we have τh(kh+h/2, kh) = h
and therefore (4.3a). Similarly, αh(t) = 0 for t ∈ [kh+h/2, kh+h), then
τh(t, kh+ h/2) = 0 and therefore

uh(t) = Vh,k+1 + 2

∫ t

kh+h/2

F (t′, uh(t′)) dt′,

evaluating in t = kh+ h, we obtain (4.3b).

Theorem 4.4. Let u ∈ C([0, T ∗), X) be the solution of the integral
problem (2.1)

u(t) = S(t)u0 +

∫ t

0

S(t− t′)F (t′, u(t′)) dt′,

T ∈ (0, T ∗), and ε > 0. There exists h∗ > 0 such that, if 0 < h < h∗,
then the solution uh of (4.2) with uh,0 = u0 is defined in [0, T ] and
verifies ‖u(t)− uh(t)‖X ≤ ε for t ∈ [0, T ].

To prove the theorem, we need two lemmas. We follow the procedure
from Theorem 3.9 in [14] (see also [6]).

Lemma 4.5. Let f ∈ C([0, T ], X). If

Ih(t, t′) = (S(t− t′)− Sh(t, t′))f(t′),

then lim
h→0+

sup
(t,t′)∈ΩT

‖Ih(t, t′)‖X = 0, where ΩT = {(t, t′) ∈ R2 : 0 ≤ t′ ≤

t ≤ T}.

Proof: Given ε>0, there exists g∈C([0, T ], X) such that g(t) ∈ Dom(A)
for t ∈ [0, T ], Ag ∈ C([0, T ], X), and max

t∈[0,T ]
‖f(t)− g(t)‖X < ε. We have

‖(S(t− t′)−Sh(t, t′)(f(t′)−g(t′))‖X≤ 2Me2ωT max
t∈[0,T ]

‖f(t)−g(t)‖X

≤ 2Me2ωT ε.
(4.5)

On the other hand,

S(t− t′)g(t′) = g(t′) +

∫ t−t′

0

S(ξ)Ag(t′) dξ,

Sh(t, t′)g(t′) = g(t′) +

∫ τh(t,t′)

0

S(ξ)Ag(t′) dξ.

Subtracting both equations we obtain

(S(t− t′)− Sh(t, t′))g(t′) = ±
∫
J(t,t′)

S(ξ)Ag(t′) dξ,
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where J(t, t′) is the interval J(t, t′) = [min{(t − t′), τh(t, t′)},max{(t −
t′), τh(t, t′)}]. Then

‖(S(t−t′)−Sh(t, t′))g(t′)‖X≤Me2ωT |(t−t′)−τh(t, t′)| max
t∈[0,T ]

‖Ag(t)‖X

≤Me2ωTh max
t∈[0,T ]

‖Ag(t)‖X .
(4.6)

From equations (4.5) and (4.6) we obtain the result.

Lemma 4.6. Let f ∈ C(ΩT , X), with ΩT as in the previous lemma. If

Ih(t) =

∫ t

0

(αh(t′)− 1)f(t, t′) dt′,

then lim
h→0+

sup
t∈[0,T ]

‖Ih(t)‖X = 0.

Proof: From the uniform continuity of f , we can see that there exists
δ > 0 such that, if 0 ≤ t′, t′′ ≤ t ≤ T and |t′ − t′′| < δ, then ‖f(t, t′) −
f(t, t′′)‖X < ε. Let k = bt/hc. We can write

Ih(t) =

k∑
j=1

∫ jh

(j−1)h

(αh(t′)− 1)f(t, t′) dt′ +

∫ t

kh

(αh(t′)− 1)f(t, t′) dt′.

As the mean value of αh is 1 in intervals of length h, for fj ∈ X we have

(4.7) 0 =

∫ jh

(j−1)h

(αh(t′)− 1)fj dt
′.

Therefore∫ jh

(j−1)h

(αh(t′)− 1)f(t, t′) dt′ =

∫ jh

(j−1)h

(αh(t′)− 1)(f(t, t′)− fj) dt′.

If h < δ and fj = f(t, jh), then ‖f(t, t′)−fj‖X < ε for t′ ∈ [(j−1)h, jh]
and therefore

(4.8)

∥∥∥∥∥
∫ jh

(j−1)h

(αh(t′)− 1)(f(t, t′)− fj) dt′
∥∥∥∥∥
X

≤ εh.

If M = max
(t,t′)∈ΩT

‖f(t, t′)‖X , then we have

(4.9)

∥∥∥∥∫ t

kh

(αh(t′)− 1)f(t, t′) dt′
∥∥∥∥
X

≤
∫ t

kh

‖f(t, t′)‖X dt′ ≤Mh.



Global Existence for Fractional Reaction-Diffusion Equations 665

From (4.8), (4.7), and (4.9), we obtain

‖Ih(t)‖X ≤
k∑
j=1

εh+Mh ≤ Tε+Mh,

from where we get the result.

Proof of Theorem 4.4: If [0, T ∗h ) is the interval of existence of the integral
equation (4.2), for 0 ≤ t < min{T, T ∗h} the subtraction u(t) − uh(t)
satisfies

u(t)−uh(t)=(S(t)− Sh(t, 0))u0 +

∫ t

0

S(t− t′)F (t′, u(t′)) dt′

−
∫ t

0

(2− αh(t′))Sh(t, t′)F (t′, uh(t′)) dt′.

If we define

I1,h(t) = (S(t)− Sh(t, 0))u0,

I2,h(t) =

∫ t

0

(2− αh(t′))(S(t− t′)− Sh(t, t′))F (t′, u(t′)) dt′,

I3,h(t) =

∫ t

0

(αh(t′)− 1)S(t− t′)F (t′, u(t′)) dt′,

then

u(t)−uh(t)=I1,h(t) + I2,h(t) + I3,h(t)

+

∫ t

0

(2−αh(t′))Sh(t, t′)(F (t′, u(t′))−F (t′, uh(t′))) dt′.
(4.10)

Using Lemma 4.5, with f(t)=u0, we can see that lim
h→0

sup
t∈[0,T ]

‖I1,h(t)‖X =

0. Given that

‖I2,h(t)‖X ≤ 2

∫ t

0

‖(S(t− t′)− Sh(t, t′))F (t′, u(t′))‖X dt′

≤ 2T sup
(t,t′)∈ΩT

‖(S(t− t′)− Sh(t, t′))F (t′, u(t′))‖X ,

and using once again Lemma 4.5 with f(t) = F (t, u(t)), we obtain

lim
h→0

sup
t∈[0,T ]

‖I2,h(t)‖X = 0.

The map f(t, t′) = S(t− t′)F (t′, u(t′)) is continuous in ΩT , and therefore
from Lemma 4.6 we can deduce lim

h→0
sup
t∈[0,T ]

‖I3,h(t)‖X = 0.
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We consider R = max
t∈[0,T ]

‖u(t)‖X +ε and L the Lipschitz constant of F

for BR(0) ⊂ X. If we define

Jε = {0 ≤ t < min{T, T ∗h} :uh(t′)‖X < R+ ε, 0 ≤ t′ ≤ t},
from estimate (4.10) we obtain, for t ∈ Jε,

‖u(t)− uh(t)‖X ≤ ‖I1,h(t)‖X + ‖I2,h(t)‖X + ‖I3,h(t)‖X

+ 2Me2ωTL

∫ t

0

‖u(t′)− uh(t′)‖X dt′,

and, from Gronwall’s lemma

‖u(t)− uh(t)‖X

≤ eCT
(

sup
t∈[0,T ]

‖I1,h(t)‖X + sup
t∈[0,T ]

‖I2,h(t)‖X + sup
t∈[0,T ]

‖I3,h(t)‖X
)
,

where C = 2Me2ωTL. Taking h∗ > 0 small enough, we have ‖u(t) −
uh(t)‖X < ε/2 for t ∈ Jε and 0 < h < h∗. Therefore sup Jε=min{T, T ∗h}
but, as ‖uh(t)‖ ≤ R + ε < ∞, the inequality T < T ∗h is verified. This
proves the theorem.

Remark 4.7. Convergence in Theorem 4.4 can be proved for F : R+ ×
Rd×X → X without modifications in the proof, using an auxiliary map
F : R+ ×X → X, such that F(t, u)(x) = F (t, x, u).

5. Global well-posedness of the Cauchy problem

In this section we analyze the well-posedness of problem (2.2) for dif-
ferent interesting cases. The local case can be analyzed using standard
methods, so we refer the reader to the bibliography. We address the
global problem, t ∈ [0,∞), by the notion of positively invariant con-
vex families. For classical diffusion (β = 1), similar ideas can be found
in Chapter 14 of [33]. But this method presents two problems in order
to use a maximum principle: the operator must be differential elliptic
and u(x) belongs to a finite dimensional space. To obtain global well-
posedness for the lineal equation, we use the main characteristics of the
nonlocal operator, through its semigroup, mentioned in Section 2. Both
difficulties are overcome considering the Lie–Trotter approximations and
then taking the limit. We take advantage of this to study the evolution
of a population model, where individuals have a characteristic trait that
differentiates them. In [2] the existence of stationary solutions is studied
for a scalar characteristic trait. In order not to limit a priori the pos-
sibilities of modeling this problem we consider the abstract case, where
the characteristic trait is an element of a measure space.
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Definition 5.1. Let {K(t)}t∈R+
be a family of closed sets of Z. We say

that {K(t)}t∈R+
is positively F -invariant if for any t0 ∈ R+, z0 ∈ K(t0),

the solution z of (2.2) verifies z(t) ∈ K(t) for t ∈ [t0, t0 + T ∗(t0, z0)).
The family {K(t)}t∈R+

is increasing if K(t′) ⊆ K(t) for 0 ≤ t′ ≤ t.
Example 5.2. Let a, b ∈ C(R+) be positive continuous functions de-
fined on R+ such that |F (t, z)|Z ≤ a(t) + b(t)|z|Z for (t, z) ∈ R+ × Z.
We claim that the family of closed balls given by B(t) = {z ∈ Z : |z|Z ≤
λ(t)}, with

λ(t) =

(
λ0 +

∫ t

0

a(t′) dt′
)

exp

(∫ t

0

b(t′) dt′
)
,

is an increasing and positively F -invariant family of (convex) closed sets.
Indeed, since λ(t) is an increasing function, it is clear that {B(t)}t∈R+

is an increasing family. Let z0 ∈ B(t0). From (2.2) we obtain

|z(t)|Z ≤ |z0|Z +

∫ t

t0

|F (t′, z(t′))|Z dt′ ≤ λ(t0)+

∫ t

t0

(a(t′) + b(t′)|z|Z) dt′.

From Gronwall’s lemma, we have

|z(t)|Z ≤
(
λ(t0) +

∫ t

t0

a(t′) dt′
)

exp

(∫ t

t0

b(t′)|z|Z
)
≤ λ(t),

which implies z(t) ∈ B(t).

Lemma 5.3. Let {K(t)}t∈R+be a family of closed sets of Z. If {K(t)}t∈R+

is positively F -invariant and F is autonomous, then for any z0 ∈ K(t0)
and 0 < h < T ∗(z0), the solution z of (4.4) with initial condition z(t0 +
h/2) = z0 verifies z(t0 + h) ∈ K(t0 + h).

Proof: Let w(t) = z((t+ t0 + h)/2), we have

w(t0 + h) = z(t0 + h) = z0 +

∫ t0+h

t0+h/2

2F (z(t′)) dt′

= z0 +

∫ t0+h

t0

F (z((t+ t0 + h)/2)) dt = z0 +

∫ t0+h

t0

F (w(t)) dt.

Using that {K(t)}t∈R+
is positively F -invariant, we have w(t0 + h) ∈

K(t0 + h).

Lemma 5.4. Let {K(t)}t∈R+
be an increasing family of closed sets of Z

such that {K(t)}t∈R+ is positively 2F -invariant. Then, for any z0 ∈
K(t0) and 0 < h < T ∗(z0), the solution z of (4.4) with initial condi-
tion z(t0 + h/2) = z0 verifies z(t0 + h) ∈ K(t0 + h).

Proof: Since z0 ∈ K(t0) ⊆ K(t0 + h/2) and {K(t)}t∈R+
is positively

2F -invariant, the result follows.
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Corollary 5.5. Let F : R+ × Z → Z be a continuous map locally Lips-
chitz in the second variable and let {K(t)}t∈R+

be a family of closed sets
of Z. If one of the following conditions holds:

(i) F is autonomous and {K(t)}t∈R+
is positively F -invariant;

(ii) {K(t)}t∈R+ is increasing and positively 2F -invariant,

then for any u0 ∈ Cu(Rd,K(t0)) and 0 < h < T ∗(t0, u0), we have

N(t0 + h, t0 + h/2, u0) ∈ Cu(Rd,K(t0 + h)).

Lemma 5.6. Let σ ≥ 0, 0 < β ≤ 1, and let K be a closed convex set
of Z. Then S(t)u ∈ Cu(Rd,K) for any t > 0 and u ∈ Cu(Rd,K).

Proof: Suppose, contrary to our claim, that the assertion of the lemma
is false. Then, there exists (t, x) ∈ R+ × Rd such that v = (S(t)u)(x) /∈
K. Using the Hahn–Banach Separation Theorem, we take a separating
hyperplane, i.e., ω ∈ Z∗ and λ ∈ R verifying 〈ω, z〉 ≤ λ for any z ∈ K
and 〈ω, v〉 > λ. But then

〈ω, v〉 =

∫
Rd
Gσ,β(x− y, t)〈ω, u(y)〉 dy ≤ λ

∫
Rd
Gσ,β(x− y, t) dy = λ,

a contradiction.

Proposition 5.7. Let F and {K(t)}t∈R+
be as in Corollary 5.5. If K(t)

is convex for t ≥ 0, then u(t) ∈ Cu(Rd,K(t)) for any u0 ∈ Cu(Rd,K(0))
and t ∈ (0, T ∗(u0)), where u is the solution of (2.1).

Proof: For t ∈ [0, T ∗(u0)) and n ∈ N, let h = t/n and {Uh,k}0≤k≤n,
{Vh,k}1≤k≤n be the sequences given by Uh,0 = u0,

Vh,k+1 = S(h)Uh,k,(5.1a)

Uh,k+1 = N(kh+ h, kh+ h/2, Vh,k+1), k = 0, . . . , n− 1.(5.1b)

From Proposition 4.3 and Theorem 4.4, it may be concluded that Uh,k
is defined and ‖u(t) − Uh,n‖∞,Z → 0 when n → ∞. Since K(t) is a
closed set, it suffices to prove that Uh,n ∈ K(t). We claim that Uh,k ∈
Cu(Rd,K(kh)). The proof is by induction on k. If Uh,k ∈ Cu(Rd,K(kh)),
as K(kh) is convex, Lemma 5.6 implies Vh,k+1 ∈ Cu(Rd,K(kh)). From
Corollary 5.5, Uh,k+1 ∈ Cu(Rd,K((k + 1)h)) and our claim follows.

Theorem 5.8. Let {K(t)}t∈R+
be a family of bounded convex closed sets

of Z. Suppose that F and, {K(t)}t∈R+
satisfy the hypothesis of Corol-

lary 5.5 and for any T > 0, we have M(T ) = sup{|z|Z : z ∈ K(t), t ∈
[0, T ]} < ∞. Then T ∗(u0) = ∞ for any u0 ∈ Cu(Rd,K(0)) and u(t) ∈
Cu(Rd,K(t)) for t > 0.
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Proof: From Proposition 5.7, we have u(t)∈Cu(Rd,K(t)) for t∈(0,T ∗(u0)).
Suppose T ∗(u0)<∞. Then limt→T∗(u0) ‖u(t)‖∞,Z =∞. But ‖u(t)‖∞,Z≤
M(T ∗(u0)) <∞, a contradiction.

Example 5.9 (Ginzburg–Landau equation). The Ginzburg–Landau
equation is given by (1.1), where β = 1, σ > 0, and F (u) = (1 + ia)u −
(1 + ib)|u|2u with a, b ∈ R (see [10, 12, 35]). In general, we consider
F (u) = fR(|u|2)u + ifI(|u|2)u, where fR, fI : R+ → R are smooth func-
tions. If fR(η) ≤ 0 for η > 0, then K = B(0, η) is a bounded convex
positively F -invariant set of C. For 0 < β ≤ 1, from Theorem 5.8 we ob-
tain that the fractional Ginzburg–Landau equation is globally well-posed
for u0 ∈ Cu(Rd,K).

Example 5.10 (Fisher–Kolmogorov equation). Fisher ([17]) and Kol-
mogorov et al. ([19]) introduced a classical model to describe the prop-
agation of an advantageous gene in a one-dimensional habitat. We con-
sider the generalized nonlinear reaction-diffusion equation

∂tu+ σ(−∆)βu = χu(1− u),

where u is the chemical concentration, σ is the diffusion coefficient, and
the positive constant χ represents the growth rate of the chemical re-
action. Since then, a great deal of work has been carried out to ex-
tend their model to take into account other biological, chemical, and
physical factors. This equation is also used in flame propagation [18],
nuclear reactor theory [8], autocatalytic chemical reactions [13, 16], lo-
gistic growth models [27], and neurophysiology [34]. Consider b0>1 and
K(t) = [0, b(t)], with

b(t) =
b0e

χt

1 + b0(eχt − 1)
.

We can see that {K(t)}t∈R+ is a family of compact intervals, positively
F -invariant for F (z) = χz(1 − z). In particular, for any u0 ∈ Cu(R)
with u0(x) ≥ 0, taking b0 = supx∈Rd u(x), we can see that T ∗(u0) = ∞
and lim supt→∞ |u(t, x)| ≤ 1 for any x ∈ Rd. In the case 0 < a0 =
infx∈Rd u(x) < 1, we have that K(t) = [a(t), b(t)], with

a(t) =
a0e

χt

1 + a0(eχt − 1)
,

is F -positive. Therefore, limt→∞ ‖u(t)− 1‖∞ = 0.
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5.1. Population dynamics with a continuous trait. In [2], Arnold
et al. consider a model of population dynamics in which the population
is structured with respect to the space variable x and a trait variable
denoted by θ in a measure space. The distribution function u(t, x, θ) ≥ 0
denotes the density of individuals at time t∈R+, position x∈Rd, and
whose trait is θ ∈ Θ. The evolution of u is governed by an integro-PDE
model of reaction-diffusion type in infinite (continuous) dimensions in
which selection, mutations, competition, and migrations are taken into
account. The modeling assumptions are the following: migration is de-
scribed by a (normal or anomalous) diffusion operator −σ(−∆)β ; mu-
tations are described by a linear kernel M(θ, ϑ) which is related to the
probability that individuals with trait ϑ have offsprings with trait θ; se-
lection is implemented in the model, thanks to a fitness function k which
may depend on trait θ; finally, a logistic term involving a kernel C(θ, ϑ)
models the competition (felt by individuals of trait θ) due to individuals
of trait ϑ. Under those assumptions, the evolution of the population is
governed by the following integro-PDE:

(5.2) ∂tu+ σ(−∆x)βu = F (t, u(t))

with initial condition u(0) = u0. The map F is given by

F (t, z)(θ) = k(t, θ)z(θ) +

∫
Θ

M(t, θ, ϑ)z(ϑ) dµ(ϑ)

−
(∫

Θ

C(t, θ, ϑ)z(ϑ) dµ(ϑ)

)
z(θ).

Let Θ be a compact Hausdorff space, B the Borel algebra, and µ a
regular Borel probability. We set the problem on Cu(Rd, Z), with Z =
L1(Θ,B, µ). Following [2], we assume k ∈ C(R+ ×Θ), M,C ∈ C(R+ ×
Θ×Θ) verifying M ≥ 0 and C > 0. For any T > 0, we define

‖k‖T,∞ = max{|k(t, θ)| : (t, θ) ∈ [0, T ]×Θ},
‖M‖T,∞ = max{M(t, θ, ϑ) : (t, θ, ϑ) ∈ [0, T ]×Θ×Θ},
‖C‖T,∞ = max{C(t, θ, ϑ) : (t, θ, ϑ) ∈ [0, T ]×Θ×Θ}.

Also, we need

k+(t) = max

{
k(t′, θ) +

∫
Θ

M(t′, ϑ, θ) dµ(ϑ) : (t′, θ)∈ [0, t]×Θ

}
,(5.3a)

c−(t) = min{C(t′, θ, ϑ) : (t′, θ, ϑ) ∈ [0, t]×Θ×Θ}.(5.3b)

We assume that c−(t) > 0 for t > 0, the lower bound for C means that
all individuals are in competition. To obtain well-posedness of (5.2), we
need to prove some results.
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Lemma 5.11. The map F : R+ × Z → Z is continuous and locally
Lipschitz in the second variable.

Proof: Let R, T > 0 and z, z̃ ∈ Z with |z|Z , |z̃|Z ≤ R. Then

|F (t, z)− F (t, z̃)|Z ≤
∫

Θ

|k(t, θ)||z(θ)− z̃(θ)| dµ(θ)

+

∫
Θ×Θ

M(t, θ, ϑ)|z(ϑ)− z̃(ϑ)| dµ(ϑ) dµ(θ)

+

∫
Θ×Θ

C(t, θ, ϑ)|z(ϑ)||z(θ)− z̃(θ)| dµ(ϑ) dµ(θ)

+

∫
Θ×Θ

C(t, θ, ϑ)|z̃(θ)||z(ϑ)− z̃(ϑ)| dµ(ϑ) dµ(θ).

Since k, M , C are bounded for t ∈ [0, T ] and θ, ϑ ∈ Θ, we get

|F (t, z)− F (t, z̃)|Z ≤ (‖k‖T,∞ + ‖M‖T,∞ + 2‖C‖T,∞R)|z − z̃|Z .

Let (tn, zn)→ (t, z) ∈ [0, T ]×Θ. We see that

|F (t, z)− F (tn, zn)|Z ≤ |F (t, z)− F (tn, z)|Z + |F (tn, z)− F (tn, zn)|Z
≤ |F (t, z)− F (tn, z)|Z + L(R, T )|z − zn|Z .

Using that

|F (t, z)−F (tn,z)|Z≤
∫

Θ

|k(t, θ)− k(tn, θ)||z(θ)| dµ(θ)

+

∫
Θ×Θ

|M(t, θ, ϑ)−M(tn, θ, ϑ)||z(ϑ)| dµ(ϑ) dµ(θ)

+

∫
Θ×Θ

|C(t, θ, ϑ)−C(tn, θ, ϑ)||z(ϑ)||z(θ)| dµ(ϑ) dµ(θ),

and uniform continuity of k, M , C, we obtain F (tn, z) → F (t, z) in Z,
which completes the proof.

We have the same result for continuous functions:

Lemma 5.12. The map F : R+ × C(Θ) → C(Θ) is continuous and
locally Lipschitz in the second variable.

Proof: The proof is similar to the lemma above.

The non-negativity of density z(t, θ) is established by the next propo-
sition (and corollary below).
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Proposition 5.13. Let z be the solution of (2.2) with z(t0) = z0 ∈
C(Θ). If z(t0) > 0, then z(t) > 0 for any t ∈ [t0, t0 + T ∗(t0, z0)).

Proof: Let 0 < T < T ∗(t0, z0). For any (t, θ) ∈ [t0, t0 +T ]×Θ, we define

g(t, θ) =

∫
Θ

M(t, θ, ϑ)z(t, ϑ) dµ(ϑ),

a(t, θ) =

∫
Θ

C(t, θ, ϑ)z(t, ϑ) dµ(ϑ).

Then g(·, θ), a(·, θ) are continuous, the solution verifies z(·, θ)∈C1([t0, t0+
T ∗(t0, z0))), and{

∂tz(t, θ) = (k(t, θ)− a(t, θ))z(t, θ) + g(t, θ),

z(t0, θ) = z0(θ).

Then

(5.4) z(t, θ) = eA(t,t0,θ)z0(θ) +

∫ t

t0

eA(t,t′,θ)g(t′, θ) dt′,

where

A(t, t′, θ) =

∫ t

t′
k(t′′, θ)− a(t′′, θ) dt′′.

Let t∗ = sup{t ∈ [t0, t0 + T ] : min
[t0,t]×Θ

z(t, θ) > 0}. Suppose t∗ < t0 + T .

Then there exists θ∗ ∈ Θ with z(θ∗, t∗) = 0. But from (5.4), we have

z(t∗, θ∗) = eA(t∗,t0,θ∗)z0(θ∗) +

∫ t∗

t0

eA(t∗,t
′,θ∗)g(t′, θ∗) dt

′ > 0,

a contradiction. Since T is arbitrary, we obtain the result.

Corollary 5.14. Let z be the solution of (2.2) with z(t0) = z0 ∈ C(Θ).
If z0 ≥ 0, then z(t) ≥ 0 for any t ∈ [t0, t0 + T ∗(t0, z0)).

Proof: Consider z0,n = z0 + 1/n. For any 0 < T < T ∗(t0, z0), there
exists n0 ∈ N such that T < T ∗(t0, z0,n) if n ≥ n0. Since z0,n > 0, using
Proposition 5.13 we have zn(t) > 0 for t ∈ [t0, t0 + T ]. As zn converges
to z in C(Θ × [t0, t0 + T ]), we see that z ≥ 0. Since T is arbitrary, we
obtain the result.

We now show global well-posedness in C(Θ) for z0 ≥ 0.

Proposition 5.15. If z0 ∈ C(Θ) with z0 ≥ 0, then T ∗(t0, z0) =∞.
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Proof: Let 0 < T < T ∗(t0, z0). From Corollary 5.14 we obtain that
a(t, θ), g(t, θ) ≥ 0 and then A(t, t′, θ) ≤ ‖k‖T,∞(t− t′). Integrating (5.4)
on Θ we get, for t ∈ [t0, t0 + T ]∫

Θ

z(t, θ) dµ(θ) ≤ exp(‖k‖T,∞(t− t0))

∫
Θ

z0(θ) dµ(θ)

+

∫ t

t0

∫
Θ×Θ

exp(‖k‖T,∞(t− t′))M(t′, θ, ϑ)z(t′, ϑ) dµ(ϑ) dµ(θ) dt′

≤ exp(‖k‖T,∞(t− t0))

×
(∫

Θ

z0(θ) dµ(θ)+‖M‖T,∞
∫ t

0

∫
Θ

exp(−‖k‖T,∞(t′−t0))z(t′, ϑ) dµ(ϑ) dt′
)
.

Using Gronwall’s lemma, we obtain∫
Θ

z(t, θ) dµ(θ) ≤ exp((‖k‖T,∞ + ‖M‖T,∞)(t− t0))

∫
Θ

z0(θ) dµ(θ)

≤ exp((‖k‖T,∞ + ‖M‖T,∞)(t− t0))‖z0‖∞,Z ,

which implies

0 ≤ g(t, θ) ≤ ‖M‖T,∞ exp((‖k‖T,∞ + ‖M‖T,∞)(t− t0))‖z0‖∞,Z .

From (5.4), we get

‖z‖T,∞ ≤ exp((‖k‖T,∞ + ‖M‖T,∞)T )‖z0‖∞,Z .

And finally we have T ∗(z0) =∞.

Now we construct a positive F -invariant convex set of Z.

Lemma 5.16. Let w∈C1([t0, t0+T ]), w ≥ 0, be such that ẇ ≤ kw−cw2,
with k, c > 0. If λ ≥ k/c and 0 ≤ w(t0) ≤ λ, then 0 ≤ w(t) ≤ λ for
t ∈ [t0, t0 + T ].

Proof: Suppose w(t+) > λ with t0 < t+ ≤ t0 + T . Consider t− =
sup{t ∈ [t0, t+] : w(t) ≤ λ}. Using the Mean Value Theorem, there
exists t1 ∈ (t−, t+) such that

w(t+)− w(t−) = ẇ(t1)(t+ − t−),

and then ẇ(t1) > 0. But w(t1) > λ, which implies kw(t1)− cw2(t1) < 0,
a contradiction.

Proposition 5.17. Let z0 ∈ C(Θ), z0 ≥ 0. If λ(t) ≥ max{k+(t)/c−(t),
|z0|Z}, then the solution z ∈ C([t0,∞), C(Θ)) of (2.2) verifies z(t) ≥ 0
and |z(t)|Z ≤ λ(t) for any t ≥ t0.
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Proof: From Corollary 5.14, we see that z(t) ≥ 0. Let t>0. For any t′ ∈
[t0, t] we have

d

dt

∫
Θ

z(t′, θ) dµ(θ) =

∫
Θ

k(t′, θ)z(t′, θ) dµ(θ)

+

∫
Θ×Θ

M(t′, θ, ϑ)z(t′, ϑ) dµ(ϑ) dµ(θ)

−
∫

Θ×Θ

C(t′, θ, ϑ)z(t′, ϑ)z(t′, θ) dµ(ϑ) dµ(θ)

=

∫
Θ

(
k(t′, θ) +

∫
Θ

M(t′, ϑ, θ) dµ(ϑ)

)
z(t′, θ) dµ(θ)

−
∫

Θ×Θ

C(t′, θ, ϑ)z(t′, ϑ)z(t′, θ) dµ(ϑ) dµ(θ).

From (5.3), we have

d

dt

∫
Θ

z(t′, θ) dµ(θ) ≤ k+(t)

∫
Θ

z(t′, θ) dµ(θ)−c−(t)

(∫
Θ

z(t′, θ) dµ(θ)

)2

.

Using Lemma 5.16, we obtain |z(t)|Z ≤ λ(t).

Proposition 5.18. Let λ ∈ C(R+) be an increasing function such
that λ(t) ≥ k+(t)/c−(t). Then, the family of bounded convex closed
set {K(t)}t∈R+

given by K(t) = {z ∈ Z : z ≥ 0 a.e., |z|Z ≤ λ(t)} is
increasing and positive F -invariant.

Proof: Let z0 ∈ K(t0). Taking {z0,n}n∈N ⊂ C(Θ) ∩ K(t0) such that
|z0 − z0,n|Z → 0, we see from Proposition 5.17 that T ∗(z0,n) = ∞ and
zn(t) ∈ K(t), for t ≥ t0. Using continuous dependence on initial data,
we get that |z(t)− zn(t)|Z → 0 for any t ∈ [t0, t0 +T ∗(t0, z0)), and since
K(t) is closed, we obtain z(t) ∈ K(t).

Remark 5.19. Also, the family {K(t)}t∈R+
is positive 2F -invariant.

Theorem 5.20. Let u0 ∈ Cu(Rd, Z), with u0(x) ≥ 0 a.e. in Θ. Then
the mild solution of equation (5.2) is globally well-posed and verifies
‖u(t)‖∞,Z ≤ max{‖u0‖∞,Z , k+(t)/c−(t)}.

Proof: The result is an immediate consequence of Theorem 5.8 and
Proposition 5.18 using λ(t) = max{‖u0‖∞,Z , k+(t)/c−(t)}.

5.2. Global existence for products of Banach spaces. We gener-
alize the previous results by proving global existence for products of Ba-
nach spaces. Lemma 5.21 proves that the semigroup operator maintains
the solution inside the invariant region. Next, Theorem 5.22 proves that
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if u0 is inside the invariant region, then u(t) remains in it for all t > 0.
Let {Zj}1≤j≤m be Banach spaces and Z = Z1 × · · · × Zm with the
usual norm. We denote πj : Z → Zj the projection map. If σj > 0,
0 < βj ≤ 1, and Sj(t)u = Gσj ,βj(·, t) ∗ u for u ∈ Cu(Rd, Zj), then

S : R+ → B(Cu(Rd, Z)) given by

S(t)u = (S1(t)π1u, . . . ,Sm(t)πmu)

is a continuous contraction semigroup.

Lemma 5.21. Let Kj ⊂ Zj be a closed convex set and K = K1 × · · · ×
Km ⊂ Z. If u ∈ Cu(Rd,K), then S(t)u ∈ Cu(Rd,K) for any t > 0.

Proof: The proof is a consequence of the definition above and Lemma 5.6.

Theorem 5.22. Let Kj(t) ⊂ Zj be bounded closed convex sets. If K(t) =
K1(t) × · · · ×Km(t) and F satisfy the hypotheses of Corollary 5.5 and
Theorem 5.8, then T ∗(u0) = ∞ for any u0 ∈ Cu(Rd,K(0)) and u(t) ∈
Cu(Rd,K(t)) for t > 0.

Proof: Let u0 ∈ Cu(Rd,K(0)) and T ∗(u0) the maximal time of exis-
tence of the solution u of (2.1). Let t ∈ (0, T ∗(u0)), h = t/n, n ∈
N, {Vh,k}1≤k≤n, and {Uh,k}0≤k≤n, defined as in Proposition 5.7. Sup-
pose that Uh,k ∈ Cu(Rd,K(kh)). Lemma 5.21 implies that Vh,k+1 ∈
Cu(Rd,K(kh)). Using that K(t) = K1(t)× · · · ×Km(t) satisfies the hy-
pothesis of Corollary 5.5, we have that Uh,k+1 ∈ Cu(Rd,K((k+1)h)). Us-
ing the same argument as in Proposition 5.7, we have that Uh,k → u(kh)
in Cu(Rd, Z) when n→∞ and u(t) ∈ Cu(Rd,K(t)). Following the same
arguments as in Theorem 5.8, we obtain the result.

Example 5.23. We expose an example, where we construct an invariant
convex set that consists of a product of intervals in which we can apply
the above results. In [3] a FHN Model for pattern formation is presented:

(5.5)

{
∂tu = σu∆u+ (a− u)(u− 1)u− v,
∂tv = σv∆v + e(bu− v),

with 0 < a < 1, e > 0, and b ≥ 0. A similar example is analyzed
in [33]. To apply Theorem 5.22, we need to find positive F -invariant
rectangle K = K1 ×K2, Kj = [−Rj , Rj ], where F is given by

F (u, v) = (au2 − u3 − au+ u2 − v, e(bu− v)).
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Let R1 > max{4,
√

2b} and 2bR1 < 2R2 < R3
1. We see that the rectangle

with R1 and R2 is F -invariant:

F1(R1, v) ≤ a(R2
1 −R1)−R3

1 +R2
1 + |v|

≤ a(R2
1 −R1)−R3

1 +R2
1 +R2 < 0,

F1(−R1, v) ≥ a(R2
1 +R1) +R3

1 +R2
1 − |v|

≥ a(R2
1 +R1) +R3

1 +R2
1 −R2 > 0,

F2(u,R2) ≤ e(b|u| −R2) ≤ e(bR1 −R2) < 0,

F2(u,−R2) ≥ e(−b|u|+R2) ≥ e(−bR1 +R2) > 0.

Then the field evaluated at the border of K points inward. By Theo-
rem 5.22, equation (5.5) is globally well-posed.

6. Asymptotic behavior

We analyze the situation in which u0 has a horizontal asymptote at z0.
Then, using the introduced splitting methods, we prove that u(t) ap-
proaches asymptotically to the time evolution of z0. We consider the
1-dimensional real case. We first show in Lemma 6.2 that if u0 has a hor-
izontal asymptote at z0, then S(t)u0 remains with the same horizontal
asymptote. Next, we prove in Lemma 6.3 that N(t, t0, u0)(x) has a time
dependent horizontal asymptote, which is the solution of equation (2.2)
with z0 as an initial condition. Finally, we combine both results and
a continuous dependence argument in Lemma 6.4 to achieve Proposi-
tion 6.1, which tells us that the solution u(t) of (1.1) maintains a similar
asymptotic behavior as z(t).

These results can be applied, for example, to the Fisher–Kolmogorov
equation. Specifically, in [19], solutions with the mentioned asymptotic
behavior are analyzed.

Proposition 6.1. Let u0 ∈ Cu(R, Z) such that limx→±∞ u0(x) = z±0 ∈
Z. If u(t) is the solution of (2.1) with F as in Corollary 5.5, then
limx→±∞ u(t, x) = z±(t), where z± is the solution of (2.2) with z±(0) =
z±0 .

Lemma 6.2. Let u0 ∈ Cu(R, Z) be such that limx→±∞ u0(x) = z±0 ∈ Z.
If u(t) = S(t)u0, then limx→±∞ u(t, x) = z±0 .

Proof: We only prove the conclusion for z+
0 , the z−0 case being similar.

Let ε > 0. There exists x+
∗ > 0 such that |u0(x) − z+

0 |Z < ε for x >
x+
∗ . Before computing the limit, we need an estimate of gβ(ξ). Taking
r > 0 large enough, we have

(6.1)

∫
|ξ|>(σt)−1/(2β)r

gβ(ξ) dξ < ε/(2‖u0‖∞,Z).
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Next, to study the asymptotic convergence, we analyze two cases. If
x > x∗ + r, then

|u(t, x)− z+
0 | ≤

∫
R
Gσ,β(t, x− y)|u0(y)− z+

0 | dy

=

∫
y>x−r

Gσ,β(t, x− y)|u0(y)− z+
0 | dy

+

∫
y<x−r

Gσ,β(t, x− y)|u0(y)− z+
0 | dy = I1 + I2.

Since y > x − r > x+
∗ , we have |u0(y) − z+

0 | < ε and therefore we can
bound the first integral:

I1 ≤ ε
∫
R
Gσ,β(t, x− y) dy = ε.

For the second integral, we use estimate (6.1) and the norm of the initial
condition u0:

I2 ≤ 2‖u0‖∞,Z
∫
y<x−r

Gσ,β(t, x− y) dy = 2‖u0‖∞,Z
∫
ξ>r

Gσ,β(t, ξ) dξ

= 2‖u0‖∞,Z
∫
|ξ′|>(σt)−1/(2β)r

gβ(ξ′) dξ′ < ε.

Bounding both integrals we prove the result.

Lemma 6.3. Let u0 ∈ Cu(R, Z) be such that limx→±∞ u0(x) = z±0 ∈ Z.
If u(t) = N(t, t0, u0), then limx→±∞ u(t, x) = z±(t), where z±(t) is the
solution (2.2) with z±(0) = z±0 .

Proof: We again consider only the z+ case. From continuous dependence
of the initial data, for ε > 0, there exists δ > 0 such that if |z+

0 −z0|Z < δ,
then |z+(t) − z(t)|Z < ε. Let x+

∗ ∈ R be such that if x > x+
∗ , then

|u0(x)− z+
0 |Z < δ. Therefore |u(t, x)− z+(t)|Z < ε.

Lemma 6.4. Let {un}n∈N⊂Cu(Rd, Z) be such that un → u in Cu(Rd, Z).
If limx→± un(x) = z± for n ∈ N, then limx→± u(x) = z±.

Proof: Let ε > 0. We can take n ∈ N such that ‖u−un‖∞,Z < ε/2. Then
there exists x+

∗ ∈ R such that |un(x)− z+|Z < ε/2 if x > x+
∗ . Therefore,

|u(x)− z+|Z ≤ |u(x)− un(x)|Z + |un(x)− z+|Z < ε.

Proof of Proposition 6.1: Let n ∈ N, h = t/n, and consider the se-
quences {Uh,k}0≤k≤n, {Vh,k}1≤k≤n defined by (5.1). We claim that
limx→±∞ Uh,k(x) = z±(kh) for k=0, . . . , n. Clearly, the assertion is true
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for k=0. If limx→±∞ Uh,k(x)=z±(kh), then limx→±∞ Vh,k+1 = z±(kh)
from Lemma 6.2, and using Lemma 6.3 we obtain limx→±∞ Uh,k+1(x) =
z±((k + 1)h). We conclude z±(t) = z±(nh) = limx→±∞ Uh,n(x) and,
since by Proposition 5.7 and Theorem 5.8 we have that Uh,n → u(t),
Lemma 6.4 implies the result.

Acknowledgement

This work was partially supported by CONICET-Argentina, PIP 112
20130100006.

References

[1] S. Abdelmalek, Invariant regions and global solutions for reaction-diffusion
systems with a tridiagonal symmetric Toeplitz matrix of diffusion coefficients,

Electron. J. Differential Equations 2014(247) (2014), 14 pp.

[2] A. Arnold, L. Desvillettes, and C. Prévost, Existence of nontrivial steady
states for populations structured with respect to space and a continuous trait,

Commun. Pure Appl. Anal. 11(1) (2012), 83–96. DOI: 10.3934/cpaa.2012.11.

83.
[3] Y. Asgari, M. Ghaemi, and M. G. Mahjani, Pattern formation of the

FitzHugh–Nagumo model: cellular automata approach, Iran. J. Chem. Chem.

Eng. 30(1) (2011), 135–142.
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darrera versió rebuda l’1 de desembre de 2020.

http://dx.doi.org/10.1016/j.jde.2017.08.019
http://dx.doi.org/10.1016/j.jde.2017.08.019
http://dx.doi.org/10.1007/978-1-4612-0873-0
http://dx.doi.org/10.1017/CBO9780511623202
http://dx.doi.org/10.1103/PhysRevE.49.1749
http://dx.doi.org/10.1103/PhysRevE.49.1749

	1. Introduction
	2. Notations and preliminaries
	3. Propagators
	4. Approximate solutions
	5. Global well-posedness of the Cauchy problem
	5.1. Population dynamics with a continuous trait
	5.2. Global existence for products of Banach spaces

	6. Asymptotic behavior
	Acknowledgement
	References

