
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Statistics and Probability Letters 80 (2010) 228–235

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

On the asymptotic behavior of general projection-pursuit estimators
under the common principal components model
Graciela Boente ∗, Julieta Molina, Mariela Sued
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
CONICET, Argentina

a r t i c l e i n f o

Article history:
Received 10 June 2009
Received in revised form 14 October 2009
Accepted 14 October 2009
Available online 20 October 2009

a b s t r a c t

The common principal components model for several groups of multivariate observations
assumes equal principal axes among the groups. Robust estimators can be defined
replacing the sample variance by a robust dispersion measure. This paper studies the
asymptotic distribution of robust projection-pursuit estimators under a common principal
components model.
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1. Introduction

In many situations, when dealing with several populations, in multivariate analysis, models for common structure
dispersion need to be considered to overcome the problem of an excessive number of parameters. Flury (1984) introduced
the so-called Common Principal Components (cpc) model, in which the common structure assumes that the k covariance
matrices have possibly different eigenvalues but identical eigenvectors, i.e.,

Σi = βΛiβ
t, 1 ≤ i ≤ k, (1.1)

where Λi are diagonal matrices, β is the orthogonal matrix of the common eigenvectors βj andΣi is the covariance matrix
of the ith population. In the one-group principal component analysis, the eigenvectors βj are usually arranged according to
decreasing values of the associated eigenvalues. In the cpc model, no obvious fixed order of the columns of β is available,
since the order among the diagonal elements of Λi need not be the same for all the populations. Therefore, the common
directions can be ordered as β1, . . . ,βp according to several criteria some of which will be defined below. The maximum
likelihood estimators ofβ andΛi are derived in Flury (1984), assumingmultivariate normality of the original variableswhile
Flury (1988) considered a unified study of the maximum likelihood estimators under different hierarchical models.
Let

(
xij
)
1≤j≤ni,1≤i≤k

be independent observations from k independent samples in Rp with location parameter µi and

scatter matrix Σi. Let N =
∑k
i=1 ni, τiN = ni/N , where τiN → τi ∈ (0, 1) as N → ∞, and Xi =

(
xi1, . . . , xini

)
. For the

cpcmodel, the common decomposition given in (1.1) implies that for any a ∈ Rp, and 1 ≤ i ≤ k, var (atxi1) = atβΛiβta.
Therefore, the first axis β1 could be defined through a projection approach by maximizing

∑k
i=1 τivar (a

txi1) over a ∈ Rp
with ‖a‖ = 1. By considering orthogonal directions toβ1, the second axis is defined and so on. If the order of the eigenvalues,
λij, is preserved across populations, i.e., if λ`1 > · · · > λ`p, for all `, βj is also the direction related to λ`j, regardless of the
index ` of the selected population. Otherwise, we are ordering the axis according to decreasing values of the pooled matrix
eigenvalues,

∑k
i=1 τiλij, 1 ≤ j ≤ p, as far as they have multiplicity one. It is well known that, as in the one-population

setting, the classical cpc analysis can be affected by the existence of outliers in a sample. In a one-population setting,
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robust estimators for the principal directions using alternative measures of variability, were first considered in Li and Chen
(1985) who proposed projection-pursuit estimators maximizing (or minimizing) a robust scale. Later on, Croux and Ruiz-
Gazen (2005) provided the influence functions of the resulting principal components while their asymptotic distribution
was studied in Cui et al. (2003). The above described projection approach allows to define, for several populations, robust
projection-pursuit estimators by considering a robust measure of dispersion s instead of the standard deviation (see Boente
and Orellana, 2001) and (Boente et al., 2002) and provides clear interpretations of the resulting common directions as those
maximizing the overall variability of the projected data

∑k
i=1 τiN s

2
(
atxi1, . . . , atxini

)
.

One main disadvantage of the above described projection-pursuit approach, is that, when considering the sample
standard deviation as dispersion measure, the maximum likelihood estimators are not obtained. This suggests that the
criterion consideredmayproduce an extra loss of efficiency that is not only related to the robust scale. For that reason, Boente
et al. (2006) considered a general approach which consists of applying a score function to the scale estimator. To motivate
this approach, remind that themaximum likelihood estimator ofβ for gaussian populationsminimizes

∑p
j=1
∑k
i=1 ni ln

(
`ij
)
,

where `ij are the diagonal elements of Fi = AtSiA, i.e., `ij equals the sample variance of the projected vectors atj xi1, . . . , a
t
j xini

(see Flury (1988)). Therefore, a naturalway to robustify themaximum likelihood estimators could be tomaximize iteratively∑k
i=1 ni ln

(
s2
(
atxi1, . . . , atxini

))
, for a robust dispersion s. More generally, Boente et al. (2006) considered an increasing

score function f : R+ → R and a univariate scale estimator s, and they propose to estimate the common directions as
β̂1 = argmax

‖a‖=1

k∑
i=1

τiN f
(
s2(atxi1, . . . , atxini)

)
β̂m = argmax

a∈B̂m

k∑
i=1

τiN f
(
s2(atxi1, . . . , atxini)

)
2 ≤ m ≤ p;

(1.2)

where B̂m = {a ∈ Rp : ‖a‖ = 1, atβ̂j = 0 for 1 ≤ j ≤ m − 1}. The estimators of the eigenvalues of the i-th population
are then computed as λ̂im = s2(̂β

t
mxi1, . . . , β̂

t
mxini) for 1 ≤ m ≤ p. A different definition arises by minimizing instead of

maximizing, which lead to different solutions (beyond the order) due to the use of a robust scale (see Li and Chen, 1985).
However, both proposals will have the same asymptotic behavior. It is worth noticing that the robustness properties of the
robust scale considered are inherited by the projection-pursuit estimators. When f (t) = t , Li and Chen (1985), for k = 1,
and Boente and Orellana (2001), for several populations, obtained some results in that direction which can be extended to
the general projection-pursuit estimators defined by (1.2) for any increasing function f . Therefore, in Boente et al. (2006),
the aim of introducing the score function f was not to achieve better robustness properties but to obtain, for a given scale
functional, the optimal function f in the sense of minimizing the asymptotic variance of the proposed estimators. It is well
known that when considering the variance, the optimal choice corresponds to f (t) = ln(t). When the populations share the
same elliptical distribution up to location and scatter parameters, ln(t) is still optimal for any robust scale functional, under
a proportionality model, i.e., it minimizes the asymptotic variance of the common direction estimators in the class of all
increasing differentiable score functions f . Moreover, the same conclusion holds under a cpcmodel when the eigenvalues
preserve their order among populations and if we restrict the class of possible score functions to the well-known Box and
Cox class (see Propositions 2 and 3 in Boente et al., 2006).
Partial influence functions of the described projection-pursuit estimators were derived in Boente et al. (2006). The aim

of this paper is to obtain under mild conditions their consistency and asymptotic normality. Asymptotic normality will be
derived through Bahadur representations that are applicable to some common choices of robust dispersions. In this sense,
our results extend those given by Cui et al. (2003), from one to several populations. Under elliptically symmetricmodels, our
results simplify to provide the same asymptotic variances computed by Boente et al. (2006) using partial influence functions.
In Section 2, we describe the general projection-index estimators and the assumptions needed to derive the asymptotic

behavior. Ourmain results are stated in Section 3where the situation inwhich all the populations have elliptical distribution
except for changes in location and scatter is also discussed. In Boente et al. (2006), it was assumed that ni = τiN , where
0 < τi < 1, are fixed numbers such that

∑k
i=1 τi = 1, i.e., that τiN = ni/N = τi. To consider a more general framework, the

asymptotic results will be stated by assuming that the sample sizes, ni, go to infinity in such a way that τiN → τi ∈ (0, 1)
and N

1
2 (τiN − τi)→ 0. This includes the situation in which ni is the integer part of τiN . Proofs are left to the Appendix.

2. Projection-index estimators: Notation and assumptions

As mentioned in the Introduction, under a cpc model, robust projection-pursuit estimators were introduced by Boente
and Orellana (2001) who considered as score function f the identity function in (1.2) while in Boente et al. (2002) their
partial influence function was obtained. Boente et al. (2006) proposed the general projection-pursuit estimators defined
through (1.2) to estimate the common directions.
From now on Xi = (xi1, . . . , xini) will denote independent vectors from k independent samples in Rp such that, for

1 ≤ j ≤ ni, xij ∼ Fi, where Fi is a p-dimensional distribution with location parameter µi and scatter matrix Σi satisfying
(1.1). Note that for any unidimensional scale estimator s2(atxi1, . . . , atxini) = s

2(at(xi1−b), . . . , at(xini−b)) for any b ∈ Rp,
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thus, as in Boente et al. (2006), without loss of generality, we may assume that µi = 0. Denote by Fi[a] the distribution of
atxi1, and by F the product measure F = F1 × F2 · · · × Fk. Let F1 be the one dimensional distribution space, Sp the p-
dimensional unit sphere and Ip the identity matrix in Rp×p.
Moreover, let ς be a projection index, i.e., a functional ς : F1 → R≥0 and σ(·) a univariate scale functional. Denote by

s2i,ni : Rp → R and ςi,ni : Rp → R the functions s2i,ni(a) = σ 2(atXi) and ςi,ni(a) = ς(atXi), respectively, where ς(atXi)
and σ 2(atXi) stand for the functionals ς and σ computed at the empirical distribution of atxi1, . . . , atxini , respectively.
Analogously, σi : Rp → R and ςi : Rp → R will stand for σi(a) = σ(Fi[a]) and ςi(a) = ς(Fi[a]), respectively. The
estimators defined in Boente et al. (2006) correspond to the choice ς(F) = f (σ 2(F)). We will assume that ςi(a) = ςi(−a)
and ςi,ni(a) = ςi,ni(−a), that holds if ς(F) = f (σ

2(F)). Denote by ρN(a) =
∑k
i=1 τiN ςi,ni(a) and ρ(a) =

∑k
i=1 τiςi(a). Then,

a more general framework than (1.2) defines the estimators of the common directions as

β̂1 = argmax
‖a‖=1

ρN(a) β̂m = argmax
a∈B̂m

ρN(a) 2 ≤ m ≤ p. (2.1)

where B̂m = {a ∈ Rp : ‖a‖ = 1, atβ̂j = 0, ∀ 1 ≤ j ≤ m− 1}. The estimators of the eigenvalues of the i-th population are
then, computed as

λ̂im = σ
2(̂β

t
mXi) = s

2
i,ni (̂βm), 1 ≤ m ≤ p. (2.2)

Wewill now introduce the statistical functional related to (2.1). The projection-index commondirections functionalβς (F) =
(β1,ς (F), . . . ,βp,ς (F)) is defined as the solution of

β1,ς (F) = argmax
‖a‖=1

ρ(a) βm,ς (F) = argmax
a∈Bm

ρ(a) 2 ≤ m ≤ p, (2.3)

whereBm = {a ∈ Rp : ‖a‖ = 1, atβ`,ς (F) = 0, ∀ 1 ≤ ` ≤ m− 1}. It is clear that both β̂m and βm,ς (F) are defined except
for a multiplicative factor−1. The eigenvalue functional is defined as

λim,ς,σ (F) = σ 2(Fi[βm,ς (F)]) 1 ≤ m ≤ p, 1 ≤ i ≤ k. (2.4)

Remark 2.1. When ς(F) = f (σ 2(F)), conditions under which the functional defined through (2.3) will be Fisher-consistent
for elliptical distributions were obtained in Boente et al. (2006), while the particular case in which f (t) = t was studied in
Boente and Orellana (2001). In particular, if the order between eigenvalues is preserved across populations the functionals
related to ς(F) = f (σ 2(F)) are consistent for any increasing function f . For more general cpcmodels, the populations need
to verify, for instance, that νf ,1 > · · · > νf ,p where νf ,j =

∑k
i=1 τif (λij). On the other hand, if νf ,1 ≥ · · · ≥ νf ,p, Fisher-

consistency can be obtained if for each m 6= ` there exists i0 such that λi0m 6= λi0` and some convexity conditions are
required to the score function (see Boente et al. (2006), for details).

To simplify the notation, we will avoid the subscript ς and/or σ and so, we will indicate βm(F) = βm,ς (F) and
λim(F) = λim,ς,σ (F). For 1 ≤ m ≤ p, consider

νm(F) = max
a∈Bm

ρ(a) and ν̂m = max
a∈B̂m

ρN(a). (2.5)

From now on, the notation ḣ(x, a) will be used for the derivative of the function h(x, a) with respect to a. Throughout this
paper we will consider the following set of assumptions

S0. For some q ≤ p, we have that ν1(F) > ν2(F) · · · > νq(F). Moreover, for 1 ≤ m ≤ q, βm(F) are unique except for changes
in their sign.

S1. ςi,ni(a)− ςi(a) = n
−1
i
∑ni
j=1 hi(xij, a)+ Ri,ni , where

(a) ςi(a) is a continuous function of a.
(b) hi(x, a) is continuous in both variables.
(c) ςi,ni(a) is a continuous function of a a.e.
(d) Ehi(xi1, a) = 0 and E

(
supa∈Sp |hi(xi1, a)|

)
<∞.

(e) supa∈Sp |Ri,ni |
p
−→ 0, i.e., Ri,ni = op (1) uniformly in a ∈ Sp.

(f) E
(
supa∈Sp h

2
i (xi1, a)

)
<∞ and Ri,ni = op

(
n−1/2i

)
uniformly in a ∈ Sp.

S2. ςi(a) is twice continuously differentiable with respect to a. ς̇i(a) and ς̈i(a)will stand for its first and second derivatives,
respectively.

S3. The function ςi,ni(a) is differentiable with respect to a for any a ∈ Sp, almost everywhere. Moreover, ς̇i,ni(a)− ς̇i(a) =
n−1i

∑ni
j=1 h

?
i (xij, a)+ op(n

−1/2
i ), uniformly in a ∈ Sp, with h?i : R

p
× Rp → Rp such that

(a) For any given x, h?i (x, a) is continuous in a.
(b) E h?i (xi1, a) = 0 for all a ∈ Rp and E

(
supa∈Sp ‖h

?
i (xi1, a)‖

2
)
<∞.
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S4. si,ni(a)− σi(a) = n
−1
i
∑ni
j=1 hi,σ (xij, a)+ Ri,ni,σ , where

(a) σi(a) is a continuous function of a.
(b) Ehi,σ (xi1, a) = 0 and E

(
supa∈Sp |hi,σ (xi1, a)|

)
<∞.

(c) hi,σ (x, a) is continuous in both variables.
(d) Ri,ni,σ = op (1) uniformly in a ∈ Sp.

(e) E
(
supa∈Sp h

2
i,σ (xi1, a)

)
<∞ and Ri,ni,σ = op

(
n−1/2i

)
, uniformly in a ∈ Sp.

S5. The families of functions Hi = { f (x) = hi(x, a) a ∈ Sp},Hi,σ = { f (x) = hi,σ (x, a) a ∈ Sp} and H?
i,` = { f (x) =

h?i,`(x, a) a ∈ Sp}, for 1 ≤ i ≤ k, 1 ≤ ` ≤ p, with envelopes Hi(x) = supa∈Sp |hi(x, a)|, Hi,σ (x) = supa∈Sp |hi,σ (x, a)| and
H?i,`(x) = supa∈Sp |h

?
i,`(x, a)|, respectively, have finite uniform-entropy, where h

?
i,`(x, a) stands for the `-th component

of h?i (x, a).

Remark 2.2. As in Cui et al. (2003), S0 states thatβm(F) and−βm(F) are considered equivalent and it does notmatter which
one we take. In this sense, the convergence β̂m

p
−→βm(F) mean convergence in axis, not in the signed vector. In order to

identify the vectors (functional and estimators), one can choose them such that the component with its largest absolute
value will be positive, for instance. It is worth noticing that conditions S1 to S4 are analogous to Conditions 1 to 5 in Cui
et al. (2003). On the other hand, S5 is fulfilled if, for instance, |hi(x, a1) − hi(x, a2)| ≤ Gi(x)‖a1 − a2‖ with EG2i (xi1) < ∞,
see for instance, van der Vaart and Wellner (1996). On the other hand, if hi(x, a) = χi(atx/g(a)) where χi : R → R is a
bounded function with bounded variation and g : Rp → R, then, S5 holds. This result follows easily using the permanence
properties stated in van der Vaart andWellner (1996) and that the fact that, given ε > 0, for any classes of functions G1 and
G2, if G = {g = g1 + g2 : gi ∈ Gi, i = 1, 2}, then N

(
ε,G, L2(Q )

)
≤ N

(
ε/2,G1, L2(Q )

)
.N
(
ε/2,G2, L2(Q )

)
.

Let us define

• um = −N−1/2
∑k
i=1
∑ni
j=1 h

?
i (xij,βm(F))

• Pm+1 = Ip −
∑m
j=1 βj(F)βj(F)

t the projection matrix over the linear space orthogonal to that spanned by
β1(F), . . . ,βm(F),
• Bjm = βj(F)t ρ̇(βm(F)) Ip + βj(F) ρ̇(βm(F))t,
• Am = Pm+1 ρ̈(βm(F))− βm(F)t ρ̇(βm(F))Ip −

∑m−1
j=1 βj(F)

t ρ̇(βm(F))βm(F) βj(F)
t.

• Z0 = 0 and define Zm recursively as Zm =
∑m−1
j=0 A−1m BjmZj + A−1m Pm+1um, for 1 ≤ m ≤ q, provided that A−1j exists for

1 ≤ j ≤ m.
It is clear that the process Zm can by represented by Zm =

∑m−1
j=0 Cjmuj, for some sequence of matrices Cjm depending

on Am, Bjm and Pm+1.
• ξi,m(x) =

∑m
`=1 C`m h

?
i (x,β`(F)), for x ∈ Rp.

• ξm(
−→x ) =

∑k
i=1 τ

1/2
i ξi,m(xi), where

−→x = (x1, . . . , xk) and xi ∈ Rp.

3. Main results

3.1. Consistency and asymptotic distribution

The following theorem establishes the consistency of the estimators of the common directions defined through (2.1),
under mild conditions. Its proof can be found in Boente et al. (2009). From their consistency, it is easy to derive that of the
eigenvalue estimators (2.2) and also that of the estimators of the i-scatter matrix defined as V̂i =

∑p
j=1 λ̂imβ̂mβ̂

t
m.

Theorem 3.1. Let Xi = (xi1, . . . , xini) denote independent vectors from k independent samples in Rp such that, for 1 ≤ j ≤ ni,
xij ∼ Fi, where Fi is a p-dimensional distribution. Moreover, assume that ni = τiNN, with 0 < τiN < 1 such that

∑k
i=1 τiN = 1

and τiN → τi ∈ (0, 1). Let βm, λim and νm be the functionals defined through (2.3)–(2.5), respectively. Let β̂m and λ̂im be the
estimators defined in (2.1) and (2.2), respectively. Under S0, S1 (a) to (e) and S4 (a) to (d), we have that, for 1 ≤ m ≤ q,
β̂m

p
−→βm(F) and λ̂im

p
−→ λim(F), for 1 ≤ i ≤ k as N →∞.

The following theorem gives a Bahadur representation for the estimators β̂m and λ̂im which allows to derive easily their
asymptotic distribution. A sketch of its proof is given in the Appendix.

Theorem 3.2. Under the conditions of Theorem 3.1, if, in addition, N
1
2 (τiN − τi) → 0, S1 to S5 hold and the matrices Am,

1 ≤ m ≤ q, are non-singular, we have that, for 1 ≤ m ≤ q,
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β̂m − βm(F) =
1
N

k∑
i=1

ni∑
j=1

ξi,m(xij)+ op(N−1/2) (3.1)

λ̂im − λim(F) =
1
ni

ni∑
j=1

hi,σ (xij,βm(F))+ op(n
−1/2
i ). (3.2)

Theorem 3.2 entails that, for 1 ≤ i ≤ k, the joint distribution of N−1/2(̂β1 − β1(F), . . . , β̂q − βq(F), λ̂i1 −
λi1(F), . . . , λ̂iq − λiq(F)) converges to a multivariate normal distribution with mean 0 and covariance matrix
covF

(
ξ1(
−→x1 ), . . . , ξq(

−→x1 ), . . . , hi,σ (xi1,β1(F)), . . . , hi,σ (xi1,βq(F))
)
, where−→x1 = (x11, . . . , xk1).

It is worth noticing that when dealing with only one population, i.e., when k = 1, Theorem 3.2 provides the Bahadur
expansion given in Cui et al. (2003).

3.2. Example: General projection-pursuit estimates under the CPCmodel

Let σ be a univariate robust scale functional and f : R+ → R an increasing score function. Considering the functional
ς(·) = f {σ 2(·)} in (2.1), we obtain the estimators defined through (1.2) in Boente et al. (2006). As mentioned above,
these authors studied conditions for the Fisher-consistency of the common direction functional defined through ς and
they also provide an expression for their partial influence functions. From the general results in Pires and Branco (2002),
the asymptotic variance of the common direction and eigenvalue estimates, i.e., the variance of the approximating normal
distribution, was also computed in Boente et al. (2006).
The aim of this section is to show that the expansion obtained Theorem 3.2 allows to obtain under mild conditions

the expressions obtained by these authors. Under regularity conditions on σ , we get that hi,σ (x, a) = 2σ(Fi[a])ψi(x, a),
hi(x, a) = f ′

(
σ 2(Fi[a])

)
2σ(Fi[a])ψi(x, a) and

h?i (x, a) = ḣi(x, a) = f
′
(
σ 2(Fi[a])

) (
2σ(Fi[a]) ψ?

i (x, a)+ 2σ̇ (Fi[a]) ψi(x, a)
)

+ 4 f ′′
(
σ 2(Fi[a])

)
σ̇ (Fi[a])σ 2(Fi[a])ψi(x, a) 1 ≤ i ≤ k,

where ψi(x, a) = IF(x, σa; Fi), ψ?
i (x, a) = IF(x, σ̇a; Fi) = ψ̇i(x, a), σa : F1 → R+ is such that σa(F) = σ(F [a]) and σ̇a(F) is

the derivative of σa(F) respect to a.
Let us consider the following assumptions.

A1. σ(·) is a robust scale functional, equivariant under scale transformations.
A2. Fi is an ellipsoidal distribution with location parameter µi = 0 and scatter matrixΣi = CiCt

i satisfying (1.1). Moreover,
the scatter matrices Σi and the scale functional are such that σ(G0,i) = 1, with G0,i the distribution of zi1, 1 ≤ i ≤ k,
where zi = C−1i xi1 has spherical distribution Gi, for all 1 ≤ i ≤ k.

A3. For G = G0,i, 1 ≤ i ≤ k, the function (ε, y)→ σ((1− ε)G+ ε∆y) is twice continuously differentiable in (0, y), y ∈ R
where∆y denotes the point mass at y.

A4. f is a twice continuously differentiable function.
A5. For any 1 ≤ m ≤ p, the eigenvalues ηm` =

∑k
i=1 τif

′(λim)λi` of Σ̃m =
∑k
i=1 τif

′(λim)Σi are such that ηm` 6= ηm =

ηmm =
∑k
i=1 τif

′(λim)λim for ` 6= m.

Remark 3.1. Note that if all populations share the same elliptical distribution up to location and scatter, i.e., if Gi = G for all
i, then the scale functional can be calibrated so that σ(G0) = 1, where G0 is the distribution of z1 when z ∼ G. Otherwise,
assumption A2 provides a way to choose the scatter matrices related to the scale functional. If E‖xi1‖2 < ∞, it is well
known that Σi is up to a constant αi the covariance matrix of xi1. Assumption A2, states that in this situation, the constant
does not need to be equal to 1 butmay depend on the populationwhen the related spherical distributions are not equal. This
parametrization does not change the percentage of total variation explained in each population by the common directions.
It is worth noticing that under A1 to A4, the Bahadur expansions required in S1, S3 and S4 can be obtained under mild
conditions on the scale functional, see Cui et al. (2003) for a discussion. On the other hand, as mentioned in Boente et al.
(2006), under a proportional model ηm` = λ`

∑k
i=1 τif

′ (λim) ρi and so, ηm` 6= ηmm for ` 6= m if and only if the eigenvalues
of the first population are different, which is a usual assumption in order to identify the common directions. More generally,
A5 holds if the eigenvalues preserve the order among populations, i.e., λi1 ≥ λi2 ≥ . . . λip and if for each ` 6= m there exists
1 ≤ i ≤ k such that λi` 6= λim.

Typically, the influence function of a robust scale functional is bounded. Therefore, using that if A1 to A4 hold,ψi(x, a) =
σa(Fi)IF(atx/σa(Fi), σ ;G0,i) and σ 2a (Fi) = atΣia, we get easily that hi,σ (x, a) and hi(x, a) are bounded. Moreover, if
IF(y, σ ;G0,i) = χi(y) for some function χi of bounded variation, as is, for instance, the case of an M-scale function, then
Hi,σ andHi will have finite uniform-entropy. On the other hand, ifΣi is non-singular, using that

ψ̇i(x, a) = σ−1a (Fi)IF
(

atx
σa(Fi)

, σ ;G0,i

)
Σia+ DIF

(
atx
σa(Fi)

, σ ;G0,i

)(
Ip −

1
σ 2a (Fi)

Σiaat
)
x,
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where DIF(y, σ ;G0) denotes the derivative of the influence function IF(y, σ ;G0) with respect to y, it is easy to see that the
first term on the right hand side will be bounded while the second one, can be unbounded for some values of a, for instance,
when a = βm. Hence, to ensure that the envelope H?i,` has second finite moment it is enough to require that E‖xi1‖

2 <∞.
Therefore, if f ′ and f ′′ are functions of bounded variation, H?

i,` will have finite entropy, if IF(y, σ ;G0,i) = χi(y) for some
continuously differentiable function χi such that χi,1(y) = χ ′i (y) and χi,2(y) = yχ

′

i (y) have bounded variation (see Boente
et al. (2009), for details).
Under A1 to A4, we get that βm(F) = βm, σ 2i (βm) = λim, ςi(βm) = f (λim), ς̇i(βm) = f

′(λim) λim βm and so,

ψi(x,βm) =
√
λim IF

(
xtβm
√
λim

, σ ;G0,i

)
,

ψ̇i(x,βm) =
√
λimβmIF

(
xtβm
√
λim

, σ ;G0,i

)
+ DIF

(
xtβm
√
λim

, σ ;G0,i

)
(Ip − βmβ

t
m)x.

Moreover, we have that ρ(βm) =
∑k
i=1 τif (λim) = νm, ρ̇(βm) = 2ηmβm, ρ̈(βm) = 4

∑k
i=1 τif

′′(λim)λ
2
imβmβ

t
m + 2Σ̃m and

ḣi(x,βm) = 2
√
λimf ′ (λim)

[
ψ̇i(x,βm)+ ψi(x,βm)βm

]
+ 4λ

3
2
im f
′′ (λim) ψi(x,βm)βm.

Therefore, using that βt
jβm = 0 for 1 ≤ j ≤ m−1, we get that Am = 2

∑p
j=m+1 ηmjβjβ

t
j −2ηmIp, which after straightforward

calculations, using (3.1), lead to

N1/2 (̂βm − βm) = N
−1/2

k∑
i=1

ni∑
j=1

m−1∑
`=1

√
λi`f ′(λi`)DIF

( xtijβ`
√
λi`
, σ ;G0,i

)
1

(η`m − η`)
(xtij βm)β`

+N−1/2
k∑
i=1

ni∑
j=1

p∑
l=m+1

√
λimf ′(λim)DIF

( xtijβm
√
λim

, σ ;G0,i

)
1

(ηm − ηm`)
(xtij β`)β` + op(1).

WhenGi = G, for all i, i.e., when all the populations share the same elliptical distribution up to location and scatter, the above
expansion is that suggested by the partial influence functions obtained in Boente et al. (2006) and the expansion given in
Pires and Branco (2002), see Boente et al. (2009) for a detailed derivation. In particular, when f (t) = t , we obtain the Bahadur
representation of the estimators defined in Boente and Orellana (2001), suggested by the partial influence functions derived
in Boente et al. (2002).
As in Cui et al. (2003) our results demonstrate the need of using a robust dispersionmeasure with a continuous influence

function. As mentioned by these authors, a lower order of convergence may be attained when using a robust dispersion
with a non-differentiable influence function. This fact provides evidence against using as dispersion measure the median
absolute deviationwhen estimating robustly the common principal components. The simulation study performed in Boente
et al. (2006) do not allow us to illustrate clearly this phenomenon since only plots of the density estimators of the cosines
of the angle between the true and the estimated direction were given. On the other hand, the tables reported in Rodrigues
(2003) show that the robust estimators of the common directions based on the median absolute deviation have a very low
efficiency, in particular, in the simulation study involving k = 3 populations and when estimating the eigenvalues.
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Appendix

From now on, to simplify the notation βj and λij will stand for βj(F) and λij(F), respectively. The proof of Theorem 3.2
follows the same steps as those considered in Cui et al. (2003), we skip most of the details that can be found in Boente et al.
(2009). We state the lemmas needed to derive Theorem 3.2, details of their proof can be found in Boente et al. (2009).

Lemma A.1. Under the conditions of Theorem 3.2, we have that

(i) ρN (̂βm)− ρN(βm)− ρ(̂βm)+ ρ(βm) = op(N
−1/2)

(ii) ρ̇(̂βm)+N
−1∑k

i=1
∑ni
j=1 h

?
i (xij, β̂m)−

{
ρ̇(βm)+N

−1∑k
i=1
∑ni
j=1 h

?
i (xij,βm)

}
= ρ̈(βm)(̂βm− βm)+ op(‖β̂m− βm‖)+

oP(N−1/2).

To derive the Bahadur expansions given in (3.1), we need to obtain, as in Cui et al. (2003) some identities satisfied
by the common direction estimators.Using the Lagrange multiplier method, we have that β̂1 maximizes G1(a, µ1) =
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ρN(a) − µ1(ata − 1), where µ1 ∈ R. Hence, differentiating G1 respect to a, we get that ρ̇N (̂β1) = 2µ1β̂1. Note that
N1/2(τiN − τi)→ 0 implies that N1/2 sup‖a‖=1 |

∑k
i=1(τiN − τi)ς̇i(a)| → 0 and so, using S3, we have

ρ̇N(a) = ρ̇(a)+
1
N

k∑
i=1

ni∑
j=1

h?i (xij, a)+ op(N−1/2) (A.1)

which entails that ρ̇(̂β1)+N
−1∑k

i=1
∑ni
j=1 h

?
i (xij, β̂1) = 2µ1β̂1+op(N−1/2). Let, for 1 ≤ m ≤ p, P̂m+1 = Ip−

∑m
j=1 β̂jβ̂

t
j be

the projection matrix over the linear space orthogonal to that spanned by β̂1, . . . , β̂m. Then, we have that P̂2β̂1 = 0 and so,
we get P̂2

(
ρ̇(̂β1)+ N

−1∑k
i=1
∑ni
j=1 h

?
i (xij, β̂1)

)
= op(N−1/2). Similarly, we have that β̂m maximizes Gm(a, µ1, . . . , µm) =

ρN(a)−
∑m−1
j=1 µjβ̂

t
j a− µm(a

ta− 1), for 1 ≤ m ≤ q, which implies that ρ̇N (̂βm) =
∑m−1
j=1 µjβ̂j + 2µmβ̂m. Therefore, using

again S3, the fact that N1/2(τiN − τi)→ 0, (A.1) and that P̂m+1 β̂j = 0, 1 ≤ j ≤ m, we obtain

P̂m+1

(
ρ̇(̂βm)+ N

−1
k∑
i=1

ni∑
j=1

h?i (xij, β̂m)

)
= op(N−1/2). (A.2)

The Eq. (A.2) has its asymptotic version given in the next lemma whose proof we omit since it follows as in Cui et al. (2003).

Lemma A.2. Under the conditions of Theorem 3.2. the following equation holds Pm+1ρ̇(βm) = 0.

Moreover, we have the following relation between the estimators β̂m and the projection matrix, which follows using
standard arguments.

Lemma A.3. Under the conditions of Theorem 3.2. we have that, for all b ∈ Rp

(̂Pm+1 − Pm+1)b = −
m∑
j=1

(βt
j bIp + βjb

t)(̂βj − βj)+ Op

(
‖b‖

m∑
i=1

‖β̂i − βi‖
2

)
.

Lemma A.4 gives the key point to obtain the equality given in (3.1). We omit its proof since it follows using analogous
arguments as those considered in Cui et al. (2003) and tedious calculations.

Lemma A.4. Under conditions of Theorem 3.2, we have that{
Pm+1ρ̈(βm)− β

t
mρ̇(βm)Ip − βmρ̇(βm)

t} (̂βm − βm)+ op(‖β̂m − βm‖)

=

m−1∑
j=1

{
βt
j ρ̇(βm)Ip + βjρ̇(βm)

t} (̂βj − βj)+ N−1/2Pm+1 um + op

(
m−1∑
i=1

‖β̂i − βi‖

)
+ op(N−1/2).

From Lemma A.4, we easily obtain the following result.

Lemma A.5. Under the conditions of Theorem 3.2, we have Am(̂βm − βm) + op(‖β̂m − βm‖) =
∑m−1
j=1 Bjm(̂βj − βj) +

N−1/2Pm+1um + op(
∑m−1
j=1 ‖β̂j − βj‖) + op(N−1/2), where Am = Pm+1ρ̈(βm) − β

t
mρ̇(βm)Ip −

∑m−1
i=1 β

t
i ρ̇(βm)βmβ

t
i and

Bjm = βt
j ρ̇(βm)Ip + βjρ̇(βm)

t.

Lemma A.6. Under the conditions of Theorem 3.2. we have β̂m − βm = Op(N−1/2).

Proof. We begin by proving that the result holds form = 1. Using Lemma A.5 withm = 1, we get easily that (̂β1 − β1) =
op(‖β̂1 − β1‖)+ A−11 N

−1/2 P2 u1 + op(N−1/2). Since P2 u1 converges in distribution to a normal random variable, we have
that A−11 N

−1/2 P2 u1 = Op(N−1/2), and so, N1/2(̂β1 − β1) = N1/2 op(‖β̂1 − β1‖)+ Op(1)+ op(1). Thus,

N1/2(̂β1 − β1) = N
1/2op(‖β̂1 − β1‖)+ Op(1). (A.3)

Hence,N1/2 ‖β̂1−β1‖
[
(̂β1 − β1)/‖β̂1 − β1‖ − op(‖β̂1 − β1‖)/‖β̂1 − β1‖

]
= Op(1)which implies thatN1/2 ‖β̂1−β1‖ =

Op(1), since the norm of the term between brackets converges in probability to 1.
Let us show if N1/2 ‖β̂j−βj‖ = Op(1), for all 2 ≤ j ≤ m− 1, then N

1/2
‖β̂m−βm‖ = Op(1). Indeed, from Lemma A.5, we

getN1/2(̂βm−βm) = N
1/2op(‖β̂m−βm‖)+

∑m−1
j=1 A−1m BjmN1/2(̂βj−βj)+A

−1
m Pm+1um+N1/2op(

∑m−1
j=1 ‖β̂j−βj‖)+op(1). Since

Pm+1um converges in distribution and using the inductive assumption,we getN1/2(̂βm−βm) = N1/2 op(‖β̂m−βm‖)+Op(1),
which is analogous to (A.3), and so, we get easily that β̂m − βm = Op(N−1/2) concluding the proof. �

The Bahadur representation for β̂m given in (3.1) follows now easily using Lemmas A.5 and A.6.
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Let us obtain the expansion given in (3.2). Similar arguments to those considered in Lemma A.3, allow us to show that
n−1i

∑ni
j=1 hi,σ (xij, β̂m) = n

−1
i
∑ni
j=1 hi,σ (xij,βm)+ op(n

−1/2
i ), which implies that λ̂im − λim = ςi,ni (̂βm)− ςi(̂βm)+ ςi(̂βm)−

ςi(βm) = n
−1
i
∑ni
j=1 hi,σ (xij,βm)+ op(n

−1/2
i )+ ς̇i(βm)

t(̂βm − βm)+ op(‖β̂m − βm‖) = n
−1
i
∑ni
j=1 hi,σ (xij,βm)+ op(n

−1/2
i )

concluding the proof. �
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