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In this paper, we generalise the partly linear autoregression model considered in the literature by including
moving average errors when we want to allow a large dependence to the past observations. The strong
ergodicity of the process is derived. A consistent procedure to estimate the parametric and nonparametric
components is provided together with a test statistic that allows to check the presence of a moving average
component in the model. Also, a Monte Carlo study is carried out to check the performance of the given
proposals.

Keywords: ergodicity; Fisher-consistency; moving average errors; partly linear autoregression; smoothing
techniques

MSC: Primary: 62F35; Secondary: 62H25

1. Introduction

When dealing with time series data, autoregressive models with moving average errors (arma

models) have been extensively used in applications. They correspond to linear autoregressive
models where the errors are described by a moving average process. More precisely, an arma

(p, q) model is a stationary process {yt : t ≥ 1} verifying

yt =
p∑

j=1

ϕjyt−j + εt , (1)

where εt = ut −∑q

j=1 θjut−j with ut independent and identically distributed (i.i.d.) random
variables and ut is independent of {yt−j , j ≥ 1} with Eut = 0, Eu2

t < ∞.
It is well known that, when there is large dependence to the past observations, arma models

have several advantages with respect to autoregressive models. However, the assumption of a
linear autoregression function is quite restrictive. As pointed by Bosq (1996), a nonparametric
predictor is ‘in general more efficient and more flexible than the predictor based on Box and
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798 A. Bianco and G. Boente

Jenkins method and nearly equivalent if the underlying model is truly linear’, see also Carbon
and Delecroix (1993) for a comparative study on 17 series. Nevertheless, the nonparametric
autoregression model yt = m(Xt ) + ut , where Xt = (yt−1, . . . , yt−r )

t, faces the problem known
as the ‘curse of dimensionality’. In order to solve the problem of empty neighbourhoods, an
approach can be to introduce moving average errors, which reduce the dependence to the past in
Xt obtaining, thus, a smaller dimension r . This approach was followed by Boente and Fraiman
(2002) who introduced nonparametric arma models that allow the autoregressive part of the
model to be nonparametric, while the moving average part remains linear.

As noted by Gao andYee (2000), another disadvantage of the fully nonparametric autoregressive
model is that it neglects a possible linear relationship between yt and any lag yt−k . To solve the
‘curse of dimensionality’, following a semiparametric approach, several authors have introduced
the partly linear models for autoregressive models in order to combine the advantages of both
parametric and nonparametric methods.A stochastic process {yt }, defined over a probability space
(�, A, P), satisfies a partly linear autoregressive model if it can be written as

yt =
p1∑
i=1

βo,iyt−i +
p2∑

j=1

go,j (yt−p1−j ) + ut , (2)

where go,j : R → R are smooth functions and ut are i.i.d. random variables independent of
{yt−j , j ≥ 1}, Eut = 0 and Eu2

t < ∞. However, these models do not take into account a large
dependence on the past unless p1 and p2 are large. To reduce the order of the process, we can
allow a dependence structure in the errors as in Equation (1). Combining models (1) and (2), one
can consider a stationary process {yt : t ≥ 1} verifying

yt =
p1∑
i=1

βo,iyt−i +
p2∑

j=1

go,j (yt−p1−j ) + εt , εt = ut −
q∑

j=1

θo,jut−j , (3)

with ut i.i.d. random variables and ut independent of {yt−j , j ≥ 1}, Eut = 0 and Eu2
t < ∞. From

now on, we will refer to a stochastic process verifying (3) as a partly linear arma (p1, p2, q) model
and it will be denoted by partliarma (p1, p2, q) model.

This paper is organised as follows. In Section 2, we establish conditions for the strong ergodicity
of a partliarma (p1, p2, q) process. From this last statement, under Harris recurrence and ape-
riodicity of the chain, it follows that the process is also a geometric α-mixing process. As is well
known, mixing conditions have shown to be useful to derive asymptotic properties of kernel esti-
mates for nonparametric autoregression models and partially linear time series models (Bosq 1996;
Gao 1998 and Gao 2007). Related results for purely nonparametric arch time series were given by,
for example, Masry and Tjøstheim (1995). In Section 3.1, we discuss several issues regarding how
to define a Fisher-consistent functional for go, βo = (βo,1, . . . , βo,p1)

t and θo = (θo,1, . . . , θo,q)
t,

which will lead to the estimation procedure to be introduced in Section 3.2 and to the algorithm
described in Section 3.3. Furthermore, in Section 3.2, the asymptotic behaviour of the proposals
is studied. In Section 4, we define a statistic to test H0 : θ = (θ1, . . . , θq)

t = 0. When defining the
estimators and the test statistics, for simplicity we will assume that p2 = 1. Finally, in Section 5,
we describe the results of a simulation study. Proofs are given in the Appendix.

2. Ergodicity of PARTLIARMA(p1, p2, q) models

LetYt = (yt , yt−1, . . . , yt−p1−p2+1)
t andVt = (εt , 0p1+p2−1)

t with 0p the null vector in R
p. Thus,

the process {yt }, defined by Equation (3), has the following markovian representation:

Yt = F(Yt−1) + Vt , (4)
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Journal of Nonparametric Statistics 799

where F(y) = (F1(y), . . . , Fp1+p2(y))t, F1(y) =∑p1
i=1 βo,i yi +∑p2

j=1 go,j (yp1+j ) and Fj (y) =
yj−1 for 2 ≤ j ≤ p1 + p2, with y = (y1, . . . , yp1+p2)

t.
In this section, we will use similar techniques to those considered in Mokkadem (1987)

and Ango Nze (1998) to derive the ergodicity and strong ergodicity of the process defined by
Equation (1) using the representation (4).

Denote ut−1 = (ut−1, ut−2, . . . , ut−q)
t and θ̃o = (θo,1, . . . , θo,q−1)

t. Let f and fq,y be the den-
sities of ut and uq |Yq = y, respectively, both with respect to the Lebesgue measure λ. Then,
εt |Yt−1 = y has a density fε,y given by

fε,y(e) =
∫

f (z)

∫
fq,y

(
w̃,

z − e − θ̃
t

ow̃
θo,q

)
dz dw̃,

where w̃ = (w1, . . . , wq−1)
t. Let r+

j (y) = E(|ut−j | |Yt−1 = y) and assume the following
conditions:

H1. For all 1 ≤ j ≤ p2, go,j is bounded over compact sets.
H2. infe∈K1 ,y∈K2 fε,y(e) > b(K1, K2) > 0 for any compact sets K1 ⊂ R and K2 ⊂ R

p1+p2 .
H3. There exist M > 0 and η > E(|u1|) such that the following holds:

(i) |∑p1
i=1 βo,i yi +∑p2

j=1 go,j (yp1+j )| +∑q

j=1 |θo,j |r+
j (y) ≤ ‖y‖ − η, for ‖y‖ > M .

(ii) sup‖y‖≤M r+
j (y) < ∞, 1 ≤ j ≤ q.

Note that H1 and H3 (ii) entail that sup‖y‖≤M [|mo(y)| +∑q

j=1 |θo,j |r+
j (y)] < ∞, where

mo(y) =∑p1
i=1 βo,i yi +∑p2

j=1 go,j (yp1+j ).

Remark 2.1 Let P n(y, ·) and λ stand for the law of Yt |Yt−n = y and the Lebesque measure,
respectively. It is easy to see that similar arguments to those used in Proposition 1 of Mokkadem
(1987) (using the ergodicity criterion given by Tweedie 1975) reduce the problem of proving
ergodicity to show the following conditions:

A1. For all Borelian set A with λ(A) 	= 0 and any compact set K ⊂ R
p1+p2 , there exists a positive

integer n0 such that

inf
y∈K

P n0(y, A) > 0.

A2. There exist M > 0, η > 0 and s > 0 such that
(i) E|∑p1

i=1 βo,i yi +∑p2
j=1 go,j (yp1+j ) + εy,t |s ≤ ‖y‖s − η, for ‖y‖ > M ,

(ii) sup‖y‖≤M E|∑p1
i=1 βo,iyi +∑p2

j=1 go,j (yp1+j ) + εy,t |s < ∞,
where εy,t is a random variable with distribution given by the law of εt |Yt−1 = y,

while aperiodicity is implied by condition

A3. There exists n1 ∈ N such that P n1(y, ·) and λ are equivalent for all y.

Clearly, H1 and H3 imply A2 with s = 1. The following Proposition shows that A1 and A3
follow from H1 and H2.

Proposition 2.1 Under H1 and H2, the chain defined by Equation (4) satisfies conditions A1
and A3.

Remark 2.2 Since P n is absolutely continuous with respect to λ, for n ≥ p1 + p2, under A1 the
chain is strongly irreducible.
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800 A. Bianco and G. Boente

Let π be a sub-invariant measure for {Yt }; in the ergodic case, π is the invariant probability.
As in Lemma 1 of Mokkadem (1987), we have that, under H1 and H2, for each compact set
K ⊂ R

p1+p2 , λ(K) > 0 implies 0 < π(K) < ∞. Therefore, we have the following result.

Proposition 2.2 Under H1 to H3 , any partliarma(p1, p2, q) is ergodic.

We recall the following definition and results:

• A Markov chain {Xt } is geometrically ergodic if there exists 0 < ρ < 1 such that ‖P n(x, ·) −
π‖ = O(ρn) for almost all x(π), where ‖ · ‖ stands for the total variation norm.

• In Nummelin and Tuominen (1982), it is shown that if {Xt } is geometrically ergodic Harris
recurrent and aperiodic, then∫

‖P n(x, ·) − π‖π(dx) = O(ρn). (5)

• Finally, in Rosenblatt (1971) it is shown that Equation (5) implies that the process {Xt } is
α-mixing with α(n) = an, for some 0 < a < 1 (geometrically α-mixing process).

Proposition 2.3 Under H1, H2 and H3, the chain {Yt } defined by Equation (4) is Harris
recurrent and π and λ are equivalent.

Proposition 3 in Mokkadem (1987) entails that A1, A2 and the following condition:

A4. There exist s > 0, M > 0 and 0 < ρ < 1 such that
(i) E|∑p1

i=1 βo,i yi +∑p2
j=1 go,j (yp1+j ) + εy,t |s ≤ ρ‖y‖s , for ‖y‖ > M ,

(ii) sup‖y‖≤M E|∑p1
i=1 βo,i yi +∑p2

j=1 go,j (yp1+j ) + εy,t |s < ∞
imply the geometric ergodicity. Moreover, π has a moment of order s.

A4 can be derived from H1 and H4 with

H4. (i) There exist M > 0 and 0 < ρ < 1 such that, for ‖y‖ > M , |∑p1
i=1 βo,i yi +∑p2

j=1 go,j (yp1+j )| +∑q

j=1 |θo,j |r+
j (y) ≤ ρ‖y‖ .

(ii) sup‖y‖≤M r+
j (y) < ∞, 1 ≤ j ≤ q, for any M > 0, with r+

j (y) = E(|ut−j | |Yt−1 = y).
Putting all together we have the following result.

Proposition 2.4 Under H1 to H4, any partliarma(p1, p2, q) process is a geometrically α-
mixing process.

3. Estimation in PARTLIARMA(p1, 1, q) models

For simplicity and convenience, from now on, we will focus our attention to the case p2 = 1,
which leads to the partliarma(p1, 1, q) model

yt =
p1∑
i=1

βo,iyt−i + go(yt−p1−1) + εt , εt = ut −
q∑

j=1

θo,jut−j (6)

with ut i.i.d. and ut independent of {yt−j , j ≥ 1}, Eut = 0 and Eu2
t < ∞. When p2 > 1, the

autoregression components go,j , 1 ≤ j ≤ p2, can be estimated using, for instance, marginal
integration under suitable conditions such as E(go,j (yt−p1−j )) = 0.

Denote by yt−1 = (yt−1, . . . , yt−p1)
t, φ1(y) = E(yt−1|yt−p1−1 = y) and φ2(y) = E(yt |

yt−p1−1 = y).
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Journal of Nonparametric Statistics 801

3.1. A Fisher-consistent functional

When 1 ≤ q ≤ p1, model (6) implies that go(y) = φ2(y) − βt

oφ1(y) and so model (6) can be writ-
ten as rt = βt

ozt + ut −∑q

j=1 θo,jut−j with rt = yt − φ2(yt−p1−1) and zt = yt−1 − φ1(yt−p1−1).
This implies that the autoregression parameter βo and the autoregression function go can be esti-
mated as in the partly linear autoregressive case (i.e. when θo,j = 0). Finally, the moving average
parameter can be estimated by considering the residuals, as in the linear case.

A more interesting situation arises when q > p1. Using that yt = βt

oyt−1 + go(yt−p1−1) + ut −∑q

j=1 θo,jut−j , we get that the function go depends not only on the conditional expectations φ1 and
φ2 and the autoregression parameter βo, but also on the moving average parameters θo,j for j ≥
p1 + 1. Indeed, go(y) = φ2(y) − βt

oφ1(y) +∑q

j=1 θo,j ηj (y), where ηj (y) ≡ 0, 1 ≤ j ≤ p1 and
ηj (y) = E(ut−j |yt−p1−1 = y) for j ≥ p1 + 1. Hence, the unknown parameters and the unknown
autoregression function cannot be estimated as easily as in the previous case. However, using that
ut = (1 −∑q

j=1 θo,jB
j )−1εt and εt = yt − βt

oyt−1 + go(yt−p1−1), it can easily be seen that

• go(y) minimises

L1(a) = E

⎡⎣⎛⎝yt − βt

oyt−1 +
q∑

j=p1+1

θo,jut−j − a

⎞⎠2 ∣∣yt−p1−1 = y

⎤⎦;
• βo minimises

L2(b) = E

⎡⎣yt − go(yt−p1−1) +
q∑

j=1

θo,jut−j − bt yt−1

⎤⎦2

;

• θo = (θo,1, · · · , θo,q)
t minimises

L3(ϑ1, . . . , ϑq) = E

⎡⎣⎛⎝1 −
q∑

j=1

ϑjB
j

⎞⎠−1

(yt − βt

oyt−1 − go(yt−p1−1))

⎤⎦2

.

This suggests to consider the following system of equations

gb,ϑ,F (y) = argmin
a∈R

EF

⎡⎣⎛⎝yt − btyt−1 +
q∑

j=p1+1

ϑjut−j − a

⎞⎠2

|yt−p1−1 = y

⎤⎦,

(
βt

F , θt

F

)
t = argmin

(bt,ϑt)t∈Rp1 ×�

EF

⎡⎣yt − gb,ϑ,F (yt−p1−1) +
q∑

j=1

ϑjut−j − bt yt−1

⎤⎦2

= argmin
(bt,ϑt)t∈Rp1 ×�

M(b, ϑ),

(7)

where F denotes the distribution of the process. The index F will be omitted when the notation
does not lead to misunderstanding; in particular, it will be omitted in the conditional expectations.
As is well known, gb,ϑ,F (y) = φ2(y) − btφ1(y) +∑q

j=p1+1 ϑjηj (y). Thus, the solution (βt

F , θt

F )
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802 A. Bianco and G. Boente

of Equation (7) will be a solution of the differentiated equations

L0(b, ϑ) = 0,

L�(b, ϑ) = 0,
(8)

where for 1 ≤ � ≤ q,

L0(b, ϑ) = EF {[yt − φ2(yt−p1−1) − bt(yt−1 − φ1(yt−p1−1)) + ϑtst ](yt−1 − φ1(yt−p1−1))},
L�(b, ϑ) = EF {[yt − φ2(yt−p1−1) − bt(yt−1 − φ1(yt−p1−1)) + ϑtst ](ut−� − η�(yt−p1−1))},

with st = (ut−1 − η1(yt−p1−1), . . . , ut−q − ηq(yt−p1−1))
t and ηj ≡ 0 for j ≤ p1.

The following result states that the unique solution of Equation (7) is (go, β
t

o, θ
t

o), which entails
the Fisher-consistency of the functional. The relevance of considering Fisher-consistent function-
als is that Fisher-consistency is the property one usually first derives, since it means that we are
estimating the right quantities at the idealised model as it also guarantees uniqueness of solution
in the functional equations.

Theorem 3.1.1 If model (6) holds and

(a) P(
∑p1

i=1 diyt−i = h(yt−p1−1) +∑q

j=1 ajut−j ) < 1, 1 ≤ s ≤ p1,
(b) P(ut−� +∑q

j=�+1 ajut−j = h(yt−p1−1)) < 1, 1 ≤ � ≤ q

for any d = (d1, . . . , dp1)
t, a = (a1, . . . , aq)

t and any smooth function h that are not simultane-
ously equal to 0, then (βt

o, θ
t

o) is the unique solution of Equation (7).

Remark 3.1.1 Condition (b) holds if the conditional distribution of (ut−j )
q

j=1|yt−p1−1 = y has a
density almost surely. Condition (a) states that model (6) is effectively partly linear and not purely
nonparametric, that is, the process cannot be written as yt = ho(yt−p1−1) + εt . For instance, when
p1 = 1, if aj = 0, Condition (a) prevents yt−1 from being a.s. perfectly predictable from yt−2 (see
Robinson (1988)). On the other hand, if h ≡ 0, Condition (a) prevents the nonidentificability of
the moving average coefficients.

The following result states that under the same conditions of Theorem 3.1.1, Equation (8)
admits as unique solution (βt

o, θ
t

o) and so the differentiated system of equations can be used to
define the functional.

Theorem 3.1.2 If model (6) holds and

(a) P(
∑p1

i=1 diyt−i = h(yt−p1−1) +∑q

j=1 ajut−j ) < 1, 1 ≤ s ≤ p1,
(b) P(ut−� +∑q

j=�+1 ajut−j = h(yt−p1−1)) < 1, 1 ≤ � ≤ q

for any d = (d1, . . . , dp1)
t, a = (a1, . . . , aq)

t and any smooth function h that are not simultane-
ously equal to 0, then (βt

o, θ
t

o) is the unique solution of Equation (8).
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3.2. Parameter estimation

The system of equations (7) suggests that estimators may be obtained by replacing the true
distribution F by its empirical version, that is we can define (ĝ, β̂

t

, θ̂
t

) as the solution

ĝb,ϑ(y) = argmin
a∈R

T∑
t=p1+1

wtT (y)

⎛⎝yt − btyt−1 +
q∑

j=p1+1

ϑjut−j − a

⎞⎠2

(
β̂

t

, θ̂
t
)

t = argmin
(bt,ϑt)t∈Rp1 ×�

1

T

T∑
t=p1+2

⎡⎣yt − ĝb,ϑ(yt−p1−1) +
q∑

j=1

ϑjut−j − bt yt−1

⎤⎦2

= argmin
(bt,ϑt)t∈Rp1 ×�

MT (ϑ, b),

(9)

where the local weights wtT may be taken, for instance, as the kernel weights

wtT (y) = K((y − yt−p1−1)/hT )

⎡⎣ T∑
t=p1+1

K((y − yt−p1−1)/hT )

⎤⎦−1

.

The kernel K : R → R is a density function with 0 mean and finite variance and the band-
width hT satisfies hT → 0, T hT → ∞ as T → ∞. Note that ĝb,ϑ(y) = φ̂2(y) − btφ̂1(y) +∑q

j=p1+1 ϑj η̂j (y), where

φ̂1(y) =
T∑

t=p1+1

wtT (y)yt−1, φ̂2(y) =
T∑

t=p1+1

wtT (y)yt , η̂j (y) =
T∑

t=p1+1

wtT (y)ut−j .

Theorem 3.2.1 Let us assume that model (6) holds.

(i) If, in addition,

(a)
∑T

t=p1+2(φ̂2(yt−p1−1) − φ2(yt−p1−1))
2/T

p−→ 0,

(b)
∑T

t=p1+2 ‖φ̂1(yt−p1−1) − φ1(yt−p1−1)‖2/T
p−→ 0,

(c)
∑T

t=p1+2(η̂j (yt−p1−1) − ηj (yt−p1−1))
2/T

p−→ 0, 1 ≤ j ≤ q,
(d) the covariance matrix C of (zt

t , st

t )
t is nonsingular, where zt = yt−1 − φ1(yt−p1−1), st,j =

ut−j − ηj (yt−p1−1) and st = (st,1, . . . , st,q)
t,

we have that, β̂
p−→ βo, θ̂

p−→ θo.

(ii) Let K ⊂ R be a compact set. If β̂
p−→ βo, θ̂

p−→ θo and supy∈K |φ̂2(y) − φ2(y)| p−→ 0 and

supy∈K ‖φ̂1(y) − φ1(y)‖ p−→ 0, we have that supy∈K |ĝ(y) − go(y)| p−→ 0.

Remark 3.2.1 When considering kernel-based smoothers, conditions ensuring that assumptions
(a) to (c) hold can be found in Lemma 6.6.7 in Härdle, Liang and Gao (2000). On the other hand,
the uniform convergence conditions required in (ii) imply (a) and (b) if the process yt is bounded.
Besides, the uniform consistency over compact sets can be obtained from Theorem 3.2 in Bosq
(1996). When considering the nearest neighbour with kernel weights, uniform consistency results
can be found in Collomb (1985).

Theorem 3.2.2 Let us assume that model (6) holds and that {yt : t ∈ Z} is a geometric α-
mixing process. Denote at = rtxt − E(rtxt ), where rt = yt − φ2(yt−p1−1) and xt = (zT

t , sT
t )T ,
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804 A. Bianco and G. Boente

with zt = yt−1 − φ1(yt−p1−1), st,j = ut−j − ηj (yt−p1−1) and st = (st,1, . . . , st,q)
T . Assume that

for some δ > 0, E‖at‖2+δ < ∞. If, in addition,

(a)
∑T

t=p1+2

(
φ̂2(yt−p1−1) − φ2(yt−p1−1)

)2
/
√

T
p−→ 0,

(b)
∑T

t=p1+2

∥∥∥φ̂1(yt−p1−1) − φ1(yt−p1−1)

∥∥∥2
/
√

T
p−→ 0,

(c)
∑T

t=p1+2

(̂
ηj (yt−p1−1) − ηj (yt−p1−1)

)2
/
√

T
p−→ 0, 1 ≤ j ≤ q

(d) the matrix C = Extxt

t is non–singular,
(e) the matrix D =∑∞

�=−∞ Cov(a0, a�) is non–singular,

we have that
√

T

(
β̂ − βo

θ̂ − θo

)
D−→ N(0, �),

where � = C−1DC−1.

As mentioned above, for kernel–based smoothers, conditions ensuring that assumptions (a) to
(c) hold can be found in Lemma 6.6.7 in Härdle et al. (2000).

3.3. Algorithm

In order to obtain a genuine estimator (i.e. that does not depend on the unknown residuals ut )
it is sufficient to replace in Equation (9) the unknown residuals by predicted ones. The follow-
ing iterative procedure provides a method to compute these estimators from initial estimates
g(0)(y) of go(y) and β(0) of βo. Denote by r̂t = yt − φ̂2(yt−p1−1) and ẑt = yt−1 − φ̂1(yt−p1−1).
The estimators can be computed through the following procedure:

(i) Denote by

û
(1)
t (ϑ) =

⎛⎝1 −
q∑

j=1

ϑjB
j

⎞⎠−1 (
yt − β(0)tyt−1 − g(0)

(
yt−p1−1

))
. (10)

As in Durbin (1959), the infinite sum can be approximated by a finite sum. Compute θ(1)=
argminϑ∈�L(1)(ϑ), where L(1)(ϑ) = 1/T

∑T
t=p1+2(û

(1)
t (ϑ))2. Define û

(1)
t = û

(1)
t (θ(1)).

(ii) Given û
(n)
t , define for p1 + 1 ≤ j ≤ q, the smoothers

η̂
(n)
j (y) =

T∑
t=j+1

wtT ;j (y)û
(n)
t−j ,

where

wtT ;j (y) = K((y − yt−p1−1)/hT )∑T
t=j+1 K((y − yt−p1−1)/hT )

and ŝ
(n)
t−j = û

(n)
t−j − η̂

(n)
j (yt−p1−1), for 1 ≤ j ≤ q with η̂

(n)
j ≡ 0, for 1 ≤ j ≤ p1.

(iii) Given θ(n) and v̂
(n)
t−j , define β(n) as

β(n) = argmin
b∈Rp1

T∑
t=p1+2

⎛⎝r̂t − bTẑt +
q∑

j=1

θ
(n)
j ŝ

(n)
t−j

⎞⎠2

.
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(iv) Given η̂
(n)
j (y), θ(n) and β(n), let

g(n)(y) = φ̂2(y) − β(n)T φ̂1(y) +
q∑

j=p1+1

θ
(n)
j η̂

(n)
j (y).

(v) Given β(n) and g(n), denote by

û
(n+1)
t (ϑ) =

⎛⎝1 −
q∑

j=1

ϑjB
j

⎞⎠−1 (
yt − β(n)tyt−1 − g(n)

(
yt−p1−1

))
and compute θ(n+1) = argminϑ∈�L(n+1)(ϑ), where L(n+1)(ϑ) =∑T

t=p1+2(û
(n+1)
t (ϑ))2/T .

Define û
(n+1)
t = û

(n+1)
t (θ(n+1)).

Iterate (ii) to (v) until convergence is obtained. Denote by ĝ, β̂ and θ̂ the resulting estimates.

Remark 3.2.2 Forecasting is one the most important goals in arma models. When moving
averages are present, it is typically performed after the parameters have been estimated by using
‘estimated residuals’. For our model prediction may be done as follows:

• For p1 + 2 ≤ τ ≤ t − 1, define ε̂τ = yτ − β̂
T
yτ−1 − ĝ

(
yτ−p1−1

)
, where ĝ and β̂ are the esti-

mators of the autoregression function and the autoregression parameters, respectively, and
ε̂τ = 0 otherwise.

• Given θ̂ an estimate of the moving average parameters, let ûτ =
(

1 −∑q

j=1 θ̂jB
j
)−1

ε̂τ .

• Predict the observation at time t as β̂
T
yt−1 + ĝ

(
yt−p1−1

)−∑q

j=1 θ̂j ût−j .

Remark 3.2.3 The initial estimates, g(0)(y) of go(y) and β(0) of βo can be computed by taking
θj = 0, 1 ≤ j ≤ q (i.e. assuming a partly linear autoregressive model). These estimates are linear
kernel-based estimators and are described in Härdle et al. (2000), where their asymptotic properties
are stated.

3.4. Data-driven selection of the smoothing parameters

An important issue in any smoothing procedure is the choice of the smoothing parameter. Under a
nonparametric regression model, two commonly used approaches are cross-validation and plug-
in. Cross-validation methods have been also extended to the dependent setting. Hart and Wehrly
(1986) studied the properties of the asymptotic mean square error of kernel smoothers and found
optimal bandwidths in the context of repeated measurements data. Hart andVieu (1990) studied the
behaviour of a cross-validated bandwidth selector for kernel density estimators under an α- mixing
condition. They modified the leave-out technique involved in the cross-validation method and they
proved that if the leave-out sequence, �n, does not increase too fast, the bandwidth that minimises
the cross–validation criterion is asymptotically optimal. In the case of the autoregression function,
Härdle and Vieu (1992) considered the kernel estimator when dealing with a stationary α−mixing
process and constructed data-driven bandwidths that asymptotically minimise the averaged square
error. On the other hand, Hall, Lahiri and Truong (1995) proved that, except for long-range
dependent data, under general conditions, the asymptotically optimal bandwidth for the density
estimation under independence is still a good choice. They proposed a plug-in rule and through
a simulation study they compared their proposal with the leave-out cross-validation bandwidths.
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See also, Györfi, Härdle, Sarda and Vieu (1989) and Hart (1996) for a review. In the context of
partly linear autoregression models, the selection of the smoothing parameter has been described
in Härdle et al. (2000).

We may consider a cross-validation approach as follows, where to make explicit the dependence
on the bandwidth h we introduce the superindex h for the estimators.

• Split the sample into two subsets by selecting a proportion 0 < α < 1 of the number of observa-
tion. Let Iα = {1, . . . , [αT ]} stand for the indexes of these observations and Jα for the indexes
of the remaining ones.

• For each given h, compute the estimates β̂
(h)

, ĝ(h) and θ̂
(h)

based only on the observations
{yt , t ∈ Iα}.

• Choose

ĥn = argmin
h

∑
t∈Jα

(
yt − ŷ

(h)
t

)2
,

where the predicted observation at time t , ŷ
(h)
t = β̂

(h)T
yt−1 + ĝ(h)(yt−p1−1) −∑q

j=1 θ̂
(h)
j û

(h)
t−j , is

computed as suggested in Remark 3.2.2 using β̂
(h)

, ĝ(h), θ̂
(h)

and the observations {yt , t ∈ Jα}.
For small sample sizes, one may adapt the time series cross-validation criterion introduced by
Hart (1994).

4. An asymptotic test for H0 : θj = 0, 1 ≤ j ≤ q.

Usually, the moving average component is introduced in order to decrease, in the autoregression
function, the dependence of the past. Therefore, it is quite natural to check for a given data set if
it is worth to include the ma component. Hence, the aim of this section is to provide a test statistic
to test H0 : θ = (θ1, . . . , θq)

T = 0.
According to the following Lemma, we can consider an equivalent test for the first q coefficients

of the inverted MA operator.

Lemma 4.1 Let us assume that model (6) holds. Then, H0 : θ = (θ1, . . . , θq)
T = 0 is equivalent

to H0 : γ (q) = (γ1, . . . , γq)
T = 0, where γj are the coefficients of (1 −∑q

j=1 θjB
j )−1, that is, γj

satisfy (1 −∑q

j=1 θjB
j )−1vt =∑∞

r=0 γrvt−r .

Let ĝ(0)(y) and β̂
(0)

be the linear kernel estimates of the autoregression function and autore-
gression parameters computed under the null hypothesis, that is, assuming a partly linear
autoregressive model yt = βT

o yt−1 + go(yt−p1−1) + ut , with ut independent of {yt−j , j ≥ 1}.
Denote v̂t = yt − β̂

(0)T
yt−1 − ĝ(0)(yt−p1−1). Following Durbin (1959), given ϑ1, . . . , ϑq , we

approximate the infinite sum ⎛⎝1 −
q∑

j=1

ϑjB
j

⎞⎠−1

v̂t =
∞∑

r=0

γr v̂t−r

by a finite sum
∑N

r=0 γr v̂t−r with N fairly large. Thus, we will denote û
(1)
t (γ) =∑N

r=0 γr v̂t−r ,

where γ = (γ0, . . . , γN)T with γ0 = 1.
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In order to test H0 : θ = (θ1, . . . , θq)
T = 0, we define γ̂ as

γ̂ = argmin
γ

1

T

T∑
t=p1+2

(
û

(1)
t (γ)

)2
.

Therefore, γ̂ solves
T∑

t=p1+2

û
(1)
t (γ̂)v̂t−j = 0, for j = 0, . . . , N

or, equivalently,
N∑

r=0

γ̂r ˆcov(v̂t−j , v̂t−r ) = 0,

where ˆcov(v̂t−j , v̂t−r ) =∑T
t=p1+2 v̂t−j v̂t−r/T .

The following theorem shows that, in order to test H0 : θ = (θ1, . . . , θq)
T = 0, we can reject

H0 with asymptotic α level if for some 1 ≤ i ≤ q,
√

T |γ̂i | > zδ,

where δ = (1 + (1 − α)1/q)/2 with P(Z ≤ zα) = α and Z ∼ N(0, 1).

Theorem 4.1 Let us assume that model (6) holds. Assume that β̂
(0)

and ĝ(0) are consistent

estimators of βo and go such that
√

T (βo − β̂
(0)

) = Op(1). Then, under H0 : θ = (θ1, . . . , θq)
T =

0, we have that √
T γ̂

D−→ N(0, I). (11)

5. Monte Carlo

5.1. Estimation

A simulation study was carried out to study the performance of the proposal given in Section
3.2. We have considered a Gaussian kernel smoother such that its interquartile range is 0.5 and
we performed 500 replications. In order to stabilise the series, we first generate a series of size
N = 2000 following the model

zt = βozt−1 + go(zt−2) + ut − θ1ut−1 − θ2ut−2, 3 ≤ t ≤ N, (12)

where βo = 0.25, θ1 = θ2 = −0.1 and go(z) = 0.125π sin(πz) + 0.25z or go(z) = 0.5z. With
the second choice of go, Equation (12) results in an arma (2,2) model. As initial values, we
took z1 = z2 = 0. The innovations were i.i.d. normally distributed, ut ∼ N(0, 1), such that ut is
independent of {zt−1, zt−2, . . .}. The data set of size T = 1000 to be considered consists of the
series {yt : 1 ≤ t ≤ T }, where yt = zt+1000.

We considered three different bandwidth values, h = hT = 0.4, 0.8 and 1.2.
We have performed 10 steps with two different initial estimates g(0)(y) and β(0) of go(y) and βo,

respectively.As suggested in Remark 3.2.3, we computed g(0)(y) and β(0) assuming a partly linear
autoregressive model (i.e. θi = 0, i = 1, 2). This will be denoted as Method 1 in all tables and
figures. On the other hand, the so-called Method 2 consists in fitting an arma(2,2) to the data and
then taking β(0) = ζ1 and g(0)(y) = ζ2y, where ζi are the estimated autoregressive coefficients.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
a
n
t
i
a
g
o
 
d
e
 
C
o
m
p
o
s
t
e
l
a
]
 
A
t
:
 
1
7
:
3
3
 
3
 
M
a
r
c
h
 
2
0
1
1



808 A. Bianco and G. Boente

When go(z) = 0.125π sin(πz) + 0.25z, Figures 1–3 give the boxplots of β(1), θj
(1) for j = 1, 2

computed in the first step of the iterative procedure and the resulting estimates obtained in the
final step β(10), θj

(10) for j = 1, 2. Besides, Tables 1 and 2 give the mean square errors of the
final parameter estimates and the mean over replications of the estimated mean square errors
M(g(1), go) and M(g(10), go), where M(ĝ, g) =∑3≤t≤T ([ĝ(yt ) − g(yt )]2)/T , respectively.

On the other hand, when go(z) = 0.5 z, the left column of Figures 4–6 gives the boxplots of
β(1), θj

(1) for j = 1, 2 and the resulting estimates obtained in final step β(10), θj
(10) for j = 1, 2

computed using Method 1. In order to compare with the optimal estimating procedure for an
arma(2,2) model, as it is the case, the right column in Figures 4–6, shows the boxplots of the
initial estimates β(0), θj

(0) for j = 1, 2 computed under the arma(2,2) and those of the first and
final steps β(1), θj

(1), j = 1, 2, and β(10), θj
(10) for j = 1, 2, respectively, when using Method

2. Similarly, Tables 3 and 4 give the mean square errors of the final parameter estimates and the
mean over replications of M(g(0), go), M(g(1), go) and M(g(10), go), respectively.
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Figure 1. Boxplot of the estimates of the autoregression parameter when go(z) = 0.125π sin(πz) + 0.25z.
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When go(z) = 0.125π sin(πz) + 0.25z, the best results are obtained for h = 0.4, the other two
bandwiths seem to oversmooth the autoregression function (see Table 2). The initial estimates of
the parameters and those obtained after 10 steps are more stable and less biased using Method
2 than Method 1, for all the considered bandwidths. Some benefit in variability is obtained after
10 steps of the iterative procedure in all cases, but the final estimates are more biased for larger
bandwidths. Besides, using Method 2, the final estimates of βo are more spread, while with Method
1 a larger bias is observed for the estimates of βo. Similar comments hold for the estimates of θ1

and θ2, even when the effect on the bias is more evident for the estimates of these parameters,
especially for greater values of the bandwidth. However, when balancing bias and variability, better
mean square errors are obtained using Method 1, in particular, when estimating the autoregression
parameter (Table 1). Table 2 shows that there is a clear improvement in the fit of g when we iterate
Method 2, while Methods 1 and 2 give mean square errors of the same order after 10 steps. On
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Figure 2. Boxplot of the estimates of the moving average parameter θ1 when go(z) = 0.125π sin(πz) + 0.25z.
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Method 2Method 1 h = 0.4
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Figure 3. Boxplot of the estimates of the moving average parameter θ2 when go(z) = 0.125π sin(πz) + 0.25z.

Table 1. Mean square error for the autoregressive and moving average parameter estimators for
go(z) = 0.125 π sin(πz) + 0.25z.

β(10) θ
(10)
1 θ

(10)
2

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

h = 0.4 0.0046 0.0098 0.0043 0.0103 0.0035 0.0049
h = 0.8 0.0060 0.0142 0.0056 0.0150 0.0051 0.0063
h = 1.2 0.0096 0.0180 0.0094 0.0189 0.0085 0.0087
Data–driven 0.0051 0.0100 0.0047 0.0104 0.0039 0.0051

the other hand, when using Method 1, quite surprisingly, the first step estimators provide lower
mean square errors than those obtained after 10 iterations.

When go(z) = 0.5 z, the choice h = 0.8 gives the lower mean square errors M(g(1), go) and
M(g(10), go) both for Methods 1 and 2, while h = 0.4 seems to be the best choice when estimating

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
S
a
n
t
i
a
g
o
 
d
e
 
C
o
m
p
o
s
t
e
l
a
]
 
A
t
:
 
1
7
:
3
3
 
3
 
M
a
r
c
h
 
2
0
1
1



Journal of Nonparametric Statistics 811

Table 2. Mean of M(g(1), go) and M(g(10), go) for go(z) = 0.125 π sin(πz) + 0.25z.

h = 0.4 h = 0.8 h = 1.2 Data–driven

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

M(g(1), go) 0.01503 0.03818 0.01774 0.03823 0.03614 0.05170 0.01653 0.04152
M(g(10), go) 0.02002 0.02445 0.02674 0.03114 0.05093 0.05241 0.02275 0.02788
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Figure 4. Boxplot of the estimates of the autoregression parameter when go(z) = 0.5z.

the moving average parameters (see Table 3). It is woth noticing that for this model, the first step
estimator g(1) using Method 1 gives smaller mean square errors than those obtained with Method
2. Moreover, the mean square error of g(1), when using Method 1, is quite closer to the optimal
one M(g(0), go) that corresponds to an arma(2,2) fit.
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Method 2Method 1
h = 0.4
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Figure 5. Boxplot of the estimates of the moving average parameter θ1 when go(z) = 0.5z.

The good performance of the first step estimates is quite surprising since, even when there is
nonlinearity and dependence, with Method 2 iterating is almost as good as a one-step method
with respect to the estimator of g. It also shows that Method 2 gives better results than Method 1.
In conclusion, our recommendation is to use a ten-step iteration procedure combined with initial
estimators computed assuming no ma structure.

5.2. Bandwidth selection

As in any situation in which we deal with nonparametric estimators, we have to face the decision
of how much smoothing is necessary. In fact, in our simulation study we have computed the
estimators using Methods 1 and 2 for different values of the bandwidth parameter and the results
show that the estimators may be affected by the choice of the bandwidth.
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Figure 6. Boxplot of the estimates of the moving average parameter θ2 when go(z) = 0.5z.

Table 3. Mean square error for the autoregressive and moving average parameter estimators for go(z) = 0.5z.

β(10) θ
(10)
1 θ

(10)
2

h Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

0.4 0.0035 0.0042 0.0034 0.0043 0.0029 0.0033
0.8 0.0045 0.0050 0.0043 0.0051 0.0047 0.0048
1.2 0.0072 0.0073 0.0069 0.0071 0.0099 0.0096

In order to select the smoothing parameter h, we consider the cross-validation criterion
described in Section 3.4, in which the estimates of go, βo, θo = (θ1, θ2)

T are computed just
using the first half of the sample (i.e. α = 0.5) and the smoothing parameter is chosen as the
value that minimises a global error computed from the second half of the sample. We have carried
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Table 4. Mean of M(g(0), go), M(g(1), go) and M(g(10), go) for go(z) = 0.5z.

h = 0.4 h = 0.8 h = 1.2

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

M(g(0), go) 0.00874 0.00874 0.00874
M(g(1), go) 0.01859 0.02459 0.01218 0.01611 0.01615 0.01524
M(g(10), go) 0.02429 0.02536 0.02147 0.02173 0.03521 0.03398

out a simulation study to assess the performance of the method. As in the previous section, we
performed 500 replications generating a series of size T = 1000 following model (12), where
βo = 0.25, θ1 = θ2 = −0.1 and go(z) = 0.125π sin(πz) + 0.25z.

For each bandwidth h, we computed the estimates β̂(h), ĝ(h), θ̂
(h)
1 and θ̂

(h)
2 using only

y1, . . . , y[T/2] (i.e. the first half of the sample). We define the cross-validation criterion

C(h) = 1

[T/2]
T∑

t=[T/2]+1

(yt − ŷ
(h)
t )2,

where the predicted observation at time t , ŷ
(h)
t = β̂(h)yt−1 + ĝ(h)(yt−2) − θ̂

(h)
2 û

(h)
t−2, is calculated

using β̂(h), ĝ(h), θ̂
(h)
1 , θ̂

(h)
2 and the second half of the sample, as described in Section 3.4. The

data-driven bandwidth selector is obtained as the value minimising C(h) over a grid of 50 points
in the interval [0.01, 1.5]. A refined search was performed if the minimum is attained at 1.5. The
final estimates of βo, go, θ1 and θ2 are computed with the resulting bandwidth. Figure 7 shows
the boxplots of the optimal bandwiths using Methods 1 and 2. Figure 8 shows the boxplots of
the data-driven estimates of the parameters obtained in the first and last steps of the iterative
procedures. As shown in Figure 8, the bandwidth selector tends to choose bandwidths around 0.5
for both methods. Besides, the bandwidth selectors when using Method 2 are slightly more spread
than the corresponding ones for Method 1. With respect to the estimation of the finite-dimensional
parameters, the data-driven estimates performed better than those with fixed bandwidths. Method
1 shows its advantage when combined with cross-validation both with respect to the estimation
of the finite-dimensional parameters and with respect to the estimation of the autoregression
function g.

0.
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0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Method 1 Method 2

Figure 7. Boxplot of the optimal data-driven bandwidths ĥ obtained using Methods 1 and 2.
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Figure 8. Boxplot of the estimates of the autoregression parameter βo, the moving average parameters θ1 and θ2 when
go(z) = 0.125π sin(πz) + 0.25z and the cross-validation bandwidth is used.

5.3. Test

We conduct a simulation study in order to assess the performance of the test proposed in
Section 4. We consider the simulation scheme given in the previous section and we take
go(z) = 0.125π sin(πz) + 0.25z and go(z) = 0.5z. We perform 5000 replications of the series
taking θ1 and θ2 in the set {−0.1, −0.05, 0}. According to the results obtained in the previous
section, we select the bandwidth hT = 0.4. We choose the nominal level of the tests as α = 0.05.

Table 5. Observed frequencies of rejection under the null hypothesis.

go(z) = 0.125 π sin(πz) + 0.25z go(z) = 0.5z

θ1 θ1

0 −0.05 −0.10 0 −0.05 −0.10

θ2 0 0 0 0.0020 0.0030 0.0086 0.0320
−0.05 0.0030 0.0078 0.0196 0.0410 0.1078 0.2318
−0.10 0.0338 0.0846 0.1588 0.2822 0.4518 0.6434
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816 A. Bianco and G. Boente

For each of the nine combinations, we compute the observed frequency of rejection of the null
hypothesis

H0 : θ1 = θ2 = 0.

Table 5 summarises the results obtained for each model. For both models, we can see that the test
is conservative. On the other hand, as expected, in both cases the observed frequencies of rejection
increase as long as the true parameters become far away from the null hypothesis, showing the
power of the test to reject H0 when the values of the parameters lie in the alternative region.
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Appendix

Proof of Proposition 2.1 As in Ango Nze (1998), in order to prove A1 it is enough to show that A1 holds for any
measurable set A = A1 × A2 × · · · × Ap1+p2 , with Ai measurables.

To fix ideas, we will begin with the simplest case p1 = p2 = 1. Let A = A1 × A2 be a Borelian set such that λ(A) > 0
and K ⊂ R

2 a compact set. Then, the transition probability satisfies the following

P(y, A) = IA2 (y1)

∫
A1

fε,y(v − mo(y))dv.

Since there exist bounded sets Bi ⊂ Ai such that λ(B) > 0, where B = B1 × B2, we get

P 2(y, A) =
∫

P(v, A)P (y, dv) =
∫

P((v1, y1), A)fε,y(v1 − mo(y))dv1

=
∫

A2

[∫
A1

fε,(v1,y1)(z − mo(v1, y1))dz

]
fε,y(v1 − mo(y))dv1

≥
∫

B2

[∫
B1

fε,(v1,y1)(z − mo(v1, y1))dz

]
fε,y(v1 − mo(y))dv1.

Let C1 =⋃y∈K(B2 − mo(y)) ⊂⋃y∈K(B2 − mo(y)) = K1. Note that K1 ⊂ R is a compact set, since mo is bounded on
K by H1. Similarly, define the compact sets

• K�
1 =⋃y∈K K1 + mo(y) ⊂ R,

• K�
2 = K�

1 × proj2(K), where proj2(K) is the projection over the second component of the set K,

• K��
1 =⋃y∈K

⋃
v∈K1

B1 − mo(v − mo(y), y1).

Therefore,

P 2(y, A) ≥ b(K1, K)b(K��
1 , K�

2)λ(B1)λ(B2) > 0

and A1 holds with n0 = 2.
We will show that A3 holds for n1 = 2. Indeed, if λ(A) = 0 then P 2(y, A) = ∫

A
P (y, v)dv = 0 for all y. On the other

hand, since fε,y(u) > 0 from H2, if P 2(y, A) = 0 for all y, we have that λ(A) = 0.
In the general situation, we have that the transition probability satisfies the following:

P(y, A) =
p1+p2−1∏

j=1

IAj+1 (yj )

∫
A1

fε,y(v − mo(y))dv.

Therefore, if λ(A) > 0, there exist bounded sets Bi ⊂ Ai such that λ(B) > 0, where B = B1 × · · · × Bp1+p2 , which
entails that for some constant C

P p1+p2 (y, A) ≥ C

p1+p2∏
j=1

λ(Bj ) > 0

and A1 holds with n0 = p1 + p2. Arguing as above, it is easy to see that A3 holds for n1 = p1 + p2. �

Proof of Proposition 2.3 Since H1 and H2 entail A1, the process {Yt } is strongly irreducible (Tweedie 1976). On the
other hand, Proposition 2.2, H1, H2 and H3 imply the ergodicity of {Yt } and, therefore, the conclusion follows from
Tweedie (1976). �

Proof of Theorem 3.1.1 Using that gb,ϑ(y) = φ2(y) − bTφ1(y) +∑q

j=1 ϑjηj (y) and

yt = βT
o (yt−1 − φ1(yt−p1−1)) + φ2(yt−p1−1) + ut −

q∑
j=1

θo,j (ut−j − ηj (yt−p1−1)), (A1)

we get that

yt − gb,ϑ(yt−p1−1) +
q∑

j=1

ϑjut−j − bTyt−1 = (βo − b)Tzt + ut +
q∑

j=1

(ϑj − θo,j )st,j ,
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818 A. Bianco and G. Boente

where zt = yt−1 − φ1(yt−p1−1) and st,j = ut−j − ηj (yt−p1−1). Therefore, since EF

(
ut st,j

) = 0 for 1 ≤ j ≤ q and
EF (ut zt ) = 0, we obtain that

M(b, ϑ) = EF

⎡⎣(βo − b)Tzt +
q∑

j=1

(ϑj − θo,j )st,j

⎤⎦2

+ EF u2
t ,

which implies that M(b, ϑ) ≥ M(βo, θo). The equality holds if and only if

P

⎛⎝(βo − b)Tzt +
q∑

j=1

(ϑj − θo,j )st,j = 0

⎞⎠ = 1. (A2)

If b 	= βo, Equation (A2) holds if and only if P(dTzt =∑q

j=1 aj st,j ) = 1 with aj = (ϑj − θo,j ), d = βo − b and ‖d‖ 	=
0, which is equivalent to

P

⎛⎝dTyt−1 = h(yt−p1−1) +
q∑

j=1

aj ut−j

⎞⎠ = 1,

where h(y) = dTφ1(y) −∑q

j=1 aj ηj (y), which contradicts assumption (a). Thus, b = βo and so Equation (A2) can be
written as

P

⎛⎝ q∑
j=1

(ϑj − θo,j )st,j = 0

⎞⎠ = 1. (A3)

If ϑ1 	= θo,1, dividing by ϑ1 − θo,1, we get

P

⎛⎝ut−1 = η1(yt−p1−1) +
q∑

j=p1+1

aj st,j

⎞⎠ = 1

for some constants aj . Using that ut−1 is independent of {yt−p1−1, ut−j , j ≥ 2}, we get again a contradiction with
assumption (b) which allows to conclude that ϑ1 = θo,1. The proof follows iteratively using assumption (b). �

Proof of Theorem 3.1.2 Denote zt = yt−1 − φ1(yt−p1−1), st,j = ut−j − ηj (yt−p1−1) and st = (st,1, . . . , st,q )T. Using
Equation (A1), since EF (ut (ut−j − ηj (yt−p1−1))) = 0 for 1 ≤ j ≤ q and EF (ut (yt−1 − φ1(yt−p1−1))) = 0, we get that
Equation (8) is equivalent to the linear system

L0(b, θ) = (βo − b)TEF ztzT
t +

q∑
j=1

(θo,j − θj )EF st,j zt = 0,

L�(b, θ) = (βo − b)TEF zt st,� +
q∑

j=1

(θo,j − θj )EF st,j st,� = 0.

This system of equations can be written as Cd = 0, where d = (bT, θT)T and C is the covariance matrix of (zT
t , sT

t ). Since
L0(βo, θo,j ) = 0 and L�(βo, θo,j ) = 0, it will be enough to show that C is non-singular, which follows from the required
assumptions. �

Proof of Theorem 3.2.1.(i) Note that

yt − ĝb,ϑ(yt−p1−1) +
q∑

j=1

ϑjut−j − bT yt−1

= (yt − φ̂2(t−p1−1)) − bT (yt−1 − φ̂1(t−p1−1)) +
q∑

j=1

ϑj (ut−j − η̂j (t−p1−1)).

So, if we denote r̂t = yt − φ̂2(yt−p1−1), ẑt = yt−1 − φ̂1(yt−p1−1), ŝt,j = ut−j − η̂j (t−p1−1) and ŝt = (ŝt,1, . . . , ŝt,q )T,

x̂t = (ẑT
t , ŝT

t )T, � = (bT, ϑT)T, �̂ = (β̂
T
, θ̂

T
)T, we obtain that

Mn(b, ϑ) = 1

T

T∑
t=p1+2

(
r̂t − bT ẑt + ϑT ŝt

)2 = 1

T

T∑
t=p1+2

(
r̂t − �Tx̂t

)2
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and �̂ = argmin�∈R
p1 ×� Mn(b, ϑ), which implies that

1

T

T∑
t=p1+2

x̂t x̂
T
t �̂ = 1

T

T∑
t=p1+2

r̂t x̂t .

Now, recall that rt = yt − φ2(yt−p1−1), zt = yt−1 − φ1(yt−p1−1), st,j = ut−j − ηj (yt−p1−1) and st = (st,1, . . . , st,q )T

and denote by xt = (zT
t , sT

t )T. Using that from (d), C = E(xtxT
t ) is non-singular and that �o = (βT

o , θT
o )T solves Equation

(8), we get that �o = C−1E(rtxt ) and so it is enough to show that

1

T

T∑
t=p1+2

(
rtxt − r̂t x̂t

) p−→ 0, (A4)

1

T

T∑
t=p1+2

(
xtxT

t − x̂t x̂
T
t

)
p−→ 0. (A5)

Note that
∑T

t=p1+2

(
rtxt − r̂t x̂t

)
/T = S1,T + S2,T , where

S1,T = 1

T

T∑
t=p1+2

rt
(
xt − x̂t

)
, (A6)

S2,T = 1

T

T∑
t=p1+2

(
rt − r̂t

)
x̂t . (A7)

Using Cauchy–Schwartz inequality, we get that

‖S1,T ‖2 ≤ 1

T

T∑
t=p1+2

r2
t

1

T

T∑
t=p1+2

∥∥xt − x̂t

∥∥2

≤ 1

T

T∑
t=p1+2

r2
t

⎛⎝ 1

T

T∑
t=p1+2

∥∥∥φ̂1(yt−p1−1) − φ1(yt−p1−1)

∥∥∥2 + 1

T

q∑
j=1

T∑
t=p1+2

(
η̂j (yt−p1−1) − ηj (yt−p1−1)

)2⎞⎠
(A8)

and

‖S2,T ‖2 ≤ 1

T

T∑
t=p1+2

(
rt − r̂t

)2 1

T

T∑
t=p1+2

‖x̂t‖2

≤ 1

T

T∑
t=p1+2

(
φ̂2(yt−p1−1) − φ2(yt−p1−1)

)2

⎧⎨⎩ 1

T

T∑
t=p1+2

‖xt‖2 + 1

T

T∑
t=p1+2

‖xt − x̂t‖2

⎫⎬⎭, (A9)

which together with assumptions (a) to (c) concludes the proof of Equation (A4). Similar arguments lead to Equation
(A5), concluding the proof of (i). The proof of (ii) is immediate. �

Proof of Theorem 3.2.2.(i) As in Theorem 3.2.1, if �̂ = (β̂
T
, θ̂

T
)T, we have that

1

T

T∑
t=p1+2

x̂t x̂
T
t �̂ = 1

T

T∑
t=p1+2

r̂t x̂t .

In the proof of Theorem 3.2.1, we have shown that
∑T

t=p1+2 x̂t x̂
T
t /T

p−→ C, thus it remains to obtain the asymptotic
distribution of

√
T ŜT = 1√

T

T∑
t=p1+2

(
r̂t x̂t − E(rtxt )

)
.

Note that ŜT = ST − (S1,T + S2,T ), where S1,T and S2,T are defined in Equations (A6) and (A7), respectively, and
ST =∑T

t=p1+2(rtxt − E(rtxt ))/T . Using the bounds given in Equations (A8) and (A9) together with assumptions (a) to
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(c), it follows immediately that ‖S1,T ‖ + ‖S2,T ‖ p−→ 0. On the other hand, using Theorem 1.7 in Bosq (1996), we obtain

that
√

T ST
D−→ N(0, D), which concludes the proof. �

Proof of Lemma 4.1 Denote I the identity operator. Note that since

I =
(

1 −
q∑

r=1

θrB
r

)⎛⎝ ∞∑
j=0

γjB
j

⎞⎠ =
∞∑

j=0

γjB
j − θ1

∞∑
j=0

γjB
j+1 − · · · − θq

∞∑
j=0

γjB
j+q

I = γ0 + (γ1 − θ1γ0)B + (γ2 − θ1γ1 − θ2γ0)B
2 + · · · + (γq − θ1γq−1 − θ2γq−2 − · · · − θqγ0)B

q

+
∞∑

j=q+1

(γj − θ1γj−1 − θ2γj−2 − · · · − θqγj−q )Bj ,

we have that γ0 = 1 and γj =∑hj

r=1 θrγj−r with hj = min(j, q). Therefore, θ1 = θ2 · · · = θq = 0 is equivalent to γ1 =
γ2 · · · = γq = 0. �

Proof of Theorem 4.1. Denoting ĉj−r =∑T
t=p1+2 v̂t−j v̂t−r /T , we have that γ̂ satisfies ĉj +∑N

r=1 γ̂r ĉj−r = 0 and so∑N
r=1 γ̂r ĉj−r = −ĉj , j = 1, . . . , N .
In order to derive the asymptotic distribution under the null hypothesis, we will use the relationship among γ̂ and the

estimated covariances ĉj−r . Since yt = βT
o yt−1 + go(yt−p1−1) + ut , under H0, we have that v̂t = (βo − β̂

(0)
)Tyt−1 +

go(yt−p1−1) − ĝ(0)(yt−p1−1) + ut . Let �β = (βo − β̂
(0)

) and �g(y) = go(y) − ĝ(0)(y), then we get that

v̂t−j v̂t−r = �T
β

{
yt−j−1ut−r + yt−r−1ut−j

}+ �T
βyt−j−1yT

t−r−1�β

+ �T
β

{
yt−j−1�g(yt−r−p1−1) + �g(yt−j−p1−1)yt−r−1

}+ �g(yt−r−p1−1)�g(yt−j−p1−1)

+ �g(yt−j−p1−1)ut−r + �g(yt−r−p1−1)ut−j + ut−rut−j

and so we can write ĉj−r =∑7
�=1 S�, corresponding to the seven terms of the above expression for v̂t−j v̂t−r .

Using analogous arguments to those considered in Lemma 6.6.7 of Härdle et al. (2000), it is easy to see that
√

T Sj
p−→ 0,

3 ≤ j ≤ 6. On the other hand, since
√

T (βo − β̂
(0)

) = Op(1) and ut is independent of {yt−j }j≥1, we get that
√

T (S1 +
S2)

p−→ 0. Thus, the asymptotic behaviour of ĉj−r is that of cj−r =∑T
t=p1+2 ut−rut−j /T .

Besides, γ̂ = (γ̂1, . . . , γ̂N )T solves Ĉγ̂ = −ĉ, where

Ĉ =
⎛⎜⎝ ĉ0 ĉ1 . . . ĉN−1

ĉ1 ĉ2 . . . ĉN−2
· · · · · · · · · · · ·
· · · · · · · · · · · ·

⎞⎟⎠ p−→ σ 2I

with σ 2 = V ar(ut ) and ĉ = (ĉ1, . . . , ĉN )T. As mentioned above, the asymptotic behaviour of ĉ coincides with that of
c = (c1, . . . , cN )T which entails

√
T γ̂ = −Ĉ

−1
ĉ
√

T

= −Ĉ
−1

c
√

T + op(1)

= −Ĉ
−1

D̂
√

T ρ̂ + op(1),

where D̂ = diag(c0, . . . , c0) = c0I and ρ̂ = (ρ̂1, . . . , ρ̂N )T is the vector of estimated correlations. From Theorem 5.7.1

of Anderson (1994), we have that
√

T ρ̂
D−→ N(0, I) and so Equation (11) follows. �
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