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Abstract We present a new probabilistic algorithm to find a finite set of points in-
tersecting the closure of each connected component of the realization of every sign
condition over a family of real polynomials defining regular hypersurfaces that inter-
sect transversally. This enables us to show a probabilistic procedure to list all feasible
sign conditions over the polynomials. In addition, we extend these results to the case
of closed sign conditions over an arbitrary family of real multivariate polynomials.
The complexity bounds for these procedures improve the known ones.

Keywords Real multivariate polynomials · Sign conditions · Consistency problem ·
Complexity

1 Introduction

Given polynomials f1, . . . , fm ∈ R[x1, . . . , xn], a sign condition σ ∈ {<,=,>}m,
or a closed sign condition σ ∈ {≤,=,≥}m, is said to be feasible if the system
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f1(x)σ10, . . . , fm(x)σm0 has a solution in R
n, and the set of its solutions is called the

realization of σ . One of the basic problems in computational semialgebraic geome-
try is to decide whether a sign condition is feasible. This problem is a particular case
of quantifier elimination and, on the other hand, many elimination algorithms use
subroutines determining all the feasible sign conditions for a family of polynomials.

The first elimination algorithms over the reals are due to Tarski [41] and Sei-
denberg [39], but their complexities are not elementary recursive. Collins [16] was
the first to obtain a doubly exponential complexity. In [21], Grigor’ev and Vorobjov
present an algorithm with single exponential complexity to decide the consistency of
a system of equalities and inequalities by studying the critical points of a function
in order to obtain a finite set of points intersecting each connected component of the
solution set. This same idea was used to obtain more efficient quantifier elimination
procedures in [25, 32] and [7]. The procedure in this last paper relies on previous
results from [8], where the authors obtain the best known complexity bound, in the
deterministic model, for the computation of a set of points meeting every connected
component of each feasible sign condition over an arbitrary family of polynomials:
namely, for m polynomials in n variables of degrees bounded by d , this set can be
computed within mn+1dO(n) arithmetic operations. The specific problem of consis-
tency for equalities over R was also treated through the critical point method after-
wards. In [34], the non-emptiness of a real variety defined by a single equation is
studied and, in [2], an algorithm is given to deal with arbitrary positive dimensional
systems.

Several probabilistic procedures lead to successive complexity improvements. Us-
ing classical polar varieties, in [3] and [4], the case of a smooth compact variety given
by a regular sequence is tackled within a complexity depending polynomially on an
intrinsic degree of the systems involved and the input length. To achieve this com-
plexity, straight-line program encoding of polynomials and an efficient procedure
to solve polynomial equation systems over the complex numbers ([18]) are used.
The compactness assumption is dropped in [5] and [6], by introducing generalized
polar varieties. The main complexity result in these papers is that the computation
of a finite set which contains at least one sample point for each connected compo-
nent of the considered real variety can be achieved in time O

((
n
m

)
Ln4m2d2δ2

)
up

to poly-logarithmic factors, where δ ≤ dnmn−m is a suitably defined degree of the
real interpretation of the input reduced regular sequence of polynomials and L is
the length of a straight-line program encoding these polynomials. The non-compact
case is also considered in [36] for a smooth equidimensional variety defined by a
radical ideal by studying projections over polar varieties, and an extension to the
non-equidimensional situation is presented in [37]. Finally, [35] describes an algo-
rithm computing at least one point in each connected component of a semi-algebraic
set defined by a single inequality, which is based on the computation of generalized
critical points, within O(n7d4n) arithmetic operations.

In this paper, we consider the problem of determining all feasible sign conditions
(or closed sign conditions) over a given finite family of multivariate polynomials
f1, . . . , fm ∈ R[x1, . . . , xn]. We first present a probabilistic algorithm that obtains
a finite set of points intersecting the closure of each connected component of the
realization of every sign condition over the given polynomials under the following
regularity condition:
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Assumption 1 For every x ∈ C
n and every {i1, . . . , is} ⊂ {1, . . . ,m}, if fi1(x) =

· · · = fis (x) = 0, then {∇fi1(x), . . . ,∇fis (x)} is linearly independent.

In addition, for families of arbitrary polynomials, we show a probabilistic algo-
rithm that computes a finite set of points intersecting each connected component of
the realization of every closed sign condition. The input and intermediate computa-
tions in our algorithms are encoded by straight-line programs (see Sect. 2.2). The
output is described by means of geometric resolutions, that is to say, by rational
parametrizations of 0-dimensional varieties represented by univariate polynomials
encoded in the usual way (namely, by their coefficient vectors). In both situations,
the output of the algorithm enables us to determine all the feasible closed sign con-
ditions over the polynomials by evaluating their signs at the computed points, which
is done by using the techniques in [15]; moreover, in the first case, we can determine
all feasible sign conditions (see Theorems 17 and 26).

A sketch of our main algorithms is the following. Given f1, . . . , fm ∈
R[x1, . . . , xn], a generic change of variables prevents asymptotic behavior with re-
spect to the projection to the first coordinate x1 for each connected component
C ⊂ R

n of every feasible (closed) sign condition over f1, . . . , fm: either C projects
onto R or its projection is a proper (possibly unbounded) interval whose endpoints
have a non-empty finite fiber in C. In the latter case, points in C are obtained as
extremal points of x1. These extremal points are solutions of particular systems of
polynomial equations which are dealt with by deformation techniques that enable the
computation of geometric resolutions of finite sets including them. To find points in
the components projecting onto R, the set is intersected with {x1 = p1} for a particu-
lar value p1, and the algorithm continues recursively.

The following theorem states our main results (see Theorems 15 and 25):

Theorem 2 Let K be an effective subfield of R. There are probabilistic algorithms to
perform the following tasks:

• Given polynomials f1, . . . , fm ∈ K[x1, . . . , xn] satisfying Assumption 1, with de-
grees bounded by d ≥ 2 and encoded by a straight-line program of length
L, obtain a finite set of points intersecting the closure of each connected
component of the realization of every sign condition over f1, . . . , fm within

O
(∑min{m,n}

s=1

(
m
s

)((
n−1
s−1

)
dn

)2
L
)

operations in K up to poly-logarithmic factors.
• Given arbitrary polynomials f1, . . . , fm ∈ K[x1, . . . , xn], with degrees bounded by

an even integer d and encoded by a straight-line program of length L, obtain a fi-
nite set of points intersecting each connected component of the realization of every

closed sign condition over f1, . . . , fm within O
(∑min{m,n}

s=1 2s
(
m
s

)((
n−1
s−1

)
dn

)2
(L +

d)
)

operations in K up to poly-logarithmic factors.

The condition d ≥ 2 is only required in order to simplify some complexity bounds.
Even though Assumption 1 cannot be checked within the complexity order of our
algorithms, it is met by generic polynomial families. The factor

(
n−1
s−1

)
dn in the com-
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plexity estimates is an upper bound for the bihomogeneous Bézout numbers arising
from the Lagrange characterization of critical points of projections (cf. [37]). In fact,
one of the new tools to achieve the stated complexity order, which improves the pre-
vious ones depending on the same parameters, is the use of algorithmic deformation
techniques specially designed for bihomogeneous systems (for a similar approach to
solving bihomogeneous systems, see [24]). Up to now, the polynomial systems used
to characterize critical points were handled with general algorithms solving polyno-
mial equations over the complex numbers (see, for instance, [1, 20, 33], and [30]).
Another important feature of the deformation techniques we use is that they enable
us to locate a finite subset of representative points in the solution set of the considered
Lagrange systems for arbitrary polynomial families.

A standard technique in real elimination is to take sums of squares and introduce
infinitesimals to reduce the problem to the study of a smooth and compact real hy-
persurface. As this leads to an artificial growth of the parameters involved in the
complexity estimates, a further advantage of our techniques is that we work directly
with the input equations, as in [36] and [6], instead of using these constructions.
Moreover, our work can be seen as an extension of [36] and [6] in the sense that we
deal not only with equations but also with inequalities. In particular, the algorithm
in [36], which only works for the case of smooth equidimensional varieties defined
by a radical ideal, considers a family of equation systems equivalent to the ones in-
troduced in the recursive stages of our algorithm, but those systems involve a large
number of polynomials and do not have any evident structure. Let us remark that the
use of infinitesimals in previous works serves also the purpose of finding representa-
tive points for open sign conditions defined by arbitrary polynomials. To achieve this
task, which is not considered in this paper, the use of infinitesimals still seems to be
unavoidable.

We also prove that our deformation based approach can be applied to deal with
sign conditions over bivariate systems without any assumption on the polynomials.
We expect this can be extended to general multivariate polynomials. This is the sub-
ject of our current research. Finally, we adapt our techniques to the case of an arbitrary
multivariate polynomial.

All the complexity bounds in this paper refer to the number of arithmetic oper-
ations. The bit complexity analysis of our algorithms would require a further char-
acterization of the generic choices involved as well as bit complexity estimates for
some previous subroutines we use, which seem to be difficult to obtain.

This paper is organized as follows: In Sect. 2, we introduce some basic notions and
notation that will be used throughout the paper. Section 3 is devoted to presenting the
basic ingredients to be used in the design of our algorithms. In Sect. 4, we present
our main algorithms to determine all feasible sign conditions over polynomial fami-
lies satisfying regularity assumptions. In Sect. 5, we consider the same problem for
closed sign conditions over arbitrary multivariate polynomials. The last section con-
tains our results on sign conditions over bivariate polynomial families and over a
single multivariate polynomial.
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2 Preliminaries

2.1 Notation

Throughout this paper Q, R and C denote the fields of rational, real and complex
numbers, respectively, N denotes the set of positive integers and N0 := N ∪ {0}. If k

is a field, k̄ will denote an algebraic closure of k.
For n ∈ N and an algebraically closed field k, we denote by A

n
k and P

n
k (or simply

by A
n or P

n if the base field is clear from the context) the n-dimensional affine space
and projective space over k, respectively, equipped with their Zariski topologies. For
a subset X of one of these spaces, we will denote by X its closure. We adopt the usual
notions of dimension and degree of an algebraic variety V (see, for instance, [40] and
[22]).

We will denote a projections on a set of coordinates x by πx . For short, a projection
on the kth coordinate will also be denoted by πk .

For any non-empty set A ⊂ R
n, A will denote its closure with respect to the

usual Euclidean topology. We define Zinf(A) = {(x1, . . . , xn) ∈ A | x1 = infπ1(A)}
if π1(A) is bounded from below, and Zinf(A) = ∅ otherwise. Similarly, Zsup(A) =
{(x1, . . . , xn) ∈ A | x1 = supπ1(A)} if π1(A) is bounded from above, and Zsup(A) =
∅ otherwise. Finally, we denote Z(A) = Zinf(A) ∪ Zsup(A).

Throughout this paper, log will denote logarithm to the base 2.

2.2 Algorithms and Complexity

The algorithms we consider in this paper are described by arithmetic networks over
an effective base field K ⊂ R (see [43]). The notion of complexity of an algorithm we
consider is the number of operations and comparisons over K.

The objects we deal with are polynomials with coefficients in K. Throughout our
algorithms we represent each polynomial either as the array of all its coefficients
in a pre-fixed order of its monomials (dense form) or by a straight-line program.
Roughly speaking, a straight-line program (or slp, for short) over K encoding a list of
polynomials in K[x1, . . . , xn] is a program without branches (an arithmetic circuit)
which enables us to evaluate these polynomials at any given point in K

n. The number
of instructions in the program is called the length of the slp (for a precise definition
we refer to [14, Definition 4.2]; see also [23]).

We will do operations with polynomials encoded in both these ways. To estimate
the complexities we will use the following results: Operations between univariate
polynomials with coefficients in a field K of degree bounded by d in dense form can
be done using O(d log(d) log log(d)) operations in K (see [44, Chap. 8]). From an
slp of length L encoding a polynomial f ∈ K[x1, . . . , xn], we can compute an slp
with length O(L) encoding f and all its first order partial derivatives (see [10]).

2.3 Geometric Resolutions

A way of representing zero-dimensional affine varieties which is widely used in com-
puter algebra nowadays is a geometric resolution. This notion was first introduced in
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the works of Kronecker and König in the last years of the nineteenth century ([29]
and [28]) and appears in the literature under different names (rational univariate rep-
resentation, shape lemma, etc.). For a detailed historical account on its application in
the algorithmic framework, we refer the reader to [20]. The precise definition we are
going to use is the following:

Let k be a field of characteristic 0 and V = {ξ (1), . . . , ξ (D)} ⊂ A
n

k̄
be a zero-

dimensional variety defined by polynomials in k[x1, . . . , xn]. Given a separating lin-
ear form � = u1x1 + · · · + unxn ∈ k[x1, . . . , xn] for V (that is, a linear form � such
that �(ξ (i)) 	= �(ξ (j)) if i 	= j ), the following polynomials completely characterize
the variety V :

• the minimal polynomial q := ∏
1≤i≤D(U − �(ξ (i))) ∈ k[U ] of � over the variety V

(where U is a new variable),
• a polynomial q̃ ∈ k[U ] with deg(q̃) < D and relatively prime to q ,
• polynomials w1, . . . ,wn ∈ k[U ] with deg(wj ) < D for every 1 ≤ j ≤ n satisfying

V =
{(

w1

q̃
(η), . . . ,

wn

q̃
(η)

)
∈ k

n
∣∣∣∣ η ∈ k, q(η) = 0

}
.

The family of univariate polynomials q, q̃,w1, . . . ,wn ∈ k[U ] is called a geometric
resolution of V (associated with the linear form �).

We point out that the polynomial q̃ appearing in the above definition is invertible in
k[U ]/(q(U)). Setting vk(U) := q̃−1(U)wk(U) mod (q(U)) for every 1 ≤ k ≤ n, we
are lead to the standard notion of geometric resolution: a family of n+1 polynomials
q, v1, . . . , vn in k[U ] satisfying V = {(v1(η), . . . , vn(η)) ∈ k

n | η ∈ k, q(η) = 0}.
We will use both definitions alternatively, since the complexity of passing from one
representation to the other does not modify the overall complexity of our algorithms.
Which notion is used in each case will be clear from the number of polynomials.

3 General Approach

3.1 Avoiding Asymptotic Situations

For any non-empty set A ⊂ R
n we define Zinf(A, k) = {(x1, . . . , xn) ∈ A | xk =

infπk(A)} if πk(A) is bounded from below, and Zinf(A, k) = ∅ otherwise. Similarly,
Zsup(A, k) = {(x1, . . . , xn) ∈ A | xk = supπk(A)} whenever πk(A) is bounded from
above, and Zsup(A, k) = ∅ otherwise. Finally, Z(A,k) = Zinf(A, k) ∪ Zsup(A, k).
In particular, when k = 1, Zinf(A,1), Zsup(A,1) and Z(A,1) will be denoted by
Zinf(A), Zsup(A) and Z(A), respectively, as has already been stated in Sect. 2.1.

The precise conditions achieved by a generic linear change of variables are stated
in the following proposition:

Proposition 3 Let f1, . . . , fm be n-variate polynomials with real coefficients. After
a generic linear change of variables over Q, for every semialgebraic set P defined
in R

n by a Boolean formula on the polynomials f1, . . . , fm involving equalities and
inequalities to zero and every p = (p1, . . . , pn) ∈ R

n, if 1 ≤ k ≤ n and C is a con-
nected component of P ∩ {x1 = p1, . . . , xk−1 = pk−1}, then Z(C,k) is a finite set
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(possibly empty). Moreover, if πk(C) is bounded from below, then Zinf(C, k) is not
empty, and, if πk(C) is bounded from above, then Zsup(C, k) is not empty.

To prove Proposition 3, we will use the following auxiliary lemma:

Lemma 4 Let {fij }1≤i≤n,1≤j≤li ⊂ R[x1, . . . , xn] be a family of nonzero polynomials
satisfying simultaneously:

(a) for 1 ≤ i ≤ n, {fij }1≤j≤li is contained in R[x1, . . . , xi], it is closed under deriva-
tion with respect to the variable xi , and every polynomial in it is quasi-monic
(that is, monic up to a constant) with respect to xi ,

(b) for 1 < i ≤ n, {f(i−1)j }1≤j≤li−1 slices {fij }1≤j≤li in the sense of [13, Definition
2.3.4].

Let p = (p1, . . . , pn) ∈ R
n, 1 ≤ i ≤ n, and P ⊂ R

i be a semialgebraic set defined
by a Boolean formula on the polynomials fij , 1 ≤ j ≤ li , involving equalities and
inequalities to zero. For 1 ≤ k ≤ i, let C be a connected component of P ∩ {x1 =
p1, . . . , xk−1 = pk−1}. Then the set Z(C,k) is finite (possibly empty). Moreover, if
πk(C) is bounded from below, then Zinf(C, k) 	= ∅, and, if πk(C) is bounded from
above, then Zsup(C, k) 	= ∅.

Proof As for every 1 ≤ k ≤ n the family {fij (p1, . . . , pk−1, xk, . . . , xn)}k≤i≤n,1≤j≤li

⊂ R[xk, . . . , xn] satisfies the hypotheses, it is enough to prove the lemma for k = 1.
For i = 1, the result is clear.
Suppose the statement is true for i −1. Let π : R

i → R
i−1 be the projection on the

first i − 1 coordinates. Following the notation in [13, Chap. 2], let A1, . . . ,A� be the
semialgebraic sets giving the slicing of R

i−1 with respect to fi1, . . . , fili given by the
polynomials f(i−1)1, . . . , f(i−1)li−1 and, for 1 ≤ s ≤ �, let ξs,1 < · · · < ξs,as : As → R

be the continuous semialgebraic functions that slice As × R. Let As,1, . . . ,As,us be
the connected components of As .

Note that C is a finite union of some sets of the partitions of the sets As,u × R

given by ξs,1, . . . , ξs,as and π(C) is a finite union of sets As,u. If π(C) = ⋃
h Ash,uh

,
then Z(π(C)) ⊂ ⋃

h Z(Ash,uh
). Since each Ash,uh

is a connected component of Ash ,
which can be described by a Boolean formula involving equalities and inequalities to
zero of f(i−1)1, . . . , f(i−1)li−1 , by inductive hypothesis, each Z(Ash,uh

) is finite and,
therefore, Z(π(C)) is finite too. Now, if w ∈ Z(C), then π(w) ∈ Z(π(C)). Moreover,
at least one of the quasi-monic polynomials fi1, . . . , fili vanishes at w and, therefore,
Z(C) is a finite set.

Suppose now that π1(C) is an interval bounded, for example, from below. Then,
by the inductive assumption, there exists z = (z1, . . . , zi−1) ∈ Zinf(π(C)) ⊂ π(C).
Assume further that A1,1 ⊂ π(C), z ∈ Zinf(A1,1) and γ : [0,1] → A1,1 is a contin-
uous semialgebraic curve such that γ ((0,1]) ⊂ A1,1 and γ (0) = z (see [13, The-
orem 2.5.5]). Let x̃ = γ (1). Since x̃ ∈ A1,1 ⊂ π(C), there exists y ∈ R such that
(x̃, y) ∈ C. Using [13, Lema 2.5.6], each ξ1,a can be extended continuously to A1. Let
us denote by ξ1,a also this extension. Depending on the position of y with respect to
the values ξ1,1(x̃) < · · · < ξ1,a1(x̃), it is easy in any case to define a continuous semi-
algebraic function h : [0,1] → R such that the continuous function γ̃ : [0,1] → R

i
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defined as γ̃ (t) = (γ (t), h(t)) satisfies γ̃ ((0,1]) ⊂ C (note that the signs of the
polynomials fi1, . . . , fili are constant over γ̃ ((0,1])) and, therefore, (z,h(0)) =
γ̃ (0) ∈ C. Moreover, as z1 = infπ1(π(C)) = infπ1(C), (z,h(0)) ∈ Zinf(C). �

Now, we can prove Proposition 3:

Proof By Lemma 4, it suffices to show that there exists a Zarisky open set U ⊂
Gl(n,C) such that, for every V0 ∈ Q

n×n ∩ U there exists a family of polynomials
{fij }1≤i≤n,1≤j≤li ⊂ R[x] satisfying the hypotheses of the lemma, and such that, for
1 ≤ j ≤ m, fnj (x) = fj (V0x) with m ≤ ln. Let V be a matrix whose entries are new
variables vrs , 1 ≤ r, s ≤ n and consider {Fij }1≤i≤n,1≤j≤li ⊂ R[v, x] defined in the
following way:

• Take l′n = m and, for 1 ≤ j ≤ l′n, let Fnj (V, x) = fj (V x). Then, for 1 ≤ j0 ≤ l′n, if
degx Fnj0 = dnj0 , add the first dnj0 − 1 derivatives of Fnj0 with respect to xn to the
list to obtain {Fnj }1≤j≤ln .

• From {F(i0+1)j }1≤j≤li0+1 ⊂ R[v, x1, . . . , xi0+1], form {Fi0j }1≤j≤l′i0
⊂

R[v, x1, . . . , xi0] by taking all possible resultants and subresultants with respect
to the variable xi0+1 between pairs of polynomials, not taking into account the
ones that are identically zero. Then, for 1 ≤ j0 ≤ l′i0 , if degx Fi0j0 = di0j0 , add the
first di0j0 − 1 derivatives of Fi0j0 with respect to the variable xi0 to obtain the
family {Fi0j }1≤j≤li0

.

Let 1 ≤ i ≤ n and 1 ≤ j ≤ li . Let dij := degx Fij and let qij ∈ R[v] be

the coefficient of the monomial x
dij

i in Fij ∈ R[v][x]. It can be shown induc-
tively for i = n, . . . ,1, that for every 1 ≤ j ≤ l′i and A ∈ Q

i×i , Fij (V ,Ax) =
Fij

(
V
(A 0

0 Idn−i

)
, x

)
, for every l′i + 1 ≤ j ≤ li and B ∈ Q

(i−1)×(i−1), Fij

(
V,

(
B 0
0 1

)
x
) =

Fij

(
V
(B 0

0 Idn−i+1

)
, x

)
, and (using these identities) that, for every 1 ≤ j ≤ li , qij 	= 0.

Define U = {V0 ∈ C
n×n | qij (V0) 	= 0 for 1 ≤ i ≤ n,1 ≤ j ≤ li}. By [9, Proposi-

tion 4.34 and Theorem 5.14], for every V0 ∈ Q
n×n ∩ U , the set {fij (x)}1≤i≤n,1≤j≤li

defined by fij (x) = Fij (V0, x) satisfies both conditions in Lemma 4. �

The following proposition is a major tool for our algorithms (cf. [36, Theorem 2]).

Proposition 5 Let f1, . . . , fm be n-variate polynomials with real coefficients. After a
generic change of variables, for every semialgebraic set P defined in R

n by a Boolean
formula on f1, . . . , fm involving equalities and inequalities to zero, and every p =
(p1, . . . , pn) ∈ R

n, if for 1 ≤ k ≤ n, P (k,p) is the set of all the connected components
of P ∩ {x1 = p1, . . . , xk−1 = pk−1}, then

{p} ∪
(

n⋃

k=1

⋃

C∈P (k,p)

Z(C, k)

)

is finite and intersects the closure of each connected component of P .
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Proof Proposition 3 ensures that this set is finite. Let C1 ∈ P (1,p). If π1(C1) is
bounded from above or below, again Proposition 3 states that Z(C1,1) is a finite
non-empty set and is included in C1. Otherwise, π1(C1) = R and C1 ∩{x1 = p1} 	= ∅.
Let C2 ∈ P (2,p) be a connected component of C1 ∩{x1 = p1}. If π2(C2) is bounded
from above or below, Z(C2,2) 	= ∅ and is included in C2 ⊂ C1. Otherwise, π2(C2) =
R and C1 ∩ {x1 = p1, x2 = p2} 	= ∅. Following this procedure, we obtain that either
there exists Ck ∈ P (k,p) such that Z(Ck, k) 	= ∅ and is included in Ck ⊂ C1 for
some 1 ≤ k ≤ n or p ∈ C1. �

The proof above leads to the recursive structure of our algorithm: For 2 ≤
k ≤ n, we may think the kth variable as the first one for the polynomials
fj (p1, . . . , pk−1, xk, . . . , xn) for 1 ≤ j ≤ m. Therefore, it is enough to consider the
problem of finding extremal points for the projection over the first coordinate of the
closures of the connected components of a semialgebraic set.

3.2 Equations Defining Extremal Points

Let f1, . . . , fm ∈ R[x1, . . . , xn] and let S := {i1, . . . , is} ⊂ {1, . . . ,m}. If 1 ≤ s ≤
n − 1, the implicit function theorem implies that a point z with maximum or min-
imum first coordinate in a connected component of {fi1 = · · · = fis = 0} satisfies

fi1(z) = · · · = fis (z) = 0, rank

⎛

⎜⎜
⎝

∂fi1
∂x2

(z) · · · ∂fi1
∂xn

(z)

...
. . .

...
∂fis

∂x2
(z) · · · ∂fis

∂xn
(z)

⎞

⎟⎟
⎠ < s. (1)

This condition can be rewritten as
{

fi1(z) = · · · = fis (z) = 0,
∑s

j=1 μj∇fij (z) = (0, . . . ,0)
(2)

for μ1, . . . ,μs ∈ R not simultaneously zero, where ∇fij (z) denotes the vector ob-
tained by removing the first coordinate from the gradient ∇fij (z).

When s = 1, for z ∈ R
n, conditions (1) are equivalent to

fi1(z) = ∂fi1

∂x2
(z) = · · · = ∂fi1

∂xn

(z) = 0. (3)

When s ≥ n, we will simply consider the conditions

fi1(z) = · · · = fis (z) = 0. (4)

For every 2 ≤ s ≤ n−1, as system (2) is homogeneous in the variables μ1, . . . ,μs ,
we consider the variety WS ⊂ A

n
C

× P
s−1
C

defined as the zero set of this system. If
s = 1 or s ≥ n, let WS be the variety defined by systems (3) and (4) respectively.

The following result is an adaptation to our context of the Karush–Kuhn–Tucker
conditions (see [31]) from non-linear optimization which generalize the Lagrange
multipliers theorem in order to consider equality and inequality constraints.
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Proposition 6 Let f1, . . . , fm ∈ R[x1, . . . , xn] and σ = (σ1, . . . , σm) ∈ {≤,<,=,>,

≥}m. Set Eσ = {i | σi = “ = ”}. Then, for every connected component C of the set
{x ∈ R

n | f1(x)σ10, . . . , fm(x)σm0}, we have

Z(C) ⊂
⋃

S 	=∅
Eσ ⊂S⊂{1,...,m}

πx(WS).

Proof Without loss of generality, assume Eσ = {1, . . . , l} (or Eσ = ∅ and l = 0)
and π1(C) is bounded from below. Let z = (z1, . . . , zn) ∈ Zinf(C) and S0 = {i ∈
{1, . . . ,m} | fi(z) = 0}. Note that Eσ ⊂ S0 and, even when l = 0, S0 	= ∅; then,
we may assume that S0 = {1, . . . , t} with max{1, l} ≤ t ≤ m. We will show that
z ∈ πx(WS0).

If t ≥ n, we have z ∈ πx(WS0) by the definition of this set.
Assume now that t ≤ n − 1. If z /∈ πx(WS0), the set {∇fi(z), i ∈ S0} is linearly

independent. Let f : R
n → R

t be the map f = (f1, . . . , ft ). We may assume that the
minor corresponding to the variables n − t + 1, . . . , n in the Jacobian matrix Df (z)

is not zero. Applying the inverse function theorem to h(x) = (x1 − z1, . . . , xn−t −
zn−t , f1(x), . . . , ft (x)), there exist an open neighborhood U of z, ε ∈ R>0 and a
map g : (−ε, ε)n → U inverse to h : U → (−ε, ε)n. Moreover, we may assume that
ft+1, . . . , fm have constant signs on U .

Let w ∈ C ∩ U and let y = h(w). Let σ̃ ∈ {<,=,>}m be such that fi(w)̃σi0 for
1 ≤ i ≤ m. Then, the conditions y1 = w1 − z1 ≥ 0, yn−t+1σ̃10, . . . , ynσ̃t0 hold. Since
w ∈ C, for 1 ≤ i ≤ m, σ̃i ∈ {<,=} if σi = “ ≤ ”, σ̃i ∈ {>,=} if σi = “ ≥ ” and σ̃i = σi

otherwise. Hence, every point satisfying σ̃ also satisfies σ .
Let γ : [−ε/2, y1] → (−ε, ε)n be defined as γ (u) = (u, y2, . . . , yn). For u ∈

[−ε/2, y1] and 1 ≤ i ≤ t , fi(g ◦ γ (u)) = yn−t+i σ̃i0. Taking into account that, for
t + 1 ≤ i ≤ m, fi has constant sign over U and the image of g ◦ γ lies in U , we
also have that fi(g ◦ γ (u))̃σi0 for t + 1 ≤ i ≤ m. Therefore, the image of g ◦ γ

is contained in the realization of σ and, since it is a connected curve with a point
g ◦ γ (y1) = w in the connected component C, we conclude that it is contained in C.
Now, the first coordinate of g ◦ γ (−ε/2) is −ε/2 + z1 < z1, contradicting the fact
that z1 = infπ1(C). �

3.3 Deformation Techniques for Bihomogeneous Systems

In this subsection, we present briefly a symbolic deformation introduced in [18–20,
26], and [38], adapted to the bihomogeneous setting following [24].

3.3.1 The Deformation

Given polynomials h1(x), . . . , hs(x), hs+1(x,μ), . . . , hr (x,μ) ∈ K[x1, . . . , xn,

μ1, . . . ,μs], where 2 ≤ s ≤ n − 1 and r = s + n − 1 such that, for 1 ≤ i ≤ r ,
degx(hi) ≤ di ≤ d and, for s + 1 ≤ i ≤ r , hi is homogeneous of degree 1 in the
variables μ, we consider the associated equation system:

h1(x) = 0, . . . , hs(x) = 0, hs+1(x,μ) = 0, . . . , hr (x,μ) = 0. (5)
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Let W ⊂ A
n × P

s−1 be the variety this system defines. By the multihomogeneous
Bézout theorem ([40, Chap. 4, Sect. 2.1]), the degree of W is bounded by

D :=
(

s∏

i=1

di

)( ∑

E⊂{s+1,...,r},#E=n−s

∏

j∈E

dj

)
≤

(
n − 1

s − 1

)
dn. (6)

Let g1(x), . . . , gs(x), gs+1(x,μ), . . . , gr (x,μ) ∈ K[x1, . . . , xn,μ1, . . . ,μs] be
polynomials with degx(gi) = di for 1 ≤ i ≤ r and homogeneous of degree 1 in the
variables μ for s + 1 ≤ i ≤ r , such that:

(H) g1, . . . , gr define a 0-dimensional variety in A
n ×{μs 	= 0} ⊂ A

n ×P
s−1 with D

points s1, . . . , sD satisfying πx(si) 	= πx(sj ) for i 	= j , and the Jacobian determi-
nant of the polynomials obtained from g1, . . . , gr by dehomogenizing them with
μs = 1 does not vanish at any of these points.

We will specify polynomial systems meeting these conditions in Definitions 12 and
19 below.

Let t be a new variable. For every 1 ≤ i ≤ r , let

Fi := (1 − t)hi + tgi . (7)

Consider the variety V̂ ⊂ A
1 × A

n × P
s−1 defined by F1, . . . ,Fr , and write

V̂ = V (0) ∪ V (1) ∪ V, (8)

where V (0) is the union of the irreducible components of V̂ contained in {t = 0}, V (1)

is the union of its irreducible components contained in {t = t0} for some t0 ∈ C \ {0},
and V is the union of the remaining irreducible components of V̂ .

Lemma 7 With our previous assumptions and notation, πx,μ(V ∩ {t = 0}) is a finite
subset of W containing all its isolated points.

Proof Let V1 be an irreducible component of V and V 1 be its Zariski closure in
A

1 × P
n × P

s−1. The projection of V 1 to A
1 is onto and so, V 1 ∩ {t = 1} 	= ∅.

But our assumption on g1, . . . , gr implies that V 1 ∩ {t = 1} = V1 ∩ {t = 1}; then,
V1 ∩ {t = 1} 	= ∅ and it is 0-dimensional. It follows that dim(V1) = 1. Therefore, V

is a 1-equidimensional variety and thus πx,μ(V ∩ {t = 0}) is a finite set.
In order to prove the second part of the statement, note that W = πx,μ(V̂ ∩ {t =

0}) = πx,μ(V (0)) ∪ πx,μ(V ∩ {t = 0}). Now, an isolated point of W cannot belong to
πx,μ(V (0)), since the dimension of each of its irreducible components is at least 1;
hence, it lies in πx,μ(V ∩ {t = 0}). �

The same deformation can be applied to a system h1(x), . . . , hn(x) ∈ K[x1, . . . , xn]
with g1(x), . . . , gn(x) ∈ K[x1, . . . , xn] such that deg(gi) = deg(hi) for every 1 ≤ i ≤
n and having

∏n
i=1 deg(gi) common zeros in A

n.

 Author's personal copy 



206 Discrete Comput Geom (2010) 44: 195–222

3.3.2 A Geometric Resolution

Lemma 8 The variety defined in A
n

K(t)
× P

s−1
K(t)

by F1, . . . ,Fr as in (7) is 0-

dimensional and has D points S1, . . . , SD in {μs 	= 0} such that πx(Si) 	= πx(Sj )

for i 	= j . Moreover, these points can be considered as elements in K[[t − 1]]r .

Proof The multihomogeneous Bézout Theorem (see, for instance, [40, Chap. 4,
Sect. 2.1]) states that the degree of the variety is bounded by D. If si , 1 ≤ i ≤ D,
are the common zeros of g1, . . . , gs, gs+1, . . . , gr , the Jacobian of F1, . . . ,Fr with
respect to x1, . . . , xn,μ1, . . . ,μs−1 at t = 1 and (x,μ) = si is nonzero. The result
follows applying the Newton–Hensel lifting (see, for example, [26, Lemma 3]). �

Consider now new variables y1, . . . , yn and define �(x,μ,y) = �(x, y) =∑n
j=1 yjxj . For α1, . . . , αn ∈ C, let �α(x,μ) = �α(x) = ∑n

j=1 αjxj . Let

P(t,U,y) =
D∏

i=1

(
U − �(Si, y)

) =
∑D

h=0 ph(t, y)Uh

q(t)
= P̂ (t,U, y)

q(t)
∈ K(t)[U,y],

(9)
with P̂ (t,U, y) ∈ K[t,U, y] with no factors in K[t] \ K.

In order to compute P , we will approximate its roots. The required precision is
obtained from the following upper bound for the degree of its coefficients. A similar
result in the general sparse setting appears in [27, Lemma 2.3], but to avoid a possibly
cumbersome translation of our setting into sparse systems, we give an alternative
statement and its proof here.

Lemma 9 Using the notation in (9), degt P̂ (t,U, y) ≤ nD.

Proof Let Φ : V × A
n → A

n+2 be the morphism defined by Φ(t, x,μ,y) =
(t, �(x, y), y). It is easy to see that P̂ (t,U, y) is a square-free polynomial defining
ImΦ .

For a generic β = (β0, β1, . . . , βn) ∈ C
n+1, the polynomial P̂β(t) = P̂ (t, β0, β1,

. . . , βn) is square-free and satisfies degt P̂ (t,U, y) = degt P̂β(t); moreover, this de-
gree equals the number of isolated roots of the system

F1(t, x) = 0, . . . ,Fs(t, x) = 0,Fs+1(t, x,μ) = 0, . . . ,Fr(t, x,μ) = 0,

�(β1,...,βn)(x) − β0 = 0.

Using the multihomogeneous Bézout theorem in the three groups of variables x, μ

and t , it can be seen easily that this system has at most nD isolated roots. �

Note that, if πx(V ∩ {t = 0}) = {z1, . . . , zν} ⊂ A
n, we have the factorization

P̂ (0,U,y) = ∏a
j=1 qj (U,y)δj in C[U,y], where ql = U − �(zl, y) for every 1 ≤

l ≤ ν ≤ a. Let Q(U,y) = ∏a
j=1 q

δj −1
j .

For a generic α = (α1, . . . , αn) ∈ C
n, P̂ (0,U,α)

Q(U,α)
is square-free and vanishes at

�(zl, α) for 1 ≤ l ≤ ν. In addition, for 1 ≤ l ≤ ν, the kth coordinate of zl (1 ≤ k ≤ n)
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is the quotient of −
∂P̂
∂yk

(0,�(zl ,α),α)

Q(�(zl ,α),α)
= δl(zl)k

∏
j 	=l qj (�(zl, α),α) by

∂P̂
∂U

(0,�(zl ,α),α)

Q(�(zl ,α),α)
=

δl

∏
j 	=l qj (�(zl, α),α) 	= 0. Then:

Proposition 10 Let P̂ (t,U, y) be as in (9). Then, for a generic α ∈ C
n,

{
P̂ (0,U,α)

Q(U,α)
;

∂P̂
∂U

(0,U,α)

Q(U,α)
;−

∂P̂
∂y1

(0,U,α)

Q(U,α)
, . . . ,−

∂P̂
∂yn

(0,U,α)

Q(U,α)

}

is a geometric resolution of a finite set containing πx(V ∩ {t = 0}).

4 Regular Intersections

Let f1, . . . , fm ∈ R[x1, . . . , xn]. As in Sect. 3.2, for S = {i1, . . . , is} ⊂ {1, . . . ,m},
consider the solution set WS of the system (2), (3) or (4) depending on whether 2 ≤
s ≤ n − 1, s = 1 or s ≥ n, respectively. We will deal with the deformation (7) and
the corresponding varieties (8) defined from the systems (2), (3) and (4) for S ⊂
{1, . . . ,m} with 1 ≤ #S ≤ n, and an adequate initial system. We will add a subscript
S in the notation V̂ , V (0), V (1) and V to indicate that the varieties are defined from
the polynomial system associated with S.

Note that, under Assumption 1, WS is the empty set whenever s > n. Moreover:

Lemma 11 Under Assumption 1, after a generic linear change of variables, for every
S ⊂ {1, . . . ,m} with 1 ≤ #S ≤ n, the set WS is finite and equals πx,μ(VS ∩ {t = 0}).

Proof If s = n, Assumption 1 implies that WS is a finite set.
Now let s ≤ n − 1. Note that πx(WS) is the set of critical points of the map

(x1, . . . , xn) �→ x1 over the set {x ∈ C
n | fi(x) = 0 for i ∈ S}. By the arguments in

[42, Sect. 2.1] based on Sard’s theorem and a holomorphic Morse lemma, it follows
that a generic linear form has a finite number of critical points on this complex vari-
ety. Therefore, taking any of these generic linear forms as the first coordinate, the set
πx(WS) turns to be finite. Moreover, for every z ∈ πx(WS), since {∇fi(z), i ∈ S} is
linearly independent and {∇fi(z), i ∈ S} is linearly dependent, it follows that there
is a unique μ ∈ P

s−1 such that (z,μ) ∈ WS .
The equality WS = πx,μ(VS ∩ {t = 0}) follows from Lemma 7. �

4.1 Symbolic Deformation Algorithms

First we introduce the initial systems for our first algorithmic deformation procedure.

Definition 12 For a given s with 1 < s < n and r := s +n− 1, a type 1 initial system
is a polynomial system of the form:

⎧
⎨

⎩

gi(x) = ∏
1≤j≤di

(xi − j) for 1 ≤ i ≤ s,

gi(x,μ) = (
∏

1≤j≤di
φij (x))ψi(μ) for s + 1 ≤ i ≤ r,
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where, for s + 1 ≤ i ≤ r ,

φij (x) =
( ∑

s+1≤k≤n

1

(i − s − 1)d + j − 1 + k − s
xk

)

+ 1

(i − s − 1)d + j − 1 + n + 1 − s
(1 ≤ j ≤ di),

and

ψi(μ) =
∑

1≤k≤s

1

i − s − 1 + k
μk.

For s = 1 and s = n, a type 1 initial system consists of n polynomials of the form
gi(x) = ∏

1≤j≤di
(xi − j) (1 ≤ i ≤ n).

Using basic properties of Cauchy matrices, it follows that the solutions of the sys-
tem introduced above are the D points obtained by combining each of the solutions
of the first s equations with the solutions of the linear systems associated to all pos-
sible ψi1, . . . ,ψis−1, φisjs , . . . , φin−1jn−1 with {i1, . . . , in−1} = {s + 1, . . . , r}, and that
all these points have different πx -projections. Moreover, the Jacobian matrix of the
system at each of these solutions is invertible, since it is the product of a diagonal
matrix with nonzero entries with a block diagonal matrix whose blocks are an iden-
tity matrix and two Cauchy matrices. We conclude that Property (H) (see Sect. 3.3.1)
holds for any type 1 initial system.

Now, we describe a probabilistic algorithm which computes a geometric resolution
as in Proposition 10.

Proposition 13 There is a probabilistic algorithm that, taking as input poly-
nomials h1, . . . , hr in K[x1, . . . , xn,μ1, . . . ,μs] as in (5) encoded by an slp of
length L, obtains a geometric resolution of a finite set containing πx(V ∩ {t =
0}) for a deformation defined from a type 1 initial system within complexity
O(n2D2 log(D) log log(D)(L + log2(D) log log(D))).

Proof The procedure of this algorithm is standard. The main difference with previous
known algorithms solving this task (see, for example, [20] or [26]) is that the Newton
lifting is done pointwise.

First step: Form a type 1 initial system of polynomials of the same degree structure
as h1, . . . , hr and compute the solutions s1, . . . , sD of this system. The computation
of each solution amounts to solving two square linear systems of size n − s and
s − 1, respectively, with Cauchy matrices, which can be done within a complexity
O(n log2(n)) by means of [12, Chap. 2, Algorithm 4.2]).

Second step: Construct an slp encoding F1, . . . ,Fr (see (7)). Since g1, . . . , gr can
be encoded by an slp of length O(dn2), the length of this slp can be taken to be
L1 = L + O(dn2). Set F for the list of polynomials F1, . . . ,Fr dehomogenized with
μs = 1. The algorithm computes, for i = 1, . . . ,D, elements S̃i ∈ K[t]r such that for
1 ≤ k ≤ r, (S̃i −Si)k ∈ (t −1)2nD+1

K[[t −1]]. Let S̃
(0)
i = si be a solution of the initial

system g1, . . . , gr . By means of the Newton–Hensel operator we define recursively
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S̃
(m+1)
i = S̃

(m)
i −DF−1(S̃

(m)
i )F (S̃

(m)
i ) mod (t −1)2m+1

K[[t −1]]. For 1 ≤ k ≤ r and

m ∈ N0, (S̃(m+1)
i )k ≡ (S̃

(m)
i )k mod (t −1)2m

K[[t −1]], and (S̃
(m)
i )k is a polynomial in

t −1 of degree less than 2m. Since operations between polynomials of such degree can
be done using O(2mm log(m)) operations in K, the computation of S̃

(m+1)
i from S̃

(m)
i

can be done within O((nL1 +n3)2mm log(m)) operations. Therefore, the complexity
of computing S̃i := S̃

(δ)
i from si for δ = �log(2nD + 1)�, for every 1 ≤ i ≤ D, is

O(n(nL1 + n3)D2 log(D) log log(D)).
Third step: This step consists in the computation of P̂ (0,U,α) = ∑D

h=0 ph(0, α)Uh

and ∂P̂
∂yk

(0,U,α) = ∑D
h=0

∂ph

∂yk
(0, α)Uh for a generic α = (α1, . . . , αn) ∈ Q

n. We

have that ph(t, α)/q(t) and ∂ph

∂yk
(t, α)/q(t) are the coefficients corresponding to

Uh and Uh(yk − αk) (1 ≤ k ≤ n, 0 ≤ h ≤ D), respectively, in the expansion of
P(t,U,y) = ∑D

h=0
ph(t,y)

q(t)
Uh ∈ K[[t − 1]][U,y − α]. As the degrees of the poly-

nomials involved in these fractions are bounded by nD (see Lemma 9), they are
uniquely determined by their power series expansions modulo (t −1)2nD+1

K[[t −1]]
(see [44, Corollary 5.21]).

The algorithm proceeds as follows: First, it computes the coefficients of Uh

and Uh(yk − αk) (1 ≤ k ≤ n, 0 ≤ h ≤ D) in P̃ (t,U, y) = ∏D
i=1(U − �(S̃i , y)) ∈

K[t][U,y] following [44, Algorithm 10.3] in O(n2D2 log3(D) log log2(D)) opera-
tions over K. From these coefficients, ph(t, α) and ∂ph

∂yk
(t, α) (1 ≤ k ≤ n, 0 ≤ h ≤ D),

and q(t) are obtained within complexity O(n2D2 log2(D) log log(D)) over K by us-
ing [44, Corollary 5.24 and Algorithm 11.4] and converting all rational fractions to
a common denominator. Finally, the algorithm substitutes t = 0 in these polynomials

to obtain P̂ (0,U,α) and ∂P̂
∂yk

(0,U,α) for 1 ≤ k ≤ n.

Fourth step: The algorithm computes Q(U,α) = gcd(P̂ (0,U,α), ∂P̂
∂U

(0,U,α))

within complexity O(D log2(D) log log(D)) and makes the required exact divisions
by Q(U,α) leading to the geometric resolution. This last step does not change
the overall order of complexity, which is O(n2D2 log(D) log log(D)(L + n2d +
log2(D) log log(D))). �

The algorithm underlying the proof of Proposition 13 can be adapted straightfor-
wardly to handle the cases s = 1 and s = n within the same complexity bounds.

4.2 Main Algorithm

The main algorithm of this section is the following:

Algorithm 14

Input: Polynomials f1, . . . , fm ∈ K[x1, . . . , xn] satisfying Assumption 1 encoded by
an slp of length L, and positive integers d1, . . . , dm such that degfi ≤ di for 1 ≤ i ≤
m.

Output: A finite set M ⊂ A
n intersecting the closure of each connected component

of the realization of every feasible sign condition over f1, . . . , fm encoded by a list
G of geometric resolutions of 0-dimensional varieties.
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Procedure:

1. Make a random linear change of variables with coefficients in Q.
2. Take a point p = (p1, . . . , pn) ∈ Q

n at random.
3. Starting with G := ∅, for k = 1, . . . , n − 1 and for every S ⊂ {1, . . . ,m} with 1 ≤

#S ≤ n − k + 1:
(a) Obtain an slp encoding the polynomials which define the variety Wk,S associ-

ated with the polynomials f1(p1, . . . , pk−1, xk, . . . , xn), . . . , fm(p1, . . . , pk−1,

xk, . . . , xn) and the projection to the kth coordinate xk .
(b) Compute a geometric resolution {q(k,S)(U), v

(k,S)
k (U), . . . , v

(k,S)
n (U)} ⊂

K[U ] of a finite set containing πx(Wk,S) = πx(Vk,S ∩ {t = 0}) ⊂ A
n−k+1

by means of a deformation from a type 1 initial system, and add the geometric
resolution

{
q(k,S)(U),p1, . . . , pk−1, v

(k,S)
k (U), . . . , v(k,S)

n (U)
}

to the list G .
4. Add to the list G the geometric resolutions {fi(p1, . . . , pn−1,U),p1, . . . , pn−1,U},

for 1 ≤ i ≤ m, and {U,p1, . . . , pn}.
We point out that under Assumption 1, by Lemma 11, Step 3(b) of the previous

algorithm could be achieved by any subroutine solving zero-dimensional polynomial
systems. However, we use the deformation procedure we designed for the particu-
lar systems under consideration in order to obtain the complexity bounds stated in
Theorem 2. The first part of this theorem is proved in the following:

Theorem 15 Algorithm 14 is a probabilistic procedure that, from a family of
polynomials f1, . . . , fm ∈ K[x1, . . . , xn] satisfying Assumption 1, obtains a fi-
nite set M intersecting the closure of each connected component of the realiza-
tion of every sign condition over f1, . . . , fm. If the input polynomials have de-
grees bounded by d ≥ 2 and are encoded by an slp of length L, the algorithm

performs O
((∑min{m,n}

s=1

(
m
s

)(
n−1
s−1

)2)
d2nn4 log(d) (log(n) + log log(d))(L + n2 +

n log2(d)(log(n) + log log(d)))
)

operations in K.

Proof Assuming that the random linear change of variables made in the first step of
the algorithm is generic in the sense of Proposition 3, by Proposition 5, it suffices to
show that

{p} ∪
(

n⋃

k=1

⋃

C∈C(k,p)

Z(C, k)

)

⊂ M

where C(k,p) denotes the set of all the connected components of the R
n-subsets

� ∩ {x1 = p1, . . . , xk−1 = pk−1} with � a connected component of a feasible sign
condition over f1, . . . , fm.

Note that for a generic point p = (p1, . . . , pn) ∈ K
n, for every 2 ≤ k ≤ n, As-

sumption 1 also holds for the polynomials fi(p1, . . . , pk−1, xk, . . . , xn), 1 ≤ i ≤ n.
Thus, by taking p at random, we may assume that the assumption is met at each step
of the recursion.
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Then, for every 1 ≤ k ≤ n − 1, by Proposition 6 and Lemma 11, we have that
⋃

C∈C(k,p)

Z(C, k) ⊂
⋃

S⊂{1,...,m}
1≤#S≤n−k+1

{p1, . . . , pk−1} × πx

(
Vk,S ∩ {t = 0}),

and Step 3 of the algorithm computes geometric resolutions for finite sets contain-
ing those in the right-hand side union; therefore,

⋃
C∈C(k,p) Z(C, k) ⊂ M. Finally,

note that
⋃

C∈C(n,p) Z(C,n) ⊂ ⋃m
i=1{fi(p1, . . . , pn−1, xn) = 0}, which along with

the point p, is added to the set M in Step 4 of the algorithm. This proves the correct-
ness of Algorithm 14.

For every 1 ≤ k ≤ n − 1 and each S ⊂ {1, . . . ,m} of cardinality at most n − k + 1,
the slp encoding the polynomials which define the variety Wk,S computed at Step 2
of the algorithm can be taken of length O(nL + n3). Moreover, the number of points
in Vk,S ∩ {t = 0} is bounded by

(
n−k
s−1

)
dn−k+1. Therefore, the result follows using the

complexity estimate in Proposition 13. �

Now we will show how to get the entire list of feasible sign conditions over the
polynomials f1, . . . , fm satisfying Assumption 1 using the output of Algorithm 14.
The procedure relies on the following:

Proposition 16 Let f1, . . . , fm ∈ K[x1, . . . , xn] be polynomials satisfying Assump-
tion 1 and let M be a finite set such that M ∩ C 	= ∅ for every connected component
C of the realization of each feasible sign condition over f1, . . . , fm. Then, the set of
all feasible sign conditions over f1, . . . , fm is

⋃
σ∈L(M) Pσ where L(M) is the set

of all sign conditions satisfied by the elements of M and Pσ denotes the subset of
{<,=,>}m consisting of all the elements that can be obtained from σ by replacing
some of its “=” coordinates with “<” or “>”.

Proof Let σ̂ be a feasible sign condition and C a connected component of {x ∈ R
n |

f1(x)σ̂10, . . . , fm(x)σ̂m0}. Consider a point z ∈ M ∩ C and let σ ∈ L(M) be the
sign condition over f1, . . . , fm at z. By continuity, it follows that σ̂ ∈ Pσ .

Now, let σ ∈ L(M) and z ∈ M such that fi(z)σi0 for 1 ≤ i ≤ m. Without loss of
generality, assume σ = (=, . . . ,=,>, . . . ,>) with t “=” and m − t “>”. If t = 0,
Pσ = {σ }. Suppose now t > 0, and let σ̂ ∈ Pσ . We may assume σ̂ = (=, . . . ,=,

>, . . . ,>) with l “=”, where 0 ≤ l ≤ t . Since the vectors ∇f1(z), . . . ,∇ft (z) are
linearly independent, there exists v ∈ R

n such that 〈∇fi(z), v〉 = 0 for 1 ≤ i ≤ l and
〈∇fi(z), v〉 > 0 for l + 1 ≤ i ≤ t . Consider a C∞ curve γ : [−1,1] → {f1 = · · · =
fl = 0} such that γ (0) = z and γ ′(0) = v. For l + 1 ≤ i ≤ t , fi ◦ γ (0) = 0 and
(fi ◦γ )′(0) = 〈∇fi(z), v〉 > 0; therefore, for a sufficiently small u > 0, fi ◦γ (u) > 0
holds. In addition, for 1 ≤ i ≤ l, fi ◦ γ (u) = 0 for every u ∈ [−1,1]. Finally, for
t + 1 ≤ i ≤ m, as fi ◦ γ (0) > 0, we have fi ◦ γ (u) > 0 for a sufficiently small u. We
conclude that σ̂ is feasible. �

Given a geometric resolution {q(U), v1(U), . . . , vn(U)} ⊂ K[U ] consisting of
polynomials of degree bounded by δ, if f1, . . . , fm are encoded by an slp of length
L, it is possible to obtain the signs they have at the points represented by the geomet-
ric resolution within complexity O(Lδ log(δ) log log(δ) + mδω) (here ω ≤ 2.376 is a
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positive real number such that for any field k it is possible to invert matrices in kr×r

with O(rω) operations, see [17]): first, for 1 ≤ i ≤ m, compute fi(v1(U), . . . , vn(U))

mod q(U) within complexity O(Lδ log(δ) log log(δ)) ([44, Chap. 8]) and then, eval-
uate the signs of these polynomials at the roots of q by using the procedure described
in [15, Sect. 3] within complexity O(mδω). Thus, we have:

Theorem 17 There is a probabilistic algorithm that, given polynomials f1, . . . , fm ∈
K[x1, . . . , xn] of degrees bounded by d ≥ 2 satisfying Assumption 1 and encoded by
an slp of length L, computes the list of all feasible sign conditions over these poly-

nomials within complexity O
(∑min{m,n}

s=1

(
m
s

)(
(L+n2d)

(
n−1
s−1

)2
d2nn4 log(d)(log(n)+

log log(d)) + mdωn
(
n−1
s−1

)ω))
.

Our algorithms and complexity results can be refined if we are interested in a
particular sign condition σ over f1, . . . , fm:

Remark 18 Let σ ∈ {<,=,>}m and Eσ = {i | σi = “ = ”}. Due to Proposition 6, in
the third step of Algorithm 14 it suffices to consider those sets S ⊂ {1, . . . ,m} such
that Eσ ⊂ S. Then, if #Eσ = l, in the complexities of Theorems 15 and 17, the sum
can be taken over l ≤ s ≤ min{m,n} and the combinatorial factor

(
m
s

)
can be replaced

by
(
m−l
s−l

)
.

5 Closed Sign Conditions Over Arbitrary Polynomials

In the case of arbitrary polynomials, the sets WS may not be finite. To overcome this
problem, we will consider the same kind of deformations as in the previous section
but with different initial systems whose particular properties enable us to recover
extremal points. This approach is similar to the one in [7].

5.1 Initial Systems for Deformations

Let d be an even positive integer and T the Tchebychev polynomial of degree d .

Definition 19 For a given s ∈ N with 1 < s < n and r := s + n − 1, a type 2 initial
system is a polynomial system of the form:

⎧
⎨

⎩

gi(x) = τi(n + Ai(n+1) +∑
1≤k≤n AikT (xk)) for 1 ≤ i ≤ s,

gi(x,μ) = ∑
1≤j≤s μj

∂gj

∂xi−s+1
(x) for s + 1 ≤ i ≤ r,

where τi ∈ {+,−} for 1 ≤ i ≤ s, and A ∈ Q
s×(n+1) is the Cauchy matrix defined as

Aik = 1
ai+k

for 1 ≤ i ≤ s,1 ≤ k ≤ n + 1, with 0 ≤ a1 < · · · < as integers such that
as + n + 1 is a prime number.

For s = 1, a type 2 initial system consists of a polynomial g1(x) as above and
its partial derivatives ∂g1(x)

∂x2
, . . . ,

∂g1(x)
∂xn

. Finally, for s = n, a type 2 initial system
consists of n polynomials g1, . . . , gn constructed as above from the Cauchy matrix
A ∈ Q

n×(n+1).
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Note that if τi = “ + ”, then gi(x) > 0 for every x ∈ R
n and, if τi = “ − ”, then

gi(x) < 0 for every x ∈ R
n. Moreover, for s + 1 ≤ i ≤ r ,

gi(x,μ) = T ′(xi−s+1)

( ∑

1≤j≤s

τjAj(i−s+1)μj

)
. (10)

The Bézout number of a type 2 initial system is D = (
n−1
s−1

)
ds(d − 1)n−s ≤

(
n−1
s−1

)
dn.

Lemma 20 Property (H) (see Sect. 3.3.1) holds for any type 2 initial system.

Proof Assume 1 < s < n. For s + 1 ≤ i ≤ r , let ḡi (x,μ1, . . . ,μs−1) = gi(x,μ1, . . . ,

μs−1,1).
Let B ⊂ {2, . . . , n} be a set with n − s elements, let e : B → {−1,1} and suppose

e(k) = 1 for a elements in B . Let SB,e be the set of solutions (x̄, μ̄) of the system

g1(x) = · · · = gs(x) = ḡs+1(x,μ) = ḡr (x,μ) = 0 (11)

which also satisfy

T ′(xk) = 0 and T (xk) = e(k) for every k ∈ B. (12)

Since gcd(T ′, T + 1) = Td/2 and gcd(T ′, T − 1) = T ′/Td/2 (where Td/2 is the
Tchebychev polynomial of degree d/2), the number of (n − s)-tuples satisfying (12)
is (d/2)n−s−a(d/2 − 1)a . By using the explicit formula for the determinant of a
Cauchy matrix and properties of Tchebychev polynomials, it can be seen that each of
these (n − s)-tuples can be extended to a solution (x̄, μ̄) of (11) in ds different ways.
Then, SB,e has (d/2)n−s−a(d/2 − 1)ads elements.

As for (x̄, μ̄) ∈ SB,e , T (x̄k) = e(k) = ±1 for every k ∈ B , the sets SB,e are mu-
tually disjoint. Then, if (x̄(1), μ̄(1)), (x̄(2), μ̄(2)) are two different solutions of (11),
x̄(1) 	= x̄(2). By taking into account every B ⊂ {2, . . . , n}, every a (0 ≤ a ≤ n − s)

and every function e : B → {−1,1} whose value is 1 at exactly a elements in B ,
we find

(
n−1
n−s

)∑
0≤a≤n−s

(
n−s
a

)
( d

2 )n−s−a( d
2 − 1)ads = (

n−1
n−s

)
(d − 1)n−sds solutions

of (11).
Consider now the Jacobian matrix of this system evaluated at each of these so-

lutions and suppose, without loss of generality, that the solution (x̄, μ̄) considered
corresponds to B = {s + 1, . . . , n}. Then, this matrix is of the form

s {
s − 1 {
n − s {

⎛

⎝
C1 0 0
∗ 0 C2

∗ C3 ∗

⎞

⎠

︸︷︷︸
s

︸︷︷︸
n−s

︸︷︷︸
s−1

with C1, C2 and C3 invertible matrices.
For s = 1 and s = n, the proof is similar. �
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5.2 Geometric Properties

Let f1, . . . , fm ∈ R[x1, . . . , xn] and let S := {i1, . . . , is} ⊂ {1, . . . ,m} with 1 < s < n.
As explained in Sect. 3.2, for every point z ∈ R

n with maximum or minimum first
coordinate over the set {x ∈ R

n | fi1(x) = 0, . . . , fis (x) = 0}, there exists a nonzero
vector μ = (μ1, . . . ,μs) such that (z,μ) is a solution of the system

{
fi1(z) = · · · = fis (z) = 0,

∑
1≤j≤s μj

∂fij

∂x2
(z) = · · · = ∑

1≤j≤s μj

∂fij

∂xn
(z) = 0.

(13)

Now, a homotopic deformation of this system by means of a type 2 initial system
is as follows: for every 1 ≤ k ≤ s, Fk(t, x) = (1 − t)fik + tgk(x), and, for every
s + 1 ≤ k ≤ r ,

Fk(t, x,μ) = (1 − t)
∑

1≤j≤s

μj

∂fij

∂xk−s+1
(x) + t

∑

1≤j≤s

μj

∂gj

∂xk−s+1
(x)

=
∑

1≤j≤s

μj

∂Fj

∂xk−s+1
(t, x).

Thus, for any t0 ∈ R and every x0 ∈ R
n at which the first coordinate function attains

a local maximum or minimum over the set {x ∈ R
n | F1(t0, x) = · · · = Fs(t0, x) =

0}, by the implicit function theorem, there is a nonzero vector μ0 ∈ R
s such that

F1(t0, x0) = · · · = Fs(t0, x0) = Fs+1(t0, x0,μ0) = · · · = Fs(t0, x0,μ0) = 0.
In the sequel, we will consider deformations by means of specific type 2 initial

systems.
Let d ∈ N be an even positive integer with d ≥ degfi for every 1 ≤ i ≤ m. Let

q1 < · · · < qm be the first m prime numbers greater than n. For 1 ≤ i ≤ m, let

g+
i (x) = n + 1

qi

+
∑

1≤k≤n

1

qi − n − 1 + k
T (xk) and g−

i (x) = −g+
i (x).

Note that for each S = {i1, . . . , is} ⊂ {1, . . . ,m} with 1 ≤ s ≤ n and every list
τ1, . . . , τs of + and − signs, the polynomials g

τ1
i1

, . . . , g
τs

is
form a type 2 initial system

with aj = qij − n − 1 for 1 ≤ j ≤ s (see Definition 19). In addition, for 1 ≤ i ≤ m,
we denote

F+
i (t, x) = (1 − t)fi(x) + tg+

i (x) and F−
i (t, x) = (1 − t)fi(x) + tg−

i (x).

Lemma 21 Let S = {i1, . . . , is} ⊂ {1, . . . ,m} with s > n and τ1, . . . , τs a list of +
and − signs. Then, the set {t ∈ C | ∃x ∈ C

n with F
τ1
i1

(t, x) = · · · = F
τs

is
(t, x) = 0} is

finite (possibly empty).

Proof Denote by F̂
τ1
i1

, . . . , F̂
τs

is
, ĝ

τ1
i1

, . . . , ĝ
τs

is
the polynomials obtained by homogeniz-

ing F
τ1
i1

, . . . ,F
τs

is
and g

τ1
i1

, . . . , g
τs

is
with a new variable x0. Let Z ⊂ A

1 × P
n be the set

of common zeros of F̂
τ1
i1

, . . . , F̂
τs

is
. In order to prove the statement it suffices to show
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that πt (Z) is a finite set. Since πt is a closed map, this can be proved by showing that
1 /∈ πt (Z), or equivalently, that the system ĝ

τ1
i1

(x) = · · · = ĝ
τs

is
(x) = 0 has no solution

in P
n.

First, note that, if (1 : x1 : · · · : xn) is a solution of this system, then (T (x1), . . . ,

T (xn)) is a solution of the linear system B . yt = −(n + 1
qi1

, . . . , n + 1
qin+1

)t , where

B ∈ Q
(n+1)×n is the Cauchy matrix of coefficients of g

τ1
i1

, . . . , g
τn+1
in+1

. But this linear
system has no solutions, since its augmented matrix has a nonzero determinant. Fi-
nally, we have that, for 1 ≤ j ≤ s, ĝ

τj

ij
(0, x1, . . . , xn) = ±2d−1 ∑

1≤k≤n
1

qij
−n−1+k

xd
k .

Considering the equations for 1 ≤ j ≤ n, we deduce that (xd
1 , . . . , xd

n ) is in the kernel
of the Cauchy matrix ( 1

qij
−n−1+k

)1≤j,k≤n and therefore, it is the zero vector. Thus,

the system ĝ
τ1
i1

(x) = · · · = ĝ
τs

is
(x) = 0 has no solutions in {x0 = 0}. �

Notation 22 For S = {i1, . . . , is} ⊂ {1, . . . ,m} with 1 ≤ s ≤ n, and τ = (τ1, . . . , τs) ∈
{+,−}s , we denote V̂S,τ ⊂ A

1 × A
n × P

s−1 the variety defined by the polynomials
constructed as in (7) by taking h1, . . . , hr as the polynomials in system (13) and
g1, . . . , gr the type 2 initial system given by g

τ1
i1

, . . . , g
τs

is
. We consider the decompo-

sition V̂S,τ = V
(0)
S,τ ∪ V

(1)
S,τ ∪ VS,τ as in (8).

The following proposition will enable us to adapt Algorithm 14 in order to solve
the problem in this general setting.

Proposition 23 Let σ ∈ {≤,=,≥}m, Eσ = {i | σi = “ = ”}, Uσ = {i | σi = “ ≥ ”}
and Lσ = {i | σi = “ ≤ ”}. For S = {i1, . . . , is} ⊂ {1, . . . ,m} with 1 ≤ s ≤ n, let
TS = {τ ∈ {+,−}s | τj = “ + ” if ij ∈ Uσ and τj = “ − ” if ij ∈ Lσ }. Then, af-
ter a generic linear change of variables, for each connected component C of {x ∈
R

n | f1(x)σ10, . . . , fm(x)σm0}, we have

Z(C) ⊂
⋃

S⊂{1,...,m}
1≤#S≤n

⋃

τ∈TS

πx

(
VS,τ ∩ {t = 0}).

Proof Without loss of generality, we may assume that Eσ = {1, . . . , l}, Uσ = {l +
1, . . . , k}, and Lσ = {k + 1, . . . ,m} for some l, k with 0 ≤ l ≤ k ≤ m. By Proposi-
tion 3, after a generic linear change of variables, Z(C) is finite. Moreover, since P is
a closed set, Z(C) ⊂ C. Let z ∈ Zinf(C) and 0 < ε < 1 such that:

• B(z, ε) ∩ P ⊂ C and B(z, ε) ∩ Z(C) = {z},
• for every Ŝ = {i1, . . . , iŝ} ⊂ {1, . . . ,m} with ŝ > n and every (τ1, . . . , τŝ ) ∈

{+,−}ŝ , ε < |t0| for every t0 in {t ∈ C \ {0} | ∃x ∈ C
n with F

τ1
i1

(t, x) = · · · =
F

τŝ

iŝ
(t, x) = 0},

• for every S ⊂ {1, . . . ,m} with 1 ≤ #S ≤ n and every τ ∈ TS , ε < |t0| for every
t0 ∈ C such that V

(1)
S,τ has an irreducible component contained in {t = t0}.

For t ∈ R, let Rt = {x ∈ B(z, ε) | F+
1 (t, x) ≥ 0, . . . ,F+

l (t, x) ≥ 0,F−
1 (t, x) ≤

0, . . . , F−
l (t, x) ≤ 0,F+

l+1(t, x) ≥ 0, . . . ,F+
k (t, x) ≥ 0,F−

k+1(t, x) ≤ 0, . . . ,F−
m (t, x)

≤ 0}. We have that R0 = C ∩ B(z, ε) and, for every t ∈ [0,1], z ∈ Rt .
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Let ν > 0 be the distance between the compact sets ∂B(z, ε) ∩ {x1 ≤ z1} and R0.
We claim that for some t1, 0 < t1 < ε, the connected component C′ of Rt1 containing
z is included in {x ∈ B(z, ε) | d(x,R0) ≤ ν/2}. Suppose this is not the case. Let
(t ′n)n∈N be a decreasing sequence of positive numbers converging to 0 and with t ′1 <

ε, and for every n ∈ N, let C′
n be the connected component of Rt ′n containing z.

Since C′
n intersects {x ∈ B(z, ε) | d(x,R0) > ν/2}, there is a point rn ∈ C′

n such
that d(rn,R0) = ν/2. Then, there is a limit point r ∈ B(z, ε) with d(r,R0) = ν/2
such that, for 1 ≤ i ≤ k, F+

i (0, r) ≥ 0, and for every 1 ≤ i ≤ l and k + 1 ≤ i ≤ m,
F−

i (0, r) ≤ 0. Therefore, r ∈ R0, contradicting the fact that d(r,R0) = ν/2 > 0.
Let w ∈ C′ be a point at which the function x1 attains its minimum over C′. Since

z ∈ C′, we have w1 ≤ z1. If w ∈ ∂B(z, ε), then w ∈ ∂B(z, ε) ∩ {x1 ≤ z1}, and so,
d(w,R0) ≥ ν, contradicting the fact that d(w,R0) ≤ ν/2. Therefore, w ∈ B(z, ε).

As each of the polynomials F+
1 , . . . ,F+

l , F−
1 , . . . ,F−

l , F+
l+1, . . . ,F

+
k ,F−

k+1, . . . ,

F−
m that does not vanish at (t1,w) takes a constant sign in a neighborhood of this

point, we conclude that, if F
τ1
i1

, . . . ,F
τs

is
are all the polynomials vanishing at (t1,w),

then the function x1 attains a local minimum over the set {x ∈ R
n | F

τ1
i1

(t1, x) =
0, . . . ,F

τs

is
(t1, x) = 0} at w. Let S0 = {i1, . . . , is}, which is not empty. For 1 ≤ i ≤

m, F+
i (t1,w) and F−

i (t1,w) cannot be both zero; thus, i1, . . . , is are all distinct.
Because of the way we chose ε, we also have that s ≤ n. Now, if τ0 = (τ1, . . . , τs),
we have that (t1,w) ∈ πt,x(V̂S0,τ0), but taking into account that 0 < t1 < ε, it follows
that (t1,w) ∈ πt,x(VS0,τ0). Therefore, (t1,w) ∈ ⋃

S⊂{1,...,m}
1≤#S≤n

⋃
τ∈TS

πt,x(VS,τ ) and 0 <

|(t1,w) − (0, z)| < √
2ε.

Since the previous construction can be done for every ε > 0 sufficiently small and
the sets πt,x(VS,τ ) are closed, we conclude that (0, z) ∈ ⋃

S⊂{1,...,m}
1≤#S≤n

⋃
τ∈TS

πt,x(VS,τ ).

�
5.3 Symbolic Deformation Algorithm
In the sequel, Ω will denote a positive real number such that for any ring R, addition,
multiplication and the computation of determinant and adjoint of matrices in Rk×k

can be performed within O(kΩ) operations in R. We may assume Ω ≤ 4 (see [11])
and, in order to simplify complexity estimations, we will also assume that Ω ≥ 3.

Proposition 24 There is a probabilistic algorithm that, taking as input polynomials
h1, . . . , hr in K[x1, . . . , xn,μ1, . . . ,μs] as in (5) encoded by an slp of length L,
obtains a geometric resolution of a finite set containing πx(V ∩ {t = 0}) for a de-
formation defined from a type 2 initial system within complexity O(n3(L + dn +
nΩ−1)D2 log2(D) log log2(D)), where d is an even integer such that d ≥ degx(hi)

for every 1 ≤ i ≤ r .

Proof The structure of the algorithm is similar to that of the algorithm underlying the
proof of Proposition 13.

First step: Take α = (α1, . . . , αn) ∈ Q
n at random and compute a geometric reso-

lution associated to the linear form �α(x) = α1x1 + · · · + αnxn of the variety defined
in A

r by the (dehomogenized) type 2 initial system.
As shown in the proof of Lemma 20, this variety can be partitioned into sub-

sets SB,e. So, we first compute a geometric resolution associated with �α(x) for
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each SB,e: after solving a linear system, the x-coordinates of points in SB,e turn
to be defined by a square polynomial system in separated variables; then, the
required computation can be achieved as in [27, Sect. 5.2.1] within complexity
O(D2

B,e log2(DB,e) log log(DB,e)), where DB,e is the cardinality of SB,e.
Finally, a geometric resolution of the whole variety is obtained following the split-

ting strategy given in [44, Algorithm 10.3], and noticing that, if {q, q0,w1, . . . ,wr}
and {q̃, q̃0, w̃1, . . . , w̃r} are geometric resolutions of disjoint sets with q and q̃ co-
prime polynomials, then {qq̃, q0q̃ + q̃0q,w1q̃ + w̃1q, . . . ,wr q̃ + w̃rq} is a geometric
resolution of their union. This can be done within O(nD log2(D) log log(D)) opera-
tions in Q.

The whole complexity of this step is O(nD2 log2(D) log log(D)).

Second step: Compute P(t,U,y) mod ((t − 1)2nD+1 + (y1 − α1, . . . , yn −
αn)

2)K[[t − 1]][U,y].
First, from the geometric resolution computed in the previous step, obtain a geo-

metric resolution associated with �(x, y) = y1x1 + · · · + ynxn of the variety defined
by the initial system over K(y), modulo the ideal (y1 − α1, . . . , yn − αn)

2, apply-
ing [20, Algorithm 1] within complexity O((dn2 + nΩ)D2 log2(D) log log2(D)).
Then, consider the variety defined by F1, . . . ,Fr over K(t, y) (see Lemma 8).
Since F1, . . . ,Fr can be encoded by an slp of length L + O((d + s)n), a geomet-
ric resolution of this variety associated with the linear form �(x, y) modulo the
ideal (t − 1)2nD+1 + (y1 − α1, . . . , yn − αn)

2 can be obtained from the previously
computed geometric resolution by applying [20, Algorithm 1] within complexity
O(n3(L + dn + nΩ−1)D2 log2(D) log log2(D)).

Third step: From the approximation to P(t,U,y) obtain the required geometric
resolution, by performing the same computations as in the third and forth steps of the
algorithm underlying the proof of Proposition 13, which does not modify the overall
complexity. �

The algorithm underlying the proof of Proposition 24 can be adapted straightfor-
wardly to handle the cases s = 1 and s = n within the same complexity bounds.

5.4 Main Algorithm

Here we prove the main result of this section, which is the second part of Theorem 2.

Theorem 25 Given polynomials f1, . . . , fm ∈ K[x1, . . . , xn] with degrees bounded
by an even integer d and encoded by an slp of length L, for generic choices of the
parameters required at intermediate steps, the algorithm obtained from Algorithm 14
taking p = (0, . . . ,0) and replacing part (b) of Step 3 with

(b′) For every τ ∈ {+,−}#S , compute a geometric resolution {q(k,S,τ)(U), v
(k,S,τ )
k (U),

. . . , v
(k,S,τ )
n (U)} ⊂ K[U ] of a finite set containing πx(Vk,S,τ ∩ {t = 0})) ⊂

A
n−k+1 by means of a deformation from a type 2 initial system, and add the

geometric resolution

{
q(k,S,τ)(U),0, . . . ,0, v

(k,S,τ )
k (U), . . . , v(k,S,τ )

n (U)
}

to the list G .
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computes a finite set M ⊂ A
n intersecting each connected component of the realiza-

tion of every feasible closed sign condition over f1, . . . , fm. The complexity of the
algorithm is

O

(

n6(L+ d +n2) log2(d)
(
log(n)+ log log(d)

)2
d2n

(min{m,n}∑

s=1

2s

(
m

s

)(
n − 1

s − 1

)2
))

.

Proof As in the proof of Theorem 15, by Proposition 5, it suffices to show that⋃
1≤k≤n−1

⋃
C∈C(k,p) Z(C, k) ⊂ M, which is a consequence of Proposition 23.

Taking into account the linear change of variables performed at the first step of
the algorithm, for 1 ≤ k ≤ n − 1 and every S ⊂ {1, . . . ,m} with 1 ≤ #S ≤ n − k + 1,
we can obtain an slp of length O(nL + n3) encoding the polynomials involved in
system (13). In (b′), the algorithm underlying the proof of Proposition 24 is used.
The stated complexity is obtained by adding up the complexities of these steps for all
(k, S, τ ). �

As explained at the end of Sect. 4.2, from a geometric resolution of a finite set
intersecting each feasible sign condition over f1, . . . , fm, we can obtain the list of all
closed sign conditions over these polynomials. We deduce:

Theorem 26 There is a probabilistic algorithm which, given polynomials f1, . . . ,

fm ∈ K[x1, . . . , xn] of degrees bounded by an even integer d and encoded by an
slp of length L, computes the list of all feasible closed sign conditions over these

polynomials within O
(∑min{m,n}

s=1

(
m
s

)(
n−1
s−1

)2
d2n(2sn6(L + d + n2) log2(d)(log(n) +

log log(d))2 + md(ω−2)n
(
n−1
s−1

)ω−2
)
)

operations in K.

6 Some Particular Cases

6.1 The Bivariate Case

Here we will show that when n = 2, Algorithm 14 solves our main problem for an
arbitrary finite family of polynomials.

Lemma 27 Let f ∈ C[x1, x2] be a nonzero polynomial with no factors in C[x1]\{0}.
Let g1, g2 be polynomials satisfying property (H), with g1 relatively prime to f . Let
F1 = (1 − t)f + tg1 and F2 = (1 − t)

∂f
∂x2

+ tg2 and V be the variety defined in (8). If

z ∈ C
2 satisfies that either two or more non-associate irreducible factors of f vanish

at z or an irreducible factor of f and its derivative with respect to x2 both vanish at
z, then z ∈ πx(V ∩ {t = 0}).

Proof In order to simplify the notation, we write f ′ = ∂f
∂x2

. Set I = (F1,F2) ⊂
K[t, x1, x2]. Then V ∩ {t = 0} = V ((I : t∞) + (t)).

Let h1 = f/gcd(f,f ′) and h2 = f ′/gcd(f,f ′). We claim that (I : t) = (F1,F2,

h2g1 − h1g2) holds: first note that (h2g1 − h1g2)t = h2F1 − h1F2, which shows the

 Author's personal copy 



Discrete Comput Geom (2010) 44: 195–222 219

inclusion ⊃. Now, if p(t, x) ∈ (I : t), we have p(x, t)t = (α1(t, x)t + α0(x))F1 +
(β1(t, x)t + β0(x))F2 for polynomials α1, α0, β1, β0. Substituting t = 0, we obtain
α0f = −β0f

′ and so, α0h1 = −β0h2. Then, there exists c ∈ C[x] such that α0 = ch2

and β0 = −ch1, and therefore, p(t, x) = α1(t, x)F1 + β1(t, x)F2 + c(h2g1 − h1g2).
Using similar arguments, it follows that (I : t2) ⊂ (I : t) and so, (I : t∞) =

(I : t) = (F1,F2, h2g1 −h1g2). Then, since each condition in the lemma implies that
h1(z) = h2(z) = 0, we deduce that (0, z) ∈ V (I : t∞), and therefore, z ∈ πx(V ∩{t =
0}). �

Proposition 28 Let f1, . . . , fm be arbitrary bivariate real polynomials and σ ∈
{<,=,>}m. Then, after a generic linear change of variables, for each con-
nected component C of {x ∈ R

n | f1(x)σ10, . . . , fm(x)σm0} we have that Z(C) ⊂⋃
S⊂{1,...,m},1≤#S≤2 πx(VS ∩ {t = 0}), where the varieties VS are defined from type 1

initial systems.

Proof After a generic linear change of variables we may assume that, for each con-
nected component C, either π1(C) = R or Z(C) is a non-empty finite set (see Propo-
sition 3).

Assume Zinf(C) 	= ∅ and let z = (z1, z2) ∈ Zinf(C). Since z ∈ ∂C, there is an index
i0 such that fi0 	= 0 and fi0(z) = 0. If fi0 has two or more non-associate irreducible
factors vanishing at z, or an irreducible factor vanishing at z and whose derivative
with respect to x2 also vanishes at z, by Lemma 27, z ∈ πx(V{i0} ∩ {t = 0}) (note
that, because of the generic change of variables, fi0 does not have factors of the
form xi − α). Otherwise, there is a unique irreducible factor p of fi0 vanishing at
z which must have all real coefficients (since its complex conjugate also divides fi0

and vanishes at z) such that ∂p
∂x2

(z) 	= 0.
By the implicit function theorem applied to p at the point z, there is a continuous

curve (x1, x2(x1)) defined in a neighborhood of z1, and a neighborhood of z such
that the polynomial p (as well as any power of p and also fi0 ) has constant signs
above, below and on the curve in this neighborhood. Since z1 = infπ1(C), there
must be an index i1 	= i0 such that fi1(z) = 0. Moreover, we may assume that fi1

has a unique irreducible factor q vanishing at z that is not an associate to p. In this
second case, z is an isolated point of W{i0,i1} = V (fi0, fi1) and then, by Lemma 7,
z ∈ πx(V{i0,i1} ∩ {t = 0}). �

Using this proposition, following the proof of Theorem 15, we have:

Theorem 29 Algorithm 14 is a probabilistic procedure that, given polynomials
f1, . . . , fm ∈ K[x1, x2] of degrees bounded by d ≥ 2 that are encoded by an slp of
length L, obtains a finite set M intersecting the closure of each connected compo-
nent of the realization of every sign condition on the polynomials within complexity
O(m2d4 log(d) log log(d)(L + log2(d) log log(d))). �
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6.2 A Single Polynomial

In this section, we will show the procedure described in Sect. 5 can be adapted to
solve the problem of computing a point in the closure of each connected component
of {f = 0}, {f > 0} and {f < 0} for an arbitrary polynomial f ∈ K[x1, . . . , xn].

Let d be an even positive integer such that d ≥ deg(f ). Let T be the Tchebychev
polynomial of degree d . We define g(x) = n + 1

q
+ ∑n

k=1
1

q−n−1+k
T (xk), where q

is the smallest prime greater than n; F(t, x) = (1 − t)f (x) + tg(x), and, for 2 ≤
i ≤ n, Fi(t, x) = (1 − t)

∂f
∂xi

(x) + t
∂g
∂xi

(x) = ∂F
∂xi

(t, x). Note that g > 0 over R
n, and

therefore, F > 0 over the set {f = 0}. Moreover, this is a deformation with a type
2 initial system (see Definition 19). As in Sect. 3.3.1, we let V̂ = {F = F2 = · · · =
Fn = 0} ⊂ A

1 × A
n, and consider its decomposition (8).

Lemma 30 After a generic linear change of variables, for each connected compo-
nent C of {f = 0}, {f > 0} or {f < 0}, we have Z(C) ⊂ πx(V ∩ {t = 0}).

Proof Consider first a connected component C of {f = 0} (for a similar approach in
this case with an alternative deformation, see [34]). Let z ∈ Zinf(C). Take ε > 0 such
that B(z, ε) meets neither a connected component of {f = 0} different from C nor
the finite set Z(C) \ {z}, and ε < |t0| for each t0 ∈ C such that V (1) has a connected
component contained in {t = t0}.

Let μ ∈ (z1, z1 + ε) be such that ∂B(z, ε) ∩ C ⊂ {x1 > μ}. Without loss of gener-
ality, we may assume that f is positive over the compact set ∂B(z, ε)∩ {x1 ≤ μ}. Let
ε0 ∈ (0, ε) be such that F is positive over [−ε0, ε0] × (∂B(z, ε) ∩ {x1 ≤ μ}). Now,
let y ∈ B(z, ε) with y1 < z1 (thus, f (y) 	= 0). Since F(−ε0, z) < 0, F(ε0, z) > 0 and
F(0, y) 	= 0, there is a point (t1, ỹ) in the union of the line segments joining (−ε0, z),
(0, y), and (0, y), (ε0, z), respectively, such that F(t1, ỹ) = 0. We have t1 	= 0 and
ỹ1 < z1. Let w ∈ {x ∈ B(z, ε) | F(t1, x) = 0} be a point at which the coordinate func-
tion x1 attains its minimum over this compact set. Note that w 	∈ ∂B(z, ε), since
w1 < ỹ1 < z1 < μ and F is positive over [−ε0, ε0] × (∂B(z, ε) ∩ {x1 ≤ μ}). There-
fore, w ∈ B(z, ε), and so (t1,w) ∈ V̂ . Moreover, as 0 < |t1| < ε, we have (t1,w) ∈ V .
Since 0 < |(t1,w) − (0, z)| < √

2ε, and the construction can be done for an arbitrary
sufficiently small ε > 0, it follows that (0, z) ∈ V .

Assume now that C is a connected component of {f > 0} and let z ∈ Zinf(C)

(then, f (z) = 0). Let C̃ be the connected component of {f = 0} containing z, and
ε > 0 such that B(z, ε) meets neither a connected component of {f = 0} different
from C̃ nor the finite set Z(C) \ {z}, and ε < |t0| for every t0 ∈ C such that V (1) has
an irreducible component included in {t = t0}.

Let μ ∈ (z1, z1 + ε) be such that ∂B(z, ε) ∩ C ⊂ {x1 > μ} and γ : [0,1] → R
n

a continuous semialgebraic curve such that γ (0) = z and γ ((0,1]) ⊂ C ∩ B(z, ε) ∩
{x1 < μ}. Let C1 be the connected component of C ∩ B(z, ε) with γ ((0,1]) ⊂ C1.
Take t1 ∈ (−ε,0) small enough so that F(t1, γ (1)) > 0. Since F(t1, γ (0)) < 0, there
exists u ∈ (0,1) such that F(t1, γ (u)) = 0. Let C′ be the connected component of
{x ∈ B(z, ε) | F(t1, x) = 0} containing γ (u). As γ (u) ∈ C′ ∩ C1, C′ ∪ C1 is a con-
nected set. Therefore C′ ⊂ C1, as C′ ⊂ B(z, ε) \ C̃ and C1 is a connected component
of this set. Now let K = C′ ∪ (B(z, ε) ∩ {x1 ≥ μ}), which is a compact set, since
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C′ = C′ ∪ (∂B(z, ε) ∩ C′) ⊂ C′ ∪ (∂B(z, ε) ∩ C) ⊂ K . If w ∈ K is a point at which
the function x1 attains its minimum over K , then w 	∈ B(z, ε) ∩ {x1 ≥ μ}. Then, w is
a minimum of x1 over the set C′ ∩ B(z, ε) ∩ {x1 < μ}. Therefore, (t1,w) ∈ V̂ and,
since 0 < |t1| < ε, we have (t1,w) ∈ V . As before, we conclude that (0, z) ∈ V . �

Then, due to Proposition 5 and proceeding as in the proof of Theorem 25, we have:

Theorem 31 Given a polynomial f ∈ K[x1, . . . , xn] of degree bounded by an even
integer d and encoded by an slp of length L, for generic choices of the parameters
required at intermediate steps, the algorithm obtained from Algorithm 14 modifying
Step 3(b) in order to deal with type 2 initial systems, computes a finite set M ⊂ A

n

intersecting the closure of each connected component of the sets {f < 0}, {f = 0} and
{f > 0}. The complexity of the algorithm is O(n5(L + nd + nΩ−1) log2(d)(log(n) +
log log(d))2d2n).
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