Anisotropic p, q-Laplacian equations when p goes to 1

A. Mercaldo ${ }^{\text {a }}$, J.D. Rossi ${ }^{\text {b,1 }}$, S. Segura de León ${ }^{\text {c }}$, C. Trombetti ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università di Napoli "Federico II", Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
${ }^{\text {b }}$ Departamento de Análisis Matemático, Universidad de Alicante, Ap. correos 99, 03080 Alicante, Spain
${ }^{\text {c }}$ Departament d'Anàlisi Matemàtica, Universitat de València, Dr. Moliner 50, 46100 Burjassot, València, Spain

A R T I C L E INFO

Article history:

Received 6 May 2010
Accepted 12 July 2010

MSC:

35J92
35J25
35B65

Keywords:

Anisotropic problems
p-Laplacian equation
1-Laplacian equation

Abstract

In this paper we prove a stability result for an anisotropic elliptic problem. More precisely, we consider the Dirichlet problem for an anisotropic equation, which is as the p-Laplacian equation with respect to a group of variables and as the q-Laplacian equation with respect to the other variables ($1<p<q$), with datum f belonging to a suitable Lebesgue space. For this problem, we study the behaviour of the solutions as p goes to 1 , showing that they converge to a function u, which is almost everywhere finite, regardless of the size of the datum f. Moreover, we prove that this u is the unique solution of a limit problem having the 1-Laplacian operator with respect to the first group of variables.

Furthermore, the regularity of the solutions to the limit problem is studied and explicit examples are shown.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Our aim is to study the Dirichlet problem for an anisotropic elliptic equation which is as the 1-Laplacian equation in some directions ($\operatorname{say} x$) and as the q-Laplacian equation in the others (say y), that is:

$$
\begin{cases}-\operatorname{div}_{x}\left(\frac{D_{x} u}{\left|D_{x} u\right|}\right)-\operatorname{div}_{y}\left(\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u\right)=f(x, y), & \text { in } \Omega \tag{1.1}\\ u=0, & \text { on } \partial \Omega .\end{cases}
$$

Here $(x, y) \in \Omega=\Xi \times \Upsilon$ with Ξ and Υ bounded open subsets of \mathbb{R}^{N} and \mathbb{R}^{K} respectively and the subindices denote differentiation with respect to x and y respectively. We also assume that Ξ has a Lipschitz boundary. Concerning the righthand side, we assume that f belongs to $L^{r}(\Omega)$ with

$$
\begin{equation*}
r=\min \left\{\frac{N+K}{1+\left(K / q^{\prime}\right)}, q^{\prime}\right\} \tag{1.2}
\end{equation*}
$$

To handle Eq. (1.1), we have to give a notion of solution and then consider a suitable functional framework. Adapting the well-known definition of solution for the 1-Laplacian equation (see [1]), we consider an anisotropic subspace of $B V(\Omega)$, which consists, roughly speaking, of functions such that $D_{x} u$ is a Radon measure and $\nabla_{y} u$ belongs to the Lebesgue space $L^{q}(\Omega)$. Obviously any notion of solution have to give sense to the quotient $\frac{D_{x} u}{\left|D_{x} u\right|}$ where, in general, $D_{x} u$ is not a function but

[^0]a Radon measure. To this aim our definition (see Section 4) is based on a vector field $\zeta \in L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ satisfying $\|\zeta\|_{\infty} \leq 1$, $-\operatorname{div}_{x} \zeta-\operatorname{div}_{y}\left(\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u\right)=f$ in $\mathscr{D}^{\prime}(\Omega)$ and $\left(\zeta, D_{x} u\right)=\left|D_{x} u\right|$. Observe that, formally, $\|\zeta\|_{\infty} \leq 1$ and $\left(\zeta, D_{x} u\right)=\left|D_{x} u\right|$ imply $\zeta=\frac{D_{x} u}{\left|D_{x} u\right|}$. The meaning of $\left(\zeta, D_{x} u\right)$ relies on an anisotropic extension of the theory of L^{∞}-divergence-measure vector fields by Anzellotti [2] and by Chen-Frid [3-5].

In this paper we prove the existence, uniqueness and regularity of such a solution to problem (1.1), as well as we present explicit examples. To this end, we consider approximate problems of the form

$$
\begin{cases}-\operatorname{div}_{x}\left(\left|\nabla_{\chi} u_{p}\right|^{p-2} \nabla_{x} u_{p}\right)-\operatorname{div}_{y}\left(\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p}\right)=f, & \text { in } \Omega \tag{1.3}\\ u_{p}=0, & \text { on } \partial \Omega\end{cases}
$$

where $1<p, q<\infty$, and then we study the behaviour as p goes to 1 of the solutions u_{p}. Thus, we may assume without lost of generality that $p<\min \{q, N\}$; moreover we may also assume $p<\frac{N q}{q-K}$ if $q>K$, and $\frac{N p}{N-p}<q$ if $\frac{N}{N-1}<q$.

We prove that the approximate solutions u_{p} converge to a $B V$-function u that turns out to be a solution to Eq. (1.1).
Formally (1.1) is the limit problem of (1.3) as p goes to 1 . A solution to this limit problem could be seen as a minimum (or, more generally, as a critical point) in the anisotropic subset of $B V$ described above of the functional defined by

$$
J[u]=\int_{\Omega}\left|D_{x} u\right|+\frac{1}{q} \int_{\Omega}\left|\nabla_{y} u\right|^{q}-\int_{\Omega} f u .
$$

However, if we try to show that J is bounded from below, then we will need to consider a datum f small enough. Instead, in this paper we prove that the limit problem (1.1) has a solution for all f regardless of its size, whether large or small.

A similar approach has been used to study the isotropic version of problem (1.1), where the differential operator is replaced by $-\operatorname{div}\left(|\nabla u|^{-1} \nabla u\right)$. In such a case there is no stability result for solutions to p-Laplacian equation as p goes to 1 , in the sense that solutions of the p-Laplacian equation converge to a function that can be infinity on a set of positive measure when the datum f is large enough (see [6,7] for particular data and [8,9] for more general data). Moreover, there is no uniqueness of the solution to the limit problem. Eq. (1.1) shares some features with its isotropic version, as shown in Section 4.3. Indeed, the solution is trivial (identically 0) when the considered datum f is small enough. This situation occurs until the vector field ζ satisfies $\|\zeta\|_{\infty}=1$. After that the two equations differ. When the norm of the datum increases, in the isotropic problem it is not possible to find a vector field satisfying $\|\zeta\|_{\infty} \leq 1$ and solutions blow up, while in the anisotropic problem the extra term $\operatorname{div}_{y}\left(\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u\right)$ absorbs the excess and a finite solution can always be obtained.

Anisotropic problems have been studied by many years. Recently the number of papers devoted to these kind of problems has increased. We refer, for example, to [10-22]. We also point out that anisotropic problems appear in connections with some problems in Physics [23-27], in Biology [10,11,28], and in Image Processing [29].

The plan of this paper is as follows. After introducing our precise hypotheses and notation, in Section 2 we study our functional setting: we discuss two crucial inequalities and extend the Anzellotti theory of L^{∞}-divergence-measure vector fields to the anisotropic case, giving sense to $\left(\zeta, D_{x} u\right)$ and obtaining a Green's formula. In Section 3, we begin by studying the asymptotic behaviour of the approximate solutions $\left(u_{p}\right)$ to problem (1.3). As $p \rightarrow 1$, we get a limit function u and a vector field ζ which is the weak limit of $\left|\nabla_{\chi} u_{p}\right|^{p-2} \nabla_{\chi} u_{p}$. In Section 4 we introduce our notion of solution and we prove the existence result stated in Theorem 4.2, which consists in proving that the limit function u above is a solution to (1.1). Our uniqueness result is established in Theorem 4.3. We also show in Theorem 4.5 a regularity result when more regular data are considered. Finally, we show some explicit examples of solutions to Eq. (1.1) regardless of the size of the datum, in which it is seen how the extra term $\operatorname{div}_{y}\left(\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u\right)$ absorbs the excess when $\|\zeta\|_{\infty}$ reaches 1 .

2. Crucial tools

2.1. Notation and inequalities

Recall from the introduction that we denote by Ξ and Υ bounded open subsets of \mathbb{R}^{N} and \mathbb{R}^{K}, respectively. We assume that Ξ has a Lipschitz boundary, so that we may handle a unit vector field (denoted by v_{x}) normal to $\partial \Xi$ and exterior to Ξ, defined \mathscr{H}^{N-1}-a.e. on $\partial \Xi$, where \mathscr{H}^{N-1} denotes the ($N-1$)-dimensional Hausdorff measure. Let $\Omega=\Xi \times \Upsilon \subset \mathbb{R}^{N+K}$. If $u: \Omega \rightarrow \mathbb{R}$ is a regular enough function, we will denote

$$
\nabla_{x} u=\left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \ldots, \frac{\partial u}{\partial x_{N}}\right) \quad \text { and } \quad \nabla_{y} u=\left(\frac{\partial u}{\partial y_{1}}, \frac{\partial u}{\partial y_{2}}, \ldots, \frac{\partial u}{\partial y_{K}}\right) .
$$

Thus, the gradient of u reads as $\nabla u=\left(\nabla_{x} u, \nabla_{y} u\right)$.
If $z: \Omega \rightarrow \mathbb{R}^{N+K}$ is a smooth vector field, we will write $\zeta=\left(z_{1}, z_{2}, \ldots, z_{N}\right)$ and $\lambda=\left(z_{N+1}, z_{N+2}, \ldots, z_{N+K}\right)$, so that $z=(\zeta, \lambda)$. Then we will denote

$$
\begin{equation*}
\operatorname{div}_{x} \zeta=\sum_{i=1}^{N} \frac{\partial z_{i}}{\partial x_{i}} \quad \text { and } \quad \operatorname{div}_{y} \lambda=\sum_{i=1}^{K} \frac{\partial z_{N+i}}{\partial y_{i}} \tag{2.4}
\end{equation*}
$$

and this yields $\operatorname{div} z=\operatorname{div}_{x} \zeta+\operatorname{div}_{y} \lambda$.

Throughout this paper we will denote by $W_{0}^{1,(p, q)}(\Omega)$, with $1<p, q<\infty$, the anisotropic Sobolev space defined as the closure of the space $C_{0}^{\infty}(\Omega)$ with respect to the norm $\|u\|_{(p, q)}=\left\|\nabla_{x} u\right\|_{p}+\left\|\nabla_{y} u\right\|_{q}$. A function u belonging to $W_{0}^{1,(p, q)}(\Omega)$ satisfies $\nabla_{x} u \in L^{p}\left(\Omega ; \mathbb{R}^{N}\right)$ and $\nabla_{y} u \in L^{q}\left(\Omega ; \mathbb{R}^{K}\right)$. Moreover for almost all $x \in \Xi$ the function $y \mapsto u(x, y)$ belongs to $W_{0}^{1, q}(\Upsilon)$.

We will denote $B V^{(q)}(\Omega)$, with $1<q<\infty$, the anisotropic subspace of $B V(\Omega)$ consisting of those functions u satisfying that $D_{x} u$ is a Radon measure and $\nabla_{y} u$ belongs to $L^{q}\left(\Omega ; \mathbb{R}^{K}\right)$ in such a way that for almost all $x \in \Xi$ the function $y \mapsto u(x, y)$ belongs to $W_{0}^{1, q}(\Upsilon)$. Some remarks concerning this space are in order. As in the corresponding isotropic space (see for instance [30]), we may prove that, for a fixed $u \in B V^{(q)}(\Omega)$,

$$
\int_{\Omega}\left|D_{x} u\right|=\sup \left\{\int_{\Omega} u \operatorname{div}_{x} \phi: \phi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right),\|\phi\|_{\infty} \leq 1\right\} .
$$

Note that each $\phi \in C_{0}^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ defines a linear functional

$$
u \mapsto \int_{\Omega} u \operatorname{div}_{x} \phi
$$

which is continuous in $L^{1}(\Omega)$. Hence, the functional defined by

$$
\begin{equation*}
u \mapsto \int_{\Omega}\left|D_{x} u\right| \tag{2.5}
\end{equation*}
$$

is lower semicontinuous with respect to the convergence in $L^{1}(\Omega)$. In the same way, we may see that each $\varphi \in C_{0}^{1}(\Omega)$, with $\varphi \geq 0$, defines a functional

$$
u \mapsto \int_{\Omega} \varphi\left|D_{\chi} u\right|,
$$

which is lower semicontinuous in $L^{1}(\Omega)$. Furthermore, we may handle another lower semicontinuous functional which takes into account the value of u on the boundary. Indeed, extend $u \in B V^{(q)}(\Omega)$ to a larger domain $\Xi^{\prime} \times \Upsilon$, with $u \equiv 0$ outside of Ω, and consider the total variation of the extended function. The divergence theorem gives

$$
\int_{\Xi^{\prime} \times \Upsilon} u \operatorname{div}_{\chi} \phi=-\int_{\Omega} \phi \cdot D_{x} u+\int_{\partial \Xi \times \Upsilon} u \phi \cdot v_{x} \mathrm{~d} \mathscr{H}^{N+K-1}
$$

for all $\phi \in C_{0}^{1}\left(\Xi^{\prime} \times \Upsilon ; \mathbb{R}^{N}\right)$. Hence, we deduce that the functional

$$
\begin{equation*}
u \mapsto \int_{\Omega}\left|D_{\chi} u\right|+\int_{\partial \Xi \times \gamma}|u| \mathrm{d} \mathscr{H}^{N+K-1} \tag{2.6}
\end{equation*}
$$

is lower semicontinuous in $L^{1}(\Omega)$.
Obtaining a priori estimates for solutions of (1.3) depends on the following two inequalities. The first one is a Sobolev type inequality, whose proof can be found in [21] (see also [18]). The second one is a Poincaré type inequality, for which we give a proof below (see also [18]). Observe that, if $p<N$, then the first one is better when $\frac{N p}{N-p}>q$.

Theorem 2.1. Let $(p, q)^{*}=\frac{N+K}{(N / p)+(K / q)-1}$. Then $W_{0}^{1,(p, q)}(\Omega) \hookrightarrow L^{(p, q)^{*}}(\Omega)$ with continuous embedding and there exists a positive constant $S_{(p, q)}$ (only depending on p, q, N and K) such that

$$
\begin{align*}
\|u\|_{(p, q)^{*}} & \leq S_{(p, q)}\left(\prod_{i=1}^{N}\left\|\frac{\partial u}{\partial x_{i}}\right\|_{p}^{\frac{1}{N+K}}\right)\left(\prod_{i=1}^{K}\left\|\frac{\partial u}{\partial y_{i}}\right\|_{q}^{\frac{1}{N+K}}\right) \\
& \leq S_{(p, q)}\left\|\nabla_{x} u\right\|_{p}^{\frac{N}{N+K}}\left\|\nabla_{y} u\right\|_{q}^{\frac{K}{N+K}}, \tag{2.7}
\end{align*}
$$

for all $u \in W_{0}^{1,(p, q)}(\Omega)$.
Remark 2.2. Following the proof given in [21] an estimate of the constant $S_{(p, q)}$ can be made. Indeed, we may take $S_{(p, q)}=$ $\frac{N+K-1}{(N / p)+(K / q)-1}$. We explicitly remark that with this choice $\lim _{p \rightarrow 1} S_{(p, q)}=S_{(1, q)}$.

Theorem 2.3. Let D denote the diameter of Υ and let $u \in B V^{(q)}(\Omega)$ be fixed. Then the following inequality holds

$$
\begin{equation*}
\int_{\Omega}|u(x, y)|^{q} \mathrm{~d} x \mathrm{~d} y \leq D^{q} \int_{\Omega}\left|\nabla_{y} u(x, y)\right|^{q} \mathrm{~d} x \mathrm{~d} y \tag{2.8}
\end{equation*}
$$

Proof. Fix $x_{\in} \in \Xi$ and choose a direction in Υ, say that of y_{1}. Then there is a closed interval I of length D and an open set $\Upsilon_{1} \subset \mathbb{R}^{K-1}$ such that $\Upsilon \subset I \times \Upsilon_{1}$. To be more precise, if $\left(y_{1}, y_{2}, \ldots, y_{K}\right) \in \Upsilon$, then $y_{1} \in I$ and $\left(y_{2}, \ldots, y_{K}\right) \in \Upsilon_{1}$.

Next, extend the function u to $\Xi \times I \times \Upsilon_{1}: u \equiv 0$ outside of $\Xi \times \Upsilon$. For almost every $\left(y_{2}, y_{3}, \ldots, y_{K}\right) \in \Upsilon_{1}$, the function $t \mapsto u\left(x ; t, y_{2}, \ldots, y_{K}\right)$ is absolutely continuous and vanishes in the extremes of I. Applying Poincare's inequality to this function we obtain

$$
\begin{aligned}
\int_{I}\left|u\left(x ; t, y_{2}, y_{3}, \ldots, y_{K}\right)\right|^{q} \mathrm{~d} t & \leq D^{q} \int_{I}\left|\frac{\partial u}{\partial y_{1}}\left(x ; t, y_{2}, y_{3}, \ldots, y_{K}\right)\right|^{q} \mathrm{~d} t \\
& \leq D^{q} \int_{I}\left|\nabla_{y} u\left(x ; t, y_{2}, y_{3}, \ldots, y_{K}\right)\right|^{q} \mathrm{~d} t
\end{aligned}
$$

Integrating over $\Xi \times \Upsilon_{1}$, we end the proof.

2.2. Anisotropic Anzellotti's theory

In order to give sense to our notion of solution, we have to define certain pairings between vector fields and derivatives of a $B V$-function, and to prove a Green's formula. Throughout this subsection, we take $z=(\zeta, \lambda)$ with $\zeta \in L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ and $\lambda \in L^{q^{\prime}}\left(\Omega ; \mathbb{R}^{K}\right)$, satisfying $\operatorname{div} z \in L^{r}(\Omega)$. On the other hand, we assume that $u \in B V^{(q)}(\Omega)$.

We begin by defining three distributions on Ω. For every $\varphi \in C_{0}^{\infty}(\Omega)$, we write

$$
\begin{align*}
& \langle(z, D u), \varphi\rangle=-\int_{\Omega} u \varphi \operatorname{div} z-\int_{\Omega} u z \cdot \nabla \varphi \tag{2.9}\\
& \left\langle\left(\lambda, \nabla_{y} u\right), \varphi\right\rangle=\int_{\Omega} \varphi \lambda \cdot \nabla_{y} u \tag{2.10}\\
& \left(\zeta, D_{x} u\right)=(z, D u)-\left(\lambda, \nabla_{y} u\right) \tag{2.11}
\end{align*}
$$

Since the third distribution is the sum of the other two and $\left(\lambda, \nabla_{y} u\right)$ is a function, if we prove that $(z, D u)$ is a Radon measure, so is $\left(\zeta, D_{\chi} u\right)$.

Following [2], we have the following result.
Proposition 2.4. (1) For every $\varphi \in C_{0}^{\infty}(\Omega)$, it holds

$$
|\langle(z, D u), \varphi\rangle| \leq\|\varphi\|_{\infty}\left[\|\zeta\|_{\infty}\left|D_{x} u\right|(\Omega)+\|\lambda\|_{q^{\prime}}\left\|\nabla_{y} u\right\|_{q}\right] .
$$

(2) For every open set $U \subset \Omega$ and every $\varphi \in C_{0}^{\infty}(U)$, we have

$$
\left|\left\langle\left(\zeta, D_{x} u\right), \varphi\right\rangle\right| \leq\|\varphi\|_{\infty}\|\zeta\|_{L^{\infty}(U)} \int_{U}\left|D_{x} u\right| .
$$

Therefore, $(z, D u)$ and $\left(\zeta, D_{x} u\right)$ are Radon measures, and $\left|\left(\zeta, D_{x} u\right)\right| \leq\|\zeta\|_{\infty}\left|D_{x} u\right|$.
In order to go on, we need the following anisotropic Meyer-Serrin theorem.
Proposition 2.5. For each $u \in B V^{(q)}(\Omega) \cap L^{r^{\prime}}(\Omega)$ there exists a sequence $\left(u_{n}\right)$ in $W^{1,1}(\Omega) \cap C^{\infty}(\Omega)$ such that
(1) $u_{n} \rightarrow u$ in $L^{r^{\prime}}(\Omega)$,
(2) $\int_{\Omega}\left|\nabla_{x} u_{n}\right| \rightarrow\left|D_{x} u\right|(\Omega)$,
(3) $\nabla_{y} u_{n} \rightarrow \nabla_{y} u \quad$ in $L^{q}(\Omega)$.

Moreover, since $\partial \Xi$ is Lipschitz-continuous, we can find u_{n} satisfying

$$
\left.u_{n}\right|_{\partial \Xi \times \Upsilon}=\left.u\right|_{\partial \Xi \times \Upsilon}
$$

Proof. Fixed $\delta>0$, we claim the existence of a function $u_{\delta} \in W^{1,1}(\Omega) \cap C^{\infty}(\Omega)$ such that

$$
\int_{\Omega}\left|u-u_{\delta}\right|^{r^{\prime}}<\delta^{r^{\prime}} \quad \int_{\Omega}\left|\nabla_{y} u_{n}-\nabla_{y} u\right|^{q}<\delta^{q}, \quad \text { and } \quad \int_{\Omega}\left|\nabla_{x} u_{\delta}\right| \leq\left|D_{x} u\right|(\Omega)+\delta .
$$

In order to prove this claim, we denote by Ω_{k} a sequence of open sets defined as in the proof of the Meyers-Serrin theorem (see for instance [30, p. 122]). Consider also a partition of unity subordinate to this covering: $\phi_{k} \in C_{0}^{\infty}(\Omega)$ such that $\operatorname{supp} \phi_{k} \subset \Omega_{k}, 0 \leq \phi \leq 1$ and $\sum_{k=0}^{\infty} \phi_{k}(x)=1$ for all $x \in \Omega$. Moreover, let $\left(\rho_{n}\right)_{n}$ be a sequence of positive symmetric mollifiers. Finally, let $\left(\delta_{k}\right)_{k}$ be a sequence of positive numbers satisfying $\sum_{k=1}^{\infty} \delta_{k}<\delta$. Now, for each $k \in \mathbb{N}$, we can find $\epsilon_{k}>0$ such that

$$
\begin{aligned}
& \operatorname{supp} \rho_{\epsilon_{k}} *\left(\phi_{k} u\right) \subset \Omega_{k}, \quad \int_{\Omega}\left|\rho_{\epsilon_{k}} *\left(\phi_{k} u\right)-\phi_{k} u\right|^{r^{\prime}}<\delta_{k}^{r^{\prime}}, \\
& \int_{\Omega}\left|\rho_{\epsilon_{k}} *\left(u \nabla_{x} \phi_{k}\right)-u \nabla_{x} \phi_{k}\right|<\delta_{k}, \quad \text { and } \quad \int_{\Omega}\left|\rho_{\epsilon_{k}} * \nabla_{y}\left(u \phi_{k}\right)-\nabla_{y}\left(u \phi_{k}\right)\right|^{q}<\delta_{k}^{q} .
\end{aligned}
$$

Letting $u_{\delta}=\sum_{k=0}^{\infty} \rho_{\epsilon_{k}} *\left(u \phi_{k}\right)$, we next follow the steps of the proof of [30, p. 123], to conclude the result.
Proposition 2.6. Let $\left(u_{n}\right)_{n}$ be a sequence in $W^{1,1}(\Omega) \cap C^{\infty}(\Omega)$ which converges to u as in the above Proposition 2.5. Then

$$
\int_{\Omega}\left(\zeta, \nabla_{x} u_{n}\right) \rightarrow \int_{\Omega}\left(\zeta, D_{x} u\right) \text { and } \int_{\Omega} \lambda \cdot \nabla_{y} u_{n} \rightarrow \int_{\Omega} \lambda \cdot \nabla_{y} u .
$$

Proof. For any $\varphi \in C_{0}^{\infty}(\Omega)$, we have

$$
\left|\left\langle\left(\zeta, \nabla_{x} u_{n}\right), \varphi\right\rangle-\left\langle\left(\zeta, D_{x} u\right), \varphi\right\rangle\right| \leq\left|\left\langle\left(z, \nabla u_{n}\right), \varphi\right\rangle-\langle(z, D u), \varphi\rangle\right|+\left|\int_{\Omega} \varphi \lambda \cdot \nabla_{y} u_{n}-\int_{\Omega} \varphi \lambda \cdot \nabla_{y} u\right| .
$$

Therefore the first assertion follows from the analogous result proved by Anzellotti (see [2]), and from the strong convergence $\nabla_{y} u_{n} \rightarrow \nabla_{y} u$ in $L^{q}(\Omega)$.

The second assertion is also a straightforward consequence of the strong convergence $\nabla_{y} u_{n} \rightarrow \nabla_{y} u$ in $L^{q}(\Omega)$.
Now we prove a Green's formula for function belonging to $B V^{(q)}(\Omega)$.
As in [2] (see also [31, pp. 126-127]) we may define the weak trace of the exterior normal component of ζ on $\partial \Xi$, which will be denoted by $\left[\zeta, \nu_{x}\right]$.

Theorem 2.7. Let Ξ be an open subset of \mathbb{R}^{N} with Lipschitz boundary and let Υ be an open subset of \mathbb{R}^{K}. Denote $\Omega=\Xi \times \Upsilon \subset$ \mathbb{R}^{N+K}. If $z=(\zeta, \lambda)$ satisfies $\zeta \in L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right), \lambda \in L^{q^{\prime}}\left(\Omega ; \mathbb{R}^{K}\right)$, and $\operatorname{div} z \in L^{r}(\Omega)$, then for every $u \in B V^{(q)}(\Omega)$ the following formula holds

$$
\int_{\Omega} u \operatorname{div} z+\int_{\Omega}\left(\zeta, D_{x} u\right)+\int_{\Omega} \lambda \cdot \nabla_{y} u=\int_{\partial \Xi \times \Upsilon} u\left[\zeta, v_{x}\right] \mathrm{d} \mathscr{H}^{N+K-1} .
$$

Proof. Consider a sequence $\left(u_{n}\right)_{n}$ in $W^{1,1}(\Omega) \cap C^{\infty}(\Omega)$ which converges to u as in Proposition 2.5. Applying Green's formula to each u_{n}, we obtain

$$
\begin{aligned}
\int_{\Omega} u_{n} \operatorname{div}_{x} \zeta+\int_{\Omega} \zeta \cdot \nabla_{x} u_{n} & =\int_{\partial \Xi \times \Upsilon} u_{n}\left[\zeta, v_{x}\right] \mathrm{d} \mathscr{H}^{N+K-1} \\
\int_{\Omega} u_{n} \operatorname{div}_{y} \lambda+\int_{\Omega} \lambda \cdot \nabla_{y} u_{n} & =0 .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{\Omega} u_{n} \operatorname{div} z+\int_{\Omega} z \cdot \nabla u_{n}=\int_{\partial \Xi \times \Upsilon} u_{n}\left[\zeta, v_{\chi}\right] \mathrm{d} \mathscr{H}^{N+K-1} . \tag{2.12}
\end{equation*}
$$

We next study the convergence of each term in the above equality. Since $u_{n} \rightarrow u$ in $L^{r^{\prime}}(\Omega)$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} u_{n} \operatorname{div} z=\int_{\Omega} u \operatorname{div} z \tag{2.13}
\end{equation*}
$$

By applying Proposition 2.6 , we deduce that

$$
\begin{align*}
\lim _{n \rightarrow \infty} \int_{\Omega} z \cdot \nabla u_{n} & =\lim _{n \rightarrow \infty} \int_{\Omega} \zeta \cdot \nabla_{x} u_{n}+\lim _{n \rightarrow \infty} \int_{\Omega} \lambda \cdot \nabla_{y} u_{n} \\
& =\int_{\Omega}\left(\zeta, D_{x} u\right)+\int_{\Omega} \lambda \cdot \nabla_{y} u \tag{2.14}
\end{align*}
$$

Finally, since $\left.u_{n}\right|_{\partial \Xi \times \Upsilon}=\left.u\right|_{\partial \Xi \times \Upsilon}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\partial \Xi \times \Upsilon} u_{n}\left[\zeta, v_{x}\right] \mathrm{d} \mathscr{H}^{N+K-1}=\int_{\partial \Xi \times \Upsilon} u\left[\zeta, v_{x}\right] \mathrm{d} \mathscr{H}^{N+K-1} . \tag{2.15}
\end{equation*}
$$

Therefore, on account of (2.13)-(2.15), Theorem 2.7 follows by letting $n \rightarrow \infty$ in (2.12).

3. Behaviour of $\boldsymbol{u}_{\boldsymbol{p}}$ as \boldsymbol{p} goes to 1

Let $u_{p} \in W_{0}^{1,(p, q)}(\Omega)$ be the unique solution to the anisotropic elliptic equation

$$
\begin{cases}-\operatorname{div}_{x}\left(\left|\nabla_{x} u_{p}\right|^{p-2} \nabla_{x} u_{p}\right)-\operatorname{div}_{y}\left(\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p}\right)=f, & \text { in } \Omega \tag{3.16}\\ u_{p}=0, & \text { on } \partial \Omega\end{cases}
$$

where $1<p, q<\infty$ and f belongs to $L^{r}(\Omega)$ with r as in (1.2). This means that the following equality holds

$$
\begin{equation*}
\int_{\Omega}\left|\nabla_{x} u_{p}\right|^{p-2} \nabla_{x} u_{p} \cdot \nabla_{x} \varphi+\int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \cdot \nabla_{y} \varphi=\int_{\Omega} f \varphi, \tag{3.17}
\end{equation*}
$$

for any $\varphi \in W_{0}^{1,(p, q)}(\Omega)$. Existence of a unique solution u_{p} to (3.16) can be easily obtained minimizing the functional

$$
G[u]=\frac{1}{p} \int_{\Omega}\left|\nabla_{x} u\right|^{p}+\frac{1}{q} \int_{\Omega}\left|\nabla_{y} u\right|^{q}-\int_{\Omega} f u
$$

in the space $W_{0}^{1,(p, q)}(\Omega)$. Indeed, first we note that

$$
r \geq r_{p}:=\min \left\{\frac{N+K}{\left(N / p^{\prime}\right)+\left(K / q^{\prime}\right)+1}, q^{\prime}\right\}
$$

so, $f \in L^{r_{p}}(\Omega)$. Observe also that every minimizing sequence is bounded in $W_{0}^{1,(p, q)}(\Omega)$ and as a consequence we obtain a minimizing sequence which is weakly convergent to some u in $W_{0}^{1,(p, q)}(\Omega)$. Applying Theorems 2.1 and 2.3, one deduces that the sequence weakly converges to u in $L^{r_{p}^{\prime}}(\Omega)$. Finally, the lower semicontinuity of the gradient terms $\frac{1}{p} \int_{\Omega}\left|\nabla_{x} u\right|^{p}+\frac{1}{q} \int_{\Omega}\left|\nabla_{y} u\right|^{q}$ and the continuity of $\int_{\Omega} f u$ imply that u is a minimizer of the functional G.

In what follows, with abuse of notation, we will say that u_{p} is a sequence and we will consider subsequences of it, as p goes to 1 .

Theorem 3.1. Let u_{p} be a solution to (3.16) for any $1<p<\infty$. Then there exist $u \in B V(\Omega) \cap L^{r^{\prime}}(\Omega)$ and a subsequence of u_{p}, not relabelled, such that as p goes to 1 ,

$$
\begin{align*}
& \nabla_{x} u_{p} \rightharpoonup D_{x} u \quad{ }^{*} \text {-weakly in the sense of measures; } \tag{3.18}\\
& \nabla_{y} u_{p} \rightharpoonup \nabla_{y} u \quad \text { weakly in } L^{q}\left(\Omega ; \mathbb{R}^{K}\right) \tag{3.19}\\
& u_{p} \rightarrow u \text { a.e. in } \Omega \tag{3.20}\\
& u_{p} \rightarrow u \text { in } L^{m}(\Omega) \text { for } 1 \leq m<r^{\prime} \tag{3.21}
\end{align*}
$$

Proof. Taking u_{p} as test function in (3.17), we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\nabla_{x} u_{p}\right|^{p}+\int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q}=\int_{\Omega} f u_{p} \leq\|f\|_{r}\left\|u_{p}\right\|_{r^{\prime}} . \tag{3.22}
\end{equation*}
$$

Our aim is to obtain an inequality as

$$
\begin{equation*}
\int_{\Omega}\left|\nabla_{\chi} u_{p}\right|^{p}+\int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q} \leq M \tag{3.23}
\end{equation*}
$$

being M a positive constant that does not depend on p. To get this estimate, first recall that

$$
r^{\prime}=\max \left\{\frac{N+K}{N-1+(K / q)}, q\right\}
$$

So that two possibilities have to be taken into account.
We begin by considering the case when $r^{\prime}=\frac{N+K}{N-1+(K / q)}$, that is, $q \leq \frac{N}{N-1}$. Applying Theorem 2.1, we obtain

$$
\int_{\Omega}\left|\nabla_{x} u_{p}\right|^{p}+\int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q} \leq S_{(p, q)}\|f\|_{r}\left\|\nabla_{x} u\right\|_{p}^{\frac{N}{N+K}}\left\|\nabla_{y} u\right\|_{q}^{\frac{K}{N+K}} .
$$

Then Young's inequality implies

$$
\int_{\Omega}\left|\nabla_{x} u_{p}\right|^{p}+\int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q} \leq \frac{\left(N / p^{\prime}\right)+\left(K / q^{\prime}\right)}{N+K}\left(S_{(p, q)}\|f\|_{r}\right)^{\frac{N+K}{\left(N / p^{\prime}\right)+\left(K / q^{\prime}\right)}}+\frac{N}{p(N+K)}\left\|\nabla_{x} u\right\|_{p}^{p}+\frac{K}{q(N+K)}\left\|\nabla_{y} u\right\|_{q}^{q},
$$

from where it follows that

$$
\left(\frac{N}{p^{\prime}}+K\right) \int_{\Omega}\left|\nabla_{x} u_{p}\right|^{p}+\left(N+\frac{K}{q^{\prime}}\right) \int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q} \leq\left(\frac{N}{p^{\prime}}+\frac{K}{q^{\prime}}\right)\left(S_{(p, q)}\|f\|_{r}\right)^{\frac{N+K}{\left(N / p^{\prime}\right)+\left(K / q^{\prime}\right)}} .
$$

Thus, since $K>\frac{K}{q^{\prime}}$ and $N>\frac{N}{p^{\prime}}$, this yields

$$
\int_{\Omega}\left|\nabla_{x} u_{p}\right|^{p}+\int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q} \leq\left(S_{(p, q)}\|f\|_{r}\right)^{\frac{N+K}{\left(N / p^{\prime}\right)+\left(K / q^{\prime}\right)}} .
$$

Hence, we have obtained an inequality as (3.23) since $\frac{N+K}{\left(N / p^{\prime}\right)+\left(K / q^{\prime}\right)} \leq \frac{N+K}{K} q^{\prime}$ and $\lim _{p \rightarrow 1} S_{(p, q)}=S_{(1, q)}$.
We now turn to analyze the case when $r^{\prime}=q$, that is, $q>\frac{N}{N-1}$. If we take $\epsilon=1 /\left(2 D^{q}\right)$, then Young's inequality and Theorem 2.3 imply

$$
\|f\|_{r}\left\|u_{p}\right\|_{q} \leq \epsilon \int_{\Omega}\left|u_{p}\right|^{q}+C(\epsilon)\|f\|_{r}^{q^{\prime}} \leq \frac{1}{2} \int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q}+C(\epsilon)\|f\|_{r}^{q^{\prime}}
$$

Thus (3.22) becomes

$$
\begin{equation*}
\int_{\Omega}\left|\nabla_{\chi} u_{p}\right|^{p}+\frac{1}{2} \int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q} \leq C\left(\|f\|_{r}, D, q\right) \tag{3.24}
\end{equation*}
$$

and so inequality (3.23) is also obtained in the second case.
Applying Young's inequality, it follows from (3.23) that

$$
\begin{align*}
\int_{\Omega}\left|\nabla u_{p}\right| & \leq \int_{\Omega}\left|\nabla_{x} u_{p}\right|+\int_{\Omega}\left|\nabla_{y} u_{p}\right| \\
& \leq \frac{1}{p} \int_{\Omega}\left|\nabla_{x} u_{p}\right|^{p}+\frac{p-1}{p}|\Omega|+\frac{1}{q} \int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q}+\frac{q-1}{q}|\Omega| \leq M+2|\Omega|, \tag{3.25}
\end{align*}
$$

for p small enough. Hence, u_{p} is bounded in $B V(\Omega)$ and we may find $u \in B V(\Omega)$ satisfying

$$
\begin{align*}
& \nabla_{x} u_{p} \rightharpoonup D_{x} u \quad{ }^{*}-\text { weakly in the sense of measures; } \tag{3.26}\\
& \nabla_{y} u_{p} \rightharpoonup D_{y} u \quad{ }^{*} \text {-weakly in the sense of measures; } \tag{3.27}\\
& u_{p} \rightarrow u \quad \text { in } L^{1}(\Omega) \text { and a.e. in } \Omega \tag{3.28}
\end{align*}
$$

Since, by (3.23), the sequence $\nabla_{y} u_{p}$ is bounded in $L^{q}(\Omega)$, it follows that, actually, $\nabla_{y} u_{p} \rightharpoonup \nabla_{y} u$ weakly in $L^{q}(\Omega)$. Moreover, Theorem 2.1 implies that u_{p} is bounded in $L^{\frac{N+K}{N+(K / q)-1}}(\Omega)$ and Theorem 2.3 implies that u_{p} is bounded in $L^{q}(\Omega)$, so that it is bounded in $L^{r^{\prime}}(\Omega)$. Therefore, $u \in L^{r^{\prime}}(\Omega)$ and it follows by interpolation and from (3.28) that $u_{p} \rightarrow u$ in $L^{m}(\Omega)$, where $1 \leq m<r^{\prime}$.

Remark 3.2. We explicitly remark that inequality (2.7) is usually written replacing the right-hand side with the norm of the anisotropic Sobolev space (that do not contain a product), i.e.,

$$
\|u\|_{(p, q)^{*}} \leq S_{(p, q)}\left(\left\|\nabla_{x} u\right\|_{p}+\left\|\nabla_{y} u\right\|_{q}\right) \quad u \in W^{1,(p, q)}(\Omega)
$$

Nevertheless, this inequality is not suitable for our purposes, since from here we cannot obtain the a priori estimates (3.23). Indeed, taking u_{p} as test function in (3.17) and using the previous Sobolev inequality, we get

$$
\int_{\Omega}\left|\nabla_{x} u_{p}\right|^{p}+\int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q} \leq S_{(p, q)}^{p^{\prime}}\|f\|_{r}^{p^{\prime}}+\frac{p^{\prime}}{q^{\prime}} S_{(p, q)}^{q^{\prime}}\|f\|_{r}^{q^{\prime}}
$$

from where we are not able to deduce the a priori estimate (3.23) since $p^{\prime} \rightarrow+\infty$, when $p \rightarrow 1$.
Theorem 3.3. Under the same assumptions of Theorem 3.1, there exist $z=(\zeta, \lambda)$ with $\zeta \in L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ and $\lambda \in L^{q^{\prime}}\left(\Omega ; \mathbb{R}^{K}\right)$ and a subsequence of u_{p}, not relabelled, satisfying

$$
\|\zeta\|_{\infty} \leq 1, \quad \lambda=\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u
$$

and

$$
\begin{aligned}
& \left|\nabla_{x} u_{p}\right|^{p-2} \nabla_{x} u_{p} \rightharpoonup \zeta \quad \text { weakly in } L^{s}\left(\Omega ; \mathbb{R}^{N}\right) \quad \forall s<\infty, \\
& \nabla_{y} u_{p} \rightarrow \nabla_{y} u \text { in } L^{q}\left(\Omega ; \mathbb{R}^{K}\right)
\end{aligned}
$$

as p goes to 1 .

Proof. It follows from the fundamental inequality (3.23) that there exists $z=(\zeta, \lambda)$ where $\zeta \in L^{s}\left(\Omega ; \mathbb{R}^{N}\right)$, for all $s<\infty$, and $\lambda \in L^{q^{\prime}}\left(\Omega ; \mathbb{R}^{K}\right)$ such that, up to subsequences, $\left|\nabla_{x} u_{p}\right|^{p-2} \nabla_{x} u_{p} \rightharpoonup \zeta$ weakly in $L^{s}(\Omega)$, and $\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \rightharpoonup \lambda$ weakly in $L^{q^{\prime}}(\Omega)$.

To prove that $\zeta \in L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ and $\|\zeta\|_{\infty} \leq 1$ we may follow the same arguments of [1], which we sketch for the sake of completeness. Fixed $k>0$, define

$$
B_{p, k}=\left\{x \in \Omega:\left|\nabla_{\chi} u_{p}(x)\right|>k\right\} .
$$

As a consequence of (3.23) we have that

$$
\begin{equation*}
\left|B_{p, k}\right| \leq \frac{C}{k^{p}} \quad \text { for every } p>1, k>0 \tag{3.29}
\end{equation*}
$$

The same inequality (3.23) implies that $\left(\left|\nabla_{x} u_{p}\right|^{p-2} \nabla_{x} u_{p} \chi_{B_{p, k}}\right)$ is bounded in any $L^{s}\left(\Omega ; \mathbb{R}^{N}\right)$ with $s<\infty$. Thus, there is some $g_{k} \in L^{1}\left(\Omega, \mathbb{R}^{N}\right)$ such that

$$
\left|\nabla_{\chi} u_{p}\right|^{p-2} \nabla_{\chi} u_{p} \chi_{B_{p, k}} \rightharpoonup g_{k}
$$

weakly in $L^{1}\left(\Omega, \mathbb{R}^{N}\right)$ as $p \rightarrow 1$. Now for any $\phi \in L^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$ with $\|\phi\|_{\infty} \leq 1$, we easily prove that

$$
\left.\left|\int_{\Omega}\right| \nabla_{x} u_{p}\right|^{p-2} \nabla_{\chi} u_{p} \cdot \phi \chi_{B_{p, k}} \left\lvert\, \leq \frac{C}{k}\right.
$$

Letting p goes to 1 , we get that

$$
\left|\int_{\Omega} g_{k} \cdot \phi\right| \leq \frac{C}{k}
$$

holds for all $\phi \in L^{\infty}\left(\Omega, \mathbb{R}^{N}\right)$ with $\|\phi\|_{\infty} \leq 1$. By duality, we obtain

$$
\begin{equation*}
\int_{\Omega}\left|g_{k}\right| \leq \frac{C}{k} . \tag{3.30}
\end{equation*}
$$

On the other hand, we also have that

$$
\left|\left|\nabla_{\chi} u_{p}\right|^{p-2} \nabla_{\chi} u_{p} \chi_{\Omega \backslash B_{p, k}}\right| \leq k^{p-1} \quad \text { for any } p>1 .
$$

Taking the limit as p tends to 1 , we obtain that $\left|\nabla u_{p}\right|^{p-2} \nabla u_{p} \chi_{\Omega \backslash B_{p, k}}$ weakly converges in $L^{1}\left(\Omega, \mathbb{R}^{N}\right)$ to some function $f_{k} \in L^{1}\left(\Omega, \mathbb{R}^{N}\right)$ such that $\left\|f_{k}\right\|_{\infty} \leq 1$. Hence, we may write $\zeta=f_{k}+g_{k}$ with $\left\|f_{k}\right\|_{\infty} \leq 1$ and g_{k} satisfying (3.30), for all $k>0$. It follows that $\zeta=\lim _{k \rightarrow \infty} f_{k}$ in $L^{1}\left(\Omega ; \mathbb{R}^{N}\right)$ and so $\|\zeta\|_{\infty} \leq 1$.

To prove the strong convergence of the gradients $\nabla_{y} u_{p}$ to $\nabla_{y} u$, we will compute

$$
\begin{equation*}
\lim _{p \rightarrow 1} \int_{\Omega}\left(\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p}-\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u\right) \cdot \nabla_{y}\left(u_{p}-u\right)=0 . \tag{3.31}
\end{equation*}
$$

Observe that, by (3.19), we already have

$$
\begin{equation*}
\lim _{p \rightarrow 1} \int_{\Omega}\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u \cdot \nabla_{y}\left(u_{p}-u\right)=0 \tag{3.32}
\end{equation*}
$$

To handle the remaining terms, we consider $\epsilon>0$ and $v \in C^{\infty}(\Omega)$ such that

$$
\begin{equation*}
\int_{\Omega}|f||u-v|+\left|\int_{\Omega}\right| \nabla_{\chi} v\left|-\left|D_{\chi} u\right|(\Omega)\right|<\epsilon \tag{3.33}
\end{equation*}
$$

Taking $u_{p}-v$ as test function in (3.17), it yields

$$
\int_{\Omega}\left|\nabla_{\chi} u_{p}\right|^{p}-\int_{\Omega}\left|\nabla_{\chi} u_{p}\right|^{p-2} \nabla_{\chi} u_{p} \cdot \nabla_{x} v+\int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \cdot \nabla_{y}\left(u_{p}-v\right)=\int_{\Omega} f\left(u_{p}-v\right) .
$$

If we apply Young's inequality and let p goes to 1 applying the lower semicontinuity of (2.5), we obtain

$$
\left|D_{\chi} u\right|(\Omega)-\int_{\Omega} \zeta \cdot \nabla_{x} v+\underset{p \rightarrow 1}{\limsup } \int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \cdot \nabla_{y}\left(u_{p}-v\right) \leq \int_{\Omega} f(u-v) .
$$

Since

$$
\left|\int_{\Omega} \zeta \cdot \nabla_{\chi} v\right| \leq\|\zeta\|_{\infty} \int_{\Omega}\left|\nabla_{\chi} v\right| \leq \int_{\Omega}\left|\nabla_{\chi} v\right|,
$$

it follows that

$$
\limsup _{p \rightarrow 1} \int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \cdot \nabla_{y}\left(u_{p}-v\right) \leq \int_{\Omega}|f||u-v|+\int_{\Omega}\left|\nabla_{\chi} v\right|-\left|D_{\chi} u\right|(\Omega)<\epsilon,
$$

by (3.33). Now the arbitrariness of $\epsilon>0$ implies

$$
\underset{p \rightarrow 1}{\limsup } \int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \cdot \nabla_{y}\left(u_{p}-v\right) \leq 0
$$

From it and (3.32) we deduce that

$$
\limsup _{p \rightarrow 1} \int_{\Omega}\left(\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p}-\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u\right) \cdot \nabla_{y}\left(u_{p}-u\right) \leq 0
$$

Since the integrand is nonnegative, we get (3.31). Once (3.31) has been proved, we apply the same argument of [32] (see also [33]) and passing to a subsequence, if necessary, we deduce that $\nabla_{y} u_{p}$ converge pointwise to $\nabla_{y} u$ in Ω.

Therefore, $\lambda=\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u$, that is,

$$
\begin{equation*}
\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \rightharpoonup\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u \quad \text { weakly in } L^{q^{\prime}}\left(\Omega ; \mathbb{R}^{K}\right) . \tag{3.34}
\end{equation*}
$$

As a consequence of (3.19), (3.34) and (3.31), we obtain

$$
\lim _{p \rightarrow 1} \int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q}=\lim _{p \rightarrow 1} \int_{\Omega}\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u \cdot \nabla_{y}\left(u_{p}-u\right)+\lim _{p \rightarrow 1} \int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \cdot \nabla_{y} u=\int_{\Omega}\left|\nabla_{y} u\right|^{q} .
$$

From this convergence and (3.19), we deduce $\nabla_{y} u_{p} \rightarrow \nabla_{y} u$ in $L^{q}\left(\Omega ; \mathbb{R}^{K}\right)$.

4. Main results

In this section, we begin by introducing the definition of solution to problem (1.1) and then we prove existence, uniqueness and regularity results for such a solution.

Definition 4.1. We say that $u \in B V^{(q)}(\Omega)$ is a solution to (1.1) if the following conditions hold:
There exists $z=(\zeta, \lambda)$ with $\zeta \in L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ and $\lambda \in L^{q^{\prime}}\left(\Omega ; \mathbb{R}^{K}\right)$ satisfying

$$
\begin{align*}
& \|\zeta\|_{\infty} \leq 1 \quad \text { and } \quad \lambda=\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u \tag{4.35}\\
& -\operatorname{div} z=f \quad \text { in } \mathscr{D}^{\prime}(\Omega) \tag{4.36}\\
& {\left[\zeta, v_{x}\right] \in \operatorname{sign}(-u) \quad \mathscr{H}^{N+K-1} \text {-a.e. on } \partial \Xi \times \Upsilon} \tag{4.37}\\
& \left(\zeta, D_{x} u\right) \text { is a Radon measure and }\left(\zeta, D_{x} u\right)=\left|D_{x} u\right| . \tag{4.38}
\end{align*}
$$

By applying Green's formula given by Theorem 2.7, one can easily deduce the following variational formulation of problem (1.1): the identity

$$
\begin{align*}
& \int_{\Omega}\left|D_{x} u\right|-\int_{\Omega}\left(\zeta, D_{x} v\right)+\int_{\Omega}\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u \cdot \nabla_{y}(u-v) \\
& =\int_{\Omega} f(u-v)-\int_{\partial \Xi \times \Upsilon}|u| \mathrm{d} \mathscr{H}^{N+K-1}-\int_{\partial \Xi \times \Upsilon} v\left[\zeta, v_{x}\right] \mathrm{d} \mathscr{H}^{N+K-1} \tag{4.39}
\end{align*}
$$

holds for every $v \in B V^{(q)}(\Omega)$.

4.1. Existence and uniqueness

We have the following existence result.
Theorem 4.2. There exists, at least, a solution to problem (1.1).
Proof. First apply Theorem 3.1 to get $u \in B V(\Omega) \cap L^{r^{\prime}}(\Omega)$ that, by Theorem 3.3, satisfies

$$
\lim _{p \rightarrow 1} \int_{\Xi} \int_{\Upsilon}\left|\nabla_{y} u_{p}(x, y)-\nabla_{y} u(x, y)\right|^{q} \mathrm{~d} y \mathrm{~d} x=0
$$

Then there exists a sequence p_{n} satisfying $p_{n}>1, \lim _{n \rightarrow \infty} p_{n}=1$ and

$$
\lim _{n \rightarrow \infty} \int_{\Upsilon}\left|\nabla_{y} u_{p_{n}}(x, y)-\nabla_{y} u(x, y)\right|^{q} \mathrm{~d} y=0
$$

for almost all $x \in \Xi$. We may assume, without loss of generality, that for those $x \in \Xi$ each function $y \mapsto u_{p_{n}}(x, y)$ belongs to $W_{0}^{1, q}(\Upsilon)$. Hence, for almost all $x \in \Xi$, the function $y \mapsto u(x, y)$ belongs to $W_{0}^{1, q}(\Upsilon)$ and so $u \in B V^{(q)}(\Omega)$. Moreover, from Theorem 3.3, we obtain $z=(\zeta, \lambda)$ satisfying (4.35) in Definition 4.1.

We next proceed to prove the other three conditions of Definition 4.1.
Proof of (4.36). Taking $\varphi \in C_{0}^{\infty}(\Omega)$ as test function in (3.17) we get

$$
\int_{\Omega}\left|\nabla_{x} u_{p}\right|^{p-2} \nabla_{x} u_{p} \cdot \nabla_{x} \varphi+\int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \cdot \nabla_{y} \varphi=\int_{\Omega} f \varphi .
$$

Letting p goes to 1 , by Theorem 3.3, we obtain

$$
\int_{\Omega} \zeta \cdot \nabla_{x} \varphi+\int_{\Omega} \lambda \cdot \nabla_{y} \varphi=\int_{\Omega} f \varphi
$$

Proof of (4.38). As usual, we denote the truncation at level $\pm k$ by

$$
T_{k}(s)= \begin{cases}s & -k \leq s \leq k \\ k & s>k \\ -k & s<-k\end{cases}
$$

We now choose $T_{k}\left(u_{p}\right) \varphi$, with $\varphi \in C_{0}^{\infty}(\Omega)$ and $\varphi \geq 0$, as test function in (3.17). Then

$$
\begin{align*}
& \int_{\Omega} \varphi\left|\nabla_{x} T_{k}\left(u_{p}\right)\right|^{p}+\int_{\Omega} T_{k}\left(u_{p}\right)\left|\nabla_{x} u_{p}\right|^{p-2} \nabla_{x} u_{p} \cdot \nabla_{\chi} \varphi \\
& \quad+\int_{\Omega} \varphi\left|\nabla_{y} T_{k}\left(u_{p}\right)\right|^{q}+\int_{\Omega} T_{k}\left(u_{p}\right)\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \cdot \nabla_{y} \varphi=\int_{\Omega} f T_{k}\left(u_{p}\right) \varphi \tag{4.40}
\end{align*}
$$

Applying Young's inequality, we get

$$
\int_{\Omega} \varphi\left|\nabla_{\chi} T_{k}\left(u_{p}\right)\right| \leq \frac{1}{p} \int_{\Omega} \varphi\left|\nabla_{x} T_{k}\left(u_{p}\right)\right|^{p}+\frac{p-1}{p} \int_{\Omega} \varphi,
$$

so that it follows from (4.40) that

$$
\begin{aligned}
& \int_{\Omega} \varphi\left|\nabla_{\chi} T_{k}\left(u_{p}\right)\right|+\frac{1}{p} \int_{\Omega} T_{k}\left(u_{p}\right)\left|\nabla_{\chi} u_{p}\right|^{p-2} \nabla_{\chi} u_{p} \cdot \nabla_{\chi} \varphi+\frac{1}{p} \int_{\Omega} \varphi\left|\nabla_{y} T_{k}\left(u_{p}\right)\right|^{q} \\
& +\frac{1}{p} \int_{\Omega} T_{k}\left(u_{p}\right)\left|\nabla_{y} u_{p}\right|^{q-2} \nabla_{y} u_{p} \cdot \nabla_{y} \varphi \leq \frac{1}{p} \int_{\Omega} f T_{k}\left(u_{p}\right) \varphi+\frac{p-1}{p} \int_{\Omega} \varphi .
\end{aligned}
$$

In order to pass to the limit in the first term on the left-hand side, we may apply the lower semicontinuity of the functional $u \mapsto \int_{\Omega} \varphi\left|D_{x} u\right|$, obtaining

$$
\int_{\Omega} \varphi\left|D_{x} T_{k}(u)\right|+\int_{\Omega} T_{k}(u) \zeta \cdot \nabla_{\chi} \varphi+\int_{\Omega} \varphi\left|\nabla_{y} T_{k}(u)\right|^{q}+\int_{\Omega} T_{k}(u) \lambda \cdot \nabla_{y} \varphi \leq \int_{\Omega} f T_{k}(u) \varphi .
$$

Letting now $k \rightarrow \infty$, we get

$$
\int_{\Omega} \varphi\left|D_{x} u\right|+\int_{\Omega} u \zeta \cdot \nabla_{x} \varphi+\int_{\Omega} \varphi\left|\nabla_{y} u\right|^{q}+\int_{\Omega} u \lambda \cdot \nabla_{y} \varphi \leq \int_{\Omega} f u \varphi=-\int_{\Omega}(\operatorname{div} z) u \varphi .
$$

It follows from Green's formula that

$$
\int_{\Omega} \varphi\left|D_{x} u\right|+\int_{\Omega} \varphi\left|\nabla_{y} u\right|^{q} \leq\left\langle\left(\zeta, D_{x} u\right), \varphi\right\rangle+\int_{\Omega} \varphi \lambda \cdot \nabla_{y} u .
$$

By the definition of λ, we get $\int_{\Omega} \varphi\left|D_{x} u\right| \leq\left\langle\left(\zeta, D_{x} u\right), \varphi\right\rangle$ for all $\varphi \in C_{0}^{\infty}(\Omega)$ satisfying $\varphi \geq 0$. Hence,

$$
\left|D_{x} u\right| \leq\left(\zeta, D_{x} u\right) \quad \text { as measures. }
$$

The equality follows since

$$
\left(\zeta, D_{x} u\right) \leq\|\zeta\|_{\infty}\left|D_{x} u\right| \leq\left|D_{x} u\right| .
$$

Proof of (4.37). Considering u_{p} as test function in (3.17), we get

$$
\int_{\Omega}\left|\nabla_{x} u_{p}\right|^{p}+\int_{\Omega}\left|\nabla_{y} u_{p}\right|^{q}=\int_{\Omega} f u_{p} .
$$

By applying Young's inequality and the lower semicontinuity of the functional (2.6) we obtain

$$
\begin{equation*}
\int_{\Omega}\left|D_{x} u\right|+\int_{\partial \Xi \times \Upsilon}|u| \mathrm{d} \mathscr{H}^{N+K-1}+\int_{\Omega}\left|\nabla_{y} u\right|^{q} \leq \int_{\Omega} f u . \tag{4.41}
\end{equation*}
$$

Now, $f=-\operatorname{div} z$ in $\mathscr{D}^{\prime}(\Omega)$ and Green's formula imply

$$
\int_{\Omega} f u=-\int_{\Omega} \operatorname{div}(z) u=\int_{\Omega}\left(\zeta, D_{x} u\right)+\int_{\Omega} \lambda \cdot \nabla_{y} u-\int_{\partial \Xi \times \Upsilon} u\left[\zeta, v_{x}\right] \mathrm{d} \mathscr{H}^{N+K-1} .
$$

Therefore, it follows from (4.41) that

$$
\int_{\Omega}\left|D_{x} u\right|+\int_{\partial \Xi \times \Upsilon}|u| \mathrm{d} \mathscr{H}^{N+K-1}+\int_{\Omega}\left|\nabla_{y} u\right|^{q} \leq \int_{\Omega}\left(\zeta, D_{x} u\right)+\int_{\Omega} \lambda \cdot \nabla_{y} u-\int_{\partial \Xi \times \Upsilon} u\left[\zeta, v_{x}\right] \mathrm{d} \mathscr{H}^{N+K-1} .
$$

Since $\left|D_{x} u\right|=\left(\zeta, D_{x} u\right)$ and $\int_{\Omega}\left|\nabla_{y} u\right|^{q}=\int_{\Omega} \lambda \cdot \nabla_{y} u$, it yields

$$
\int_{\partial \Xi \times \Upsilon}\left(|u|+u\left[\zeta, v_{x}\right]\right) \mathrm{d} \mathscr{H}^{N+K-1} \leq 0 .
$$

Since $|u|+u\left[\zeta, v_{x}\right] \geq 0 \mathscr{H}^{N+K-1}$-a.e. in $\partial \Xi \times \Upsilon$ we obtain $|u|+u\left[\zeta, v_{x}\right]=0 \mathscr{H}^{N+K-1}$-a.e. in $\partial \Xi \times \Upsilon$ and so [ζ, v_{x}] $\in \operatorname{sign}(-u), \mathscr{H}^{N+K-1}$-a.e. in $\partial \Xi \times \Upsilon$.

Now we prove the uniqueness result.
Theorem 4.3. There exists, at most, a solution to problem (1.1).
Proof. Suppose that u_{1} and u_{2} are two solutions to problem (1.1). Thus, there exist $z_{1}=\left(\zeta_{1}, \lambda_{1}\right)$ and $z_{2}=\left(\zeta_{2}, \lambda_{2}\right)$ satisfying (4.35)-(4.38). Taking u_{2} as test function in the variational formulation (4.39) corresponding to u_{1}, it yields

$$
\begin{aligned}
& \int_{\Omega}\left|D_{x} u_{1}\right|-\int_{\Omega}\left(\zeta_{1}, D_{x} u_{2}\right)+\int_{\Omega}\left|\nabla_{y} u_{1}\right|^{q-2} \nabla_{y} u_{1} \cdot \nabla_{y}\left(u_{1}-u_{2}\right) \\
& \quad=\int_{\Omega} f\left(u_{1}-u_{2}\right)-\int_{\partial \Xi \times \Upsilon}\left|u_{1}\right| \mathrm{d} \mathscr{H}^{N+K-1}-\int_{\partial \Xi \times \Upsilon}\left[\zeta_{1}, v_{x}\right] u_{2} \mathrm{~d} \mathscr{H}^{N+K-1}
\end{aligned}
$$

Analogously, we obtain

$$
\begin{aligned}
& \int_{\Omega}\left|D_{x} u_{2}\right|-\int_{\Omega}\left(\zeta_{2}, D_{x} u_{1}\right)+\int_{\Omega}\left|\nabla_{y} u_{2}\right|^{q-2} \nabla_{y} u_{2} \cdot \nabla_{y}\left(u_{2}-u_{1}\right) \\
& \quad=\int_{\Omega} f\left(u_{2}-u_{1}\right)-\int_{\partial \Xi \times \Upsilon}\left|u_{2}\right| \mathrm{d} \mathscr{H}^{N+K-1}-\int_{\partial \Xi \times \Upsilon}\left[\zeta_{2}, v_{x}\right] u_{1} \mathrm{~d} \mathscr{H}^{N+K-1} .
\end{aligned}
$$

Adding both equalities, we deduce

$$
\begin{align*}
& \int_{\Omega}\left|D_{x} u_{1}\right|-\int_{\Omega}\left(\zeta_{2}, D_{x} u_{1}\right)+\int_{\Omega}\left|D_{x} u_{2}\right|-\int_{\Omega}\left(\zeta_{1}, D_{x} u_{2}\right)+\int_{\Omega}\left(\left|\nabla_{y} u_{1}\right|^{q-2} \nabla_{y} u_{1}-\left|\nabla_{y} u_{2}\right|^{q-2} \nabla_{y} u_{2}\right) \cdot \nabla_{y}\left(u_{1}-u_{2}\right) \\
& =-\int_{\partial \Xi \times \gamma}\left|u_{2}\right| \mathrm{d} \mathscr{H}^{N+K-1}-\int_{\partial \Xi \times \gamma}\left[\zeta_{1}, v_{x}\right] u_{2} \mathrm{~d} \mathscr{H}^{N+K-1}-\int_{\partial \Xi \times \Upsilon}\left|u_{1}\right| \mathrm{d} \mathscr{H}^{N+K-1}-\int_{\partial \Xi \times \Upsilon}\left[\zeta_{2}, v_{x}\right] u_{1} \mathrm{~d} \mathscr{H}^{N+K-1} . \tag{4.42}
\end{align*}
$$

By Proposition 2.4 , since $\left\|\zeta_{1}\right\|_{\infty} \leq 1$ and $\left\|\zeta_{2}\right\|_{\infty} \leq 1$, we get

$$
\begin{aligned}
& \int_{\Omega}\left|D_{x} u_{1}\right|-\int_{\Omega}\left(\zeta_{2}, D_{x} u_{1}\right) \geq 0, \quad \int_{\Omega}\left|D_{x} u_{2}\right|-\int_{\Omega}\left(\zeta_{1}, D_{x} u_{2}\right) \geq 0, \\
& \int_{\partial \Xi \times \Upsilon}\left|u_{2}\right| \mathrm{d} \mathscr{H}^{N+K-1}+\int_{\partial \Xi \times \Upsilon}\left[\zeta_{1}, v_{x}\right] u_{2} \mathrm{~d} \mathscr{H}^{N+K-1} \geq 0, \\
& \int_{\partial \Xi \times \Upsilon}\left|u_{1}\right| \mathrm{d} \mathscr{H}^{N+K-1}+\int_{\partial \Xi \times \Upsilon}\left[\zeta_{2}, v_{x}\right] u_{1} \mathrm{~d} \mathscr{H}^{N+K-1} \geq 0,
\end{aligned}
$$

and so (4.42) becomes

$$
\int_{\Omega}\left(\left|\nabla_{y} u_{1}\right|^{q-2} \nabla_{y} u_{1}-\left|\nabla_{y} u_{2}\right|^{q-2} \nabla_{y} u_{2}\right) \cdot \nabla_{y}\left(u_{1}-u_{2}\right) \leq 0 .
$$

Hence, since the integrand is nonnegative,

$$
\left(\left|\nabla_{y} u_{1}\right|^{q-2} \nabla_{y} u_{1}-\left|\nabla_{y} u_{2}\right|^{q-2} \nabla_{y} u_{2}\right) \cdot \nabla_{y}\left(u_{1}-u_{2}\right)=0 \quad \text { a.e. in } \Omega,
$$

and as a consequence $\nabla_{y} u_{1}=\nabla_{y} u_{2}$ a.e. in Ω. Finally, applying Theorem 2.3 , we conclude $u_{1}=u_{2}$ a.e. in Ω, as desired.
Remark 4.4. If there is no direction where the operator is a q-Laplacian with $q>1$, it cannot be expected a uniqueness result. Assume, to simplify, that u is a regular solution to the problem

$$
\begin{cases}-\operatorname{div}\left(\frac{D u}{|D u|}\right)=f, & \text { in } \Omega ; \tag{4.43}\\ u=0, & \text { on } \partial \Omega ;\end{cases}
$$

and $h \in C^{1}(\mathbb{R}, \mathbb{R})$ is strictly increasing and satisfies $h(0)=0$, then $v=h(u)$ is also a solution to (4.43). Hence uniqueness in general does not hold (see also [31], p. 61).

4.2. Regularity

The following regularity result holds.
Theorem 4.5. Let $f \in L^{m}(\Omega)$, with $m>r$. We also assume that $m<N+\frac{K}{q}$ when $q<\frac{N}{N-1}$. Then $u \in L^{s}(\Omega)$, where

$$
s=\max \left\{\frac{m^{\prime}(N+K)(q-1)}{((N-1) q+K) m^{\prime}-(N+K)}, m(q-1)\right\} .
$$

Proof. We are going to prove that the sequence u_{p} is bounded in $L^{s}(\Omega)$. To this end, we will follow the arguments in [34]. Let $k \geq 1$ and consider, as test function in (3.17),

$$
v= \begin{cases}1, & \text { if }\left|u_{p}\right| \geq k ; \\ \left(\left|u_{p}\right|-k+1\right) \operatorname{sign} u_{p}, & \text { if } k-1 \leq\left|u_{p}\right|<k ; \\ 0, & \text { if }\left|u_{p}\right|<k-1 .\end{cases}
$$

We get

$$
\begin{equation*}
\int_{\left\{k-1 \leq\left|u_{p}\right|<k\right\}}\left|\nabla_{\chi} u_{p}\right|^{p}+\int_{\left\{k-1 \leq\left|u_{p}\right|<k\right\}}\left|\nabla_{y} u_{p}\right|^{q} \leq \int_{\left\{\left|u_{p}\right| \geq k-1\right\}}|f| . \tag{4.44}
\end{equation*}
$$

Assume first that $q \geq \frac{N}{N-1}$, so that $q^{\prime}=r$ and our datum belongs to $L^{m}(\Omega)$ with $m>q^{\prime}$. Thus, by (4.44), we have

$$
\begin{equation*}
\int_{\left\{k-1 \leq\left|u_{p}\right|<k\right\}}\left|\nabla_{y} u_{p}\right|^{q} \leq \int_{\left\{\left|u_{p}\right| \geq k-1\right\}}|f|, \quad \text { for all } k \geq 1 . \tag{4.45}
\end{equation*}
$$

Consider a parameter $\gamma>1$ to be determined. Then, by Theorem 2.3, we get

$$
\begin{aligned}
\int_{\Omega}\left|u_{p}\right|^{\gamma q} \leq\left.\left. C \int_{\Omega}\left|\nabla_{y}\right| u_{p}\right|^{\gamma}\right|^{q} & =C \int_{\Omega}\left|u_{p}\right|^{q(\gamma-1)}\left|\nabla_{y} u_{p}\right|^{q} \\
& =C \sum_{k=1}^{\infty} \int_{\left\{k-1 \leq\left|u_{p}\right|<k\right\}}\left|u_{p}\right|^{q(\gamma-1)}\left|\nabla_{y} u_{p}\right|^{q} \leq C \sum_{k=1}^{\infty} \int_{\left\{k-1 \leq\left|u_{p}\right|<k\right\}} k^{q(\gamma-1)}\left|\nabla_{y} u_{p}\right|^{q} .
\end{aligned}
$$

By applying (4.45) in each term of the right-hand side, one deduces

$$
\int_{\Omega}\left|u_{p}\right|^{\gamma q} \leq C \sum_{k=1}^{\infty} \int_{\left\{\left|u_{p}\right| \geq k-1\right\}} k^{q(\gamma-1)}|f|=C \sum_{k=1}^{\infty} \sum_{h=k}^{\infty} k^{q(\gamma-1)} \int_{\left\{h-1 \leq\left|u_{p}\right|<h\right\}}|f| .
$$

Changing the order of summation and using $\sum_{k=1}^{h} k^{q(\gamma-1)} \leq \mathrm{Ch}^{q(\gamma-1)+1}$, we have

$$
\begin{aligned}
\int_{\Omega}\left|u_{p}\right|^{\gamma q} \leq C \sum_{h=1}^{\infty} h^{q(\gamma-1)+1} \int_{\left\{h-1 \leq\left|u_{p}\right|<h\right\}}|f| & =C \sum_{h=1}^{\infty} \int_{\left\{h-1 \leq\left|u_{p}\right|<h\right\}}\left(1+\left|u_{p}\right|\right)^{q(\gamma-1)+1}|f|=C \int_{\Omega}\left(1+\left|u_{p}\right|\right)^{q(\gamma-1)+1}|f| \\
& \leq C\left(\int_{\Omega}|f|^{m}\right)^{1 / m}\left(\int_{\Omega}\left(1+\left|u_{p}\right|\right)^{(q(\gamma-1)+1) m^{\prime}}\right)^{1 / m^{\prime}} .
\end{aligned}
$$

If we take γ satisfying $\gamma q=(q(\gamma-1)+1) m^{\prime}$, then we obtain $\gamma=\frac{m}{q^{\prime}}>1$ (since $\left.m^{\prime}<q\right)$ and an estimate of u_{p} in $L^{\gamma q}(\Omega)$. Since $\gamma q=m(q-1)$, we are done.

Assume now that $q<\frac{N}{N-1}$. It implies $q<\frac{N+K}{N+(K / q)-1}=r^{\prime}$. The proof follows the same lines as above but applying Theorem 2.1 instead of Theorem 2.3. We only point out the differences.

Consider parameters $\gamma_{p}>1$ to be determined. Then, by Theorem 2.1 and Young's inequality, we get

$$
\begin{aligned}
\left(\int_{\Omega}\left|u_{p}\right|^{\gamma_{p}} \frac{N+K}{(N / p)+(K / q)-1}\right)^{\frac{(N / p)+(K / q)-1}{(N / p)+(K / q)}} & \leq S_{(p, q)}\left(\left.\left.\int_{\Omega}\left|\nabla_{x}\right| u_{p}\right|^{\gamma_{p}}\right|^{p}\right)^{\frac{N / p}{(N / p)+(K / q)}}\left(\left.\left.\int_{\Omega}\left|\nabla_{y}\right| u_{p}\right|^{\gamma_{p}}\right|^{q}\right)^{\frac{K / q}{(N / p)+(K / q)}} \\
& \leq S_{(p, q)}\left[\left.\left.\int_{\Omega}\left|\nabla_{x}\right| u_{p}\right|^{\gamma_{p}}\right|^{p}+\left.\left.\int_{\Omega}\left|\nabla_{y}\right| u_{p}\right|^{\gamma_{p}}\right|^{q}\right] \\
& \leq S_{(p, q)} \gamma_{p}^{q} \sum_{k=1}^{\infty} k^{q\left(\gamma_{p}-1\right)}\left[\int_{\left\{k-1 \leq\left|u_{p}\right|<k\right\}}\left|\nabla_{x} u_{p}\right|^{p}+\int_{\left\{k-1 \leq\left|u_{p}\right|<k\right\}}\left|\nabla_{y} u_{p}\right|^{q}\right] .
\end{aligned}
$$

Now we apply (4.44) and perform similar computations as those done in the previous case to get

$$
\begin{equation*}
\left(\int_{\Omega}\left|u_{p}\right|^{\gamma_{p} \frac{N+K}{(N / p)+(K / q)-1}}\right)^{\frac{(N / p)+(K / q)-1}{(N / p)+(K / q)}} \leq S_{(p, q)} \gamma_{p}^{q}\|f\|_{m}\left(\int_{\Omega}\left(1+\left|u_{p}\right|\right)^{\left(q\left(\gamma_{p}-1\right)+1\right) m^{\prime}}\right)^{1 / m^{\prime}} \tag{4.46}
\end{equation*}
$$

We remark that $\frac{1}{m^{\prime}}<\frac{N+(K / q)-1}{N+(K / q)}$ since $m<N+\frac{K}{q}$. Thus, we may consider p small enough to satisfy $\frac{1}{m^{\prime}}<\frac{(N / p)+(K / q)-1}{(N / p)+(K / q)}$. If we take γ_{p} satisfying $\gamma_{p} \frac{N+K}{(N / p)+(K / q)-1}=\left(q\left(\gamma_{p}-1\right)+1\right) m^{\prime}$, then we obtain

$$
\gamma_{p}=\frac{m^{\prime}(q-1)}{q m^{\prime}-\frac{N+K}{(N / p)+(K / q)-1}}
$$

Observe that γ_{p} is bounded by a constant not depending on p. Hence, we have

$$
\int_{\Omega}\left|u_{p}\right|^{\gamma_{p} \frac{N+K}{(N / p)+(K / q)-1}} \leq C
$$

where C depends on f through its m-norm, and on p through the parameter γ_{p}, the Sobolev constant $S_{(p, q)}$ and the exponent $\frac{(N / p)+(K / q)-1}{(N / p)+(K / q)}$. Therefore, we may let p goes to 1 and get an estimate of u in a Lebesgue space:

$$
\lim _{p \rightarrow 1} \gamma_{p} \frac{N+K}{(N / p)+(K / q)-1}=\frac{m^{\prime}(q-1)(N+K)}{q m^{\prime}(N+(K / q)-1)-(N+K)}=s
$$

Now some remarks are in order. Observe that $N-q(N-1)>0$ since $q<\frac{N}{N-1}$. So that, we obtain

$$
N+\frac{K}{q}<\frac{N+K}{N-q(N-1)}
$$

Thus $m<\frac{N+K}{N-q(N-1)}$, and so $q m^{\prime}-\frac{N+K}{N+(K / q)-1}>0$. As a consequence, $\lim _{p \rightarrow 1} \gamma_{p}>1$ if and only if $m>\frac{N+K}{\left(K / q^{\prime}\right)+1}$. Since this last inequality holds, we have really improved the regularity of our solution. Finally, we point out that this improvement needs that the inequalities $\frac{N+K}{\left(K / q^{\prime}\right)+1}<m<N+\frac{K}{q}$ hold, and it is easy to see that we indeed have $\frac{N+K}{\left(K / q^{\prime}\right)+1}<N+\frac{K}{q}$.

4.3. Examples

We take $\Omega=\Xi \times \Upsilon$, with $\Xi=B_{1}(0)$ in $\mathbb{R}^{N}(N \geq 2)$ and $\Upsilon=B_{1}(0)$ in \mathbb{R}^{K}, and we will assume throughout this subsection that $q>\frac{N}{N-1}$, so $r=q^{\prime}<N$. Our aim is to show examples of problems (1.1) having solutions of the form

$$
u(x, y)=a(x) b(y)
$$

Consider f_{1} a positive radial decreasing function belonging to the Marcinkiewicz space $L^{N, \infty}(\Xi)$ and satisfying $\left\|f_{1}\right\|_{L^{N, \infty}(\Xi)} \leq 1$. Let $a \in W_{0}^{1,1}(\Xi) \cap L^{\infty}(\Xi)$ be a solution to

$$
\begin{cases}-\operatorname{div}\left(\frac{D a}{|D a|}\right)=f_{1}, & \text { in } \Xi \tag{4.47}\\ a=0, & \text { on } \partial \Xi\end{cases}
$$

Thus, a is a radial nonnegative function and there exists $\bar{\zeta} \in L^{\infty}\left(\Xi ; \mathbb{R}^{N}\right)$ satisfying
(1) $\|\bar{\zeta}\|_{\infty} \leq 1$,
(2) $-\operatorname{div} \bar{\zeta}=f_{1}$ in $\mathscr{D}^{\prime}(\Xi)$,
(3) $(\bar{\zeta}, D a)=|D a|$ as measures on Ξ.

We refer to [8], Section 3, for a detailed discussion of all matters concerning radial solutions to problem (4.47).

Now let $f_{2} \in L^{q^{\prime}}(\Upsilon)$, with $f_{2} \geq 0$, and let $b \in W_{0}^{1, q}(\Upsilon)$ be the unique solution to

$$
\begin{cases}-\Delta_{q} b=f_{2}, & \text { in } \Upsilon ; \tag{4.48}\\ b=0, & \text { on } \partial \Upsilon\end{cases}
$$

It is straightforward that $b \geq 0$ in Υ.
Let us check that $u(x, y)=a(x) b(y)$ is a solution to (1.1) with datum

$$
\begin{equation*}
f(x, y)=f_{1}(x)+f_{2}(y) a(x)^{q-1} \in L^{r}(\Omega) . \tag{4.49}
\end{equation*}
$$

To this end, define $\zeta(x, y)=\bar{\zeta}(x), \lambda(x, y)=a(x)^{q-1}|\nabla b(y)|^{q-2} \nabla b(y)$ and $z=(\zeta, \lambda)$. Then $\zeta \in L^{\infty}\left(\Omega ; \mathbb{R}^{N}\right)$ with $\|\zeta\|_{\infty}=\|\bar{\zeta}\|_{\infty} \leq 1$, and $\lambda(x, y) \in L^{q^{\prime}}\left(\Omega ; \mathbb{R}^{K}\right)$ with $\lambda=\left|\nabla_{y} u\right|^{q-2} \nabla_{y} u$. Moreover,

$$
-\operatorname{div}_{x} \zeta=f_{1}(x) \quad \text { and } \quad-\operatorname{div}_{y} \lambda=a(x)^{q-2} f_{2}(y) \quad \text { in } \mathscr{D}^{\prime}(\Omega)
$$

so that $-\operatorname{div} z=f$ in the sense of distributions.
To show that $\left(\zeta, D_{x} u\right)$ is a Radon measure on Ω, take first $\varphi(x, y)=\phi(x) \psi(y)$, where $\phi(x) \in C_{0}^{\infty}(\Xi)$ and $\psi(y) \in C_{0}^{\infty}(\Upsilon)$. Then

$$
\begin{aligned}
\left\langle\left(\zeta, D_{x} u\right), \varphi\right\rangle & =-\int_{\Omega} a(x) b(y) \phi(x) \psi(y) \operatorname{div} \bar{\zeta}(x)-\int_{\Omega} a(x) b(y) \psi(y) \bar{\zeta}(x) \cdot \nabla \phi(x) \\
& =\left(\int_{\Upsilon} b \psi\right)\left[-\int_{\Xi} a \phi \operatorname{div} \bar{\zeta}-\int_{\Xi} a \bar{\zeta} \cdot \nabla \phi\right]=\left(\int_{\Upsilon} b \psi\right)\langle(\bar{\zeta}, D a), \phi\rangle
\end{aligned}
$$

Let us denote $C_{0}(\Omega)=\left\{\varphi \in C(\bar{\Omega}): \varphi_{\mid \partial \Omega}=0\right\}$, and let us write $C_{0}(\Xi)$ and $C_{0}(\Upsilon)$ with a similar meaning. Since $C_{0}^{\infty}(\Xi)$ is uniformly dense in $C_{0}(\Xi)$ and $C_{0}^{\infty}(\Upsilon)$ is uniformly dense in $C_{0}(\Upsilon)$, it follows that

$$
\begin{equation*}
\left\langle\left(\zeta, D_{x} u\right), \varphi\right\rangle=\left(\int_{\Upsilon} b \psi\right)\langle(\bar{\zeta}, D a), \phi\rangle \tag{4.50}
\end{equation*}
$$

for all $\varphi(x, y)=\phi(x) \psi(y)$, with $\phi(x) \in C_{0}(\Xi)$ and $\psi(y) \in C_{0}(\Upsilon)$. Thus, by linearity, we continuously extend ($\left.\zeta, D_{x} u\right)$ to functions $\varphi \in C_{0}(\Omega)$ which can be written as $\varphi(x, y)=\sum_{i=1}^{n} \phi_{i}(x) \psi_{i}(y)$ with $\phi_{i} \in C_{0}(\Xi)$ and $\psi_{i} \in C_{0}(\Upsilon)$. Further, appealing to a variant of the Stone-Weierstrass Theorem, we may continuously extend ($\zeta, D_{x} u$) to $C_{0}(\Omega)$, so that ($\zeta, D_{x} u$) is a Radon measure.

We also deduce from (4.50) that if B_{Ξ} is a Borel subset of Ξ and B_{Υ} is a Borel subset of Υ, then $\left(\zeta, D_{x} u\right)\left(B_{\Xi} \times B_{\Upsilon}\right)=$ $(\bar{\zeta}, D a)\left(B_{\Xi}\right) \int_{B_{\Upsilon}} b$. Since we also have $\left|D_{\chi} u\right|\left(B_{\Xi} \times B_{\Upsilon}\right)=|D a|\left(B_{\Xi}\right) \int_{B_{\Upsilon}} b$, we conclude that $\left(\zeta, D_{x} u\right)=\left|D_{\chi} u\right|$ as measures.

Let us study now some special choices of f_{1} and f_{2}. First consider

$$
f_{1}(x)=\lambda \frac{N-1}{|x|}, \quad \text { with } 0<\lambda<1 .
$$

It is well-known that $a(x)=0$ for all $x \in \Xi$ is a solution of (4.47), with $\bar{\zeta}(x)=-\lambda \frac{x}{|x|}$ (cf. [8]). So that the solution to (1.1) with datum

$$
f(x, y)=\lambda \frac{N-1}{|x|}
$$

is given by $u(x, y)=0$, whatever datum $f_{2}(y)$ be considered in (4.49). We explicitly observe that in this case $\|\bar{\zeta}\|_{L^{\infty}}=\lambda<1$.
Now let us consider

$$
f_{1}(x)=\frac{N-1}{|x|} .
$$

Then $a(x)=1-|x|$ is a solution to (4.47) with $\bar{\zeta}(x)=-\frac{x}{|x|}$. Thus, taking $f_{2}(y)=0$ in (4.49), the solution to (1.1) is also given by $u(x, y)=0$.

On the other hand, taking

$$
f_{1}(x)=\frac{N-1}{|x|} \quad \text { and } \quad f_{2}(y) \neq 0
$$

the solution to (1.1) is given by

$$
u(x, y)=(1-|x|) b(y)
$$

which is nontrivial since $b(y)$ is nontrivial. So the datum

$$
f(x, y)=\lambda \frac{N-1}{|x|}+f_{2}(y), \quad \text { with } 0<\lambda<1
$$

produces the trivial solution for any choice of f_{2}, and the datum

$$
f(x, y)=\frac{N-1}{|x|}+f_{2}(y)(1-|x|)^{q-1}
$$

which is larger than $\frac{N-1}{|x|}$, gives a nontrivial solution $u(x, y)$ as well. In others words, once the vector field ζ satisfies $\|\zeta\|_{\infty}>1$, the solution to (1.1) becomes nontrivial. Roughly speaking, data large enough produce an excess which have to be absorbed only by the term $-\operatorname{div}_{y}\left(\left|\nabla_{y} u\right|^{q-1} \nabla_{y} u\right)$.

Since we may consider every $f_{2} \in L^{q^{\prime}}(\Upsilon)$, it follows that we may start from a datum $f(x, y)$ with norm $\|f\|_{r}$ as large as we want.

Furthermore, the above argument shows that if we take $f(x, y)=\lambda \frac{N-1}{|x|}$, with $\lambda>1$, as datum, we cannot expect the solution to problem (1.1) to be a product of two functions with separate variables.

Acknowledgements

The second author is partially supported by UBA X066 and CONICET (Argentina). The third author acknowledges partial support by the Spanish project MTM2008-03176.

References

[1] F. Andreu, C. Ballester, V. Caselles, J.M. Mazon, The Dirichlet problem for the total variation flow, J. Funct. Anal. 180 (2) (2001) $347-403$.
[2] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 (1) (1983) $293-318$.
[3] G.-Q. Chen, H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal. 147 (2) (1999) 89-118.
[4] G.-Q. Chen, H. Frid, On the theory of divergence-measure fields and its applications. Dedicated to constantine Dafermos on his 60th birthday, Bol. Soc. Brasil. Mat. (NS) 32 (3) (2001) 401-433.
[5] G.-Q. Chen, H. Frid, Extended divergence-measure fields and the Euler equations for gas dynamics, Comm. Math. Phys. 236 (2) (2003) $251-280$.
[6] B. Kawohl, On a family of torsional creep problems, J. Reine Angew. Math. 410 (1990) 1-22.
[7] B. Kawohl, From p-Laplace to mean curvature operator and related questions, in: Progress in Partial Differential Equations: The Metz Surveys, in: Pitman Res. Notes Math. Ser., vol. 249, Longman Sci. Tech., Harlow, 1991, pp. 40-56.
[8] A. Mercaldo, S. Segura de León, C. Trombetti, On the Behaviour of the solutions to p-Laplacian equations as p goes to 1, Publ. Mat. 52 (2) (2008) $377-411$.
[9] A. Mercaldo, S. Segura de León, C. Trombetti, On the solutions to 1-Laplacian equation with L^{1} data, J. Funct. Anal. 256 (8) (2009) $2387-2416$.
[10] M. Bendahmane, K.H. Karlsen, Renormalized solutions of an anisotropic reaction-diffusion-advection system with L^{1}-data, Commun. Pure Appl. Anal. 5 (4) (2006) 733-762.
[11] M. Bendahmane, M. Langlais, M. Saad, Existence of solutions for reaction-diffusion systems with L^{1} data, Adv. Differential Equations 7 (6) (2002) 743-768.
[12] L. Boccardo, P. Marcellini, C. Sbordone, L^{∞}-regularity for variational problems with sharp non standard growth conditions, Boll. Unione Mat. Ital. A (7) 4 (1990) 219-225.
[13] A. Cianchi, Symmetrization in anisotropic elliptic problems, Comm. Partial Differential Equations 32 (5) (2007) 693-717.
[14] A. Di Castro, E. Montefusco, Nonlinear eigenvalues for anisotropic quasilinear degenerate elliptic equations, Nonlinear Anal. 70 (11) (2009) $4093-4105$.
[15] A. El Hamidi, J. Vétois, Sharp Sobolev asymptotics for critical anisotropic equations, Arch. Ration. Mech. Anal. 192 (1) (2009) 1-36.
[16] A. El Hamidi, J.M. Rakotoson, Compactness and quasilinear problems with critical exponents, Differential Integral Equations 18 (2005) $1201-1220$.
[17] A. El Hamidi, J.M. Rakotoson, Extremal functions for the anisotropic Sobolev inequalities, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (18) (2007) 741-756.
[18] I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (5) (2004) 715-734.
[19] G.M. Lieberman, Gradient estimates for anisotropic elliptic equations, Adv. Differential Equations 10 (7) (2005) 767-812.
[20] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991) 1-30.
[21] M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat. 18 (1969) 3-24.
[22] J. Vétois, A priori estimates for solutions of anisotropic elliptic equations, Nonlinear Anal. 71 (9) (2009) 3881-3905.
[23] M. Bojowald, H.H. Hernández, H.A. Morales Técotl, Perturbative degrees of freedom in loop quantum gravity: anisotropies, Classical Quantum Gravity 23 (10) (2006) 3491-3516.
[24] E. Eisenriegler, Anisotropic colloidal particles in critical fluids, J. Chem. Phys. 121 (2004) 32-99.
[25] E. Eisenriegler, Anisotropic colloidal particles interacting with polymers in a good solvent, J. Chem. Phys. 124 (2006) 144-912.
[26] J. Garnier, High-frequency asymptotics for Maxwell's equations in anisotropic media. II. Nonlinear propagation and frequency conversion, J. Math. Phys. 42 (4) (2001) 1636-1654.
[27] J. Garnier, High-frequency asymptotics for Maxwell's equations in anisotropic media. I. Linear geometric and difractive optics, J. Math. Phys. 42 (4) (2001) 1612-1635.
[28] M. Bendahmane, M. Langlais, M. Saad, On some anisotropic reaction-diffusion systems with L^{1}-data modeling the propagation of an epidemic disease, Nonlinear Anal. 54 (4) (2003) 617-636.
[29] J. Weickert, Anisotropic Diffusion in Image Processing, in: European Consortium for Mathematics in Industry, B.G. Teubner, Stuttgart, 1998.
[30] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford, 2000.
[31] F. Andreu-Vaillo, V. Caselles, J.M. Mazon, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Birkhäuser, Basel, Boston, Berlin, 2004.
[32] F.E. Browder, Existence theorems for nonlinear partial differential equations, in: Global Analysis, Proc. Sympos. Pre Math., vol XVI, Berkeley, California, 1968, Amer. Math. Soc., 1970, pp. 671-688.
[33] L. Boccardo, F. Murat, J.-P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. (4) 152 (1) (1988) 183-196.
[34] L. Boccardo, D. Giachetti, A nonlinear interpolation result with application to the summability of minima of some integral functionals, Discrete Contin. Dyn. Syst. Ser. B 11 (1) (2009) 31-42.

[^0]: * Corresponding author. Tel.: +39 81 671111; fax: +39 817662106.

 E-mail addresses: mercaldo@unina.it (A. Mercaldo), jrossi@dm.uba.ar (J.D. Rossi), sergio.segura@uv.es (S. Segura de León), cristina@unina.it (C. Trombetti).

 1 On leave from: Departamento de Matemática, FCEyN UBA, Ciudad Universitaria, Pab 1, (1428), Buenos Aires, Argentina.

