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Abstract: The ability to control the laser modes within a subwavelength resonator is of key
relevance in modern optoelectronics. This work deals with the theoretical research on optical
properties of a PT-symmetric nano-scaled dimer formed by two dielectric wires, one is with
loss and the other with gain, wrapped with graphene sheets. We show the existence of two
non-radiating trapped modes which transform into radiating modes by increasing the gain–loss
parameter. Moreover, these modes reach the lasing condition for suitable values of this parameter,
a fact that makes these modes achieve an ultra high quality factor that is manifested on the
response of the structure when it is excited by a plane wave. Unlike other mechanisms that
transform trapped modes into radiating modes, we show that the variation of gain–loss parameter
in the balanced loss–gain structure here studied leads to a variation in the phase difference
between induced dipole moments on each wires, without appreciable variation in the modulus of
these dipole moments. We provide an approximated method that reproduces the main results
provided by the rigorous calculation. Our theoretical findings reveal the possibility to develop
unconventional optical devices and structures with enhanced functionality.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

It is known that, under certain conditions, a plasmonic system can support trapped electromagnetics
modes, which are electromagnetic non-radiating oscillations that stay localized inside the structure
[1]. These plasmon modes are characterized by an ultra-high quality factor provided that the
structural symmetry remains unbroken. In fact, the narrow resonances characterizing these
mode excitations rely on the breaking degree of the symmetry which allows the trapped mode to
couples with free photons [2]. In this sense, plasmon trapped modes can be considered as a kind
of symmetry protected states. Due to Ohmic loss in the plasmonic material, the eigenfrequencies
of the trapped states are complex valued. However, by introducing gain material elements into
the structure it is possible to compensate this material loss and, as a consequence, to reach the
lasing condition for which the eigenfrequency associated to an eigenmode is real valued [3].

Because of their fundamental properties as well as their potential applications, the study of
hybrid systems composed of gain media and plasmonic materials, which are lossy, is a topic
of continuous increasing interest [4–8]. In areas such as condensed matter and surface optics,
the amplification of eigenmodes by stimulated emission of radiation has played a key role in
the interpretation of a wide variety of experiments, the understanding of various fundamental
properties of solids and the engineering of nanolaser devices [9–11]. In particular, new phenomena
associated with parity-time (PT) symmetry have been observed in optical systems with balanced
loss and gain [12,13]. These optical systems belong to a large family of non-Hermitian systems,
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which can have a real spectrum provided that the system be invariant under combined operations
of parity (P) and time-reversal (T) symmetry [14,15].

Possibilities have been widened towards PT symmetric structures that incorporate graphene
as plasmonic material. Doped graphene allows the propagation of surface plasmons with low
Ohmic losses, i.e., with high quality factor, from terahertz to near-infrared range [16]. Moreover,
the plasmon resonance spectrum, and consequently the optical responses of the system, can be
tuned by varying the doped level on graphene. In this context, several works have focused on
the influence that long-living and tunable surface plasmons have on graphene based strucures
[17,18] and, in particular, on those that present PT-symmetry [19–22].

The present work contains all the ingredients above entered and focusing on the study of a
sub-wavelength graphene plasmonic system with balanced volume losses. In particular, our
system is composed of two parallel dielectric cylinders, one is with loss and the other with the
same level of gain, both wrapped with graphene sheets. Here, the sole effect of graphene is
to provide LSP resonances in sub-wavelength wires. Although other more complex structures
such as an array of many or infinite cylinders can be designed to present PT-symmetry, our
motivation is based in the simplicity of the dimer structure that we have chosen, since it allows us
to understand the underlying physics behind the PT-symmetry.

Other dielectric and plasmonic structures (without graphene) with balanced gain and loss
have been proposed and studied in the literature. For instance, exceptional points of resonant
eigenmodes (whispering gallery eigenmodes) were examined in a system consisting of a finite
number of parallel dielectric cylinders in [23]. By exploiting the dynamic characteristics of
whispering gallery eigenmodes near the exceptional point, a route to single particle sensing was
analyzed for two coupled resonators system [24]. Furthermore, full loss compensation with
relative low gain level can also be reached by using the eigenmodes supported by two parallel
wires made of plasmonic materials in the visible spectrum [25]. Recently, optical forces have
been explored for two interacting parallel plane waveguides, which results from the coupling
between the PT-eigenmodes propagating along the symmetry axis of the system [26]. Finally, an
overview of recent advancements in the field of non-Hermitian as well as PT-symmetry optical
systems can be found in [27], together with a systematic discussion of the key results that are
useful to understand exceptional point dynamics.

We use a rigorous formalism based on Mie theory to calculate the eigenmodes dependence
with the gain–loss parameter for both trapped and radiating eigenmodes. To do this, we solve the
boundary value problem with the corresponding boundary conditions without an incident wave
(homogeneous problem). The procedure requires the analytic continuation of the eigenvalue,
the frequency in our case, in the complex plane. Analytic continuation is inevitable, even in the
case of media with no intrinsic losses, since the open nature of our resonator generates non-null
imaginary parts due to radiation losses.

In addition, as it is well established nowadays, the modal lasing analysis in an open plasmonic
resonator, as our PT-symmetric structure, can be carried out by applying the lasing eigenvalue
problem (see [28] and references therein), in which the modal eigenfrequencies are assumed to
be real valued at the lasing condition (or lasing threshold). Following this concept, we solve
the homogeneous problem to find the real valued eigenfrequencies, gain–loss parameters and
chemical potentials for each modal lasing condition. Moreover, we study the eigenmode influence
on the optical response of the system when it is excited by a plane wave near the lasing condition.

By using the quasistatic approximation valid in the long wavelength limit, we show that despite
the graphene ohmic losses, a fact that gives rise to a complex spectrum, the structure exhibits a
set of properties in common with a PT-symmetric system. For instance, two eigenmode branches
coalesce at an exceptional point and, for the gain–loss parameter above certain threshold, these
both branches are repelled in the direction of the imaginary part of frequency, making that
one of these branches achieves the lasing condition. In addition, we demonstrate that branches
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eigenmode, which are trapped modes in case of null gain–loss parameter, transform into radiating
modes that can be excited by plane wave incidence when the gain–loss parameter is increased.
In previous works [29,30] it was reported mechanisms for controlling transitions from trapped
to radiating eigenmodes based on producing a difference between the modulus of individual
dipole moments on each particle forming the dimer, i.e., by producing a weakly asymmetry with
respect to the center of the dimer modifying the dipole moment amplitudes. In addition, in
[31] it was experimentally demonstrated that the modulus and phase of the coupling coefficient
between the magnetic mode and the electric dipolar mode on a composite metamaterial can be
efficiently manipulated for practical applications on radiation control. In particular, we show that
the increment of the gain–loss parameter leads to a change in the phase difference between these
individual dipole moments, maintaining their modulus values constant.

This paper is organized as follows. In section 2 we present a brief description of the rigorous
method used in this work to calculate the scattering of a dimmer composed of two graphene
wires. From this method, using the quasistatic approximation, we deduce analytical expressions
for eigenfrequencies and eigenvectors as a function of geometrical and constitutive parameters
that explain the main features calculated with the rigorous method. In section 3 we present results
of two parallel dielectric cylinders tightly coated with a graphene layer, one of them with small
inner losses and the other one with the same level of gain. Concluding remarks are provided in
section 4. The Gaussian system of units is used and an exp(−iω t) time-dependence is implicit
throughout the paper, where ω is the angular frequency, t is the time coordinate, and i =

√
−1.

The symbols Re and Im are used for denoting the real and imaginary parts of a complex quantity,
respectively.

2. Theory

2.1. Rigorous description of the fields and scattering efficiencies

We consider a cluster consisting of two parallel and non-overlapping cylindrical dielectric wires,
one with gain, εa = ε1 − iεi (εi>0), and the other with equal loss, εb = ε1 + iεi, as shown in
Fig. 1. Both wires have the same radius Ra = Rb = R and are wrapped with a graphene sheet.
The system is embedded in a lossless and non-magnetic dielectric denoted as medium v with
permittivity εv. In this case, a PT symmetry around the central axis, denoted by O, is fulfilled.
We assume that the radius R is sufficiently large to describe the optical properties of the wires
as characterized by the same local surface conductivity as planar graphene (see appendix A).
Even though nonlocal effects can be observed in our optical system for frequencies lower than
characteristic resonance frequencies, this is not interesting for our purposes (see appendix B).
We denote by rj(r), ϕj(r) (j = a, b) the polar coordinates of a point at position r with respect to
the local origin Oj. A plane wave radiation impinges on the wires with an angle of incidence
ϕinc with respect to the y axis. Although some enhanced optical effects related to invisibility
modes are observed for s polarization (electric field along the z axis) [32], this work focus on
p polarization (magnetic fields along the z axis) for which the electric field in the graphene
coating induces electric currents directed along the azimuthal direction ϕj(r) and LSPs exist in
the graphene circular cylinder. In this way, the incident magnetic field (along the z axis) can be
written in a system linked to the j-cylinder as [30],

Hinc(r) = eikvrj sin(φinc−φ
j)
+∞∑︂

m=−∞
(−1)mJm(kvrj(r))eimφl(r)e−imφinc , (1)

where rj, ϕj are the polar coordinates of the j-cylinder, kv =
√
εv

ω
c , is the modulus of the photon

wave vector in medium v, ω is the angular frequency, c is the vacuum speed of light and Jm(x) is
the nth Bessel function. The scattered magnetic field in medium v (rj(r)>R) can be written as a
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superposition of the field scattered by each of the cylinders,

H(v)
s (r) =

∑︂
j=a,b

+∞∑︂
m=−∞

bj mHm(kvrj(r))eimφj(r), (2)

where Hm(x) is the nth Hankel functions of the first kind. Note that the jth term of the summation
corresponds to the field scattered by the jth cylinder linked to the local system with origin Oj. In
the region inside the cylinders, rj(r)<R, the transmitted field is written as

H(j)(r) =
+∞∑︂

m=−∞
aj mJm(kjrj(r))eimφj(r), (3)

where j = a, b. To find the unknown complex amplitudes of the reflected bjm and transmitted
ajm fields (2) and (3), we use the usual boundary conditions and the addition theorem for Bessel
and Hankel functions [33]. This theorem allow us to write one of the terms in (2), associated
to the scattered field of one of the cylinders (for example, the j = b cylinder) in the other local
coordinates (the j = a cylinder). In this way, the scattered field (2) will be represented in the
form of expansions in Hankel functions written in the local coordinate j = a. By replacing this
expression and Eq. (3) with j = a into the boundary conditions along the surface ra = R of the
j = a cylinder, one obtain a set of 2 equations for the 2 × 2 unknown amplitudes. Similarly, we
can write the scattered field (2) in the local coordinate j = b and use the boundary conditions
on the surface of the j = b cylinder to obtain other set of 2 equations for the 2 × 2 unknown
amplitudes. However, we closely follow a variant of the method, developed in [34], that allows to
reduce to half the dimension of the system of equations. The detailed of this implementation has
been given in [30], and leads to the following system of equations for the amplitudes bjm⎡⎢⎢⎢⎢⎣

I −Sa · Ta b

−Sb · Tb a I

⎤⎥⎥⎥⎥⎦ ⎛⎜⎝
ba

bb

⎞⎟⎠ = ⎛⎜⎝
Sa · Qa

Sb · Qb

⎞⎟⎠ , (4)

where bl and Ql are vectors whose coordinates are the elements blm and

Qjm = eikvrj sin(φinc−φ
j)(−1)me−imφinc , (5)

respectively, Tlj is the matrix with elements

Tljnm = Hn−m(kvrj
l)e

i(n−m)φ
j
l , (6)

and Sj is the matrix with elements Sjmn = sjm δmn, where sjm are the elements of the scattering
matrix associated to the jth cylinder [35]

sj m =
[kjεvJm(y)J

′

m(x) − kvεjJ
′

m(y)Jm(x) − 4πσ
ck0

ikjkvJ
′

m(x)J
′

m(y)]

kvεjJm(x)H
′

m(y) − kjεvJ′
(x)Hm(y) + 4πσ

ck0
ikjkvJ

′

m(x)H
′

m(y)
, (7)

where x = kjR, y = kvR and the prime denotes the derivative with respect to the argument.
Knowing the total electromagnetic field allows us to calculate the scattering cross sections.

The time-averaged scattered power is calculated from the integral of the radial component of
the complex Poynting vector flux through an imaginary cylinder of length L of radius ρ0 which
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Fig. 1. Schematic illustration of the system composed by 2 dielectric cylinders wrapped
with graphene sheets.

envelops the graphene wire system (see Fig. 1),

Ps = ρ0L
∫ 2π

0
⟨S⟩ · r̂ dϕ, (8)

⟨S(ρ0, ϕ)⟩ · r̂ =
c

8π
Re

{︁
Es,φH∗

s
}︁
=

c
8π

Re
{︃

1
ik0εv

∂ Hs

∂r
H∗

s

}︃
. (9)

It is convenient to express each of the terms in Eq. (2) in a same coordinate O [30]. Substituting
the obtained expression into Eq. (9) we obtain

⟨S(ρ0, ϕ)⟩ · r̂ =
c

8π
Re

{︄
1

i√εv

∑︂
m,n

BmB∗
nH′

m(kvρ0)H∗
m(kvρ0)ei(m−n)φ

}︄
, (10)

where

Bm =
∑︂
j=a,b

+∞∑︂
q=−∞

bjmJm−q(kvrj)ei(q−m)φj
. (11)

Inserting Eq. (10) into (8) and taking into account the wronskian W {Jm(x), Ym(x)} = 2/(πx)
(x = kvρ0), after some algebraic manipulations, we obtain the power scattered by the cylinders,

Ps =
c2L

2πωεv

+∞∑︂
m=−∞

|Bm |
2. (12)

The scattering cross section is defined as the ratio between the total power scattered by the
cylinders, given by Eq. (12), and the incident power Pinc intersected by the area of all the cylinders.

It is known that the scattering cross section and the near to the cylinders field are strongly
affected by complex singularities in the field amplitudes bjm. Singularities occur at complex
locations and they represent the frequency of the eigenmodes supported by the cylinders system.
Complex frequencies of these modes are obtained by solving the homogeneous problem, i.e.,
by imposing the vectors Qa and Qb in Eq. (4) be zero. Then, a condition to determine
eigenfrequencies is to require the determinant of the matrix in Eq. (4) to be zero,

det
⎡⎢⎢⎢⎢⎣

I −Sa · Ta b

−Sb · Tb a I

⎤⎥⎥⎥⎥⎦ = 0. (13)

This condition corresponds to the full retarded dispersion equation (FR) for eigenmodes and it
determines the complex frequencies ω = ωR + iωI (ωI<0) in terms of all the geometrical and
constitutive parameters of the system.
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2.2. Quasistatic approximation: a simple model based on two coupled electric dipoles

Although the rigorous treatment represented by Eq. (13) gives us all the kinematics and dynamics
characteristics of the PT-symmetric eigenmodes, the method lacks of analytical expressions
that explain the main dependencies with both geometrical and constitutive parameters. For the
purpose of showing this dependencies, by applying the quasistatic method, here, we reduce the
full treatment provided by the homogeneous part of Eq. (4) to a simple 2 × 2 matrix description
as follows.

Assuming that the radius R of cylinders is much smaller than the wavelength λ = 2πc/ω,
the problem can be treated using the dipole approximation where the dimer eigenfunctions
calculated with (4) are, as a good approximation, a superposition of single plasmons with angular
momentum m = ±1 linked to each cylinder. In this way, only four coordinates, bj±1 (j = a, b),
define the amplitudes vector.

We first consider the case in which the induced dipole moments are along the ±x directions, i.e.,
the local magnetic field associated to each of the cylinders has a dependence ≈ sin ϕj (j = a, b).
As a consequence, the amplitudes bj1 = bj−1 (j = a, b). Here, the subscript j−1 stand for cylinder
j and angular momentum m = −1. In this way, the matrix equation for the modal amplitudes
reduces to a 2×2 matrix system for amplitudes ba1 and bb1,⎡⎢⎢⎢⎢⎣

1 −2 sa H1(z)/z

−2 sb H1(z)/z 1

⎤⎥⎥⎥⎥⎦ ⎛⎜⎝
ba1

bb1

⎞⎟⎠ = ⎛⎜⎝
0

0
⎞⎟⎠ , (14)

where we have used 2H1(z)/z = H0(z) + H2(z), z = kvRab (Rab is the distance between cylinder
centers). Using the small argument asymptotic expansions for Bessel and Hankel functions [33],
it follows that sj can be written as,

sj =
π k2

v
4

iαj, (15)

j = a, b, where

αj = R2 ε1 ± iεi − εv + g(ω)
ε1 ± iεi + εv + g(ω)

, (16)

are the dipolar polarizability of the cylinders j = a or j = b, respectively, g(ω) = −
ω2

g
ω2+iωγg

,

ω2
g =

4e2µ
ℏ2R is the effective plasma frequency for the dipolar mode [36]. Note that the value of αa

differs from αb in the sign of the gain–loss parameter εi, signs + and − correspond to j = a and
j = b respectively. Near the resonance frequency, the polarizability αj (j = a, b) can be written as

αj = R2 ε1 ± iεi − εv + g(ωj)

g′(ωj)(ω − ωj)
=

Aj

ω − ωj
, (17)

where ωj = ωjR + iωjI (ωjI<0) is the complex pole of αj, i.e., the eigenfrequency of the single
graphene cylinder j, g′(ω) is the derivative of g(ω) and

Aj = R2 ε1 ± iεi − εv + g(ωa)

g′(ωa)
. (18)

The single cylinder eigenfrequencies for cylinders a and b are written as [36]

ωj =
ωg

√
εj + εv

− i
γg

2
≈ ω0 + iωjI , (19)

where
ω0 =

ωg
√
ε1 + εv

, (20)
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ωjI = −(Γsup ± Γcore), (21)

the signs + and − correspond to j = a and j = b, respectively, and

Γsup =
γg

2
,

Γcore =
1
2
εi

ωg

(ε1 + εv)3/2
,

(22)

are the damping rates corresponding to the ohmic loss in graphene covers and dielectric cores,
respectively. We have used the fact that εi<<ε1+ εv in the last equality in Eq. (19). From Eq. (20)
we see that the real part of the eigenfrequencies do not depend on εi, a fact that also results by
solving the fully retarded dispersion equation for a single graphene cylinder [37].

By taking into account the small argument z = kvRab in the Hankel functions, the off diagonal
elements in the matrix in Eq. (14) are written as

−2
H(kvRab)

kvRab
sj = −2

−2i
π(kvRab)2

πk2
v i

4
αj = −

αj

R2
ab

. (23)

Therefore, the matrix Eq. (14) takes the form⎡⎢⎢⎢⎢⎣
ω − ωa −Aa/R2

ab

−Ab/R2
ab ω − ωb

⎤⎥⎥⎥⎥⎦ ⎛⎜⎝
ba1

bb1

⎞⎟⎠ = ⎛⎜⎝
0

0
⎞⎟⎠ , (24)

where Aj j = a, b are given by Eq. (18). Equation (24) gives us a simple description for the
dimer dynamic. For large separations, Aj/R2

ab<<ωa (or R/Rab<<1), the matrix (24) is diagonal
and thus the eigenfrequencies correspond to that of each individual graphene wires composing
the dimer, i.e., the plasmonic wires do not interact between them. Taking into account the PT
parameters, the real parts of both frequencies are the same whereas their imaginary parts differ
in 2Γcore. For small enough values of Rab, extra diagonal terms take appreciable values and
a splitting between the real parts of eigenfrequencies occurs. From Eq. (C8) we can see that
this splitting is proportional to R2/R2

abω0. For system (24) to have a non-trivial solution, its
determinant must be equal to zero, a condition which can be written as

(ω − ωa)(ω − ωb) =
AaAb

R4
ab

. (25)

A detailed developed of the right hand side of this equation can be seen in appendix C. By
replacing expression (C8) into Eq. (25) and solving for ω eigenfrequencies,

ω± = −i
γg

2
+ ω0 ±

√︄
−
γ2

4
+ ωaIωbI +

AaAb

R4
ab
=

ω0 − i
γg

2
±

ω0
(ε1 + εv)

⌜⎷
−ε2

i
4
+

R4

R4
ab
ε2

v ,

(26)

where in the last equality we have used Eq. (21). This equation shows the dependence of the
eigenfrequencies with the gain–loss optical parameter εi. For εi = 0, the real parts of the
eigenfrequencies split by ∆ω = ω+ − ω− = 2 R2

R2
ab

ω0
(ε1+εv)

εv while their imaginary parts remain
degenerated at the value −γg/2. From Eq. (24), we see that the eigenvector associated to the
upper branch verify ba1 = −bb1 pointing out that the induced dipole moments on each of the
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cylinders move out of phase, i.e., the state corresponds to a trapped mode, while the eigenvector
associated to the lower branch verify ba1 = ba1 pointing out that this mode corresponds to a
radiating mode that can be excited, for example, by an incident plane wave [30]. We use the
notation +x − x and +x + x to refer to the upper and lower branches, respectively. Since the terms
inside the root have opposed signs between them, the splitting between upper (+x − x) and lower
(+x + x) branches monotonically decreases as εi is increased until reaching the value

εep = 2
R2

R2
ab
εv, (27)

for which the eigenfrequencies coalesce at the exceptional point ω = −iγg
2 +

ωg
√
ε1+εv

. At the same
time, the imaginary parts of both eigenfrequencies remain equal. Beyond the exceptional point
and for the gain–loss parameter εi>εep, the imaginary parts of the eigenfrequencies bifurcate,
while their real parts remain degenerated. In Fig. 2 we illustrate in the complex plane the above
described trajectories for the upper and lower branches (26) as parametric functions of the
gain–loss parameter εi. We have taken the straight segment z = 0, with Re z>0 as the cut line for
the square root function in Eq. (26) so that

√
−w2 = iw for w real and positive.

Fig. 2. Trajectory in the complex plane of the eigenfrequencies (26) as a parametric function
of the gain–loss parameter εi. Two branches, (a) +x− x and +x+ x and (b) +y− y and +y+ y,
are observed. As εi increases, the two eigenfrequencies approach each other until they
coalesce in an exceptional point. After passing the exceptional point, they are repelled in their
imaginary parts. The real parts of the permittivity of the cylinders are Re ε1 = Re ε2 = 2.13,
εv = 1, the radius Ra = Rb = 0.03µm and the gap ∆ = 0.04µm. The graphene parameters
are T = 300K, γa = γb = 0.1meV and µa = µb = 0.5eV.

We now consider the case of polarization along the y axis, in which each of the induced dipole
moments are along ±y direction, i.e., the local magnetic field associated to each of the cylinders
has a dependence ≈ cos ϕj (j = a, b). As a consequence, the amplitudes bj1 = −bj−1 (j = a, b).
In this case, the matrix equation for these amplitudes is⎡⎢⎢⎢⎢⎣

1 −2 sa H′
1(z)

−2 sb H′
1(z) 1

⎤⎥⎥⎥⎥⎦ ⎛⎜⎝
ba1

bb1

⎞⎟⎠ = ⎛⎜⎝
0

0
⎞⎟⎠ , (28)

where we have used 2H′
1(z)/z = H0(z) − H2(z), and H′

1(z) is the derivative of H1(z). Following
the same steps as in the case of x polarization, the matrix Eq. (28) takes the form⎡⎢⎢⎢⎢⎣

ω − ωa Aa/R2
ab

Ab/R2
ab ω − ωb

⎤⎥⎥⎥⎥⎦ ⎛⎜⎝
ba1

bb1

⎞⎟⎠ = ⎛⎜⎝
0

0
⎞⎟⎠ , (29)
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where Aj are given by Eq. (18). Note that the matrix in Eq. (29) differs from that in Eq. (24) only
in the signs of the non diagonal terms. Therefore, the eigenfrequencies corresponding to induced
dipole moments along y direction are formally given by Eq. (26). Unlike the x polarization case,
for which the upper frequency branch for εi = 0 corresponds to a trapped mode, From Eq. (29)
and taking εi = 0, we see that the eigenvector associated to the upper branch verify ba1 = bb1,
i.e., it corresponds to a radiating mode. Conversely, it is straightforward to verify that the lower
frequency branch corresponds to a trapped mode for which ba1 = −bb1. It is worth noting that
in this case, ±y oscillations, it is convenient to take the cut of the complex square root function
√

z as the straight line z = iw (w real and positive) so that
√
−w2 = −iw. In this way, beyond

the exceptional point the upper branch +y + y moves away from the real axis whereas the lower
branch +y − y reaches the real axis, as shown in Fig. 2(b).

3. Results

We consider a system of two dielectric cylinders with permittivities εa = 2.13 + iεi (εi>0),
εb = 2.13 − iεi for lossy and gain cylinders, respectively. The radii Ra = Rb = R = 0.03µm and
both cylinders are coated with a graphene monolayer and immersed in vacuum (εv = 1). The
graphene parameters are: temperature T = 300K, chemical potentials µ1 = µ2 = 0.5eV and the
carriers scattering rates γ1 = γ2 = 0.1meV. The positions of the cylinders are ra = −0.05µmx̂,
rb = 0.05µmx̂ (center to center distance Rab = 0.1µm) and the gap between them is ∆ = 0.04µm.
Fig. 3(a) shows the trajectory of the eigenfrequencies in the complex plane as a parametric
function of the gain–loss parameter εi calculated by solving the full retarded dispersion equation
(FR). To solve this equation, we use a Newton–Raphson method adapted to treat complex
variable. Four branches are observed, two of them (+x + x and +x − x) corresponds to both
cylinders polarized along the x axis (dipole moments along the x axis) while the other two
branches (+y − y and +y + y) corresponds to the case in which both cylinders are polarized in
the y axis (dipole moments along y axis). We are using the notation of the asymptotic case
when εi = 0 for naming the dimer surface plasmons branches, so that +y + y (+x + x) branch
corresponds to the curve starting at the point for which both dipole moments move in phase on
the y axis (x axis), point O” (point O”’) in Fig. 3(a), and the +y − y (+x − x) branch corresponds
to the curve starting at the point for which the dipole moments oscillating in opposite phase
on the y axis (x axis), point O’ (point O) in Fig. 3(a). For instance, the branch +x + x starts at
frequency ω/c = 0.8589226 − i0.5789274 10−3µm−1 for εi = 0, where both dipole moments
are in phase, and it moves to the right side leaving away from the real axis. Moreover, the real
part of this trajectory approaches asymptotically to the value ω/c = 0.8868µm−1 corresponding
to the real part of the eigenfrequency of a single graphene cylinder [36]. On the contrary, the
branch +x − x starts at ω/c = 0.9107941 − i0.253260710 10−3µm−1 for εi = 0, with both dipole
moments in opposite phase, and it approaches to the real axis where the lasing threshold at
ωcrit/c ≈ 0.8954615m−1 is reached for εi = εcrit = 0.166 (point A in Fig. 3(a)).

On the other hand, Fig. 3(a) also shows the trajectory of the branch corresponding to the
polarization along the y axis. The branch +y − y starts at frequency ω/c = 0.8594583 −

i0.25349871 10−3µm−1 for εi = 0, where both dipole moments are in opposed phase, and it
moves toward the right side, reaching the real axis at point C where the critical eigenfrequency
ωcrit/c = 0.8755407µm−1 for a critical value of the gain–loss parameter εcrit = 0.1715275. On
the other hand, the +y + y branch starts at frequency ω/c = 0.9102954 − i0.5560595 10−3µm−1

for εi = 0 and it moves to the left side leaving away from the real axis. As in the x polarized case,
both branches are repelled in the direction of the imaginary axis allowing the +y − y branch to
achieve the lasing threshold at point C.

In order to understand the gain–loss compensation near the critical points at which the
eigenfrequencies are almost real, in Fig. 3(b) we plot the scattering cross sections for a plane
wave impinging at an angle ϕ = 0 (electric field along the x axis) and ϕ = 90◦ (electric field along



Research Article Vol. 29, No. 7 / 29 March 2021 / Optics Express 10201

Fig. 3. (a) Trajectory of the four branches as a parametric function of the gain–loss
parameter εi. The lasing threshold is achieved for branches +x − x and +y − y at points
A and C, respectively. The gain–loss parameter values are εi = 0.166, for point A, and
εi = 0.1715275, for point C. Points B and D correspond to states on the +x + x and +y + y
branches for εi = 0.166 and εi = 0.1715275, respectively. Dashed lines correspond to QA
branches plotted in Fig. 2. (b) Scattering cross section for p-polarized incident waves for
illumination direction along (ϕinc = 90◦) and perpendicular (ϕinc = 0) to the axis joining
the cylinder centers. The permittivity of the cylinders are εa = 2.13 + iεi, εb = 2.13 − iεi,
the radius Ra = Rb = R = 0.03µm and the gap ∆ = 0.04µm. The graphene parameters are
T = 300K, γa = γb = 0.1meV and µa = µb = 0.5eV.
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the y axis). The corresponding gain–loss parameter is εi = 0.166 for ϕ = 0, and εi = 0.1715
for ϕ = 90◦, i.e., it values are near to the critical values at which lasing conditions are achieved.
In the ϕ = 0 case, we observe that the scattering cross section is enhanced at frequency near
ω/c ≈ 0.895m−1 that agree well with the lasing frequency for the +x − x branch calculated by
solving the eigenmode problem (point A in Fig. 3(a)). Moreover, we observe another peak (less
intense) near ω/c = 0.873µm−1, a value that falls near the real part of the eigenfrequency of a
state with εi = 0.166 but corresponding to the +x + x branch (point B in Fig. 3(a)). A similar
behavior presents the scattering curve for ϕ = 90◦ and εi = 0.1715. From Fig. 3(b) we observe a
very sharp peak at frequency that coincides with the lasing frequency ωcrit/c ≈ 0.8755407µm−1

calculated by solving the eigenmode problem (point C in Fig. 3(a)). Moreover, a second peak
is observed at a frequency ≈ 0.894µm−1 associated to the excitation of the state on the +y + y
branch for εi = 0.1715 (point D in Fig. 3(a)).

The question that arises from the above results is how eigenmodes on the +x − x and +y − y
branches, which correspond to trapped modes for εi = 0, can be excited with a plane wave by
varying the gain–loss parameter εi. Furthermore, these branches reach their lasing threshold
for a critical value of the gain–loss parameter. To find a response, we have calculated the
eigenvectors, containing all the field amplitudes of the eigenmodes. In particular, we have
verified that coefficients with |m| ≠ 1 are orders of magnitude less than those corresponding to
m = ±1, suggesting that the dimer plasmons can be considered, as a good approximation, as a
superposition of single plasmon with m = ±1 linked to each cylinder. As a consequence, to gain
further insight into the underlying physics of these branches excitations, we applied the QA as
follows. Without loss of generality, we consider the case for which the induced dipole moments
on cylinders are in ±x direction. By replacing Eq. (26) into Eq. (24) and using Eq. (19), we find
the following relation between the dimer amplitudes

ba1 = ∓
εv(R/Rab)

2√︂
−

ε2
i
4 + ε

2
v (R/Rab)4 + i εi

2

bb1, (30)

where the − and + signs correspond to the +x − x and +x + x branches, respectively. From this
equation we see that the modulus of the ba1 and bb1 amplitudes are equal providing that the
gain–loss parameter be less than εep. Taking into account the fact that ba−1 = ba1 and bb−1 = bb1
and using Eq. (2), we can write the field scattered by the cylinders as

H(v)
s (r) = 2iba1H1(kvra) sin(ϕa) + 2ibb1H1(kvrb) sin(ϕb). (31)

Comparing this expression with that corresponding to a single dipole moment p along the x
axis and centered at the origin (H ≈ pH1(kvr) sin(ϕ)), we deduce that Eq. (31) corresponds to a
superposition of two fields, one of them due to a dipole moment of amplitude pa ≈ ba1 centered
at the cylinder a and other due to a dipole moment of amplitude pb ≈ bb1 centered at the cylinder
b. Since |ba1 | = |bb1 |, the induced dipole moments |pa | = |pb | and, as a consequence, both
emitted fields for each of the dipoles have the same intensity. Focusing our attention on the x − x
eigenmode, from Eq. (30) we see that the phase difference Φ between ba1 and bb1 amplitudes,
and thus between pa and pb, is shifted from π to π/2 when εi increases from 0 up to above the
value εep. This fact implies that the eigenmodes on the +x − x trajectory pass from trapped to
bright by increasing the gain–loss parameter. Our calculation confirm this expectation, as can be
seen in Fig. 4 where we show plots of the phase Φ as a function of the gain–loss parameter εi by
applying the FR dispersion rigorous method (continuous line) and using Eq. (30) (dashed line).
From this Figure we see that the curve calculated with the QA agree well with that calculated by
using the FR dispersion method. In particular, we see that the phase Φ = π for εi = 0, which
means that the eigenmodes are dark states, and monotonically decreases for until reach the lasing
modes A (for +x − x brach) and B (for +y − y branch).
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Fig. 4. Phase difference between the induced dipoles on each cylinders as a function of
the gain–loss parameter εi for the +x − x and +y − y branches. The calculations have been
carried out by applying the FR dispersion method (continuous line) and the QA method
(dashed line). Constitutive and geometrical parameters are the same as in Fig. 3.

In order to visualize the above behavior, in Figs. 5(a) and 5(b) we have plotted the spatial
distribution of the magnetic field Hv

s (r) (calculated by using the FR method) corresponding
to the +x − x mode for εi = 0 (point O in Fig. 3(a)) and εi = 0.166 (point A in Fig. 3(a)),
respectively. The eigenfrequencies are ω/c = (0.9107941 − i0.2532607 10−3)µm−1 (Fig. 5(a))
andω/c = (0.8954615− i0.2850863 10−5)µm−1 (Fig. 5(b)). The map of Fig. 5(b) is characterized
by four zones, two of them are in red (blue) pointing out that the magnetic field is in −z (+z)
direction. This field distribution corresponds to that of two identical dipole moments placed at
the center of each cylinders and oscillating with opposite phase (Φ = π). On the other hand,
from Fig. 5(b) we observe two regions, one of them is red (y>0) and the other is blue (y<0).
Moreover, the field intensity near the first cylinder is notably less than that near the second
cylinder, indicating that, at this time, the dipole moment on the first cylinder is less than that
corresponding to the second cylinder, as shown in Fig. 5(b). This behaviour is in accordance
with the fact that the phase difference between both dipole moments pa and pb is near Φ = π/2
for the lasing mode A and, as a consequence, this mode can be excited by plane wave incidence.
Similarly, in Figs. 5(c) and Fig. 5(d), we plotted the magnetic field map for the +y − y mode
for εi = 0 (point O’ in Fig. 3(a)) and εi = 0.1715 (point C in Fig. 3(a)), respectively. The
magnetic field map shown in Fig. 5(c) is similar to that of two dipole moments of equal amplitude
oscillating with opposite phase (Φ = π). On the contrary, as the gain–loss parameter reach the
critical value εi = 0.1715, the magnetic field distribution looks like that of two dipole moments
oscillating out of phase (but not in opposed phase) and, as a consequence, the lasing mode B can
be excited by plane wave incidence.

It is worth noting some similarities and differences between the eigenmode branches calculation
by using the FR dispersion equation and those calculated by using the QA. On the one hand, the
+x + x and +x − x branches in Fig. 3(a) are repelled in the direction of the imaginary axis, as
predicted by the QA for a PT-symmetric system (Fig. 2), a feature that allows the +x − x branch
to achieve the lasing threshold at point A. Furthermore, the critical value (27) calculated by using
the QA results εep = 0.18, a value that agree well with the gain–loss parameter for which the
lasing threshold is achieved in Fig. 3(a). Moreover, the phase difference between the induced
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Fig. 5. Spatial distribution of the magnetic field Hv
s (r) at a fixed time for plasmon

eigenfrequencies corresponding to points O, O’, A and C in Fig. 3(a). The resonance
frequency is ω/c = (0.9107941 − i0.2532607 10−3)µm−1 (a), ω/c = (0.8954615 −

i0.2850863 10−5)µm−1 (b), ω/c = (0.8594583 − i0.2534987 10−3)µm−1 (c) and ω/c =
(0.875540 − i0.6965941 10−7)µm−1 (d). The arrow plotted at the center of each cylinder
denotes the direction and relative amplitude of the induced electric dipole.

dipole moments on each cylinders calculated by FR and QA methods matches quite well. On
the other hand, +x + x and +x − x branches in Fig. 3(a) do not start at points with the same
value of their imaginary parts as occur for the branches in Fig. 2 and, as a consequence, these
trajectories does not coalesce at an exceptional point as in Fig. 2. This is true because the lack of
a radiation losses term in the QA, i.e., the radiation losses would prevent the system from having

Fig. 6. Lasing frequency (a) and critical gain–loss parameter (b) as functions of the chemical
potential µ (µa = µb = µ) for branches +x− x and +y− y. The calculations have been carried
out by applying the FR dispersion method. Geometrical and other constitutive parameters
are the same as in Fig. 3.
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all the properties of a full loss compensated PT-symmetric structure, shown in Fig. 2, such as the
existence of an exceptional point.

In order to study the behavior with the chemical potential on graphene, we set µa = µb = µ and
vary the values of µ. In Fig. 6 we have plotted the lasing frequency ωcrit and the corresponding
gain–loss parameter εcrit as functions of µ, calculated with the rigorous FR method. From
Fig. 6(a) we can see that the lasing frequency for both +x − x and +y − y branches are increasing
functions of µ. This fact can be understood by taking into account that the real part of the
eigenfrequency corresponding to a single graphene cylinder, which falls between the lasing
frequencies for +y − y and +x − x branches, is proportional to √

µ (see Eq. (20)). On the other
hand, from Fig. 6(b) we see that the critical value of the gain–loss parameter for which the lasing
condition is achieved is a decreasing function of the chemical potential µ. This behaviour has a
similarity with that presented by a single graphene cylinder for which has been demonstrated that
the gain level to achieve the lasing condition decreases with the chemical potential value [37].

4. Conclusions

In conclusion, we have analytically studied the scattering and the eigenmode problems for a
dimer composed of two graphene coated dielectric cylinders, one of them with loss and the other
with the same level of gain. We have demonstrated the existence of two branches, corresponding
to trapped modes when εi = 0, that reach the lasing conditions for suitable values of the gain–loss
parameter. While the phase difference between the induced dipole moments on individual
cylinders changes from π to a value near π/2 when the gain–loss parameter is incremented, a
fact that provides the mode transformation from trapped to radiating modes, the modulus of each
individual dipole moments maintains equals in between.

Other mechanisms to transform a trapped mode into a resonant observable which can be
excited by a plane wave have been reported in other works. All these methods are based on
the introduction of a small asymmetry with respect to the center of the dimer by producing
dissimilar dipole moment modulus on each of the cylinders. Interestingly, here, we found that in
the transformation from trapped to radiating eigenmodes on both +x − x and +y − y branches,
the modulus of the individual dipole moments does not change, while it is changed the phase
between them. A distinction between these two kind of mechanism, the phase variation and
modulus variation mechanisms, to transform a trapped mode into a resonant observable has
not been reported before to our knowledge. We believe that our results will be usefull for a
deeper understanding of the PT-symmetric LSP characteristics and that the LSP effects we have
demonstrated opens up possibilities for practical applications involving sub-wavelength laser
structures.

Appendix A. Graphene conductivity

We consider the graphene layer as an infinitesimally thin, local and isotropic two-sided layer with
frequency-dependent surface conductivity σ(ω) given by the Kubo formula [38], which can be
read as σloc = σ

intra + σinter, with the intraband and interband contributions being

σintra(ω) =
2ie2kBT
πℏ2(ω + iγg)

ln
[︁
2cosh(µg/2kBT)

]︁
, (A1)

σinter(ω) =
e2

ℏ

{︄
1
2
+

1
π

arctan
[︁
(ℏω − 2µg)/2kBT

]︁
−

i
2π

ln

[︄
(ℏω + 2µg)

2

(ℏω − 2µg)2 + (2kBT)2

]︄ }︄
,

(A2)
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where µg is the chemical potential (controlled with the help of a gate voltage), γg the carriers
scattering rate, e the electron charge, kB the Boltzmann constant and ℏ the reduced Planck
constant.

Appendix B. Nonlocal response in graphene conductivity

Nonlocal, or spatial dispersion effects, in graphene conductivity can present deviations from the
results predicted by the local conductivity (A1) and (A2). In general, these effects appear when
the graphene-based structure size is of a few nanometers. At this size scale, the surface plasmon
propagates with low phase velocity vSP approaching to the electron Fermi velocity vF ≈ 106 m/s.
We can estimate the value of vF/vSP using the quasistatic approximation as follows. Since the
surface plasmon effective momentum kSP, which is along the azimutal angle (ϕ axis), can be
written as [36],

kSP =
m
R

, (B1)

if we consider m = 1 (dipolar order), the factor

vF

vSP
=

vF

Rω
≈

1012µm/s
0.03µm 3 × 10141/s

≈
1
9

, (B2)

where we have consider a working frequency (frequency range for plasmon resonances in
considered examples) ω ≈ 1µm−1 c ≈ 1014µm/s and R = 0.03µm. With this value of vF/vSP,
the graphene surface conductivity slightly deviates from the value corresponding to the local
approximation. This fact can be viewed by considering the graphene conductivity including non
local response, as in [39], through the hydrodynamic approximation,

σ(ω, k) =
σloc(ω)

1 −
β2 k2

ω2

, (B3)

where β =
√︂

3
4 vF . By replacing the value of kSP given by Eq. (B1) with m = 1, we obtain a value

which differ less than 0.8% from the local conductivity σloc(ω). As a consequence, we have
neglected the non local response on graphene conductivity.

Appendix C. Developing of the right hand side in Eq. (25)

The right side of Eq. (25) can be calculated by using Eq. (18) as follows.

AaAb

R4
ab
=

a4

R4
ab

[ε1 + iεi − εv + g(ωa)]

g′(ωa)

[ε1 − iεi − εv + g(ωb)]

g′(ωb)
, (C1)

where

g(ωj) = −
ω2

g

ω2
j + iγgωj

, (C2)

and

g′(ωj) =
ω2

g(2ωj + iγg)

(ω2
j + iγgωj)2

. (C3)

By taking into account that γg<< |ωj |, we can write this equations as,

g(ωj) = −
ω2

g

ω2
j

1
1 + iγg/ωj

≈ −
ω2

g

ω2
j

(︄
1 − i
γg

ωj
+
γ2

g

ω2
j
+ · · ·

)︄
, (C4)
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and

g′(ωj) ≈
2ω2

g

ω3
j
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1 − i
γg

ωj
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γ2

g

ω2
j
+ · · ·
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−
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(C5)

Considering the lowest order in Γsup/ω0 and Γcover/ω0, functions g(ωj) and g′(ωj) are written as

g(ωj) ≈ −
ω2

g

ω2
0

[︃
1 ±

i
ω0

2Γcore

]︃
, (C6)

and

g′(ωj) ≈
2ω2

g

ω3
0

[︃
1 ± i

3
ω0
Γcore

]︃
. (C7)

Signs + and − correspond to j = a and j = b, respectively. In this approximation, Eq. (C1)
reduces to

AaAb

R4
ab
=

R4

R4
ab

ω2
g

(ε1 + εv)
ε2

v . (C8)
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